Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
64
65 static const struct e1000_info *e1000_info_tbl[] = {
66         [board_82571]           = &e1000_82571_info,
67         [board_82572]           = &e1000_82572_info,
68         [board_82573]           = &e1000_82573_info,
69         [board_82574]           = &e1000_82574_info,
70         [board_82583]           = &e1000_82583_info,
71         [board_80003es2lan]     = &e1000_es2_info,
72         [board_ich8lan]         = &e1000_ich8_info,
73         [board_ich9lan]         = &e1000_ich9_info,
74         [board_ich10lan]        = &e1000_ich10_info,
75         [board_pchlan]          = &e1000_pch_info,
76         [board_pch2lan]         = &e1000_pch2_info,
77 };
78
79 struct e1000_reg_info {
80         u32 ofs;
81         char *name;
82 };
83
84 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
89
90 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
95
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
97
98         /* General Registers */
99         {E1000_CTRL, "CTRL"},
100         {E1000_STATUS, "STATUS"},
101         {E1000_CTRL_EXT, "CTRL_EXT"},
102
103         /* Interrupt Registers */
104         {E1000_ICR, "ICR"},
105
106         /* Rx Registers */
107         {E1000_RCTL, "RCTL"},
108         {E1000_RDLEN, "RDLEN"},
109         {E1000_RDH, "RDH"},
110         {E1000_RDT, "RDT"},
111         {E1000_RDTR, "RDTR"},
112         {E1000_RXDCTL(0), "RXDCTL"},
113         {E1000_ERT, "ERT"},
114         {E1000_RDBAL, "RDBAL"},
115         {E1000_RDBAH, "RDBAH"},
116         {E1000_RDFH, "RDFH"},
117         {E1000_RDFT, "RDFT"},
118         {E1000_RDFHS, "RDFHS"},
119         {E1000_RDFTS, "RDFTS"},
120         {E1000_RDFPC, "RDFPC"},
121
122         /* Tx Registers */
123         {E1000_TCTL, "TCTL"},
124         {E1000_TDBAL, "TDBAL"},
125         {E1000_TDBAH, "TDBAH"},
126         {E1000_TDLEN, "TDLEN"},
127         {E1000_TDH, "TDH"},
128         {E1000_TDT, "TDT"},
129         {E1000_TIDV, "TIDV"},
130         {E1000_TXDCTL(0), "TXDCTL"},
131         {E1000_TADV, "TADV"},
132         {E1000_TARC(0), "TARC"},
133         {E1000_TDFH, "TDFH"},
134         {E1000_TDFT, "TDFT"},
135         {E1000_TDFHS, "TDFHS"},
136         {E1000_TDFTS, "TDFTS"},
137         {E1000_TDFPC, "TDFPC"},
138
139         /* List Terminator */
140         {0, NULL}
141 };
142
143 /*
144  * e1000_regdump - register printout routine
145  */
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
147 {
148         int n = 0;
149         char rname[16];
150         u32 regs[8];
151
152         switch (reginfo->ofs) {
153         case E1000_RXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_RXDCTL(n));
156                 break;
157         case E1000_TXDCTL(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TXDCTL(n));
160                 break;
161         case E1000_TARC(0):
162                 for (n = 0; n < 2; n++)
163                         regs[n] = __er32(hw, E1000_TARC(n));
164                 break;
165         default:
166                 pr_info("%-15s %08x\n",
167                         reginfo->name, __er32(hw, reginfo->ofs));
168                 return;
169         }
170
171         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 }
174
175 /*
176  * e1000e_dump - Print registers, Tx-ring and Rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 {
186                 __le64 a;
187                 __le64 b;
188         } *u0;
189         struct e1000_buffer *buffer_info;
190         struct e1000_ring *rx_ring = adapter->rx_ring;
191         union e1000_rx_desc_packet_split *rx_desc_ps;
192         union e1000_rx_desc_extended *rx_desc;
193         struct my_u1 {
194                 __le64 a;
195                 __le64 b;
196                 __le64 c;
197                 __le64 d;
198         } *u1;
199         u32 staterr;
200         int i = 0;
201
202         if (!netif_msg_hw(adapter))
203                 return;
204
205         /* Print netdevice Info */
206         if (netdev) {
207                 dev_info(&adapter->pdev->dev, "Net device Info\n");
208                 pr_info("Device Name     state            trans_start      last_rx\n");
209                 pr_info("%-15s %016lX %016lX %016lX\n",
210                         netdev->name, netdev->state, netdev->trans_start,
211                         netdev->last_rx);
212         }
213
214         /* Print Registers */
215         dev_info(&adapter->pdev->dev, "Register Dump\n");
216         pr_info(" Register Name   Value\n");
217         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
218              reginfo->name; reginfo++) {
219                 e1000_regdump(hw, reginfo);
220         }
221
222         /* Print Tx Ring Summary */
223         if (!netdev || !netif_running(netdev))
224                 return;
225
226         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
230                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
231                 (unsigned long long)buffer_info->dma,
232                 buffer_info->length,
233                 buffer_info->next_to_watch,
234                 (unsigned long long)buffer_info->time_stamp);
235
236         /* Print Tx Ring */
237         if (!netif_msg_tx_done(adapter))
238                 goto rx_ring_summary;
239
240         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241
242         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
243          *
244          * Legacy Transmit Descriptor
245          *   +--------------------------------------------------------------+
246          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
247          *   +--------------------------------------------------------------+
248          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
249          *   +--------------------------------------------------------------+
250          *   63       48 47        36 35    32 31     24 23    16 15        0
251          *
252          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
253          *   63      48 47    40 39       32 31             16 15    8 7      0
254          *   +----------------------------------------------------------------+
255          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
256          *   +----------------------------------------------------------------+
257          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
258          *   +----------------------------------------------------------------+
259          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
260          *
261          * Extended Data Descriptor (DTYP=0x1)
262          *   +----------------------------------------------------------------+
263          * 0 |                     Buffer Address [63:0]                      |
264          *   +----------------------------------------------------------------+
265          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
266          *   +----------------------------------------------------------------+
267          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
268          */
269         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
270         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
271         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273                 const char *next_desc;
274                 tx_desc = E1000_TX_DESC(*tx_ring, i);
275                 buffer_info = &tx_ring->buffer_info[i];
276                 u0 = (struct my_u0 *)tx_desc;
277                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278                         next_desc = " NTC/U";
279                 else if (i == tx_ring->next_to_use)
280                         next_desc = " NTU";
281                 else if (i == tx_ring->next_to_clean)
282                         next_desc = " NTC";
283                 else
284                         next_desc = "";
285                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
286                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
287                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
288                         i,
289                         (unsigned long long)le64_to_cpu(u0->a),
290                         (unsigned long long)le64_to_cpu(u0->b),
291                         (unsigned long long)buffer_info->dma,
292                         buffer_info->length, buffer_info->next_to_watch,
293                         (unsigned long long)buffer_info->time_stamp,
294                         buffer_info->skb, next_desc);
295
296                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
297                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298                                        16, 1, phys_to_virt(buffer_info->dma),
299                                        buffer_info->length, true);
300         }
301
302         /* Print Rx Ring Summary */
303 rx_ring_summary:
304         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305         pr_info("Queue [NTU] [NTC]\n");
306         pr_info(" %5d %5X %5X\n",
307                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
308
309         /* Print Rx Ring */
310         if (!netif_msg_rx_status(adapter))
311                 return;
312
313         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314         switch (adapter->rx_ps_pages) {
315         case 1:
316         case 2:
317         case 3:
318                 /* [Extended] Packet Split Receive Descriptor Format
319                  *
320                  *    +-----------------------------------------------------+
321                  *  0 |                Buffer Address 0 [63:0]              |
322                  *    +-----------------------------------------------------+
323                  *  8 |                Buffer Address 1 [63:0]              |
324                  *    +-----------------------------------------------------+
325                  * 16 |                Buffer Address 2 [63:0]              |
326                  *    +-----------------------------------------------------+
327                  * 24 |                Buffer Address 3 [63:0]              |
328                  *    +-----------------------------------------------------+
329                  */
330                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331                 /* [Extended] Receive Descriptor (Write-Back) Format
332                  *
333                  *   63       48 47    32 31     13 12    8 7    4 3        0
334                  *   +------------------------------------------------------+
335                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
336                  *   | Checksum | Ident  |         | Queue |      |  Type   |
337                  *   +------------------------------------------------------+
338                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
339                  *   +------------------------------------------------------+
340                  *   63       48 47    32 31            20 19               0
341                  */
342                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343                 for (i = 0; i < rx_ring->count; i++) {
344                         const char *next_desc;
345                         buffer_info = &rx_ring->buffer_info[i];
346                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
347                         u1 = (struct my_u1 *)rx_desc_ps;
348                         staterr =
349                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350
351                         if (i == rx_ring->next_to_use)
352                                 next_desc = " NTU";
353                         else if (i == rx_ring->next_to_clean)
354                                 next_desc = " NTC";
355                         else
356                                 next_desc = "";
357
358                         if (staterr & E1000_RXD_STAT_DD) {
359                                 /* Descriptor Done */
360                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
361                                         "RWB", i,
362                                         (unsigned long long)le64_to_cpu(u1->a),
363                                         (unsigned long long)le64_to_cpu(u1->b),
364                                         (unsigned long long)le64_to_cpu(u1->c),
365                                         (unsigned long long)le64_to_cpu(u1->d),
366                                         buffer_info->skb, next_desc);
367                         } else {
368                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
369                                         "R  ", i,
370                                         (unsigned long long)le64_to_cpu(u1->a),
371                                         (unsigned long long)le64_to_cpu(u1->b),
372                                         (unsigned long long)le64_to_cpu(u1->c),
373                                         (unsigned long long)le64_to_cpu(u1->d),
374                                         (unsigned long long)buffer_info->dma,
375                                         buffer_info->skb, next_desc);
376
377                                 if (netif_msg_pktdata(adapter))
378                                         print_hex_dump(KERN_INFO, "",
379                                                 DUMP_PREFIX_ADDRESS, 16, 1,
380                                                 phys_to_virt(buffer_info->dma),
381                                                 adapter->rx_ps_bsize0, true);
382                         }
383                 }
384                 break;
385         default:
386         case 0:
387                 /* Extended Receive Descriptor (Read) Format
388                  *
389                  *   +-----------------------------------------------------+
390                  * 0 |                Buffer Address [63:0]                |
391                  *   +-----------------------------------------------------+
392                  * 8 |                      Reserved                       |
393                  *   +-----------------------------------------------------+
394                  */
395                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396                 /* Extended Receive Descriptor (Write-Back) Format
397                  *
398                  *   63       48 47    32 31    24 23            4 3        0
399                  *   +------------------------------------------------------+
400                  *   |     RSS Hash      |        |               |         |
401                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
402                  *   | Packet   | IP     |        |               |  Type   |
403                  *   | Checksum | Ident  |        |               |         |
404                  *   +------------------------------------------------------+
405                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
406                  *   +------------------------------------------------------+
407                  *   63       48 47    32 31            20 19               0
408                  */
409                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410
411                 for (i = 0; i < rx_ring->count; i++) {
412                         const char *next_desc;
413
414                         buffer_info = &rx_ring->buffer_info[i];
415                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
416                         u1 = (struct my_u1 *)rx_desc;
417                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418
419                         if (i == rx_ring->next_to_use)
420                                 next_desc = " NTU";
421                         else if (i == rx_ring->next_to_clean)
422                                 next_desc = " NTC";
423                         else
424                                 next_desc = "";
425
426                         if (staterr & E1000_RXD_STAT_DD) {
427                                 /* Descriptor Done */
428                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
429                                         "RWB", i,
430                                         (unsigned long long)le64_to_cpu(u1->a),
431                                         (unsigned long long)le64_to_cpu(u1->b),
432                                         buffer_info->skb, next_desc);
433                         } else {
434                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
435                                         "R  ", i,
436                                         (unsigned long long)le64_to_cpu(u1->a),
437                                         (unsigned long long)le64_to_cpu(u1->b),
438                                         (unsigned long long)buffer_info->dma,
439                                         buffer_info->skb, next_desc);
440
441                                 if (netif_msg_pktdata(adapter))
442                                         print_hex_dump(KERN_INFO, "",
443                                                        DUMP_PREFIX_ADDRESS, 16,
444                                                        1,
445                                                        phys_to_virt
446                                                        (buffer_info->dma),
447                                                        adapter->rx_buffer_len,
448                                                        true);
449                         }
450                 }
451         }
452 }
453
454 /**
455  * e1000_desc_unused - calculate if we have unused descriptors
456  **/
457 static int e1000_desc_unused(struct e1000_ring *ring)
458 {
459         if (ring->next_to_clean > ring->next_to_use)
460                 return ring->next_to_clean - ring->next_to_use - 1;
461
462         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
463 }
464
465 /**
466  * e1000_receive_skb - helper function to handle Rx indications
467  * @adapter: board private structure
468  * @status: descriptor status field as written by hardware
469  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
470  * @skb: pointer to sk_buff to be indicated to stack
471  **/
472 static void e1000_receive_skb(struct e1000_adapter *adapter,
473                               struct net_device *netdev, struct sk_buff *skb,
474                               u8 status, __le16 vlan)
475 {
476         u16 tag = le16_to_cpu(vlan);
477         skb->protocol = eth_type_trans(skb, netdev);
478
479         if (status & E1000_RXD_STAT_VP)
480                 __vlan_hwaccel_put_tag(skb, tag);
481
482         napi_gro_receive(&adapter->napi, skb);
483 }
484
485 /**
486  * e1000_rx_checksum - Receive Checksum Offload
487  * @adapter: board private structure
488  * @status_err: receive descriptor status and error fields
489  * @csum: receive descriptor csum field
490  * @sk_buff: socket buffer with received data
491  **/
492 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
493                               __le16 csum, struct sk_buff *skb)
494 {
495         u16 status = (u16)status_err;
496         u8 errors = (u8)(status_err >> 24);
497
498         skb_checksum_none_assert(skb);
499
500         /* Rx checksum disabled */
501         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
502                 return;
503
504         /* Ignore Checksum bit is set */
505         if (status & E1000_RXD_STAT_IXSM)
506                 return;
507
508         /* TCP/UDP checksum error bit is set */
509         if (errors & E1000_RXD_ERR_TCPE) {
510                 /* let the stack verify checksum errors */
511                 adapter->hw_csum_err++;
512                 return;
513         }
514
515         /* TCP/UDP Checksum has not been calculated */
516         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
517                 return;
518
519         /* It must be a TCP or UDP packet with a valid checksum */
520         if (status & E1000_RXD_STAT_TCPCS) {
521                 /* TCP checksum is good */
522                 skb->ip_summed = CHECKSUM_UNNECESSARY;
523         } else {
524                 /*
525                  * IP fragment with UDP payload
526                  * Hardware complements the payload checksum, so we undo it
527                  * and then put the value in host order for further stack use.
528                  */
529                 __sum16 sum = (__force __sum16)swab16((__force u16)csum);
530                 skb->csum = csum_unfold(~sum);
531                 skb->ip_summed = CHECKSUM_COMPLETE;
532         }
533         adapter->hw_csum_good++;
534 }
535
536 /**
537  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
538  * @hw: pointer to the HW structure
539  * @tail: address of tail descriptor register
540  * @i: value to write to tail descriptor register
541  *
542  * When updating the tail register, the ME could be accessing Host CSR
543  * registers at the same time.  Normally, this is handled in h/w by an
544  * arbiter but on some parts there is a bug that acknowledges Host accesses
545  * later than it should which could result in the descriptor register to
546  * have an incorrect value.  Workaround this by checking the FWSM register
547  * which has bit 24 set while ME is accessing Host CSR registers, wait
548  * if it is set and try again a number of times.
549  **/
550 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
551                                         unsigned int i)
552 {
553         unsigned int j = 0;
554
555         while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
556                (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
557                 udelay(50);
558
559         writel(i, tail);
560
561         if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
562                 return E1000_ERR_SWFW_SYNC;
563
564         return 0;
565 }
566
567 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
568 {
569         struct e1000_adapter *adapter = rx_ring->adapter;
570         struct e1000_hw *hw = &adapter->hw;
571
572         if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
573                 u32 rctl = er32(RCTL);
574                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
575                 e_err("ME firmware caused invalid RDT - resetting\n");
576                 schedule_work(&adapter->reset_task);
577         }
578 }
579
580 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
581 {
582         struct e1000_adapter *adapter = tx_ring->adapter;
583         struct e1000_hw *hw = &adapter->hw;
584
585         if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
586                 u32 tctl = er32(TCTL);
587                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
588                 e_err("ME firmware caused invalid TDT - resetting\n");
589                 schedule_work(&adapter->reset_task);
590         }
591 }
592
593 /**
594  * e1000_alloc_rx_buffers - Replace used receive buffers
595  * @rx_ring: Rx descriptor ring
596  **/
597 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
598                                    int cleaned_count, gfp_t gfp)
599 {
600         struct e1000_adapter *adapter = rx_ring->adapter;
601         struct net_device *netdev = adapter->netdev;
602         struct pci_dev *pdev = adapter->pdev;
603         union e1000_rx_desc_extended *rx_desc;
604         struct e1000_buffer *buffer_info;
605         struct sk_buff *skb;
606         unsigned int i;
607         unsigned int bufsz = adapter->rx_buffer_len;
608
609         i = rx_ring->next_to_use;
610         buffer_info = &rx_ring->buffer_info[i];
611
612         while (cleaned_count--) {
613                 skb = buffer_info->skb;
614                 if (skb) {
615                         skb_trim(skb, 0);
616                         goto map_skb;
617                 }
618
619                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
620                 if (!skb) {
621                         /* Better luck next round */
622                         adapter->alloc_rx_buff_failed++;
623                         break;
624                 }
625
626                 buffer_info->skb = skb;
627 map_skb:
628                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
629                                                   adapter->rx_buffer_len,
630                                                   DMA_FROM_DEVICE);
631                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
632                         dev_err(&pdev->dev, "Rx DMA map failed\n");
633                         adapter->rx_dma_failed++;
634                         break;
635                 }
636
637                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
638                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
639
640                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
641                         /*
642                          * Force memory writes to complete before letting h/w
643                          * know there are new descriptors to fetch.  (Only
644                          * applicable for weak-ordered memory model archs,
645                          * such as IA-64).
646                          */
647                         wmb();
648                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
649                                 e1000e_update_rdt_wa(rx_ring, i);
650                         else
651                                 writel(i, rx_ring->tail);
652                 }
653                 i++;
654                 if (i == rx_ring->count)
655                         i = 0;
656                 buffer_info = &rx_ring->buffer_info[i];
657         }
658
659         rx_ring->next_to_use = i;
660 }
661
662 /**
663  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
664  * @rx_ring: Rx descriptor ring
665  **/
666 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
667                                       int cleaned_count, gfp_t gfp)
668 {
669         struct e1000_adapter *adapter = rx_ring->adapter;
670         struct net_device *netdev = adapter->netdev;
671         struct pci_dev *pdev = adapter->pdev;
672         union e1000_rx_desc_packet_split *rx_desc;
673         struct e1000_buffer *buffer_info;
674         struct e1000_ps_page *ps_page;
675         struct sk_buff *skb;
676         unsigned int i, j;
677
678         i = rx_ring->next_to_use;
679         buffer_info = &rx_ring->buffer_info[i];
680
681         while (cleaned_count--) {
682                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
683
684                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
685                         ps_page = &buffer_info->ps_pages[j];
686                         if (j >= adapter->rx_ps_pages) {
687                                 /* all unused desc entries get hw null ptr */
688                                 rx_desc->read.buffer_addr[j + 1] =
689                                     ~cpu_to_le64(0);
690                                 continue;
691                         }
692                         if (!ps_page->page) {
693                                 ps_page->page = alloc_page(gfp);
694                                 if (!ps_page->page) {
695                                         adapter->alloc_rx_buff_failed++;
696                                         goto no_buffers;
697                                 }
698                                 ps_page->dma = dma_map_page(&pdev->dev,
699                                                             ps_page->page,
700                                                             0, PAGE_SIZE,
701                                                             DMA_FROM_DEVICE);
702                                 if (dma_mapping_error(&pdev->dev,
703                                                       ps_page->dma)) {
704                                         dev_err(&adapter->pdev->dev,
705                                                 "Rx DMA page map failed\n");
706                                         adapter->rx_dma_failed++;
707                                         goto no_buffers;
708                                 }
709                         }
710                         /*
711                          * Refresh the desc even if buffer_addrs
712                          * didn't change because each write-back
713                          * erases this info.
714                          */
715                         rx_desc->read.buffer_addr[j + 1] =
716                             cpu_to_le64(ps_page->dma);
717                 }
718
719                 skb = __netdev_alloc_skb_ip_align(netdev,
720                                                   adapter->rx_ps_bsize0,
721                                                   gfp);
722
723                 if (!skb) {
724                         adapter->alloc_rx_buff_failed++;
725                         break;
726                 }
727
728                 buffer_info->skb = skb;
729                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
730                                                   adapter->rx_ps_bsize0,
731                                                   DMA_FROM_DEVICE);
732                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
733                         dev_err(&pdev->dev, "Rx DMA map failed\n");
734                         adapter->rx_dma_failed++;
735                         /* cleanup skb */
736                         dev_kfree_skb_any(skb);
737                         buffer_info->skb = NULL;
738                         break;
739                 }
740
741                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
742
743                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
744                         /*
745                          * Force memory writes to complete before letting h/w
746                          * know there are new descriptors to fetch.  (Only
747                          * applicable for weak-ordered memory model archs,
748                          * such as IA-64).
749                          */
750                         wmb();
751                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
752                                 e1000e_update_rdt_wa(rx_ring, i << 1);
753                         else
754                                 writel(i << 1, rx_ring->tail);
755                 }
756
757                 i++;
758                 if (i == rx_ring->count)
759                         i = 0;
760                 buffer_info = &rx_ring->buffer_info[i];
761         }
762
763 no_buffers:
764         rx_ring->next_to_use = i;
765 }
766
767 /**
768  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
769  * @rx_ring: Rx descriptor ring
770  * @cleaned_count: number of buffers to allocate this pass
771  **/
772
773 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
774                                          int cleaned_count, gfp_t gfp)
775 {
776         struct e1000_adapter *adapter = rx_ring->adapter;
777         struct net_device *netdev = adapter->netdev;
778         struct pci_dev *pdev = adapter->pdev;
779         union e1000_rx_desc_extended *rx_desc;
780         struct e1000_buffer *buffer_info;
781         struct sk_buff *skb;
782         unsigned int i;
783         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
784
785         i = rx_ring->next_to_use;
786         buffer_info = &rx_ring->buffer_info[i];
787
788         while (cleaned_count--) {
789                 skb = buffer_info->skb;
790                 if (skb) {
791                         skb_trim(skb, 0);
792                         goto check_page;
793                 }
794
795                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
796                 if (unlikely(!skb)) {
797                         /* Better luck next round */
798                         adapter->alloc_rx_buff_failed++;
799                         break;
800                 }
801
802                 buffer_info->skb = skb;
803 check_page:
804                 /* allocate a new page if necessary */
805                 if (!buffer_info->page) {
806                         buffer_info->page = alloc_page(gfp);
807                         if (unlikely(!buffer_info->page)) {
808                                 adapter->alloc_rx_buff_failed++;
809                                 break;
810                         }
811                 }
812
813                 if (!buffer_info->dma)
814                         buffer_info->dma = dma_map_page(&pdev->dev,
815                                                         buffer_info->page, 0,
816                                                         PAGE_SIZE,
817                                                         DMA_FROM_DEVICE);
818
819                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
820                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
821
822                 if (unlikely(++i == rx_ring->count))
823                         i = 0;
824                 buffer_info = &rx_ring->buffer_info[i];
825         }
826
827         if (likely(rx_ring->next_to_use != i)) {
828                 rx_ring->next_to_use = i;
829                 if (unlikely(i-- == 0))
830                         i = (rx_ring->count - 1);
831
832                 /* Force memory writes to complete before letting h/w
833                  * know there are new descriptors to fetch.  (Only
834                  * applicable for weak-ordered memory model archs,
835                  * such as IA-64). */
836                 wmb();
837                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
838                         e1000e_update_rdt_wa(rx_ring, i);
839                 else
840                         writel(i, rx_ring->tail);
841         }
842 }
843
844 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
845                                  struct sk_buff *skb)
846 {
847         if (netdev->features & NETIF_F_RXHASH)
848                 skb->rxhash = le32_to_cpu(rss);
849 }
850
851 /**
852  * e1000_clean_rx_irq - Send received data up the network stack
853  * @rx_ring: Rx descriptor ring
854  *
855  * the return value indicates whether actual cleaning was done, there
856  * is no guarantee that everything was cleaned
857  **/
858 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
859                                int work_to_do)
860 {
861         struct e1000_adapter *adapter = rx_ring->adapter;
862         struct net_device *netdev = adapter->netdev;
863         struct pci_dev *pdev = adapter->pdev;
864         struct e1000_hw *hw = &adapter->hw;
865         union e1000_rx_desc_extended *rx_desc, *next_rxd;
866         struct e1000_buffer *buffer_info, *next_buffer;
867         u32 length, staterr;
868         unsigned int i;
869         int cleaned_count = 0;
870         bool cleaned = false;
871         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
872
873         i = rx_ring->next_to_clean;
874         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
875         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876         buffer_info = &rx_ring->buffer_info[i];
877
878         while (staterr & E1000_RXD_STAT_DD) {
879                 struct sk_buff *skb;
880
881                 if (*work_done >= work_to_do)
882                         break;
883                 (*work_done)++;
884                 rmb();  /* read descriptor and rx_buffer_info after status DD */
885
886                 skb = buffer_info->skb;
887                 buffer_info->skb = NULL;
888
889                 prefetch(skb->data - NET_IP_ALIGN);
890
891                 i++;
892                 if (i == rx_ring->count)
893                         i = 0;
894                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
895                 prefetch(next_rxd);
896
897                 next_buffer = &rx_ring->buffer_info[i];
898
899                 cleaned = true;
900                 cleaned_count++;
901                 dma_unmap_single(&pdev->dev,
902                                  buffer_info->dma,
903                                  adapter->rx_buffer_len,
904                                  DMA_FROM_DEVICE);
905                 buffer_info->dma = 0;
906
907                 length = le16_to_cpu(rx_desc->wb.upper.length);
908
909                 /*
910                  * !EOP means multiple descriptors were used to store a single
911                  * packet, if that's the case we need to toss it.  In fact, we
912                  * need to toss every packet with the EOP bit clear and the
913                  * next frame that _does_ have the EOP bit set, as it is by
914                  * definition only a frame fragment
915                  */
916                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
917                         adapter->flags2 |= FLAG2_IS_DISCARDING;
918
919                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
920                         /* All receives must fit into a single buffer */
921                         e_dbg("Receive packet consumed multiple buffers\n");
922                         /* recycle */
923                         buffer_info->skb = skb;
924                         if (staterr & E1000_RXD_STAT_EOP)
925                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
926                         goto next_desc;
927                 }
928
929                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
930                              !(netdev->features & NETIF_F_RXALL))) {
931                         /* recycle */
932                         buffer_info->skb = skb;
933                         goto next_desc;
934                 }
935
936                 /* adjust length to remove Ethernet CRC */
937                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
938                         /* If configured to store CRC, don't subtract FCS,
939                          * but keep the FCS bytes out of the total_rx_bytes
940                          * counter
941                          */
942                         if (netdev->features & NETIF_F_RXFCS)
943                                 total_rx_bytes -= 4;
944                         else
945                                 length -= 4;
946                 }
947
948                 total_rx_bytes += length;
949                 total_rx_packets++;
950
951                 /*
952                  * code added for copybreak, this should improve
953                  * performance for small packets with large amounts
954                  * of reassembly being done in the stack
955                  */
956                 if (length < copybreak) {
957                         struct sk_buff *new_skb =
958                             netdev_alloc_skb_ip_align(netdev, length);
959                         if (new_skb) {
960                                 skb_copy_to_linear_data_offset(new_skb,
961                                                                -NET_IP_ALIGN,
962                                                                (skb->data -
963                                                                 NET_IP_ALIGN),
964                                                                (length +
965                                                                 NET_IP_ALIGN));
966                                 /* save the skb in buffer_info as good */
967                                 buffer_info->skb = skb;
968                                 skb = new_skb;
969                         }
970                         /* else just continue with the old one */
971                 }
972                 /* end copybreak code */
973                 skb_put(skb, length);
974
975                 /* Receive Checksum Offload */
976                 e1000_rx_checksum(adapter, staterr,
977                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
978
979                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
980
981                 e1000_receive_skb(adapter, netdev, skb, staterr,
982                                   rx_desc->wb.upper.vlan);
983
984 next_desc:
985                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
986
987                 /* return some buffers to hardware, one at a time is too slow */
988                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
989                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
990                                               GFP_ATOMIC);
991                         cleaned_count = 0;
992                 }
993
994                 /* use prefetched values */
995                 rx_desc = next_rxd;
996                 buffer_info = next_buffer;
997
998                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
999         }
1000         rx_ring->next_to_clean = i;
1001
1002         cleaned_count = e1000_desc_unused(rx_ring);
1003         if (cleaned_count)
1004                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1005
1006         adapter->total_rx_bytes += total_rx_bytes;
1007         adapter->total_rx_packets += total_rx_packets;
1008         return cleaned;
1009 }
1010
1011 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1012                             struct e1000_buffer *buffer_info)
1013 {
1014         struct e1000_adapter *adapter = tx_ring->adapter;
1015
1016         if (buffer_info->dma) {
1017                 if (buffer_info->mapped_as_page)
1018                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1019                                        buffer_info->length, DMA_TO_DEVICE);
1020                 else
1021                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1022                                          buffer_info->length, DMA_TO_DEVICE);
1023                 buffer_info->dma = 0;
1024         }
1025         if (buffer_info->skb) {
1026                 dev_kfree_skb_any(buffer_info->skb);
1027                 buffer_info->skb = NULL;
1028         }
1029         buffer_info->time_stamp = 0;
1030 }
1031
1032 static void e1000_print_hw_hang(struct work_struct *work)
1033 {
1034         struct e1000_adapter *adapter = container_of(work,
1035                                                      struct e1000_adapter,
1036                                                      print_hang_task);
1037         struct net_device *netdev = adapter->netdev;
1038         struct e1000_ring *tx_ring = adapter->tx_ring;
1039         unsigned int i = tx_ring->next_to_clean;
1040         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1041         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1042         struct e1000_hw *hw = &adapter->hw;
1043         u16 phy_status, phy_1000t_status, phy_ext_status;
1044         u16 pci_status;
1045
1046         if (test_bit(__E1000_DOWN, &adapter->state))
1047                 return;
1048
1049         if (!adapter->tx_hang_recheck &&
1050             (adapter->flags2 & FLAG2_DMA_BURST)) {
1051                 /* May be block on write-back, flush and detect again
1052                  * flush pending descriptor writebacks to memory
1053                  */
1054                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1055                 /* execute the writes immediately */
1056                 e1e_flush();
1057                 adapter->tx_hang_recheck = true;
1058                 return;
1059         }
1060         /* Real hang detected */
1061         adapter->tx_hang_recheck = false;
1062         netif_stop_queue(netdev);
1063
1064         e1e_rphy(hw, PHY_STATUS, &phy_status);
1065         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1066         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1067
1068         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1069
1070         /* detected Hardware unit hang */
1071         e_err("Detected Hardware Unit Hang:\n"
1072               "  TDH                  <%x>\n"
1073               "  TDT                  <%x>\n"
1074               "  next_to_use          <%x>\n"
1075               "  next_to_clean        <%x>\n"
1076               "buffer_info[next_to_clean]:\n"
1077               "  time_stamp           <%lx>\n"
1078               "  next_to_watch        <%x>\n"
1079               "  jiffies              <%lx>\n"
1080               "  next_to_watch.status <%x>\n"
1081               "MAC Status             <%x>\n"
1082               "PHY Status             <%x>\n"
1083               "PHY 1000BASE-T Status  <%x>\n"
1084               "PHY Extended Status    <%x>\n"
1085               "PCI Status             <%x>\n",
1086               readl(tx_ring->head),
1087               readl(tx_ring->tail),
1088               tx_ring->next_to_use,
1089               tx_ring->next_to_clean,
1090               tx_ring->buffer_info[eop].time_stamp,
1091               eop,
1092               jiffies,
1093               eop_desc->upper.fields.status,
1094               er32(STATUS),
1095               phy_status,
1096               phy_1000t_status,
1097               phy_ext_status,
1098               pci_status);
1099 }
1100
1101 /**
1102  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1103  * @tx_ring: Tx descriptor ring
1104  *
1105  * the return value indicates whether actual cleaning was done, there
1106  * is no guarantee that everything was cleaned
1107  **/
1108 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1109 {
1110         struct e1000_adapter *adapter = tx_ring->adapter;
1111         struct net_device *netdev = adapter->netdev;
1112         struct e1000_hw *hw = &adapter->hw;
1113         struct e1000_tx_desc *tx_desc, *eop_desc;
1114         struct e1000_buffer *buffer_info;
1115         unsigned int i, eop;
1116         unsigned int count = 0;
1117         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1118         unsigned int bytes_compl = 0, pkts_compl = 0;
1119
1120         i = tx_ring->next_to_clean;
1121         eop = tx_ring->buffer_info[i].next_to_watch;
1122         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1123
1124         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1125                (count < tx_ring->count)) {
1126                 bool cleaned = false;
1127                 rmb(); /* read buffer_info after eop_desc */
1128                 for (; !cleaned; count++) {
1129                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1130                         buffer_info = &tx_ring->buffer_info[i];
1131                         cleaned = (i == eop);
1132
1133                         if (cleaned) {
1134                                 total_tx_packets += buffer_info->segs;
1135                                 total_tx_bytes += buffer_info->bytecount;
1136                                 if (buffer_info->skb) {
1137                                         bytes_compl += buffer_info->skb->len;
1138                                         pkts_compl++;
1139                                 }
1140                         }
1141
1142                         e1000_put_txbuf(tx_ring, buffer_info);
1143                         tx_desc->upper.data = 0;
1144
1145                         i++;
1146                         if (i == tx_ring->count)
1147                                 i = 0;
1148                 }
1149
1150                 if (i == tx_ring->next_to_use)
1151                         break;
1152                 eop = tx_ring->buffer_info[i].next_to_watch;
1153                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1154         }
1155
1156         tx_ring->next_to_clean = i;
1157
1158         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1159
1160 #define TX_WAKE_THRESHOLD 32
1161         if (count && netif_carrier_ok(netdev) &&
1162             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1163                 /* Make sure that anybody stopping the queue after this
1164                  * sees the new next_to_clean.
1165                  */
1166                 smp_mb();
1167
1168                 if (netif_queue_stopped(netdev) &&
1169                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1170                         netif_wake_queue(netdev);
1171                         ++adapter->restart_queue;
1172                 }
1173         }
1174
1175         if (adapter->detect_tx_hung) {
1176                 /*
1177                  * Detect a transmit hang in hardware, this serializes the
1178                  * check with the clearing of time_stamp and movement of i
1179                  */
1180                 adapter->detect_tx_hung = false;
1181                 if (tx_ring->buffer_info[i].time_stamp &&
1182                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1183                                + (adapter->tx_timeout_factor * HZ)) &&
1184                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1185                         schedule_work(&adapter->print_hang_task);
1186                 else
1187                         adapter->tx_hang_recheck = false;
1188         }
1189         adapter->total_tx_bytes += total_tx_bytes;
1190         adapter->total_tx_packets += total_tx_packets;
1191         return count < tx_ring->count;
1192 }
1193
1194 /**
1195  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1196  * @rx_ring: Rx descriptor ring
1197  *
1198  * the return value indicates whether actual cleaning was done, there
1199  * is no guarantee that everything was cleaned
1200  **/
1201 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1202                                   int work_to_do)
1203 {
1204         struct e1000_adapter *adapter = rx_ring->adapter;
1205         struct e1000_hw *hw = &adapter->hw;
1206         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1207         struct net_device *netdev = adapter->netdev;
1208         struct pci_dev *pdev = adapter->pdev;
1209         struct e1000_buffer *buffer_info, *next_buffer;
1210         struct e1000_ps_page *ps_page;
1211         struct sk_buff *skb;
1212         unsigned int i, j;
1213         u32 length, staterr;
1214         int cleaned_count = 0;
1215         bool cleaned = false;
1216         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1217
1218         i = rx_ring->next_to_clean;
1219         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1220         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1221         buffer_info = &rx_ring->buffer_info[i];
1222
1223         while (staterr & E1000_RXD_STAT_DD) {
1224                 if (*work_done >= work_to_do)
1225                         break;
1226                 (*work_done)++;
1227                 skb = buffer_info->skb;
1228                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1229
1230                 /* in the packet split case this is header only */
1231                 prefetch(skb->data - NET_IP_ALIGN);
1232
1233                 i++;
1234                 if (i == rx_ring->count)
1235                         i = 0;
1236                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1237                 prefetch(next_rxd);
1238
1239                 next_buffer = &rx_ring->buffer_info[i];
1240
1241                 cleaned = true;
1242                 cleaned_count++;
1243                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1244                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1245                 buffer_info->dma = 0;
1246
1247                 /* see !EOP comment in other Rx routine */
1248                 if (!(staterr & E1000_RXD_STAT_EOP))
1249                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1250
1251                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1252                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1253                         dev_kfree_skb_irq(skb);
1254                         if (staterr & E1000_RXD_STAT_EOP)
1255                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1256                         goto next_desc;
1257                 }
1258
1259                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1260                              !(netdev->features & NETIF_F_RXALL))) {
1261                         dev_kfree_skb_irq(skb);
1262                         goto next_desc;
1263                 }
1264
1265                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1266
1267                 if (!length) {
1268                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1269                         dev_kfree_skb_irq(skb);
1270                         goto next_desc;
1271                 }
1272
1273                 /* Good Receive */
1274                 skb_put(skb, length);
1275
1276                 {
1277                         /*
1278                          * this looks ugly, but it seems compiler issues make
1279                          * it more efficient than reusing j
1280                          */
1281                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1282
1283                         /*
1284                          * page alloc/put takes too long and effects small
1285                          * packet throughput, so unsplit small packets and
1286                          * save the alloc/put only valid in softirq (napi)
1287                          * context to call kmap_*
1288                          */
1289                         if (l1 && (l1 <= copybreak) &&
1290                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1291                                 u8 *vaddr;
1292
1293                                 ps_page = &buffer_info->ps_pages[0];
1294
1295                                 /*
1296                                  * there is no documentation about how to call
1297                                  * kmap_atomic, so we can't hold the mapping
1298                                  * very long
1299                                  */
1300                                 dma_sync_single_for_cpu(&pdev->dev,
1301                                                         ps_page->dma,
1302                                                         PAGE_SIZE,
1303                                                         DMA_FROM_DEVICE);
1304                                 vaddr = kmap_atomic(ps_page->page,
1305                                                     KM_SKB_DATA_SOFTIRQ);
1306                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1307                                 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1308                                 dma_sync_single_for_device(&pdev->dev,
1309                                                            ps_page->dma,
1310                                                            PAGE_SIZE,
1311                                                            DMA_FROM_DEVICE);
1312
1313                                 /* remove the CRC */
1314                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1315                                         if (!(netdev->features & NETIF_F_RXFCS))
1316                                                 l1 -= 4;
1317                                 }
1318
1319                                 skb_put(skb, l1);
1320                                 goto copydone;
1321                         } /* if */
1322                 }
1323
1324                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1325                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1326                         if (!length)
1327                                 break;
1328
1329                         ps_page = &buffer_info->ps_pages[j];
1330                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1331                                        DMA_FROM_DEVICE);
1332                         ps_page->dma = 0;
1333                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1334                         ps_page->page = NULL;
1335                         skb->len += length;
1336                         skb->data_len += length;
1337                         skb->truesize += PAGE_SIZE;
1338                 }
1339
1340                 /* strip the ethernet crc, problem is we're using pages now so
1341                  * this whole operation can get a little cpu intensive
1342                  */
1343                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1344                         if (!(netdev->features & NETIF_F_RXFCS))
1345                                 pskb_trim(skb, skb->len - 4);
1346                 }
1347
1348 copydone:
1349                 total_rx_bytes += skb->len;
1350                 total_rx_packets++;
1351
1352                 e1000_rx_checksum(adapter, staterr,
1353                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1354
1355                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1356
1357                 if (rx_desc->wb.upper.header_status &
1358                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1359                         adapter->rx_hdr_split++;
1360
1361                 e1000_receive_skb(adapter, netdev, skb,
1362                                   staterr, rx_desc->wb.middle.vlan);
1363
1364 next_desc:
1365                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1366                 buffer_info->skb = NULL;
1367
1368                 /* return some buffers to hardware, one at a time is too slow */
1369                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1370                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1371                                               GFP_ATOMIC);
1372                         cleaned_count = 0;
1373                 }
1374
1375                 /* use prefetched values */
1376                 rx_desc = next_rxd;
1377                 buffer_info = next_buffer;
1378
1379                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1380         }
1381         rx_ring->next_to_clean = i;
1382
1383         cleaned_count = e1000_desc_unused(rx_ring);
1384         if (cleaned_count)
1385                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1386
1387         adapter->total_rx_bytes += total_rx_bytes;
1388         adapter->total_rx_packets += total_rx_packets;
1389         return cleaned;
1390 }
1391
1392 /**
1393  * e1000_consume_page - helper function
1394  **/
1395 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1396                                u16 length)
1397 {
1398         bi->page = NULL;
1399         skb->len += length;
1400         skb->data_len += length;
1401         skb->truesize += PAGE_SIZE;
1402 }
1403
1404 /**
1405  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1406  * @adapter: board private structure
1407  *
1408  * the return value indicates whether actual cleaning was done, there
1409  * is no guarantee that everything was cleaned
1410  **/
1411 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1412                                      int work_to_do)
1413 {
1414         struct e1000_adapter *adapter = rx_ring->adapter;
1415         struct net_device *netdev = adapter->netdev;
1416         struct pci_dev *pdev = adapter->pdev;
1417         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1418         struct e1000_buffer *buffer_info, *next_buffer;
1419         u32 length, staterr;
1420         unsigned int i;
1421         int cleaned_count = 0;
1422         bool cleaned = false;
1423         unsigned int total_rx_bytes=0, total_rx_packets=0;
1424
1425         i = rx_ring->next_to_clean;
1426         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1427         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1428         buffer_info = &rx_ring->buffer_info[i];
1429
1430         while (staterr & E1000_RXD_STAT_DD) {
1431                 struct sk_buff *skb;
1432
1433                 if (*work_done >= work_to_do)
1434                         break;
1435                 (*work_done)++;
1436                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1437
1438                 skb = buffer_info->skb;
1439                 buffer_info->skb = NULL;
1440
1441                 ++i;
1442                 if (i == rx_ring->count)
1443                         i = 0;
1444                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1445                 prefetch(next_rxd);
1446
1447                 next_buffer = &rx_ring->buffer_info[i];
1448
1449                 cleaned = true;
1450                 cleaned_count++;
1451                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1452                                DMA_FROM_DEVICE);
1453                 buffer_info->dma = 0;
1454
1455                 length = le16_to_cpu(rx_desc->wb.upper.length);
1456
1457                 /* errors is only valid for DD + EOP descriptors */
1458                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1459                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1460                               !(netdev->features & NETIF_F_RXALL)))) {
1461                         /* recycle both page and skb */
1462                         buffer_info->skb = skb;
1463                         /* an error means any chain goes out the window too */
1464                         if (rx_ring->rx_skb_top)
1465                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1466                         rx_ring->rx_skb_top = NULL;
1467                         goto next_desc;
1468                 }
1469
1470 #define rxtop (rx_ring->rx_skb_top)
1471                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1472                         /* this descriptor is only the beginning (or middle) */
1473                         if (!rxtop) {
1474                                 /* this is the beginning of a chain */
1475                                 rxtop = skb;
1476                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1477                                                    0, length);
1478                         } else {
1479                                 /* this is the middle of a chain */
1480                                 skb_fill_page_desc(rxtop,
1481                                     skb_shinfo(rxtop)->nr_frags,
1482                                     buffer_info->page, 0, length);
1483                                 /* re-use the skb, only consumed the page */
1484                                 buffer_info->skb = skb;
1485                         }
1486                         e1000_consume_page(buffer_info, rxtop, length);
1487                         goto next_desc;
1488                 } else {
1489                         if (rxtop) {
1490                                 /* end of the chain */
1491                                 skb_fill_page_desc(rxtop,
1492                                     skb_shinfo(rxtop)->nr_frags,
1493                                     buffer_info->page, 0, length);
1494                                 /* re-use the current skb, we only consumed the
1495                                  * page */
1496                                 buffer_info->skb = skb;
1497                                 skb = rxtop;
1498                                 rxtop = NULL;
1499                                 e1000_consume_page(buffer_info, skb, length);
1500                         } else {
1501                                 /* no chain, got EOP, this buf is the packet
1502                                  * copybreak to save the put_page/alloc_page */
1503                                 if (length <= copybreak &&
1504                                     skb_tailroom(skb) >= length) {
1505                                         u8 *vaddr;
1506                                         vaddr = kmap_atomic(buffer_info->page,
1507                                                            KM_SKB_DATA_SOFTIRQ);
1508                                         memcpy(skb_tail_pointer(skb), vaddr,
1509                                                length);
1510                                         kunmap_atomic(vaddr,
1511                                                       KM_SKB_DATA_SOFTIRQ);
1512                                         /* re-use the page, so don't erase
1513                                          * buffer_info->page */
1514                                         skb_put(skb, length);
1515                                 } else {
1516                                         skb_fill_page_desc(skb, 0,
1517                                                            buffer_info->page, 0,
1518                                                            length);
1519                                         e1000_consume_page(buffer_info, skb,
1520                                                            length);
1521                                 }
1522                         }
1523                 }
1524
1525                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1526                 e1000_rx_checksum(adapter, staterr,
1527                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1528
1529                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1530
1531                 /* probably a little skewed due to removing CRC */
1532                 total_rx_bytes += skb->len;
1533                 total_rx_packets++;
1534
1535                 /* eth type trans needs skb->data to point to something */
1536                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1537                         e_err("pskb_may_pull failed.\n");
1538                         dev_kfree_skb_irq(skb);
1539                         goto next_desc;
1540                 }
1541
1542                 e1000_receive_skb(adapter, netdev, skb, staterr,
1543                                   rx_desc->wb.upper.vlan);
1544
1545 next_desc:
1546                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1547
1548                 /* return some buffers to hardware, one at a time is too slow */
1549                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1550                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1551                                               GFP_ATOMIC);
1552                         cleaned_count = 0;
1553                 }
1554
1555                 /* use prefetched values */
1556                 rx_desc = next_rxd;
1557                 buffer_info = next_buffer;
1558
1559                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1560         }
1561         rx_ring->next_to_clean = i;
1562
1563         cleaned_count = e1000_desc_unused(rx_ring);
1564         if (cleaned_count)
1565                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1566
1567         adapter->total_rx_bytes += total_rx_bytes;
1568         adapter->total_rx_packets += total_rx_packets;
1569         return cleaned;
1570 }
1571
1572 /**
1573  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1574  * @rx_ring: Rx descriptor ring
1575  **/
1576 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1577 {
1578         struct e1000_adapter *adapter = rx_ring->adapter;
1579         struct e1000_buffer *buffer_info;
1580         struct e1000_ps_page *ps_page;
1581         struct pci_dev *pdev = adapter->pdev;
1582         unsigned int i, j;
1583
1584         /* Free all the Rx ring sk_buffs */
1585         for (i = 0; i < rx_ring->count; i++) {
1586                 buffer_info = &rx_ring->buffer_info[i];
1587                 if (buffer_info->dma) {
1588                         if (adapter->clean_rx == e1000_clean_rx_irq)
1589                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1590                                                  adapter->rx_buffer_len,
1591                                                  DMA_FROM_DEVICE);
1592                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1593                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1594                                                PAGE_SIZE,
1595                                                DMA_FROM_DEVICE);
1596                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1597                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1598                                                  adapter->rx_ps_bsize0,
1599                                                  DMA_FROM_DEVICE);
1600                         buffer_info->dma = 0;
1601                 }
1602
1603                 if (buffer_info->page) {
1604                         put_page(buffer_info->page);
1605                         buffer_info->page = NULL;
1606                 }
1607
1608                 if (buffer_info->skb) {
1609                         dev_kfree_skb(buffer_info->skb);
1610                         buffer_info->skb = NULL;
1611                 }
1612
1613                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1614                         ps_page = &buffer_info->ps_pages[j];
1615                         if (!ps_page->page)
1616                                 break;
1617                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1618                                        DMA_FROM_DEVICE);
1619                         ps_page->dma = 0;
1620                         put_page(ps_page->page);
1621                         ps_page->page = NULL;
1622                 }
1623         }
1624
1625         /* there also may be some cached data from a chained receive */
1626         if (rx_ring->rx_skb_top) {
1627                 dev_kfree_skb(rx_ring->rx_skb_top);
1628                 rx_ring->rx_skb_top = NULL;
1629         }
1630
1631         /* Zero out the descriptor ring */
1632         memset(rx_ring->desc, 0, rx_ring->size);
1633
1634         rx_ring->next_to_clean = 0;
1635         rx_ring->next_to_use = 0;
1636         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1637
1638         writel(0, rx_ring->head);
1639         writel(0, rx_ring->tail);
1640 }
1641
1642 static void e1000e_downshift_workaround(struct work_struct *work)
1643 {
1644         struct e1000_adapter *adapter = container_of(work,
1645                                         struct e1000_adapter, downshift_task);
1646
1647         if (test_bit(__E1000_DOWN, &adapter->state))
1648                 return;
1649
1650         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1651 }
1652
1653 /**
1654  * e1000_intr_msi - Interrupt Handler
1655  * @irq: interrupt number
1656  * @data: pointer to a network interface device structure
1657  **/
1658 static irqreturn_t e1000_intr_msi(int irq, void *data)
1659 {
1660         struct net_device *netdev = data;
1661         struct e1000_adapter *adapter = netdev_priv(netdev);
1662         struct e1000_hw *hw = &adapter->hw;
1663         u32 icr = er32(ICR);
1664
1665         /*
1666          * read ICR disables interrupts using IAM
1667          */
1668
1669         if (icr & E1000_ICR_LSC) {
1670                 hw->mac.get_link_status = true;
1671                 /*
1672                  * ICH8 workaround-- Call gig speed drop workaround on cable
1673                  * disconnect (LSC) before accessing any PHY registers
1674                  */
1675                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1676                     (!(er32(STATUS) & E1000_STATUS_LU)))
1677                         schedule_work(&adapter->downshift_task);
1678
1679                 /*
1680                  * 80003ES2LAN workaround-- For packet buffer work-around on
1681                  * link down event; disable receives here in the ISR and reset
1682                  * adapter in watchdog
1683                  */
1684                 if (netif_carrier_ok(netdev) &&
1685                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1686                         /* disable receives */
1687                         u32 rctl = er32(RCTL);
1688                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1689                         adapter->flags |= FLAG_RX_RESTART_NOW;
1690                 }
1691                 /* guard against interrupt when we're going down */
1692                 if (!test_bit(__E1000_DOWN, &adapter->state))
1693                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694         }
1695
1696         if (napi_schedule_prep(&adapter->napi)) {
1697                 adapter->total_tx_bytes = 0;
1698                 adapter->total_tx_packets = 0;
1699                 adapter->total_rx_bytes = 0;
1700                 adapter->total_rx_packets = 0;
1701                 __napi_schedule(&adapter->napi);
1702         }
1703
1704         return IRQ_HANDLED;
1705 }
1706
1707 /**
1708  * e1000_intr - Interrupt Handler
1709  * @irq: interrupt number
1710  * @data: pointer to a network interface device structure
1711  **/
1712 static irqreturn_t e1000_intr(int irq, void *data)
1713 {
1714         struct net_device *netdev = data;
1715         struct e1000_adapter *adapter = netdev_priv(netdev);
1716         struct e1000_hw *hw = &adapter->hw;
1717         u32 rctl, icr = er32(ICR);
1718
1719         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1720                 return IRQ_NONE;  /* Not our interrupt */
1721
1722         /*
1723          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1724          * not set, then the adapter didn't send an interrupt
1725          */
1726         if (!(icr & E1000_ICR_INT_ASSERTED))
1727                 return IRQ_NONE;
1728
1729         /*
1730          * Interrupt Auto-Mask...upon reading ICR,
1731          * interrupts are masked.  No need for the
1732          * IMC write
1733          */
1734
1735         if (icr & E1000_ICR_LSC) {
1736                 hw->mac.get_link_status = true;
1737                 /*
1738                  * ICH8 workaround-- Call gig speed drop workaround on cable
1739                  * disconnect (LSC) before accessing any PHY registers
1740                  */
1741                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1742                     (!(er32(STATUS) & E1000_STATUS_LU)))
1743                         schedule_work(&adapter->downshift_task);
1744
1745                 /*
1746                  * 80003ES2LAN workaround--
1747                  * For packet buffer work-around on link down event;
1748                  * disable receives here in the ISR and
1749                  * reset adapter in watchdog
1750                  */
1751                 if (netif_carrier_ok(netdev) &&
1752                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1753                         /* disable receives */
1754                         rctl = er32(RCTL);
1755                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1756                         adapter->flags |= FLAG_RX_RESTART_NOW;
1757                 }
1758                 /* guard against interrupt when we're going down */
1759                 if (!test_bit(__E1000_DOWN, &adapter->state))
1760                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1761         }
1762
1763         if (napi_schedule_prep(&adapter->napi)) {
1764                 adapter->total_tx_bytes = 0;
1765                 adapter->total_tx_packets = 0;
1766                 adapter->total_rx_bytes = 0;
1767                 adapter->total_rx_packets = 0;
1768                 __napi_schedule(&adapter->napi);
1769         }
1770
1771         return IRQ_HANDLED;
1772 }
1773
1774 static irqreturn_t e1000_msix_other(int irq, void *data)
1775 {
1776         struct net_device *netdev = data;
1777         struct e1000_adapter *adapter = netdev_priv(netdev);
1778         struct e1000_hw *hw = &adapter->hw;
1779         u32 icr = er32(ICR);
1780
1781         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1782                 if (!test_bit(__E1000_DOWN, &adapter->state))
1783                         ew32(IMS, E1000_IMS_OTHER);
1784                 return IRQ_NONE;
1785         }
1786
1787         if (icr & adapter->eiac_mask)
1788                 ew32(ICS, (icr & adapter->eiac_mask));
1789
1790         if (icr & E1000_ICR_OTHER) {
1791                 if (!(icr & E1000_ICR_LSC))
1792                         goto no_link_interrupt;
1793                 hw->mac.get_link_status = true;
1794                 /* guard against interrupt when we're going down */
1795                 if (!test_bit(__E1000_DOWN, &adapter->state))
1796                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797         }
1798
1799 no_link_interrupt:
1800         if (!test_bit(__E1000_DOWN, &adapter->state))
1801                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1802
1803         return IRQ_HANDLED;
1804 }
1805
1806
1807 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1808 {
1809         struct net_device *netdev = data;
1810         struct e1000_adapter *adapter = netdev_priv(netdev);
1811         struct e1000_hw *hw = &adapter->hw;
1812         struct e1000_ring *tx_ring = adapter->tx_ring;
1813
1814
1815         adapter->total_tx_bytes = 0;
1816         adapter->total_tx_packets = 0;
1817
1818         if (!e1000_clean_tx_irq(tx_ring))
1819                 /* Ring was not completely cleaned, so fire another interrupt */
1820                 ew32(ICS, tx_ring->ims_val);
1821
1822         return IRQ_HANDLED;
1823 }
1824
1825 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1826 {
1827         struct net_device *netdev = data;
1828         struct e1000_adapter *adapter = netdev_priv(netdev);
1829         struct e1000_ring *rx_ring = adapter->rx_ring;
1830
1831         /* Write the ITR value calculated at the end of the
1832          * previous interrupt.
1833          */
1834         if (rx_ring->set_itr) {
1835                 writel(1000000000 / (rx_ring->itr_val * 256),
1836                        rx_ring->itr_register);
1837                 rx_ring->set_itr = 0;
1838         }
1839
1840         if (napi_schedule_prep(&adapter->napi)) {
1841                 adapter->total_rx_bytes = 0;
1842                 adapter->total_rx_packets = 0;
1843                 __napi_schedule(&adapter->napi);
1844         }
1845         return IRQ_HANDLED;
1846 }
1847
1848 /**
1849  * e1000_configure_msix - Configure MSI-X hardware
1850  *
1851  * e1000_configure_msix sets up the hardware to properly
1852  * generate MSI-X interrupts.
1853  **/
1854 static void e1000_configure_msix(struct e1000_adapter *adapter)
1855 {
1856         struct e1000_hw *hw = &adapter->hw;
1857         struct e1000_ring *rx_ring = adapter->rx_ring;
1858         struct e1000_ring *tx_ring = adapter->tx_ring;
1859         int vector = 0;
1860         u32 ctrl_ext, ivar = 0;
1861
1862         adapter->eiac_mask = 0;
1863
1864         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1865         if (hw->mac.type == e1000_82574) {
1866                 u32 rfctl = er32(RFCTL);
1867                 rfctl |= E1000_RFCTL_ACK_DIS;
1868                 ew32(RFCTL, rfctl);
1869         }
1870
1871 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1872         /* Configure Rx vector */
1873         rx_ring->ims_val = E1000_IMS_RXQ0;
1874         adapter->eiac_mask |= rx_ring->ims_val;
1875         if (rx_ring->itr_val)
1876                 writel(1000000000 / (rx_ring->itr_val * 256),
1877                        rx_ring->itr_register);
1878         else
1879                 writel(1, rx_ring->itr_register);
1880         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1881
1882         /* Configure Tx vector */
1883         tx_ring->ims_val = E1000_IMS_TXQ0;
1884         vector++;
1885         if (tx_ring->itr_val)
1886                 writel(1000000000 / (tx_ring->itr_val * 256),
1887                        tx_ring->itr_register);
1888         else
1889                 writel(1, tx_ring->itr_register);
1890         adapter->eiac_mask |= tx_ring->ims_val;
1891         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1892
1893         /* set vector for Other Causes, e.g. link changes */
1894         vector++;
1895         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1896         if (rx_ring->itr_val)
1897                 writel(1000000000 / (rx_ring->itr_val * 256),
1898                        hw->hw_addr + E1000_EITR_82574(vector));
1899         else
1900                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1901
1902         /* Cause Tx interrupts on every write back */
1903         ivar |= (1 << 31);
1904
1905         ew32(IVAR, ivar);
1906
1907         /* enable MSI-X PBA support */
1908         ctrl_ext = er32(CTRL_EXT);
1909         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1910
1911         /* Auto-Mask Other interrupts upon ICR read */
1912 #define E1000_EIAC_MASK_82574   0x01F00000
1913         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1914         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1915         ew32(CTRL_EXT, ctrl_ext);
1916         e1e_flush();
1917 }
1918
1919 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1920 {
1921         if (adapter->msix_entries) {
1922                 pci_disable_msix(adapter->pdev);
1923                 kfree(adapter->msix_entries);
1924                 adapter->msix_entries = NULL;
1925         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1926                 pci_disable_msi(adapter->pdev);
1927                 adapter->flags &= ~FLAG_MSI_ENABLED;
1928         }
1929 }
1930
1931 /**
1932  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1933  *
1934  * Attempt to configure interrupts using the best available
1935  * capabilities of the hardware and kernel.
1936  **/
1937 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1938 {
1939         int err;
1940         int i;
1941
1942         switch (adapter->int_mode) {
1943         case E1000E_INT_MODE_MSIX:
1944                 if (adapter->flags & FLAG_HAS_MSIX) {
1945                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1946                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1947                                                       sizeof(struct msix_entry),
1948                                                       GFP_KERNEL);
1949                         if (adapter->msix_entries) {
1950                                 for (i = 0; i < adapter->num_vectors; i++)
1951                                         adapter->msix_entries[i].entry = i;
1952
1953                                 err = pci_enable_msix(adapter->pdev,
1954                                                       adapter->msix_entries,
1955                                                       adapter->num_vectors);
1956                                 if (err == 0)
1957                                         return;
1958                         }
1959                         /* MSI-X failed, so fall through and try MSI */
1960                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1961                         e1000e_reset_interrupt_capability(adapter);
1962                 }
1963                 adapter->int_mode = E1000E_INT_MODE_MSI;
1964                 /* Fall through */
1965         case E1000E_INT_MODE_MSI:
1966                 if (!pci_enable_msi(adapter->pdev)) {
1967                         adapter->flags |= FLAG_MSI_ENABLED;
1968                 } else {
1969                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1970                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1971                 }
1972                 /* Fall through */
1973         case E1000E_INT_MODE_LEGACY:
1974                 /* Don't do anything; this is the system default */
1975                 break;
1976         }
1977
1978         /* store the number of vectors being used */
1979         adapter->num_vectors = 1;
1980 }
1981
1982 /**
1983  * e1000_request_msix - Initialize MSI-X interrupts
1984  *
1985  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1986  * kernel.
1987  **/
1988 static int e1000_request_msix(struct e1000_adapter *adapter)
1989 {
1990         struct net_device *netdev = adapter->netdev;
1991         int err = 0, vector = 0;
1992
1993         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1994                 snprintf(adapter->rx_ring->name,
1995                          sizeof(adapter->rx_ring->name) - 1,
1996                          "%s-rx-0", netdev->name);
1997         else
1998                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1999         err = request_irq(adapter->msix_entries[vector].vector,
2000                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2001                           netdev);
2002         if (err)
2003                 return err;
2004         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2005             E1000_EITR_82574(vector);
2006         adapter->rx_ring->itr_val = adapter->itr;
2007         vector++;
2008
2009         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2010                 snprintf(adapter->tx_ring->name,
2011                          sizeof(adapter->tx_ring->name) - 1,
2012                          "%s-tx-0", netdev->name);
2013         else
2014                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2015         err = request_irq(adapter->msix_entries[vector].vector,
2016                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2017                           netdev);
2018         if (err)
2019                 return err;
2020         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2021             E1000_EITR_82574(vector);
2022         adapter->tx_ring->itr_val = adapter->itr;
2023         vector++;
2024
2025         err = request_irq(adapter->msix_entries[vector].vector,
2026                           e1000_msix_other, 0, netdev->name, netdev);
2027         if (err)
2028                 return err;
2029
2030         e1000_configure_msix(adapter);
2031
2032         return 0;
2033 }
2034
2035 /**
2036  * e1000_request_irq - initialize interrupts
2037  *
2038  * Attempts to configure interrupts using the best available
2039  * capabilities of the hardware and kernel.
2040  **/
2041 static int e1000_request_irq(struct e1000_adapter *adapter)
2042 {
2043         struct net_device *netdev = adapter->netdev;
2044         int err;
2045
2046         if (adapter->msix_entries) {
2047                 err = e1000_request_msix(adapter);
2048                 if (!err)
2049                         return err;
2050                 /* fall back to MSI */
2051                 e1000e_reset_interrupt_capability(adapter);
2052                 adapter->int_mode = E1000E_INT_MODE_MSI;
2053                 e1000e_set_interrupt_capability(adapter);
2054         }
2055         if (adapter->flags & FLAG_MSI_ENABLED) {
2056                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2057                                   netdev->name, netdev);
2058                 if (!err)
2059                         return err;
2060
2061                 /* fall back to legacy interrupt */
2062                 e1000e_reset_interrupt_capability(adapter);
2063                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2064         }
2065
2066         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2067                           netdev->name, netdev);
2068         if (err)
2069                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2070
2071         return err;
2072 }
2073
2074 static void e1000_free_irq(struct e1000_adapter *adapter)
2075 {
2076         struct net_device *netdev = adapter->netdev;
2077
2078         if (adapter->msix_entries) {
2079                 int vector = 0;
2080
2081                 free_irq(adapter->msix_entries[vector].vector, netdev);
2082                 vector++;
2083
2084                 free_irq(adapter->msix_entries[vector].vector, netdev);
2085                 vector++;
2086
2087                 /* Other Causes interrupt vector */
2088                 free_irq(adapter->msix_entries[vector].vector, netdev);
2089                 return;
2090         }
2091
2092         free_irq(adapter->pdev->irq, netdev);
2093 }
2094
2095 /**
2096  * e1000_irq_disable - Mask off interrupt generation on the NIC
2097  **/
2098 static void e1000_irq_disable(struct e1000_adapter *adapter)
2099 {
2100         struct e1000_hw *hw = &adapter->hw;
2101
2102         ew32(IMC, ~0);
2103         if (adapter->msix_entries)
2104                 ew32(EIAC_82574, 0);
2105         e1e_flush();
2106
2107         if (adapter->msix_entries) {
2108                 int i;
2109                 for (i = 0; i < adapter->num_vectors; i++)
2110                         synchronize_irq(adapter->msix_entries[i].vector);
2111         } else {
2112                 synchronize_irq(adapter->pdev->irq);
2113         }
2114 }
2115
2116 /**
2117  * e1000_irq_enable - Enable default interrupt generation settings
2118  **/
2119 static void e1000_irq_enable(struct e1000_adapter *adapter)
2120 {
2121         struct e1000_hw *hw = &adapter->hw;
2122
2123         if (adapter->msix_entries) {
2124                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2125                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2126         } else {
2127                 ew32(IMS, IMS_ENABLE_MASK);
2128         }
2129         e1e_flush();
2130 }
2131
2132 /**
2133  * e1000e_get_hw_control - get control of the h/w from f/w
2134  * @adapter: address of board private structure
2135  *
2136  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2137  * For ASF and Pass Through versions of f/w this means that
2138  * the driver is loaded. For AMT version (only with 82573)
2139  * of the f/w this means that the network i/f is open.
2140  **/
2141 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2142 {
2143         struct e1000_hw *hw = &adapter->hw;
2144         u32 ctrl_ext;
2145         u32 swsm;
2146
2147         /* Let firmware know the driver has taken over */
2148         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2149                 swsm = er32(SWSM);
2150                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2151         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2152                 ctrl_ext = er32(CTRL_EXT);
2153                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2154         }
2155 }
2156
2157 /**
2158  * e1000e_release_hw_control - release control of the h/w to f/w
2159  * @adapter: address of board private structure
2160  *
2161  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2162  * For ASF and Pass Through versions of f/w this means that the
2163  * driver is no longer loaded. For AMT version (only with 82573) i
2164  * of the f/w this means that the network i/f is closed.
2165  *
2166  **/
2167 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2168 {
2169         struct e1000_hw *hw = &adapter->hw;
2170         u32 ctrl_ext;
2171         u32 swsm;
2172
2173         /* Let firmware taken over control of h/w */
2174         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2175                 swsm = er32(SWSM);
2176                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2177         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2178                 ctrl_ext = er32(CTRL_EXT);
2179                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2180         }
2181 }
2182
2183 /**
2184  * @e1000_alloc_ring - allocate memory for a ring structure
2185  **/
2186 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2187                                 struct e1000_ring *ring)
2188 {
2189         struct pci_dev *pdev = adapter->pdev;
2190
2191         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2192                                         GFP_KERNEL);
2193         if (!ring->desc)
2194                 return -ENOMEM;
2195
2196         return 0;
2197 }
2198
2199 /**
2200  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2201  * @tx_ring: Tx descriptor ring
2202  *
2203  * Return 0 on success, negative on failure
2204  **/
2205 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2206 {
2207         struct e1000_adapter *adapter = tx_ring->adapter;
2208         int err = -ENOMEM, size;
2209
2210         size = sizeof(struct e1000_buffer) * tx_ring->count;
2211         tx_ring->buffer_info = vzalloc(size);
2212         if (!tx_ring->buffer_info)
2213                 goto err;
2214
2215         /* round up to nearest 4K */
2216         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2217         tx_ring->size = ALIGN(tx_ring->size, 4096);
2218
2219         err = e1000_alloc_ring_dma(adapter, tx_ring);
2220         if (err)
2221                 goto err;
2222
2223         tx_ring->next_to_use = 0;
2224         tx_ring->next_to_clean = 0;
2225
2226         return 0;
2227 err:
2228         vfree(tx_ring->buffer_info);
2229         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2230         return err;
2231 }
2232
2233 /**
2234  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2235  * @rx_ring: Rx descriptor ring
2236  *
2237  * Returns 0 on success, negative on failure
2238  **/
2239 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2240 {
2241         struct e1000_adapter *adapter = rx_ring->adapter;
2242         struct e1000_buffer *buffer_info;
2243         int i, size, desc_len, err = -ENOMEM;
2244
2245         size = sizeof(struct e1000_buffer) * rx_ring->count;
2246         rx_ring->buffer_info = vzalloc(size);
2247         if (!rx_ring->buffer_info)
2248                 goto err;
2249
2250         for (i = 0; i < rx_ring->count; i++) {
2251                 buffer_info = &rx_ring->buffer_info[i];
2252                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2253                                                 sizeof(struct e1000_ps_page),
2254                                                 GFP_KERNEL);
2255                 if (!buffer_info->ps_pages)
2256                         goto err_pages;
2257         }
2258
2259         desc_len = sizeof(union e1000_rx_desc_packet_split);
2260
2261         /* Round up to nearest 4K */
2262         rx_ring->size = rx_ring->count * desc_len;
2263         rx_ring->size = ALIGN(rx_ring->size, 4096);
2264
2265         err = e1000_alloc_ring_dma(adapter, rx_ring);
2266         if (err)
2267                 goto err_pages;
2268
2269         rx_ring->next_to_clean = 0;
2270         rx_ring->next_to_use = 0;
2271         rx_ring->rx_skb_top = NULL;
2272
2273         return 0;
2274
2275 err_pages:
2276         for (i = 0; i < rx_ring->count; i++) {
2277                 buffer_info = &rx_ring->buffer_info[i];
2278                 kfree(buffer_info->ps_pages);
2279         }
2280 err:
2281         vfree(rx_ring->buffer_info);
2282         e_err("Unable to allocate memory for the receive descriptor ring\n");
2283         return err;
2284 }
2285
2286 /**
2287  * e1000_clean_tx_ring - Free Tx Buffers
2288  * @tx_ring: Tx descriptor ring
2289  **/
2290 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2291 {
2292         struct e1000_adapter *adapter = tx_ring->adapter;
2293         struct e1000_buffer *buffer_info;
2294         unsigned long size;
2295         unsigned int i;
2296
2297         for (i = 0; i < tx_ring->count; i++) {
2298                 buffer_info = &tx_ring->buffer_info[i];
2299                 e1000_put_txbuf(tx_ring, buffer_info);
2300         }
2301
2302         netdev_reset_queue(adapter->netdev);
2303         size = sizeof(struct e1000_buffer) * tx_ring->count;
2304         memset(tx_ring->buffer_info, 0, size);
2305
2306         memset(tx_ring->desc, 0, tx_ring->size);
2307
2308         tx_ring->next_to_use = 0;
2309         tx_ring->next_to_clean = 0;
2310
2311         writel(0, tx_ring->head);
2312         writel(0, tx_ring->tail);
2313 }
2314
2315 /**
2316  * e1000e_free_tx_resources - Free Tx Resources per Queue
2317  * @tx_ring: Tx descriptor ring
2318  *
2319  * Free all transmit software resources
2320  **/
2321 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2322 {
2323         struct e1000_adapter *adapter = tx_ring->adapter;
2324         struct pci_dev *pdev = adapter->pdev;
2325
2326         e1000_clean_tx_ring(tx_ring);
2327
2328         vfree(tx_ring->buffer_info);
2329         tx_ring->buffer_info = NULL;
2330
2331         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2332                           tx_ring->dma);
2333         tx_ring->desc = NULL;
2334 }
2335
2336 /**
2337  * e1000e_free_rx_resources - Free Rx Resources
2338  * @rx_ring: Rx descriptor ring
2339  *
2340  * Free all receive software resources
2341  **/
2342 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2343 {
2344         struct e1000_adapter *adapter = rx_ring->adapter;
2345         struct pci_dev *pdev = adapter->pdev;
2346         int i;
2347
2348         e1000_clean_rx_ring(rx_ring);
2349
2350         for (i = 0; i < rx_ring->count; i++)
2351                 kfree(rx_ring->buffer_info[i].ps_pages);
2352
2353         vfree(rx_ring->buffer_info);
2354         rx_ring->buffer_info = NULL;
2355
2356         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2357                           rx_ring->dma);
2358         rx_ring->desc = NULL;
2359 }
2360
2361 /**
2362  * e1000_update_itr - update the dynamic ITR value based on statistics
2363  * @adapter: pointer to adapter
2364  * @itr_setting: current adapter->itr
2365  * @packets: the number of packets during this measurement interval
2366  * @bytes: the number of bytes during this measurement interval
2367  *
2368  *      Stores a new ITR value based on packets and byte
2369  *      counts during the last interrupt.  The advantage of per interrupt
2370  *      computation is faster updates and more accurate ITR for the current
2371  *      traffic pattern.  Constants in this function were computed
2372  *      based on theoretical maximum wire speed and thresholds were set based
2373  *      on testing data as well as attempting to minimize response time
2374  *      while increasing bulk throughput.  This functionality is controlled
2375  *      by the InterruptThrottleRate module parameter.
2376  **/
2377 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2378                                      u16 itr_setting, int packets,
2379                                      int bytes)
2380 {
2381         unsigned int retval = itr_setting;
2382
2383         if (packets == 0)
2384                 return itr_setting;
2385
2386         switch (itr_setting) {
2387         case lowest_latency:
2388                 /* handle TSO and jumbo frames */
2389                 if (bytes/packets > 8000)
2390                         retval = bulk_latency;
2391                 else if ((packets < 5) && (bytes > 512))
2392                         retval = low_latency;
2393                 break;
2394         case low_latency:  /* 50 usec aka 20000 ints/s */
2395                 if (bytes > 10000) {
2396                         /* this if handles the TSO accounting */
2397                         if (bytes/packets > 8000)
2398                                 retval = bulk_latency;
2399                         else if ((packets < 10) || ((bytes/packets) > 1200))
2400                                 retval = bulk_latency;
2401                         else if ((packets > 35))
2402                                 retval = lowest_latency;
2403                 } else if (bytes/packets > 2000) {
2404                         retval = bulk_latency;
2405                 } else if (packets <= 2 && bytes < 512) {
2406                         retval = lowest_latency;
2407                 }
2408                 break;
2409         case bulk_latency: /* 250 usec aka 4000 ints/s */
2410                 if (bytes > 25000) {
2411                         if (packets > 35)
2412                                 retval = low_latency;
2413                 } else if (bytes < 6000) {
2414                         retval = low_latency;
2415                 }
2416                 break;
2417         }
2418
2419         return retval;
2420 }
2421
2422 static void e1000_set_itr(struct e1000_adapter *adapter)
2423 {
2424         struct e1000_hw *hw = &adapter->hw;
2425         u16 current_itr;
2426         u32 new_itr = adapter->itr;
2427
2428         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2429         if (adapter->link_speed != SPEED_1000) {
2430                 current_itr = 0;
2431                 new_itr = 4000;
2432                 goto set_itr_now;
2433         }
2434
2435         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2436                 new_itr = 0;
2437                 goto set_itr_now;
2438         }
2439
2440         adapter->tx_itr = e1000_update_itr(adapter,
2441                                     adapter->tx_itr,
2442                                     adapter->total_tx_packets,
2443                                     adapter->total_tx_bytes);
2444         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2445         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2446                 adapter->tx_itr = low_latency;
2447
2448         adapter->rx_itr = e1000_update_itr(adapter,
2449                                     adapter->rx_itr,
2450                                     adapter->total_rx_packets,
2451                                     adapter->total_rx_bytes);
2452         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2453         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2454                 adapter->rx_itr = low_latency;
2455
2456         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2457
2458         switch (current_itr) {
2459         /* counts and packets in update_itr are dependent on these numbers */
2460         case lowest_latency:
2461                 new_itr = 70000;
2462                 break;
2463         case low_latency:
2464                 new_itr = 20000; /* aka hwitr = ~200 */
2465                 break;
2466         case bulk_latency:
2467                 new_itr = 4000;
2468                 break;
2469         default:
2470                 break;
2471         }
2472
2473 set_itr_now:
2474         if (new_itr != adapter->itr) {
2475                 /*
2476                  * this attempts to bias the interrupt rate towards Bulk
2477                  * by adding intermediate steps when interrupt rate is
2478                  * increasing
2479                  */
2480                 new_itr = new_itr > adapter->itr ?
2481                              min(adapter->itr + (new_itr >> 2), new_itr) :
2482                              new_itr;
2483                 adapter->itr = new_itr;
2484                 adapter->rx_ring->itr_val = new_itr;
2485                 if (adapter->msix_entries)
2486                         adapter->rx_ring->set_itr = 1;
2487                 else
2488                         if (new_itr)
2489                                 ew32(ITR, 1000000000 / (new_itr * 256));
2490                         else
2491                                 ew32(ITR, 0);
2492         }
2493 }
2494
2495 /**
2496  * e1000_alloc_queues - Allocate memory for all rings
2497  * @adapter: board private structure to initialize
2498  **/
2499 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2500 {
2501         int size = sizeof(struct e1000_ring);
2502
2503         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2504         if (!adapter->tx_ring)
2505                 goto err;
2506         adapter->tx_ring->count = adapter->tx_ring_count;
2507         adapter->tx_ring->adapter = adapter;
2508
2509         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2510         if (!adapter->rx_ring)
2511                 goto err;
2512         adapter->rx_ring->count = adapter->rx_ring_count;
2513         adapter->rx_ring->adapter = adapter;
2514
2515         return 0;
2516 err:
2517         e_err("Unable to allocate memory for queues\n");
2518         kfree(adapter->rx_ring);
2519         kfree(adapter->tx_ring);
2520         return -ENOMEM;
2521 }
2522
2523 /**
2524  * e1000_clean - NAPI Rx polling callback
2525  * @napi: struct associated with this polling callback
2526  * @budget: amount of packets driver is allowed to process this poll
2527  **/
2528 static int e1000_clean(struct napi_struct *napi, int budget)
2529 {
2530         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2531         struct e1000_hw *hw = &adapter->hw;
2532         struct net_device *poll_dev = adapter->netdev;
2533         int tx_cleaned = 1, work_done = 0;
2534
2535         adapter = netdev_priv(poll_dev);
2536
2537         if (adapter->msix_entries &&
2538             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2539                 goto clean_rx;
2540
2541         tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2542
2543 clean_rx:
2544         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2545
2546         if (!tx_cleaned)
2547                 work_done = budget;
2548
2549         /* If budget not fully consumed, exit the polling mode */
2550         if (work_done < budget) {
2551                 if (adapter->itr_setting & 3)
2552                         e1000_set_itr(adapter);
2553                 napi_complete(napi);
2554                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2555                         if (adapter->msix_entries)
2556                                 ew32(IMS, adapter->rx_ring->ims_val);
2557                         else
2558                                 e1000_irq_enable(adapter);
2559                 }
2560         }
2561
2562         return work_done;
2563 }
2564
2565 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2566 {
2567         struct e1000_adapter *adapter = netdev_priv(netdev);
2568         struct e1000_hw *hw = &adapter->hw;
2569         u32 vfta, index;
2570
2571         /* don't update vlan cookie if already programmed */
2572         if ((adapter->hw.mng_cookie.status &
2573              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2574             (vid == adapter->mng_vlan_id))
2575                 return 0;
2576
2577         /* add VID to filter table */
2578         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2579                 index = (vid >> 5) & 0x7F;
2580                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2581                 vfta |= (1 << (vid & 0x1F));
2582                 hw->mac.ops.write_vfta(hw, index, vfta);
2583         }
2584
2585         set_bit(vid, adapter->active_vlans);
2586
2587         return 0;
2588 }
2589
2590 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2591 {
2592         struct e1000_adapter *adapter = netdev_priv(netdev);
2593         struct e1000_hw *hw = &adapter->hw;
2594         u32 vfta, index;
2595
2596         if ((adapter->hw.mng_cookie.status &
2597              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2598             (vid == adapter->mng_vlan_id)) {
2599                 /* release control to f/w */
2600                 e1000e_release_hw_control(adapter);
2601                 return 0;
2602         }
2603
2604         /* remove VID from filter table */
2605         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2606                 index = (vid >> 5) & 0x7F;
2607                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2608                 vfta &= ~(1 << (vid & 0x1F));
2609                 hw->mac.ops.write_vfta(hw, index, vfta);
2610         }
2611
2612         clear_bit(vid, adapter->active_vlans);
2613
2614         return 0;
2615 }
2616
2617 /**
2618  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2619  * @adapter: board private structure to initialize
2620  **/
2621 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2622 {
2623         struct net_device *netdev = adapter->netdev;
2624         struct e1000_hw *hw = &adapter->hw;
2625         u32 rctl;
2626
2627         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2628                 /* disable VLAN receive filtering */
2629                 rctl = er32(RCTL);
2630                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2631                 ew32(RCTL, rctl);
2632
2633                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2634                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2635                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2636                 }
2637         }
2638 }
2639
2640 /**
2641  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2642  * @adapter: board private structure to initialize
2643  **/
2644 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2645 {
2646         struct e1000_hw *hw = &adapter->hw;
2647         u32 rctl;
2648
2649         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2650                 /* enable VLAN receive filtering */
2651                 rctl = er32(RCTL);
2652                 rctl |= E1000_RCTL_VFE;
2653                 rctl &= ~E1000_RCTL_CFIEN;
2654                 ew32(RCTL, rctl);
2655         }
2656 }
2657
2658 /**
2659  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2660  * @adapter: board private structure to initialize
2661  **/
2662 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2663 {
2664         struct e1000_hw *hw = &adapter->hw;
2665         u32 ctrl;
2666
2667         /* disable VLAN tag insert/strip */
2668         ctrl = er32(CTRL);
2669         ctrl &= ~E1000_CTRL_VME;
2670         ew32(CTRL, ctrl);
2671 }
2672
2673 /**
2674  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2675  * @adapter: board private structure to initialize
2676  **/
2677 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2678 {
2679         struct e1000_hw *hw = &adapter->hw;
2680         u32 ctrl;
2681
2682         /* enable VLAN tag insert/strip */
2683         ctrl = er32(CTRL);
2684         ctrl |= E1000_CTRL_VME;
2685         ew32(CTRL, ctrl);
2686 }
2687
2688 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2689 {
2690         struct net_device *netdev = adapter->netdev;
2691         u16 vid = adapter->hw.mng_cookie.vlan_id;
2692         u16 old_vid = adapter->mng_vlan_id;
2693
2694         if (adapter->hw.mng_cookie.status &
2695             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2696                 e1000_vlan_rx_add_vid(netdev, vid);
2697                 adapter->mng_vlan_id = vid;
2698         }
2699
2700         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2701                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2702 }
2703
2704 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2705 {
2706         u16 vid;
2707
2708         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2709
2710         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2711                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2712 }
2713
2714 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2715 {
2716         struct e1000_hw *hw = &adapter->hw;
2717         u32 manc, manc2h, mdef, i, j;
2718
2719         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2720                 return;
2721
2722         manc = er32(MANC);
2723
2724         /*
2725          * enable receiving management packets to the host. this will probably
2726          * generate destination unreachable messages from the host OS, but
2727          * the packets will be handled on SMBUS
2728          */
2729         manc |= E1000_MANC_EN_MNG2HOST;
2730         manc2h = er32(MANC2H);
2731
2732         switch (hw->mac.type) {
2733         default:
2734                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2735                 break;
2736         case e1000_82574:
2737         case e1000_82583:
2738                 /*
2739                  * Check if IPMI pass-through decision filter already exists;
2740                  * if so, enable it.
2741                  */
2742                 for (i = 0, j = 0; i < 8; i++) {
2743                         mdef = er32(MDEF(i));
2744
2745                         /* Ignore filters with anything other than IPMI ports */
2746                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2747                                 continue;
2748
2749                         /* Enable this decision filter in MANC2H */
2750                         if (mdef)
2751                                 manc2h |= (1 << i);
2752
2753                         j |= mdef;
2754                 }
2755
2756                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2757                         break;
2758
2759                 /* Create new decision filter in an empty filter */
2760                 for (i = 0, j = 0; i < 8; i++)
2761                         if (er32(MDEF(i)) == 0) {
2762                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2763                                                E1000_MDEF_PORT_664));
2764                                 manc2h |= (1 << 1);
2765                                 j++;
2766                                 break;
2767                         }
2768
2769                 if (!j)
2770                         e_warn("Unable to create IPMI pass-through filter\n");
2771                 break;
2772         }
2773
2774         ew32(MANC2H, manc2h);
2775         ew32(MANC, manc);
2776 }
2777
2778 /**
2779  * e1000_configure_tx - Configure Transmit Unit after Reset
2780  * @adapter: board private structure
2781  *
2782  * Configure the Tx unit of the MAC after a reset.
2783  **/
2784 static void e1000_configure_tx(struct e1000_adapter *adapter)
2785 {
2786         struct e1000_hw *hw = &adapter->hw;
2787         struct e1000_ring *tx_ring = adapter->tx_ring;
2788         u64 tdba;
2789         u32 tdlen, tarc;
2790
2791         /* Setup the HW Tx Head and Tail descriptor pointers */
2792         tdba = tx_ring->dma;
2793         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2794         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2795         ew32(TDBAH, (tdba >> 32));
2796         ew32(TDLEN, tdlen);
2797         ew32(TDH, 0);
2798         ew32(TDT, 0);
2799         tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
2800         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2801
2802         /* Set the Tx Interrupt Delay register */
2803         ew32(TIDV, adapter->tx_int_delay);
2804         /* Tx irq moderation */
2805         ew32(TADV, adapter->tx_abs_int_delay);
2806
2807         if (adapter->flags2 & FLAG2_DMA_BURST) {
2808                 u32 txdctl = er32(TXDCTL(0));
2809                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2810                             E1000_TXDCTL_WTHRESH);
2811                 /*
2812                  * set up some performance related parameters to encourage the
2813                  * hardware to use the bus more efficiently in bursts, depends
2814                  * on the tx_int_delay to be enabled,
2815                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2816                  * hthresh = 1 ==> prefetch when one or more available
2817                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2818                  * BEWARE: this seems to work but should be considered first if
2819                  * there are Tx hangs or other Tx related bugs
2820                  */
2821                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2822                 ew32(TXDCTL(0), txdctl);
2823         }
2824         /* erratum work around: set txdctl the same for both queues */
2825         ew32(TXDCTL(1), er32(TXDCTL(0)));
2826
2827         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2828                 tarc = er32(TARC(0));
2829                 /*
2830                  * set the speed mode bit, we'll clear it if we're not at
2831                  * gigabit link later
2832                  */
2833 #define SPEED_MODE_BIT (1 << 21)
2834                 tarc |= SPEED_MODE_BIT;
2835                 ew32(TARC(0), tarc);
2836         }
2837
2838         /* errata: program both queues to unweighted RR */
2839         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2840                 tarc = er32(TARC(0));
2841                 tarc |= 1;
2842                 ew32(TARC(0), tarc);
2843                 tarc = er32(TARC(1));
2844                 tarc |= 1;
2845                 ew32(TARC(1), tarc);
2846         }
2847
2848         /* Setup Transmit Descriptor Settings for eop descriptor */
2849         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2850
2851         /* only set IDE if we are delaying interrupts using the timers */
2852         if (adapter->tx_int_delay)
2853                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2854
2855         /* enable Report Status bit */
2856         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2857
2858         hw->mac.ops.config_collision_dist(hw);
2859 }
2860
2861 /**
2862  * e1000_setup_rctl - configure the receive control registers
2863  * @adapter: Board private structure
2864  **/
2865 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2866                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2867 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2868 {
2869         struct e1000_hw *hw = &adapter->hw;
2870         u32 rctl, rfctl;
2871         u32 pages = 0;
2872
2873         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2874         if (hw->mac.type == e1000_pch2lan) {
2875                 s32 ret_val;
2876
2877                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2878                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2879                 else
2880                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2881
2882                 if (ret_val)
2883                         e_dbg("failed to enable jumbo frame workaround mode\n");
2884         }
2885
2886         /* Program MC offset vector base */
2887         rctl = er32(RCTL);
2888         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2889         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2890                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2891                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2892
2893         /* Do not Store bad packets */
2894         rctl &= ~E1000_RCTL_SBP;
2895
2896         /* Enable Long Packet receive */
2897         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2898                 rctl &= ~E1000_RCTL_LPE;
2899         else
2900                 rctl |= E1000_RCTL_LPE;
2901
2902         /* Some systems expect that the CRC is included in SMBUS traffic. The
2903          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2904          * host memory when this is enabled
2905          */
2906         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2907                 rctl |= E1000_RCTL_SECRC;
2908
2909         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2910         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2911                 u16 phy_data;
2912
2913                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2914                 phy_data &= 0xfff8;
2915                 phy_data |= (1 << 2);
2916                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2917
2918                 e1e_rphy(hw, 22, &phy_data);
2919                 phy_data &= 0x0fff;
2920                 phy_data |= (1 << 14);
2921                 e1e_wphy(hw, 0x10, 0x2823);
2922                 e1e_wphy(hw, 0x11, 0x0003);
2923                 e1e_wphy(hw, 22, phy_data);
2924         }
2925
2926         /* Setup buffer sizes */
2927         rctl &= ~E1000_RCTL_SZ_4096;
2928         rctl |= E1000_RCTL_BSEX;
2929         switch (adapter->rx_buffer_len) {
2930         case 2048:
2931         default:
2932                 rctl |= E1000_RCTL_SZ_2048;
2933                 rctl &= ~E1000_RCTL_BSEX;
2934                 break;
2935         case 4096:
2936                 rctl |= E1000_RCTL_SZ_4096;
2937                 break;
2938         case 8192:
2939                 rctl |= E1000_RCTL_SZ_8192;
2940                 break;
2941         case 16384:
2942                 rctl |= E1000_RCTL_SZ_16384;
2943                 break;
2944         }
2945
2946         /* Enable Extended Status in all Receive Descriptors */
2947         rfctl = er32(RFCTL);
2948         rfctl |= E1000_RFCTL_EXTEN;
2949
2950         /*
2951          * 82571 and greater support packet-split where the protocol
2952          * header is placed in skb->data and the packet data is
2953          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2954          * In the case of a non-split, skb->data is linearly filled,
2955          * followed by the page buffers.  Therefore, skb->data is
2956          * sized to hold the largest protocol header.
2957          *
2958          * allocations using alloc_page take too long for regular MTU
2959          * so only enable packet split for jumbo frames
2960          *
2961          * Using pages when the page size is greater than 16k wastes
2962          * a lot of memory, since we allocate 3 pages at all times
2963          * per packet.
2964          */
2965         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2966         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2967                 adapter->rx_ps_pages = pages;
2968         else
2969                 adapter->rx_ps_pages = 0;
2970
2971         if (adapter->rx_ps_pages) {
2972                 u32 psrctl = 0;
2973
2974                 /*
2975                  * disable packet split support for IPv6 extension headers,
2976                  * because some malformed IPv6 headers can hang the Rx
2977                  */
2978                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2979                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2980
2981                 /* Enable Packet split descriptors */
2982                 rctl |= E1000_RCTL_DTYP_PS;
2983
2984                 psrctl |= adapter->rx_ps_bsize0 >>
2985                         E1000_PSRCTL_BSIZE0_SHIFT;
2986
2987                 switch (adapter->rx_ps_pages) {
2988                 case 3:
2989                         psrctl |= PAGE_SIZE <<
2990                                 E1000_PSRCTL_BSIZE3_SHIFT;
2991                 case 2:
2992                         psrctl |= PAGE_SIZE <<
2993                                 E1000_PSRCTL_BSIZE2_SHIFT;
2994                 case 1:
2995                         psrctl |= PAGE_SIZE >>
2996                                 E1000_PSRCTL_BSIZE1_SHIFT;
2997                         break;
2998                 }
2999
3000                 ew32(PSRCTL, psrctl);
3001         }
3002
3003         /* This is useful for sniffing bad packets. */
3004         if (adapter->netdev->features & NETIF_F_RXALL) {
3005                 /* UPE and MPE will be handled by normal PROMISC logic
3006                  * in e1000e_set_rx_mode */
3007                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3008                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3009                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3010
3011                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3012                           E1000_RCTL_DPF | /* Allow filtered pause */
3013                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3014                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3015                  * and that breaks VLANs.
3016                  */
3017         }
3018
3019         ew32(RFCTL, rfctl);
3020         ew32(RCTL, rctl);
3021         /* just started the receive unit, no need to restart */
3022         adapter->flags &= ~FLAG_RX_RESTART_NOW;
3023 }
3024
3025 /**
3026  * e1000_configure_rx - Configure Receive Unit after Reset
3027  * @adapter: board private structure
3028  *
3029  * Configure the Rx unit of the MAC after a reset.
3030  **/
3031 static void e1000_configure_rx(struct e1000_adapter *adapter)
3032 {
3033         struct e1000_hw *hw = &adapter->hw;
3034         struct e1000_ring *rx_ring = adapter->rx_ring;
3035         u64 rdba;
3036         u32 rdlen, rctl, rxcsum, ctrl_ext;
3037
3038         if (adapter->rx_ps_pages) {
3039                 /* this is a 32 byte descriptor */
3040                 rdlen = rx_ring->count *
3041                     sizeof(union e1000_rx_desc_packet_split);
3042                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3043                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3044         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3045                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3046                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3047                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3048         } else {
3049                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3050                 adapter->clean_rx = e1000_clean_rx_irq;
3051                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3052         }
3053
3054         /* disable receives while setting up the descriptors */
3055         rctl = er32(RCTL);
3056         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3057                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3058         e1e_flush();
3059         usleep_range(10000, 20000);
3060
3061         if (adapter->flags2 & FLAG2_DMA_BURST) {
3062                 /*
3063                  * set the writeback threshold (only takes effect if the RDTR
3064                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3065                  * enable prefetching of 0x20 Rx descriptors
3066                  * granularity = 01
3067                  * wthresh = 04,
3068                  * hthresh = 04,
3069                  * pthresh = 0x20
3070                  */
3071                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3072                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3073
3074                 /*
3075                  * override the delay timers for enabling bursting, only if
3076                  * the value was not set by the user via module options
3077                  */
3078                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3079                         adapter->rx_int_delay = BURST_RDTR;
3080                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3081                         adapter->rx_abs_int_delay = BURST_RADV;
3082         }
3083
3084         /* set the Receive Delay Timer Register */
3085         ew32(RDTR, adapter->rx_int_delay);
3086
3087         /* irq moderation */
3088         ew32(RADV, adapter->rx_abs_int_delay);
3089         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3090                 ew32(ITR, 1000000000 / (adapter->itr * 256));
3091
3092         ctrl_ext = er32(CTRL_EXT);
3093         /* Auto-Mask interrupts upon ICR access */
3094         ctrl_ext |= E1000_CTRL_EXT_IAME;
3095         ew32(IAM, 0xffffffff);
3096         ew32(CTRL_EXT, ctrl_ext);
3097         e1e_flush();
3098
3099         /*
3100          * Setup the HW Rx Head and Tail Descriptor Pointers and
3101          * the Base and Length of the Rx Descriptor Ring
3102          */
3103         rdba = rx_ring->dma;
3104         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3105         ew32(RDBAH, (rdba >> 32));
3106         ew32(RDLEN, rdlen);
3107         ew32(RDH, 0);
3108         ew32(RDT, 0);
3109         rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
3110         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3111
3112         /* Enable Receive Checksum Offload for TCP and UDP */
3113         rxcsum = er32(RXCSUM);
3114         if (adapter->netdev->features & NETIF_F_RXCSUM) {
3115                 rxcsum |= E1000_RXCSUM_TUOFL;
3116
3117                 /*
3118                  * IPv4 payload checksum for UDP fragments must be
3119                  * used in conjunction with packet-split.
3120                  */
3121                 if (adapter->rx_ps_pages)
3122                         rxcsum |= E1000_RXCSUM_IPPCSE;
3123         } else {
3124                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3125                 /* no need to clear IPPCSE as it defaults to 0 */
3126         }
3127         ew32(RXCSUM, rxcsum);
3128
3129         if (adapter->hw.mac.type == e1000_pch2lan) {
3130                 /*
3131                  * With jumbo frames, excessive C-state transition
3132                  * latencies result in dropped transactions.
3133                  */
3134                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3135                         u32 rxdctl = er32(RXDCTL(0));
3136                         ew32(RXDCTL(0), rxdctl | 0x3);
3137                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3138                 } else {
3139                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3140                                               PM_QOS_DEFAULT_VALUE);
3141                 }
3142         }
3143
3144         /* Enable Receives */
3145         ew32(RCTL, rctl);
3146 }
3147
3148 /**
3149  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3150  * @netdev: network interface device structure
3151  *
3152  * Writes multicast address list to the MTA hash table.
3153  * Returns: -ENOMEM on failure
3154  *                0 on no addresses written
3155  *                X on writing X addresses to MTA
3156  */
3157 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3158 {
3159         struct e1000_adapter *adapter = netdev_priv(netdev);
3160         struct e1000_hw *hw = &adapter->hw;
3161         struct netdev_hw_addr *ha;
3162         u8 *mta_list;
3163         int i;
3164
3165         if (netdev_mc_empty(netdev)) {
3166                 /* nothing to program, so clear mc list */
3167                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3168                 return 0;
3169         }
3170
3171         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3172         if (!mta_list)
3173                 return -ENOMEM;
3174
3175         /* update_mc_addr_list expects a packed array of only addresses. */
3176         i = 0;
3177         netdev_for_each_mc_addr(ha, netdev)
3178                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3179
3180         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3181         kfree(mta_list);
3182
3183         return netdev_mc_count(netdev);
3184 }
3185
3186 /**
3187  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3188  * @netdev: network interface device structure
3189  *
3190  * Writes unicast address list to the RAR table.
3191  * Returns: -ENOMEM on failure/insufficient address space
3192  *                0 on no addresses written
3193  *                X on writing X addresses to the RAR table
3194  **/
3195 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3196 {
3197         struct e1000_adapter *adapter = netdev_priv(netdev);
3198         struct e1000_hw *hw = &adapter->hw;
3199         unsigned int rar_entries = hw->mac.rar_entry_count;
3200         int count = 0;
3201
3202         /* save a rar entry for our hardware address */
3203         rar_entries--;
3204
3205         /* save a rar entry for the LAA workaround */
3206         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3207                 rar_entries--;
3208
3209         /* return ENOMEM indicating insufficient memory for addresses */
3210         if (netdev_uc_count(netdev) > rar_entries)
3211                 return -ENOMEM;
3212
3213         if (!netdev_uc_empty(netdev) && rar_entries) {
3214                 struct netdev_hw_addr *ha;
3215
3216                 /*
3217                  * write the addresses in reverse order to avoid write
3218                  * combining
3219                  */
3220                 netdev_for_each_uc_addr(ha, netdev) {
3221                         if (!rar_entries)
3222                                 break;
3223                         e1000e_rar_set(hw, ha->addr, rar_entries--);
3224                         count++;
3225                 }
3226         }
3227
3228         /* zero out the remaining RAR entries not used above */
3229         for (; rar_entries > 0; rar_entries--) {
3230                 ew32(RAH(rar_entries), 0);
3231                 ew32(RAL(rar_entries), 0);
3232         }
3233         e1e_flush();
3234
3235         return count;
3236 }
3237
3238 /**
3239  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3240  * @netdev: network interface device structure
3241  *
3242  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3243  * address list or the network interface flags are updated.  This routine is
3244  * responsible for configuring the hardware for proper unicast, multicast,
3245  * promiscuous mode, and all-multi behavior.
3246  **/
3247 static void e1000e_set_rx_mode(struct net_device *netdev)
3248 {
3249         struct e1000_adapter *adapter = netdev_priv(netdev);
3250         struct e1000_hw *hw = &adapter->hw;
3251         u32 rctl;
3252
3253         /* Check for Promiscuous and All Multicast modes */
3254         rctl = er32(RCTL);
3255
3256         /* clear the affected bits */
3257         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3258
3259         if (netdev->flags & IFF_PROMISC) {
3260                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3261                 /* Do not hardware filter VLANs in promisc mode */
3262                 e1000e_vlan_filter_disable(adapter);
3263         } else {
3264                 int count;
3265
3266                 if (netdev->flags & IFF_ALLMULTI) {
3267                         rctl |= E1000_RCTL_MPE;
3268                 } else {
3269                         /*
3270                          * Write addresses to the MTA, if the attempt fails
3271                          * then we should just turn on promiscuous mode so
3272                          * that we can at least receive multicast traffic
3273                          */
3274                         count = e1000e_write_mc_addr_list(netdev);
3275                         if (count < 0)
3276                                 rctl |= E1000_RCTL_MPE;
3277                 }
3278                 e1000e_vlan_filter_enable(adapter);
3279                 /*
3280                  * Write addresses to available RAR registers, if there is not
3281                  * sufficient space to store all the addresses then enable
3282                  * unicast promiscuous mode
3283                  */
3284                 count = e1000e_write_uc_addr_list(netdev);
3285                 if (count < 0)
3286                         rctl |= E1000_RCTL_UPE;
3287         }
3288
3289         ew32(RCTL, rctl);
3290
3291         if (netdev->features & NETIF_F_HW_VLAN_RX)
3292                 e1000e_vlan_strip_enable(adapter);
3293         else
3294                 e1000e_vlan_strip_disable(adapter);
3295 }
3296
3297 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3298 {
3299         struct e1000_hw *hw = &adapter->hw;
3300         u32 mrqc, rxcsum;
3301         int i;
3302         static const u32 rsskey[10] = {
3303                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3304                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3305         };
3306
3307         /* Fill out hash function seed */
3308         for (i = 0; i < 10; i++)
3309                 ew32(RSSRK(i), rsskey[i]);
3310
3311         /* Direct all traffic to queue 0 */
3312         for (i = 0; i < 32; i++)
3313                 ew32(RETA(i), 0);
3314
3315         /*
3316          * Disable raw packet checksumming so that RSS hash is placed in
3317          * descriptor on writeback.
3318          */
3319         rxcsum = er32(RXCSUM);
3320         rxcsum |= E1000_RXCSUM_PCSD;
3321
3322         ew32(RXCSUM, rxcsum);
3323
3324         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3325                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3326                 E1000_MRQC_RSS_FIELD_IPV6 |
3327                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3328                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3329
3330         ew32(MRQC, mrqc);
3331 }
3332
3333 /**
3334  * e1000_configure - configure the hardware for Rx and Tx
3335  * @adapter: private board structure
3336  **/
3337 static void e1000_configure(struct e1000_adapter *adapter)
3338 {
3339         struct e1000_ring *rx_ring = adapter->rx_ring;
3340
3341         e1000e_set_rx_mode(adapter->netdev);
3342
3343         e1000_restore_vlan(adapter);
3344         e1000_init_manageability_pt(adapter);
3345
3346         e1000_configure_tx(adapter);
3347
3348         if (adapter->netdev->features & NETIF_F_RXHASH)
3349                 e1000e_setup_rss_hash(adapter);
3350         e1000_setup_rctl(adapter);
3351         e1000_configure_rx(adapter);
3352         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3353 }
3354
3355 /**
3356  * e1000e_power_up_phy - restore link in case the phy was powered down
3357  * @adapter: address of board private structure
3358  *
3359  * The phy may be powered down to save power and turn off link when the
3360  * driver is unloaded and wake on lan is not enabled (among others)
3361  * *** this routine MUST be followed by a call to e1000e_reset ***
3362  **/
3363 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3364 {
3365         if (adapter->hw.phy.ops.power_up)
3366                 adapter->hw.phy.ops.power_up(&adapter->hw);
3367
3368         adapter->hw.mac.ops.setup_link(&adapter->hw);
3369 }
3370
3371 /**
3372  * e1000_power_down_phy - Power down the PHY
3373  *
3374  * Power down the PHY so no link is implied when interface is down.
3375  * The PHY cannot be powered down if management or WoL is active.
3376  */
3377 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3378 {
3379         /* WoL is enabled */
3380         if (adapter->wol)
3381                 return;
3382
3383         if (adapter->hw.phy.ops.power_down)
3384                 adapter->hw.phy.ops.power_down(&adapter->hw);
3385 }
3386
3387 /**
3388  * e1000e_reset - bring the hardware into a known good state
3389  *
3390  * This function boots the hardware and enables some settings that
3391  * require a configuration cycle of the hardware - those cannot be
3392  * set/changed during runtime. After reset the device needs to be
3393  * properly configured for Rx, Tx etc.
3394  */
3395 void e1000e_reset(struct e1000_adapter *adapter)
3396 {
3397         struct e1000_mac_info *mac = &adapter->hw.mac;
3398         struct e1000_fc_info *fc = &adapter->hw.fc;
3399         struct e1000_hw *hw = &adapter->hw;
3400         u32 tx_space, min_tx_space, min_rx_space;
3401         u32 pba = adapter->pba;
3402         u16 hwm;
3403
3404         /* reset Packet Buffer Allocation to default */
3405         ew32(PBA, pba);
3406
3407         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3408                 /*
3409                  * To maintain wire speed transmits, the Tx FIFO should be
3410                  * large enough to accommodate two full transmit packets,
3411                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3412                  * the Rx FIFO should be large enough to accommodate at least
3413                  * one full receive packet and is similarly rounded up and
3414                  * expressed in KB.
3415                  */
3416                 pba = er32(PBA);
3417                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3418                 tx_space = pba >> 16;
3419                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3420                 pba &= 0xffff;
3421                 /*
3422                  * the Tx fifo also stores 16 bytes of information about the Tx
3423                  * but don't include ethernet FCS because hardware appends it
3424                  */
3425                 min_tx_space = (adapter->max_frame_size +
3426                                 sizeof(struct e1000_tx_desc) -
3427                                 ETH_FCS_LEN) * 2;
3428                 min_tx_space = ALIGN(min_tx_space, 1024);
3429                 min_tx_space >>= 10;
3430                 /* software strips receive CRC, so leave room for it */
3431                 min_rx_space = adapter->max_frame_size;
3432                 min_rx_space = ALIGN(min_rx_space, 1024);
3433                 min_rx_space >>= 10;
3434
3435                 /*
3436                  * If current Tx allocation is less than the min Tx FIFO size,
3437                  * and the min Tx FIFO size is less than the current Rx FIFO
3438                  * allocation, take space away from current Rx allocation
3439                  */
3440                 if ((tx_space < min_tx_space) &&
3441                     ((min_tx_space - tx_space) < pba)) {
3442                         pba -= min_tx_space - tx_space;
3443
3444                         /*
3445                          * if short on Rx space, Rx wins and must trump Tx
3446                          * adjustment or use Early Receive if available
3447                          */
3448                         if (pba < min_rx_space)
3449                                 pba = min_rx_space;
3450                 }
3451
3452                 ew32(PBA, pba);
3453         }
3454
3455         /*
3456          * flow control settings
3457          *
3458          * The high water mark must be low enough to fit one full frame
3459          * (or the size used for early receive) above it in the Rx FIFO.
3460          * Set it to the lower of:
3461          * - 90% of the Rx FIFO size, and
3462          * - the full Rx FIFO size minus one full frame
3463          */
3464         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3465                 fc->pause_time = 0xFFFF;
3466         else
3467                 fc->pause_time = E1000_FC_PAUSE_TIME;
3468         fc->send_xon = true;
3469         fc->current_mode = fc->requested_mode;
3470
3471         switch (hw->mac.type) {
3472         case e1000_ich9lan:
3473         case e1000_ich10lan:
3474                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3475                         pba = 14;
3476                         ew32(PBA, pba);
3477                         fc->high_water = 0x2800;
3478                         fc->low_water = fc->high_water - 8;
3479                         break;
3480                 }
3481                 /* fall-through */
3482         default:
3483                 hwm = min(((pba << 10) * 9 / 10),
3484                           ((pba << 10) - adapter->max_frame_size));
3485
3486                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3487                 fc->low_water = fc->high_water - 8;
3488                 break;
3489         case e1000_pchlan:
3490                 /*
3491                  * Workaround PCH LOM adapter hangs with certain network
3492                  * loads.  If hangs persist, try disabling Tx flow control.
3493                  */
3494                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3495                         fc->high_water = 0x3500;
3496                         fc->low_water  = 0x1500;
3497                 } else {
3498                         fc->high_water = 0x5000;
3499                         fc->low_water  = 0x3000;
3500                 }
3501                 fc->refresh_time = 0x1000;
3502                 break;
3503         case e1000_pch2lan:
3504                 fc->high_water = 0x05C20;
3505                 fc->low_water = 0x05048;
3506                 fc->pause_time = 0x0650;
3507                 fc->refresh_time = 0x0400;
3508                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3509                         pba = 14;
3510                         ew32(PBA, pba);
3511                 }
3512                 break;
3513         }
3514
3515         /*
3516          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3517          * fit in receive buffer.
3518          */
3519         if (adapter->itr_setting & 0x3) {
3520                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3521                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3522                                 dev_info(&adapter->pdev->dev,
3523                                         "Interrupt Throttle Rate turned off\n");
3524                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3525                                 ew32(ITR, 0);
3526                         }
3527                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3528                         dev_info(&adapter->pdev->dev,
3529                                  "Interrupt Throttle Rate turned on\n");
3530                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3531                         adapter->itr = 20000;
3532                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3533                 }
3534         }
3535
3536         /* Allow time for pending master requests to run */
3537         mac->ops.reset_hw(hw);
3538
3539         /*
3540          * For parts with AMT enabled, let the firmware know
3541          * that the network interface is in control
3542          */
3543         if (adapter->flags & FLAG_HAS_AMT)
3544                 e1000e_get_hw_control(adapter);
3545
3546         ew32(WUC, 0);
3547
3548         if (mac->ops.init_hw(hw))
3549                 e_err("Hardware Error\n");
3550
3551         e1000_update_mng_vlan(adapter);
3552
3553         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3554         ew32(VET, ETH_P_8021Q);
3555
3556         e1000e_reset_adaptive(hw);
3557
3558         if (!netif_running(adapter->netdev) &&
3559             !test_bit(__E1000_TESTING, &adapter->state)) {
3560                 e1000_power_down_phy(adapter);
3561                 return;
3562         }
3563
3564         e1000_get_phy_info(hw);
3565
3566         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3567             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3568                 u16 phy_data = 0;
3569                 /*
3570                  * speed up time to link by disabling smart power down, ignore
3571                  * the return value of this function because there is nothing
3572                  * different we would do if it failed
3573                  */
3574                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3575                 phy_data &= ~IGP02E1000_PM_SPD;
3576                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3577         }
3578 }
3579
3580 int e1000e_up(struct e1000_adapter *adapter)
3581 {
3582         struct e1000_hw *hw = &adapter->hw;
3583
3584         /* hardware has been reset, we need to reload some things */
3585         e1000_configure(adapter);
3586
3587         clear_bit(__E1000_DOWN, &adapter->state);
3588
3589         if (adapter->msix_entries)
3590                 e1000_configure_msix(adapter);
3591         e1000_irq_enable(adapter);
3592
3593         netif_start_queue(adapter->netdev);
3594
3595         /* fire a link change interrupt to start the watchdog */
3596         if (adapter->msix_entries)
3597                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3598         else
3599                 ew32(ICS, E1000_ICS_LSC);
3600
3601         return 0;
3602 }
3603
3604 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3605 {
3606         struct e1000_hw *hw = &adapter->hw;
3607
3608         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3609                 return;
3610
3611         /* flush pending descriptor writebacks to memory */
3612         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3613         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3614
3615         /* execute the writes immediately */
3616         e1e_flush();
3617 }
3618
3619 static void e1000e_update_stats(struct e1000_adapter *adapter);
3620
3621 void e1000e_down(struct e1000_adapter *adapter)
3622 {
3623         struct net_device *netdev = adapter->netdev;
3624         struct e1000_hw *hw = &adapter->hw;
3625         u32 tctl, rctl;
3626
3627         /*
3628          * signal that we're down so the interrupt handler does not
3629          * reschedule our watchdog timer
3630          */
3631         set_bit(__E1000_DOWN, &adapter->state);
3632
3633         /* disable receives in the hardware */
3634         rctl = er32(RCTL);
3635         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3636                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3637         /* flush and sleep below */
3638
3639         netif_stop_queue(netdev);
3640
3641         /* disable transmits in the hardware */
3642         tctl = er32(TCTL);
3643         tctl &= ~E1000_TCTL_EN;
3644         ew32(TCTL, tctl);
3645
3646         /* flush both disables and wait for them to finish */
3647         e1e_flush();
3648         usleep_range(10000, 20000);
3649
3650         e1000_irq_disable(adapter);
3651
3652         del_timer_sync(&adapter->watchdog_timer);
3653         del_timer_sync(&adapter->phy_info_timer);
3654
3655         netif_carrier_off(netdev);
3656
3657         spin_lock(&adapter->stats64_lock);
3658         e1000e_update_stats(adapter);
3659         spin_unlock(&adapter->stats64_lock);
3660
3661         e1000e_flush_descriptors(adapter);
3662         e1000_clean_tx_ring(adapter->tx_ring);
3663         e1000_clean_rx_ring(adapter->rx_ring);
3664
3665         adapter->link_speed = 0;
3666         adapter->link_duplex = 0;
3667
3668         if (!pci_channel_offline(adapter->pdev))
3669                 e1000e_reset(adapter);
3670
3671         /*
3672          * TODO: for power management, we could drop the link and
3673          * pci_disable_device here.
3674          */
3675 }
3676
3677 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3678 {
3679         might_sleep();
3680         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3681                 usleep_range(1000, 2000);
3682         e1000e_down(adapter);
3683         e1000e_up(adapter);
3684         clear_bit(__E1000_RESETTING, &adapter->state);
3685 }
3686
3687 /**
3688  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3689  * @adapter: board private structure to initialize
3690  *
3691  * e1000_sw_init initializes the Adapter private data structure.
3692  * Fields are initialized based on PCI device information and
3693  * OS network device settings (MTU size).
3694  **/
3695 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3696 {
3697         struct net_device *netdev = adapter->netdev;
3698
3699         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3700         adapter->rx_ps_bsize0 = 128;
3701         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3702         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3703         adapter->tx_ring_count = E1000_DEFAULT_TXD;
3704         adapter->rx_ring_count = E1000_DEFAULT_RXD;
3705
3706         spin_lock_init(&adapter->stats64_lock);
3707
3708         e1000e_set_interrupt_capability(adapter);
3709
3710         if (e1000_alloc_queues(adapter))
3711                 return -ENOMEM;
3712
3713         /* Explicitly disable IRQ since the NIC can be in any state. */
3714         e1000_irq_disable(adapter);
3715
3716         set_bit(__E1000_DOWN, &adapter->state);
3717         return 0;
3718 }
3719
3720 /**
3721  * e1000_intr_msi_test - Interrupt Handler
3722  * @irq: interrupt number
3723  * @data: pointer to a network interface device structure
3724  **/
3725 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3726 {
3727         struct net_device *netdev = data;
3728         struct e1000_adapter *adapter = netdev_priv(netdev);
3729         struct e1000_hw *hw = &adapter->hw;
3730         u32 icr = er32(ICR);
3731
3732         e_dbg("icr is %08X\n", icr);
3733         if (icr & E1000_ICR_RXSEQ) {
3734                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3735                 wmb();
3736         }
3737
3738         return IRQ_HANDLED;
3739 }
3740
3741 /**
3742  * e1000_test_msi_interrupt - Returns 0 for successful test
3743  * @adapter: board private struct
3744  *
3745  * code flow taken from tg3.c
3746  **/
3747 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3748 {
3749         struct net_device *netdev = adapter->netdev;
3750         struct e1000_hw *hw = &adapter->hw;
3751         int err;
3752
3753         /* poll_enable hasn't been called yet, so don't need disable */
3754         /* clear any pending events */
3755         er32(ICR);
3756
3757         /* free the real vector and request a test handler */
3758         e1000_free_irq(adapter);
3759         e1000e_reset_interrupt_capability(adapter);
3760
3761         /* Assume that the test fails, if it succeeds then the test
3762          * MSI irq handler will unset this flag */
3763         adapter->flags |= FLAG_MSI_TEST_FAILED;
3764
3765         err = pci_enable_msi(adapter->pdev);
3766         if (err)
3767                 goto msi_test_failed;
3768
3769         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3770                           netdev->name, netdev);
3771         if (err) {
3772                 pci_disable_msi(adapter->pdev);
3773                 goto msi_test_failed;
3774         }
3775
3776         wmb();
3777
3778         e1000_irq_enable(adapter);
3779
3780         /* fire an unusual interrupt on the test handler */
3781         ew32(ICS, E1000_ICS_RXSEQ);
3782         e1e_flush();
3783         msleep(50);
3784
3785         e1000_irq_disable(adapter);
3786
3787         rmb();
3788
3789         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3790                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3791                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3792         } else {
3793                 e_dbg("MSI interrupt test succeeded!\n");
3794         }
3795
3796         free_irq(adapter->pdev->irq, netdev);
3797         pci_disable_msi(adapter->pdev);
3798
3799 msi_test_failed:
3800         e1000e_set_interrupt_capability(adapter);
3801         return e1000_request_irq(adapter);
3802 }
3803
3804 /**
3805  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3806  * @adapter: board private struct
3807  *
3808  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3809  **/
3810 static int e1000_test_msi(struct e1000_adapter *adapter)
3811 {
3812         int err;
3813         u16 pci_cmd;
3814
3815         if (!(adapter->flags & FLAG_MSI_ENABLED))
3816                 return 0;
3817
3818         /* disable SERR in case the MSI write causes a master abort */
3819         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3820         if (pci_cmd & PCI_COMMAND_SERR)
3821                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3822                                       pci_cmd & ~PCI_COMMAND_SERR);
3823
3824         err = e1000_test_msi_interrupt(adapter);
3825
3826         /* re-enable SERR */
3827         if (pci_cmd & PCI_COMMAND_SERR) {
3828                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3829                 pci_cmd |= PCI_COMMAND_SERR;
3830                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3831         }
3832
3833         return err;
3834 }
3835
3836 /**
3837  * e1000_open - Called when a network interface is made active
3838  * @netdev: network interface device structure
3839  *
3840  * Returns 0 on success, negative value on failure
3841  *
3842  * The open entry point is called when a network interface is made
3843  * active by the system (IFF_UP).  At this point all resources needed
3844  * for transmit and receive operations are allocated, the interrupt
3845  * handler is registered with the OS, the watchdog timer is started,
3846  * and the stack is notified that the interface is ready.
3847  **/
3848 static int e1000_open(struct net_device *netdev)
3849 {
3850         struct e1000_adapter *adapter = netdev_priv(netdev);
3851         struct e1000_hw *hw = &adapter->hw;
3852         struct pci_dev *pdev = adapter->pdev;
3853         int err;
3854
3855         /* disallow open during test */
3856         if (test_bit(__E1000_TESTING, &adapter->state))
3857                 return -EBUSY;
3858
3859         pm_runtime_get_sync(&pdev->dev);
3860
3861         netif_carrier_off(netdev);
3862
3863         /* allocate transmit descriptors */
3864         err = e1000e_setup_tx_resources(adapter->tx_ring);
3865         if (err)
3866                 goto err_setup_tx;
3867
3868         /* allocate receive descriptors */
3869         err = e1000e_setup_rx_resources(adapter->rx_ring);
3870         if (err)
3871                 goto err_setup_rx;
3872
3873         /*
3874          * If AMT is enabled, let the firmware know that the network
3875          * interface is now open and reset the part to a known state.
3876          */
3877         if (adapter->flags & FLAG_HAS_AMT) {
3878                 e1000e_get_hw_control(adapter);
3879                 e1000e_reset(adapter);
3880         }
3881
3882         e1000e_power_up_phy(adapter);
3883
3884         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3885         if ((adapter->hw.mng_cookie.status &
3886              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3887                 e1000_update_mng_vlan(adapter);
3888
3889         /* DMA latency requirement to workaround jumbo issue */
3890         if (adapter->hw.mac.type == e1000_pch2lan)
3891                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3892                                    PM_QOS_CPU_DMA_LATENCY,
3893                                    PM_QOS_DEFAULT_VALUE);
3894
3895         /*
3896          * before we allocate an interrupt, we must be ready to handle it.
3897          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3898          * as soon as we call pci_request_irq, so we have to setup our
3899          * clean_rx handler before we do so.
3900          */
3901         e1000_configure(adapter);
3902
3903         err = e1000_request_irq(adapter);
3904         if (err)
3905                 goto err_req_irq;
3906
3907         /*
3908          * Work around PCIe errata with MSI interrupts causing some chipsets to
3909          * ignore e1000e MSI messages, which means we need to test our MSI
3910          * interrupt now
3911          */
3912         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3913                 err = e1000_test_msi(adapter);
3914                 if (err) {
3915                         e_err("Interrupt allocation failed\n");
3916                         goto err_req_irq;
3917                 }
3918         }
3919
3920         /* From here on the code is the same as e1000e_up() */
3921         clear_bit(__E1000_DOWN, &adapter->state);
3922
3923         napi_enable(&adapter->napi);
3924
3925         e1000_irq_enable(adapter);
3926
3927         adapter->tx_hang_recheck = false;
3928         netif_start_queue(netdev);
3929
3930         adapter->idle_check = true;
3931         pm_runtime_put(&pdev->dev);
3932
3933         /* fire a link status change interrupt to start the watchdog */
3934         if (adapter->msix_entries)
3935                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3936         else
3937                 ew32(ICS, E1000_ICS_LSC);
3938
3939         return 0;
3940
3941 err_req_irq:
3942         e1000e_release_hw_control(adapter);
3943         e1000_power_down_phy(adapter);
3944         e1000e_free_rx_resources(adapter->rx_ring);
3945 err_setup_rx:
3946         e1000e_free_tx_resources(adapter->tx_ring);
3947 err_setup_tx:
3948         e1000e_reset(adapter);
3949         pm_runtime_put_sync(&pdev->dev);
3950
3951         return err;
3952 }
3953
3954 /**
3955  * e1000_close - Disables a network interface
3956  * @netdev: network interface device structure
3957  *
3958  * Returns 0, this is not allowed to fail
3959  *
3960  * The close entry point is called when an interface is de-activated
3961  * by the OS.  The hardware is still under the drivers control, but
3962  * needs to be disabled.  A global MAC reset is issued to stop the
3963  * hardware, and all transmit and receive resources are freed.
3964  **/
3965 static int e1000_close(struct net_device *netdev)
3966 {
3967         struct e1000_adapter *adapter = netdev_priv(netdev);
3968         struct pci_dev *pdev = adapter->pdev;
3969
3970         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3971
3972         pm_runtime_get_sync(&pdev->dev);
3973
3974         napi_disable(&adapter->napi);
3975
3976         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3977                 e1000e_down(adapter);
3978                 e1000_free_irq(adapter);
3979         }
3980         e1000_power_down_phy(adapter);
3981
3982         e1000e_free_tx_resources(adapter->tx_ring);
3983         e1000e_free_rx_resources(adapter->rx_ring);
3984
3985         /*
3986          * kill manageability vlan ID if supported, but not if a vlan with
3987          * the same ID is registered on the host OS (let 8021q kill it)
3988          */
3989         if (adapter->hw.mng_cookie.status &
3990             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3991                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3992
3993         /*
3994          * If AMT is enabled, let the firmware know that the network
3995          * interface is now closed
3996          */
3997         if ((adapter->flags & FLAG_HAS_AMT) &&
3998             !test_bit(__E1000_TESTING, &adapter->state))
3999                 e1000e_release_hw_control(adapter);
4000
4001         if (adapter->hw.mac.type == e1000_pch2lan)
4002                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4003
4004         pm_runtime_put_sync(&pdev->dev);
4005
4006         return 0;
4007 }
4008 /**
4009  * e1000_set_mac - Change the Ethernet Address of the NIC
4010  * @netdev: network interface device structure
4011  * @p: pointer to an address structure
4012  *
4013  * Returns 0 on success, negative on failure
4014  **/
4015 static int e1000_set_mac(struct net_device *netdev, void *p)
4016 {
4017         struct e1000_adapter *adapter = netdev_priv(netdev);
4018         struct sockaddr *addr = p;
4019
4020         if (!is_valid_ether_addr(addr->sa_data))
4021                 return -EADDRNOTAVAIL;
4022
4023         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4024         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4025
4026         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4027
4028         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4029                 /* activate the work around */
4030                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4031
4032                 /*
4033                  * Hold a copy of the LAA in RAR[14] This is done so that
4034                  * between the time RAR[0] gets clobbered  and the time it
4035                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4036                  * of the RARs and no incoming packets directed to this port
4037                  * are dropped. Eventually the LAA will be in RAR[0] and
4038                  * RAR[14]
4039                  */
4040                 e1000e_rar_set(&adapter->hw,
4041                               adapter->hw.mac.addr,
4042                               adapter->hw.mac.rar_entry_count - 1);
4043         }
4044
4045         return 0;
4046 }
4047
4048 /**
4049  * e1000e_update_phy_task - work thread to update phy
4050  * @work: pointer to our work struct
4051  *
4052  * this worker thread exists because we must acquire a
4053  * semaphore to read the phy, which we could msleep while
4054  * waiting for it, and we can't msleep in a timer.
4055  **/
4056 static void e1000e_update_phy_task(struct work_struct *work)
4057 {
4058         struct e1000_adapter *adapter = container_of(work,
4059                                         struct e1000_adapter, update_phy_task);
4060
4061         if (test_bit(__E1000_DOWN, &adapter->state))
4062                 return;
4063
4064         e1000_get_phy_info(&adapter->hw);
4065 }
4066
4067 /*
4068  * Need to wait a few seconds after link up to get diagnostic information from
4069  * the phy
4070  */
4071 static void e1000_update_phy_info(unsigned long data)
4072 {
4073         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4074
4075         if (test_bit(__E1000_DOWN, &adapter->state))
4076                 return;
4077
4078         schedule_work(&adapter->update_phy_task);
4079 }
4080
4081 /**
4082  * e1000e_update_phy_stats - Update the PHY statistics counters
4083  * @adapter: board private structure
4084  *
4085  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4086  **/
4087 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4088 {
4089         struct e1000_hw *hw = &adapter->hw;
4090         s32 ret_val;
4091         u16 phy_data;
4092
4093         ret_val = hw->phy.ops.acquire(hw);
4094         if (ret_val)
4095                 return;
4096
4097         /*
4098          * A page set is expensive so check if already on desired page.
4099          * If not, set to the page with the PHY status registers.
4100          */
4101         hw->phy.addr = 1;
4102         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4103                                            &phy_data);
4104         if (ret_val)
4105                 goto release;
4106         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4107                 ret_val = hw->phy.ops.set_page(hw,
4108                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4109                 if (ret_val)
4110                         goto release;
4111         }
4112
4113         /* Single Collision Count */
4114         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4115         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4116         if (!ret_val)
4117                 adapter->stats.scc += phy_data;
4118
4119         /* Excessive Collision Count */
4120         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4121         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4122         if (!ret_val)
4123                 adapter->stats.ecol += phy_data;
4124
4125         /* Multiple Collision Count */
4126         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4127         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4128         if (!ret_val)
4129                 adapter->stats.mcc += phy_data;
4130
4131         /* Late Collision Count */
4132         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4133         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4134         if (!ret_val)
4135                 adapter->stats.latecol += phy_data;
4136
4137         /* Collision Count - also used for adaptive IFS */
4138         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4139         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4140         if (!ret_val)
4141                 hw->mac.collision_delta = phy_data;
4142
4143         /* Defer Count */
4144         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4145         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4146         if (!ret_val)
4147                 adapter->stats.dc += phy_data;
4148
4149         /* Transmit with no CRS */
4150         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4151         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4152         if (!ret_val)
4153                 adapter->stats.tncrs += phy_data;
4154
4155 release:
4156         hw->phy.ops.release(hw);
4157 }
4158
4159 /**
4160  * e1000e_update_stats - Update the board statistics counters
4161  * @adapter: board private structure
4162  **/
4163 static void e1000e_update_stats(struct e1000_adapter *adapter)
4164 {
4165         struct net_device *netdev = adapter->netdev;
4166         struct e1000_hw *hw = &adapter->hw;
4167         struct pci_dev *pdev = adapter->pdev;
4168
4169         /*
4170          * Prevent stats update while adapter is being reset, or if the pci
4171          * connection is down.
4172          */
4173         if (adapter->link_speed == 0)
4174                 return;
4175         if (pci_channel_offline(pdev))
4176                 return;
4177
4178         adapter->stats.crcerrs += er32(CRCERRS);
4179         adapter->stats.gprc += er32(GPRC);
4180         adapter->stats.gorc += er32(GORCL);
4181         er32(GORCH); /* Clear gorc */
4182         adapter->stats.bprc += er32(BPRC);
4183         adapter->stats.mprc += er32(MPRC);
4184         adapter->stats.roc += er32(ROC);
4185
4186         adapter->stats.mpc += er32(MPC);
4187
4188         /* Half-duplex statistics */
4189         if (adapter->link_duplex == HALF_DUPLEX) {
4190                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4191                         e1000e_update_phy_stats(adapter);
4192                 } else {
4193                         adapter->stats.scc += er32(SCC);
4194                         adapter->stats.ecol += er32(ECOL);
4195                         adapter->stats.mcc += er32(MCC);
4196                         adapter->stats.latecol += er32(LATECOL);
4197                         adapter->stats.dc += er32(DC);
4198
4199                         hw->mac.collision_delta = er32(COLC);
4200
4201                         if ((hw->mac.type != e1000_82574) &&
4202                             (hw->mac.type != e1000_82583))
4203                                 adapter->stats.tncrs += er32(TNCRS);
4204                 }
4205                 adapter->stats.colc += hw->mac.collision_delta;
4206         }
4207
4208         adapter->stats.xonrxc += er32(XONRXC);
4209         adapter->stats.xontxc += er32(XONTXC);
4210         adapter->stats.xoffrxc += er32(XOFFRXC);
4211         adapter->stats.xofftxc += er32(XOFFTXC);
4212         adapter->stats.gptc += er32(GPTC);
4213         adapter->stats.gotc += er32(GOTCL);
4214         er32(GOTCH); /* Clear gotc */
4215         adapter->stats.rnbc += er32(RNBC);
4216         adapter->stats.ruc += er32(RUC);
4217
4218         adapter->stats.mptc += er32(MPTC);
4219         adapter->stats.bptc += er32(BPTC);
4220
4221         /* used for adaptive IFS */
4222
4223         hw->mac.tx_packet_delta = er32(TPT);
4224         adapter->stats.tpt += hw->mac.tx_packet_delta;
4225
4226         adapter->stats.algnerrc += er32(ALGNERRC);
4227         adapter->stats.rxerrc += er32(RXERRC);
4228         adapter->stats.cexterr += er32(CEXTERR);
4229         adapter->stats.tsctc += er32(TSCTC);
4230         adapter->stats.tsctfc += er32(TSCTFC);
4231
4232         /* Fill out the OS statistics structure */
4233         netdev->stats.multicast = adapter->stats.mprc;
4234         netdev->stats.collisions = adapter->stats.colc;
4235
4236         /* Rx Errors */
4237
4238         /*
4239          * RLEC on some newer hardware can be incorrect so build
4240          * our own version based on RUC and ROC
4241          */
4242         netdev->stats.rx_errors = adapter->stats.rxerrc +
4243                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4244                 adapter->stats.ruc + adapter->stats.roc +
4245                 adapter->stats.cexterr;
4246         netdev->stats.rx_length_errors = adapter->stats.ruc +
4247                                               adapter->stats.roc;
4248         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4249         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4250         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4251
4252         /* Tx Errors */
4253         netdev->stats.tx_errors = adapter->stats.ecol +
4254                                        adapter->stats.latecol;
4255         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4256         netdev->stats.tx_window_errors = adapter->stats.latecol;
4257         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4258
4259         /* Tx Dropped needs to be maintained elsewhere */
4260
4261         /* Management Stats */
4262         adapter->stats.mgptc += er32(MGTPTC);
4263         adapter->stats.mgprc += er32(MGTPRC);
4264         adapter->stats.mgpdc += er32(MGTPDC);
4265 }
4266
4267 /**
4268  * e1000_phy_read_status - Update the PHY register status snapshot
4269  * @adapter: board private structure
4270  **/
4271 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4272 {
4273         struct e1000_hw *hw = &adapter->hw;
4274         struct e1000_phy_regs *phy = &adapter->phy_regs;
4275
4276         if ((er32(STATUS) & E1000_STATUS_LU) &&
4277             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4278                 int ret_val;
4279
4280                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4281                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4282                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4283                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4284                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4285                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4286                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4287                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4288                 if (ret_val)
4289                         e_warn("Error reading PHY register\n");
4290         } else {
4291                 /*
4292                  * Do not read PHY registers if link is not up
4293                  * Set values to typical power-on defaults
4294                  */
4295                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4296                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4297                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4298                              BMSR_ERCAP);
4299                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4300                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4301                 phy->lpa = 0;
4302                 phy->expansion = EXPANSION_ENABLENPAGE;
4303                 phy->ctrl1000 = ADVERTISE_1000FULL;
4304                 phy->stat1000 = 0;
4305                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4306         }
4307 }
4308
4309 static void e1000_print_link_info(struct e1000_adapter *adapter)
4310 {
4311         struct e1000_hw *hw = &adapter->hw;
4312         u32 ctrl = er32(CTRL);
4313
4314         /* Link status message must follow this format for user tools */
4315         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4316                 adapter->netdev->name,
4317                 adapter->link_speed,
4318                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4319                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4320                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4321                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4322 }
4323
4324 static bool e1000e_has_link(struct e1000_adapter *adapter)
4325 {
4326         struct e1000_hw *hw = &adapter->hw;
4327         bool link_active = false;
4328         s32 ret_val = 0;
4329
4330         /*
4331          * get_link_status is set on LSC (link status) interrupt or
4332          * Rx sequence error interrupt.  get_link_status will stay
4333          * false until the check_for_link establishes link
4334          * for copper adapters ONLY
4335          */
4336         switch (hw->phy.media_type) {
4337         case e1000_media_type_copper:
4338                 if (hw->mac.get_link_status) {
4339                         ret_val = hw->mac.ops.check_for_link(hw);
4340                         link_active = !hw->mac.get_link_status;
4341                 } else {
4342                         link_active = true;
4343                 }
4344                 break;
4345         case e1000_media_type_fiber:
4346                 ret_val = hw->mac.ops.check_for_link(hw);
4347                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4348                 break;
4349         case e1000_media_type_internal_serdes:
4350                 ret_val = hw->mac.ops.check_for_link(hw);
4351                 link_active = adapter->hw.mac.serdes_has_link;
4352                 break;
4353         default:
4354         case e1000_media_type_unknown:
4355                 break;
4356         }
4357
4358         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4359             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4360                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4361                 e_info("Gigabit has been disabled, downgrading speed\n");
4362         }
4363
4364         return link_active;
4365 }
4366
4367 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4368 {
4369         /* make sure the receive unit is started */
4370         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4371             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4372                 struct e1000_hw *hw = &adapter->hw;
4373                 u32 rctl = er32(RCTL);
4374                 ew32(RCTL, rctl | E1000_RCTL_EN);
4375                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4376         }
4377 }
4378
4379 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4380 {
4381         struct e1000_hw *hw = &adapter->hw;
4382
4383         /*
4384          * With 82574 controllers, PHY needs to be checked periodically
4385          * for hung state and reset, if two calls return true
4386          */
4387         if (e1000_check_phy_82574(hw))
4388                 adapter->phy_hang_count++;
4389         else
4390                 adapter->phy_hang_count = 0;
4391
4392         if (adapter->phy_hang_count > 1) {
4393                 adapter->phy_hang_count = 0;
4394                 schedule_work(&adapter->reset_task);
4395         }
4396 }
4397
4398 /**
4399  * e1000_watchdog - Timer Call-back
4400  * @data: pointer to adapter cast into an unsigned long
4401  **/
4402 static void e1000_watchdog(unsigned long data)
4403 {
4404         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4405
4406         /* Do the rest outside of interrupt context */
4407         schedule_work(&adapter->watchdog_task);
4408
4409         /* TODO: make this use queue_delayed_work() */
4410 }
4411
4412 static void e1000_watchdog_task(struct work_struct *work)
4413 {
4414         struct e1000_adapter *adapter = container_of(work,
4415                                         struct e1000_adapter, watchdog_task);
4416         struct net_device *netdev = adapter->netdev;
4417         struct e1000_mac_info *mac = &adapter->hw.mac;
4418         struct e1000_phy_info *phy = &adapter->hw.phy;
4419         struct e1000_ring *tx_ring = adapter->tx_ring;
4420         struct e1000_hw *hw = &adapter->hw;
4421         u32 link, tctl;
4422
4423         if (test_bit(__E1000_DOWN, &adapter->state))
4424                 return;
4425
4426         link = e1000e_has_link(adapter);
4427         if ((netif_carrier_ok(netdev)) && link) {
4428                 /* Cancel scheduled suspend requests. */
4429                 pm_runtime_resume(netdev->dev.parent);
4430
4431                 e1000e_enable_receives(adapter);
4432                 goto link_up;
4433         }
4434
4435         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4436             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4437                 e1000_update_mng_vlan(adapter);
4438
4439         if (link) {
4440                 if (!netif_carrier_ok(netdev)) {
4441                         bool txb2b = true;
4442
4443                         /* Cancel scheduled suspend requests. */
4444                         pm_runtime_resume(netdev->dev.parent);
4445
4446                         /* update snapshot of PHY registers on LSC */
4447                         e1000_phy_read_status(adapter);
4448                         mac->ops.get_link_up_info(&adapter->hw,
4449                                                    &adapter->link_speed,
4450                                                    &adapter->link_duplex);
4451                         e1000_print_link_info(adapter);
4452                         /*
4453                          * On supported PHYs, check for duplex mismatch only
4454                          * if link has autonegotiated at 10/100 half
4455                          */
4456                         if ((hw->phy.type == e1000_phy_igp_3 ||
4457                              hw->phy.type == e1000_phy_bm) &&
4458                             (hw->mac.autoneg == true) &&
4459                             (adapter->link_speed == SPEED_10 ||
4460                              adapter->link_speed == SPEED_100) &&
4461                             (adapter->link_duplex == HALF_DUPLEX)) {
4462                                 u16 autoneg_exp;
4463
4464                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4465
4466                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4467                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4468                         }
4469
4470                         /* adjust timeout factor according to speed/duplex */
4471                         adapter->tx_timeout_factor = 1;
4472                         switch (adapter->link_speed) {
4473                         case SPEED_10:
4474                                 txb2b = false;
4475                                 adapter->tx_timeout_factor = 16;
4476                                 break;
4477                         case SPEED_100:
4478                                 txb2b = false;
4479                                 adapter->tx_timeout_factor = 10;
4480                                 break;
4481                         }
4482
4483                         /*
4484                          * workaround: re-program speed mode bit after
4485                          * link-up event
4486                          */
4487                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4488                             !txb2b) {
4489                                 u32 tarc0;
4490                                 tarc0 = er32(TARC(0));
4491                                 tarc0 &= ~SPEED_MODE_BIT;
4492                                 ew32(TARC(0), tarc0);
4493                         }
4494
4495                         /*
4496                          * disable TSO for pcie and 10/100 speeds, to avoid
4497                          * some hardware issues
4498                          */
4499                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4500                                 switch (adapter->link_speed) {
4501                                 case SPEED_10:
4502                                 case SPEED_100:
4503                                         e_info("10/100 speed: disabling TSO\n");
4504                                         netdev->features &= ~NETIF_F_TSO;
4505                                         netdev->features &= ~NETIF_F_TSO6;
4506                                         break;
4507                                 case SPEED_1000:
4508                                         netdev->features |= NETIF_F_TSO;
4509                                         netdev->features |= NETIF_F_TSO6;
4510                                         break;
4511                                 default:
4512                                         /* oops */
4513                                         break;
4514                                 }
4515                         }
4516
4517                         /*
4518                          * enable transmits in the hardware, need to do this
4519                          * after setting TARC(0)
4520                          */
4521                         tctl = er32(TCTL);
4522                         tctl |= E1000_TCTL_EN;
4523                         ew32(TCTL, tctl);
4524
4525                         /*
4526                          * Perform any post-link-up configuration before
4527                          * reporting link up.
4528                          */
4529                         if (phy->ops.cfg_on_link_up)
4530                                 phy->ops.cfg_on_link_up(hw);
4531
4532                         netif_carrier_on(netdev);
4533
4534                         if (!test_bit(__E1000_DOWN, &adapter->state))
4535                                 mod_timer(&adapter->phy_info_timer,
4536                                           round_jiffies(jiffies + 2 * HZ));
4537                 }
4538         } else {
4539                 if (netif_carrier_ok(netdev)) {
4540                         adapter->link_speed = 0;
4541                         adapter->link_duplex = 0;
4542                         /* Link status message must follow this format */
4543                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4544                                adapter->netdev->name);
4545                         netif_carrier_off(netdev);
4546                         if (!test_bit(__E1000_DOWN, &adapter->state))
4547                                 mod_timer(&adapter->phy_info_timer,
4548                                           round_jiffies(jiffies + 2 * HZ));
4549
4550                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4551                                 schedule_work(&adapter->reset_task);
4552                         else
4553                                 pm_schedule_suspend(netdev->dev.parent,
4554                                                         LINK_TIMEOUT);
4555                 }
4556         }
4557
4558 link_up:
4559         spin_lock(&adapter->stats64_lock);
4560         e1000e_update_stats(adapter);
4561
4562         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4563         adapter->tpt_old = adapter->stats.tpt;
4564         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4565         adapter->colc_old = adapter->stats.colc;
4566
4567         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4568         adapter->gorc_old = adapter->stats.gorc;
4569         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4570         adapter->gotc_old = adapter->stats.gotc;
4571         spin_unlock(&adapter->stats64_lock);
4572
4573         e1000e_update_adaptive(&adapter->hw);
4574
4575         if (!netif_carrier_ok(netdev) &&
4576             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4577                 /*
4578                  * We've lost link, so the controller stops DMA,
4579                  * but we've got queued Tx work that's never going
4580                  * to get done, so reset controller to flush Tx.
4581                  * (Do the reset outside of interrupt context).
4582                  */
4583                 schedule_work(&adapter->reset_task);
4584                 /* return immediately since reset is imminent */
4585                 return;
4586         }
4587
4588         /* Simple mode for Interrupt Throttle Rate (ITR) */
4589         if (adapter->itr_setting == 4) {
4590                 /*
4591                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4592                  * Total asymmetrical Tx or Rx gets ITR=8000;
4593                  * everyone else is between 2000-8000.
4594                  */
4595                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4596                 u32 dif = (adapter->gotc > adapter->gorc ?
4597                             adapter->gotc - adapter->gorc :
4598                             adapter->gorc - adapter->gotc) / 10000;
4599                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4600
4601                 ew32(ITR, 1000000000 / (itr * 256));
4602         }
4603
4604         /* Cause software interrupt to ensure Rx ring is cleaned */
4605         if (adapter->msix_entries)
4606                 ew32(ICS, adapter->rx_ring->ims_val);
4607         else
4608                 ew32(ICS, E1000_ICS_RXDMT0);
4609
4610         /* flush pending descriptors to memory before detecting Tx hang */
4611         e1000e_flush_descriptors(adapter);
4612
4613         /* Force detection of hung controller every watchdog period */
4614         adapter->detect_tx_hung = true;
4615
4616         /*
4617          * With 82571 controllers, LAA may be overwritten due to controller
4618          * reset from the other port. Set the appropriate LAA in RAR[0]
4619          */
4620         if (e1000e_get_laa_state_82571(hw))
4621                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4622
4623         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4624                 e1000e_check_82574_phy_workaround(adapter);
4625
4626         /* Reset the timer */
4627         if (!test_bit(__E1000_DOWN, &adapter->state))
4628                 mod_timer(&adapter->watchdog_timer,
4629                           round_jiffies(jiffies + 2 * HZ));
4630 }
4631
4632 #define E1000_TX_FLAGS_CSUM             0x00000001
4633 #define E1000_TX_FLAGS_VLAN             0x00000002
4634 #define E1000_TX_FLAGS_TSO              0x00000004
4635 #define E1000_TX_FLAGS_IPV4             0x00000008
4636 #define E1000_TX_FLAGS_NO_FCS           0x00000010
4637 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4638 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4639
4640 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4641 {
4642         struct e1000_context_desc *context_desc;
4643         struct e1000_buffer *buffer_info;
4644         unsigned int i;
4645         u32 cmd_length = 0;
4646         u16 ipcse = 0, tucse, mss;
4647         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4648
4649         if (!skb_is_gso(skb))
4650                 return 0;
4651
4652         if (skb_header_cloned(skb)) {
4653                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4654
4655                 if (err)
4656                         return err;
4657         }
4658
4659         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4660         mss = skb_shinfo(skb)->gso_size;
4661         if (skb->protocol == htons(ETH_P_IP)) {
4662                 struct iphdr *iph = ip_hdr(skb);
4663                 iph->tot_len = 0;
4664                 iph->check = 0;
4665                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4666                                                          0, IPPROTO_TCP, 0);
4667                 cmd_length = E1000_TXD_CMD_IP;
4668                 ipcse = skb_transport_offset(skb) - 1;
4669         } else if (skb_is_gso_v6(skb)) {
4670                 ipv6_hdr(skb)->payload_len = 0;
4671                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4672                                                        &ipv6_hdr(skb)->daddr,
4673                                                        0, IPPROTO_TCP, 0);
4674                 ipcse = 0;
4675         }
4676         ipcss = skb_network_offset(skb);
4677         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4678         tucss = skb_transport_offset(skb);
4679         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4680         tucse = 0;
4681
4682         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4683                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4684
4685         i = tx_ring->next_to_use;
4686         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4687         buffer_info = &tx_ring->buffer_info[i];
4688
4689         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4690         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4691         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4692         context_desc->upper_setup.tcp_fields.tucss = tucss;
4693         context_desc->upper_setup.tcp_fields.tucso = tucso;
4694         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4695         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4696         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4697         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4698
4699         buffer_info->time_stamp = jiffies;
4700         buffer_info->next_to_watch = i;
4701
4702         i++;
4703         if (i == tx_ring->count)
4704                 i = 0;
4705         tx_ring->next_to_use = i;
4706
4707         return 1;
4708 }
4709
4710 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4711 {
4712         struct e1000_adapter *adapter = tx_ring->adapter;
4713         struct e1000_context_desc *context_desc;
4714         struct e1000_buffer *buffer_info;
4715         unsigned int i;
4716         u8 css;
4717         u32 cmd_len = E1000_TXD_CMD_DEXT;
4718         __be16 protocol;
4719
4720         if (skb->ip_summed != CHECKSUM_PARTIAL)
4721                 return 0;
4722
4723         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4724                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4725         else
4726                 protocol = skb->protocol;
4727
4728         switch (protocol) {
4729         case cpu_to_be16(ETH_P_IP):
4730                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4731                         cmd_len |= E1000_TXD_CMD_TCP;
4732                 break;
4733         case cpu_to_be16(ETH_P_IPV6):
4734                 /* XXX not handling all IPV6 headers */
4735                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4736                         cmd_len |= E1000_TXD_CMD_TCP;
4737                 break;
4738         default:
4739                 if (unlikely(net_ratelimit()))
4740                         e_warn("checksum_partial proto=%x!\n",
4741                                be16_to_cpu(protocol));
4742                 break;
4743         }
4744
4745         css = skb_checksum_start_offset(skb);
4746
4747         i = tx_ring->next_to_use;
4748         buffer_info = &tx_ring->buffer_info[i];
4749         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4750
4751         context_desc->lower_setup.ip_config = 0;
4752         context_desc->upper_setup.tcp_fields.tucss = css;
4753         context_desc->upper_setup.tcp_fields.tucso =
4754                                 css + skb->csum_offset;
4755         context_desc->upper_setup.tcp_fields.tucse = 0;
4756         context_desc->tcp_seg_setup.data = 0;
4757         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4758
4759         buffer_info->time_stamp = jiffies;
4760         buffer_info->next_to_watch = i;
4761
4762         i++;
4763         if (i == tx_ring->count)
4764                 i = 0;
4765         tx_ring->next_to_use = i;
4766
4767         return 1;
4768 }
4769
4770 #define E1000_MAX_PER_TXD       8192
4771 #define E1000_MAX_TXD_PWR       12
4772
4773 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4774                         unsigned int first, unsigned int max_per_txd,
4775                         unsigned int nr_frags, unsigned int mss)
4776 {
4777         struct e1000_adapter *adapter = tx_ring->adapter;
4778         struct pci_dev *pdev = adapter->pdev;
4779         struct e1000_buffer *buffer_info;
4780         unsigned int len = skb_headlen(skb);
4781         unsigned int offset = 0, size, count = 0, i;
4782         unsigned int f, bytecount, segs;
4783
4784         i = tx_ring->next_to_use;
4785
4786         while (len) {
4787                 buffer_info = &tx_ring->buffer_info[i];
4788                 size = min(len, max_per_txd);
4789
4790                 buffer_info->length = size;
4791                 buffer_info->time_stamp = jiffies;
4792                 buffer_info->next_to_watch = i;
4793                 buffer_info->dma = dma_map_single(&pdev->dev,
4794                                                   skb->data + offset,
4795                                                   size, DMA_TO_DEVICE);
4796                 buffer_info->mapped_as_page = false;
4797                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4798                         goto dma_error;
4799
4800                 len -= size;
4801                 offset += size;
4802                 count++;
4803
4804                 if (len) {
4805                         i++;
4806                         if (i == tx_ring->count)
4807                                 i = 0;
4808                 }
4809         }
4810
4811         for (f = 0; f < nr_frags; f++) {
4812                 const struct skb_frag_struct *frag;
4813
4814                 frag = &skb_shinfo(skb)->frags[f];
4815                 len = skb_frag_size(frag);
4816                 offset = 0;
4817
4818                 while (len) {
4819                         i++;
4820                         if (i == tx_ring->count)
4821                                 i = 0;
4822
4823                         buffer_info = &tx_ring->buffer_info[i];
4824                         size = min(len, max_per_txd);
4825
4826                         buffer_info->length = size;
4827                         buffer_info->time_stamp = jiffies;
4828                         buffer_info->next_to_watch = i;
4829                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4830                                                 offset, size, DMA_TO_DEVICE);
4831                         buffer_info->mapped_as_page = true;
4832                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4833                                 goto dma_error;
4834
4835                         len -= size;
4836                         offset += size;
4837                         count++;
4838                 }
4839         }
4840
4841         segs = skb_shinfo(skb)->gso_segs ? : 1;
4842         /* multiply data chunks by size of headers */
4843         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4844
4845         tx_ring->buffer_info[i].skb = skb;
4846         tx_ring->buffer_info[i].segs = segs;
4847         tx_ring->buffer_info[i].bytecount = bytecount;
4848         tx_ring->buffer_info[first].next_to_watch = i;
4849
4850         return count;
4851
4852 dma_error:
4853         dev_err(&pdev->dev, "Tx DMA map failed\n");
4854         buffer_info->dma = 0;
4855         if (count)
4856                 count--;
4857
4858         while (count--) {
4859                 if (i == 0)
4860                         i += tx_ring->count;
4861                 i--;
4862                 buffer_info = &tx_ring->buffer_info[i];
4863                 e1000_put_txbuf(tx_ring, buffer_info);
4864         }
4865
4866         return 0;
4867 }
4868
4869 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4870 {
4871         struct e1000_adapter *adapter = tx_ring->adapter;
4872         struct e1000_tx_desc *tx_desc = NULL;
4873         struct e1000_buffer *buffer_info;
4874         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4875         unsigned int i;
4876
4877         if (tx_flags & E1000_TX_FLAGS_TSO) {
4878                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4879                              E1000_TXD_CMD_TSE;
4880                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4881
4882                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4883                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4884         }
4885
4886         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4887                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4888                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4889         }
4890
4891         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4892                 txd_lower |= E1000_TXD_CMD_VLE;
4893                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4894         }
4895
4896         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4897                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4898
4899         i = tx_ring->next_to_use;
4900
4901         do {
4902                 buffer_info = &tx_ring->buffer_info[i];
4903                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4904                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4905                 tx_desc->lower.data =
4906                         cpu_to_le32(txd_lower | buffer_info->length);
4907                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4908
4909                 i++;
4910                 if (i == tx_ring->count)
4911                         i = 0;
4912         } while (--count > 0);
4913
4914         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4915
4916         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4917         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4918                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4919
4920         /*
4921          * Force memory writes to complete before letting h/w
4922          * know there are new descriptors to fetch.  (Only
4923          * applicable for weak-ordered memory model archs,
4924          * such as IA-64).
4925          */
4926         wmb();
4927
4928         tx_ring->next_to_use = i;
4929
4930         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4931                 e1000e_update_tdt_wa(tx_ring, i);
4932         else
4933                 writel(i, tx_ring->tail);
4934
4935         /*
4936          * we need this if more than one processor can write to our tail
4937          * at a time, it synchronizes IO on IA64/Altix systems
4938          */
4939         mmiowb();
4940 }
4941
4942 #define MINIMUM_DHCP_PACKET_SIZE 282
4943 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4944                                     struct sk_buff *skb)
4945 {
4946         struct e1000_hw *hw =  &adapter->hw;
4947         u16 length, offset;
4948
4949         if (vlan_tx_tag_present(skb)) {
4950                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4951                     (adapter->hw.mng_cookie.status &
4952                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4953                         return 0;
4954         }
4955
4956         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4957                 return 0;
4958
4959         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4960                 return 0;
4961
4962         {
4963                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4964                 struct udphdr *udp;
4965
4966                 if (ip->protocol != IPPROTO_UDP)
4967                         return 0;
4968
4969                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4970                 if (ntohs(udp->dest) != 67)
4971                         return 0;
4972
4973                 offset = (u8 *)udp + 8 - skb->data;
4974                 length = skb->len - offset;
4975                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4976         }
4977
4978         return 0;
4979 }
4980
4981 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4982 {
4983         struct e1000_adapter *adapter = tx_ring->adapter;
4984
4985         netif_stop_queue(adapter->netdev);
4986         /*
4987          * Herbert's original patch had:
4988          *  smp_mb__after_netif_stop_queue();
4989          * but since that doesn't exist yet, just open code it.
4990          */
4991         smp_mb();
4992
4993         /*
4994          * We need to check again in a case another CPU has just
4995          * made room available.
4996          */
4997         if (e1000_desc_unused(tx_ring) < size)
4998                 return -EBUSY;
4999
5000         /* A reprieve! */
5001         netif_start_queue(adapter->netdev);
5002         ++adapter->restart_queue;
5003         return 0;
5004 }
5005
5006 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5007 {
5008         if (e1000_desc_unused(tx_ring) >= size)
5009                 return 0;
5010         return __e1000_maybe_stop_tx(tx_ring, size);
5011 }
5012
5013 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5014 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5015                                     struct net_device *netdev)
5016 {
5017         struct e1000_adapter *adapter = netdev_priv(netdev);
5018         struct e1000_ring *tx_ring = adapter->tx_ring;
5019         unsigned int first;
5020         unsigned int max_per_txd = E1000_MAX_PER_TXD;
5021         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5022         unsigned int tx_flags = 0;
5023         unsigned int len = skb_headlen(skb);
5024         unsigned int nr_frags;
5025         unsigned int mss;
5026         int count = 0;
5027         int tso;
5028         unsigned int f;
5029
5030         if (test_bit(__E1000_DOWN, &adapter->state)) {
5031                 dev_kfree_skb_any(skb);
5032                 return NETDEV_TX_OK;
5033         }
5034
5035         if (skb->len <= 0) {
5036                 dev_kfree_skb_any(skb);
5037                 return NETDEV_TX_OK;
5038         }
5039
5040         mss = skb_shinfo(skb)->gso_size;
5041         /*
5042          * The controller does a simple calculation to
5043          * make sure there is enough room in the FIFO before
5044          * initiating the DMA for each buffer.  The calc is:
5045          * 4 = ceil(buffer len/mss).  To make sure we don't
5046          * overrun the FIFO, adjust the max buffer len if mss
5047          * drops.
5048          */
5049         if (mss) {
5050                 u8 hdr_len;
5051                 max_per_txd = min(mss << 2, max_per_txd);
5052                 max_txd_pwr = fls(max_per_txd) - 1;
5053
5054                 /*
5055                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5056                  * points to just header, pull a few bytes of payload from
5057                  * frags into skb->data
5058                  */
5059                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5060                 /*
5061                  * we do this workaround for ES2LAN, but it is un-necessary,
5062                  * avoiding it could save a lot of cycles
5063                  */
5064                 if (skb->data_len && (hdr_len == len)) {
5065                         unsigned int pull_size;
5066
5067                         pull_size = min_t(unsigned int, 4, skb->data_len);
5068                         if (!__pskb_pull_tail(skb, pull_size)) {
5069                                 e_err("__pskb_pull_tail failed.\n");
5070                                 dev_kfree_skb_any(skb);
5071                                 return NETDEV_TX_OK;
5072                         }
5073                         len = skb_headlen(skb);
5074                 }
5075         }
5076
5077         /* reserve a descriptor for the offload context */
5078         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5079                 count++;
5080         count++;
5081
5082         count += TXD_USE_COUNT(len, max_txd_pwr);
5083
5084         nr_frags = skb_shinfo(skb)->nr_frags;
5085         for (f = 0; f < nr_frags; f++)
5086                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5087                                        max_txd_pwr);
5088
5089         if (adapter->hw.mac.tx_pkt_filtering)
5090                 e1000_transfer_dhcp_info(adapter, skb);
5091
5092         /*
5093          * need: count + 2 desc gap to keep tail from touching
5094          * head, otherwise try next time
5095          */
5096         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5097                 return NETDEV_TX_BUSY;
5098
5099         if (vlan_tx_tag_present(skb)) {
5100                 tx_flags |= E1000_TX_FLAGS_VLAN;
5101                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5102         }
5103
5104         first = tx_ring->next_to_use;
5105
5106         tso = e1000_tso(tx_ring, skb);
5107         if (tso < 0) {
5108                 dev_kfree_skb_any(skb);
5109                 return NETDEV_TX_OK;
5110         }
5111
5112         if (tso)
5113                 tx_flags |= E1000_TX_FLAGS_TSO;
5114         else if (e1000_tx_csum(tx_ring, skb))
5115                 tx_flags |= E1000_TX_FLAGS_CSUM;
5116
5117         /*
5118          * Old method was to assume IPv4 packet by default if TSO was enabled.
5119          * 82571 hardware supports TSO capabilities for IPv6 as well...
5120          * no longer assume, we must.
5121          */
5122         if (skb->protocol == htons(ETH_P_IP))
5123                 tx_flags |= E1000_TX_FLAGS_IPV4;
5124
5125         if (unlikely(skb->no_fcs))
5126                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5127
5128         /* if count is 0 then mapping error has occurred */
5129         count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5130         if (count) {
5131                 netdev_sent_queue(netdev, skb->len);
5132                 e1000_tx_queue(tx_ring, tx_flags, count);
5133                 /* Make sure there is space in the ring for the next send. */
5134                 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5135
5136         } else {
5137                 dev_kfree_skb_any(skb);
5138                 tx_ring->buffer_info[first].time_stamp = 0;
5139                 tx_ring->next_to_use = first;
5140         }
5141
5142         return NETDEV_TX_OK;
5143 }
5144
5145 /**
5146  * e1000_tx_timeout - Respond to a Tx Hang
5147  * @netdev: network interface device structure
5148  **/
5149 static void e1000_tx_timeout(struct net_device *netdev)
5150 {
5151         struct e1000_adapter *adapter = netdev_priv(netdev);
5152
5153         /* Do the reset outside of interrupt context */
5154         adapter->tx_timeout_count++;
5155         schedule_work(&adapter->reset_task);
5156 }
5157
5158 static void e1000_reset_task(struct work_struct *work)
5159 {
5160         struct e1000_adapter *adapter;
5161         adapter = container_of(work, struct e1000_adapter, reset_task);
5162
5163         /* don't run the task if already down */
5164         if (test_bit(__E1000_DOWN, &adapter->state))
5165                 return;
5166
5167         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5168               (adapter->flags & FLAG_RX_RESTART_NOW))) {
5169                 e1000e_dump(adapter);
5170                 e_err("Reset adapter\n");
5171         }
5172         e1000e_reinit_locked(adapter);
5173 }
5174
5175 /**
5176  * e1000_get_stats64 - Get System Network Statistics
5177  * @netdev: network interface device structure
5178  * @stats: rtnl_link_stats64 pointer
5179  *
5180  * Returns the address of the device statistics structure.
5181  **/
5182 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5183                                              struct rtnl_link_stats64 *stats)
5184 {
5185         struct e1000_adapter *adapter = netdev_priv(netdev);
5186
5187         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5188         spin_lock(&adapter->stats64_lock);
5189         e1000e_update_stats(adapter);
5190         /* Fill out the OS statistics structure */
5191         stats->rx_bytes = adapter->stats.gorc;
5192         stats->rx_packets = adapter->stats.gprc;
5193         stats->tx_bytes = adapter->stats.gotc;
5194         stats->tx_packets = adapter->stats.gptc;
5195         stats->multicast = adapter->stats.mprc;
5196         stats->collisions = adapter->stats.colc;
5197
5198         /* Rx Errors */
5199
5200         /*
5201          * RLEC on some newer hardware can be incorrect so build
5202          * our own version based on RUC and ROC
5203          */
5204         stats->rx_errors = adapter->stats.rxerrc +
5205                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5206                 adapter->stats.ruc + adapter->stats.roc +
5207                 adapter->stats.cexterr;
5208         stats->rx_length_errors = adapter->stats.ruc +
5209                                               adapter->stats.roc;
5210         stats->rx_crc_errors = adapter->stats.crcerrs;
5211         stats->rx_frame_errors = adapter->stats.algnerrc;
5212         stats->rx_missed_errors = adapter->stats.mpc;
5213
5214         /* Tx Errors */
5215         stats->tx_errors = adapter->stats.ecol +
5216                                        adapter->stats.latecol;
5217         stats->tx_aborted_errors = adapter->stats.ecol;
5218         stats->tx_window_errors = adapter->stats.latecol;
5219         stats->tx_carrier_errors = adapter->stats.tncrs;
5220
5221         /* Tx Dropped needs to be maintained elsewhere */
5222
5223         spin_unlock(&adapter->stats64_lock);
5224         return stats;
5225 }
5226
5227 /**
5228  * e1000_change_mtu - Change the Maximum Transfer Unit
5229  * @netdev: network interface device structure
5230  * @new_mtu: new value for maximum frame size
5231  *
5232  * Returns 0 on success, negative on failure
5233  **/
5234 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5235 {
5236         struct e1000_adapter *adapter = netdev_priv(netdev);
5237         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5238
5239         /* Jumbo frame support */
5240         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
5241                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5242                         e_err("Jumbo Frames not supported.\n");
5243                         return -EINVAL;
5244                 }
5245
5246                 /*
5247                  * IP payload checksum (enabled with jumbos/packet-split when
5248                  * Rx checksum is enabled) and generation of RSS hash is
5249                  * mutually exclusive in the hardware.
5250                  */
5251                 if ((netdev->features & NETIF_F_RXCSUM) &&
5252                     (netdev->features & NETIF_F_RXHASH)) {
5253                         e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
5254                         return -EINVAL;
5255                 }
5256         }
5257
5258         /* Supported frame sizes */
5259         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5260             (max_frame > adapter->max_hw_frame_size)) {
5261                 e_err("Unsupported MTU setting\n");
5262                 return -EINVAL;
5263         }
5264
5265         /* Jumbo frame workaround on 82579 requires CRC be stripped */
5266         if ((adapter->hw.mac.type == e1000_pch2lan) &&
5267             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5268             (new_mtu > ETH_DATA_LEN)) {
5269                 e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5270                 return -EINVAL;
5271         }
5272
5273         /* 82573 Errata 17 */
5274         if (((adapter->hw.mac.type == e1000_82573) ||
5275              (adapter->hw.mac.type == e1000_82574)) &&
5276             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5277                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5278                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5279         }
5280
5281         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5282                 usleep_range(1000, 2000);
5283         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5284         adapter->max_frame_size = max_frame;
5285         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5286         netdev->mtu = new_mtu;
5287         if (netif_running(netdev))
5288                 e1000e_down(adapter);
5289
5290         /*
5291          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5292          * means we reserve 2 more, this pushes us to allocate from the next
5293          * larger slab size.
5294          * i.e. RXBUFFER_2048 --> size-4096 slab
5295          * However with the new *_jumbo_rx* routines, jumbo receives will use
5296          * fragmented skbs
5297          */
5298
5299         if (max_frame <= 2048)
5300                 adapter->rx_buffer_len = 2048;
5301         else
5302                 adapter->rx_buffer_len = 4096;
5303
5304         /* adjust allocation if LPE protects us, and we aren't using SBP */
5305         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5306              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5307                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5308                                          + ETH_FCS_LEN;
5309
5310         if (netif_running(netdev))
5311                 e1000e_up(adapter);
5312         else
5313                 e1000e_reset(adapter);
5314
5315         clear_bit(__E1000_RESETTING, &adapter->state);
5316
5317         return 0;
5318 }
5319
5320 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5321                            int cmd)
5322 {
5323         struct e1000_adapter *adapter = netdev_priv(netdev);
5324         struct mii_ioctl_data *data = if_mii(ifr);
5325
5326         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5327                 return -EOPNOTSUPP;
5328
5329         switch (cmd) {
5330         case SIOCGMIIPHY:
5331                 data->phy_id = adapter->hw.phy.addr;
5332                 break;
5333         case SIOCGMIIREG:
5334                 e1000_phy_read_status(adapter);
5335
5336                 switch (data->reg_num & 0x1F) {
5337                 case MII_BMCR:
5338                         data->val_out = adapter->phy_regs.bmcr;
5339                         break;
5340                 case MII_BMSR:
5341                         data->val_out = adapter->phy_regs.bmsr;
5342                         break;
5343                 case MII_PHYSID1:
5344                         data->val_out = (adapter->hw.phy.id >> 16);
5345                         break;
5346                 case MII_PHYSID2:
5347                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5348                         break;
5349                 case MII_ADVERTISE:
5350                         data->val_out = adapter->phy_regs.advertise;
5351                         break;
5352                 case MII_LPA:
5353                         data->val_out = adapter->phy_regs.lpa;
5354                         break;
5355                 case MII_EXPANSION:
5356                         data->val_out = adapter->phy_regs.expansion;
5357                         break;
5358                 case MII_CTRL1000:
5359                         data->val_out = adapter->phy_regs.ctrl1000;
5360                         break;
5361                 case MII_STAT1000:
5362                         data->val_out = adapter->phy_regs.stat1000;
5363                         break;
5364                 case MII_ESTATUS:
5365                         data->val_out = adapter->phy_regs.estatus;
5366                         break;
5367                 default:
5368                         return -EIO;
5369                 }
5370                 break;
5371         case SIOCSMIIREG:
5372         default:
5373                 return -EOPNOTSUPP;
5374         }
5375         return 0;
5376 }
5377
5378 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5379 {
5380         switch (cmd) {
5381         case SIOCGMIIPHY:
5382         case SIOCGMIIREG:
5383         case SIOCSMIIREG:
5384                 return e1000_mii_ioctl(netdev, ifr, cmd);
5385         default:
5386                 return -EOPNOTSUPP;
5387         }
5388 }
5389
5390 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5391 {
5392         struct e1000_hw *hw = &adapter->hw;
5393         u32 i, mac_reg;
5394         u16 phy_reg, wuc_enable;
5395         int retval = 0;
5396
5397         /* copy MAC RARs to PHY RARs */
5398         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5399
5400         retval = hw->phy.ops.acquire(hw);
5401         if (retval) {
5402                 e_err("Could not acquire PHY\n");
5403                 return retval;
5404         }
5405
5406         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5407         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5408         if (retval)
5409                 goto release;
5410
5411         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5412         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5413                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5414                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5415                                            (u16)(mac_reg & 0xFFFF));
5416                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5417                                            (u16)((mac_reg >> 16) & 0xFFFF));
5418         }
5419
5420         /* configure PHY Rx Control register */
5421         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5422         mac_reg = er32(RCTL);
5423         if (mac_reg & E1000_RCTL_UPE)
5424                 phy_reg |= BM_RCTL_UPE;
5425         if (mac_reg & E1000_RCTL_MPE)
5426                 phy_reg |= BM_RCTL_MPE;
5427         phy_reg &= ~(BM_RCTL_MO_MASK);
5428         if (mac_reg & E1000_RCTL_MO_3)
5429                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5430                                 << BM_RCTL_MO_SHIFT);
5431         if (mac_reg & E1000_RCTL_BAM)
5432                 phy_reg |= BM_RCTL_BAM;
5433         if (mac_reg & E1000_RCTL_PMCF)
5434                 phy_reg |= BM_RCTL_PMCF;
5435         mac_reg = er32(CTRL);
5436         if (mac_reg & E1000_CTRL_RFCE)
5437                 phy_reg |= BM_RCTL_RFCE;
5438         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5439
5440         /* enable PHY wakeup in MAC register */
5441         ew32(WUFC, wufc);
5442         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5443
5444         /* configure and enable PHY wakeup in PHY registers */
5445         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5446         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5447
5448         /* activate PHY wakeup */
5449         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5450         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5451         if (retval)
5452                 e_err("Could not set PHY Host Wakeup bit\n");
5453 release:
5454         hw->phy.ops.release(hw);
5455
5456         return retval;
5457 }
5458
5459 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5460                             bool runtime)
5461 {
5462         struct net_device *netdev = pci_get_drvdata(pdev);
5463         struct e1000_adapter *adapter = netdev_priv(netdev);
5464         struct e1000_hw *hw = &adapter->hw;
5465         u32 ctrl, ctrl_ext, rctl, status;
5466         /* Runtime suspend should only enable wakeup for link changes */
5467         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5468         int retval = 0;
5469
5470         netif_device_detach(netdev);
5471
5472         if (netif_running(netdev)) {
5473                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5474                 e1000e_down(adapter);
5475                 e1000_free_irq(adapter);
5476         }
5477         e1000e_reset_interrupt_capability(adapter);
5478
5479         retval = pci_save_state(pdev);
5480         if (retval)
5481                 return retval;
5482
5483         status = er32(STATUS);
5484         if (status & E1000_STATUS_LU)
5485                 wufc &= ~E1000_WUFC_LNKC;
5486
5487         if (wufc) {
5488                 e1000_setup_rctl(adapter);
5489                 e1000e_set_rx_mode(netdev);
5490
5491                 /* turn on all-multi mode if wake on multicast is enabled */
5492                 if (wufc & E1000_WUFC_MC) {
5493                         rctl = er32(RCTL);
5494                         rctl |= E1000_RCTL_MPE;
5495                         ew32(RCTL, rctl);
5496                 }
5497
5498                 ctrl = er32(CTRL);
5499                 /* advertise wake from D3Cold */
5500                 #define E1000_CTRL_ADVD3WUC 0x00100000
5501                 /* phy power management enable */
5502                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5503                 ctrl |= E1000_CTRL_ADVD3WUC;
5504                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5505                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5506                 ew32(CTRL, ctrl);
5507
5508                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5509                     adapter->hw.phy.media_type ==
5510                     e1000_media_type_internal_serdes) {
5511                         /* keep the laser running in D3 */
5512                         ctrl_ext = er32(CTRL_EXT);
5513                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5514                         ew32(CTRL_EXT, ctrl_ext);
5515                 }
5516
5517                 if (adapter->flags & FLAG_IS_ICH)
5518                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5519
5520                 /* Allow time for pending master requests to run */
5521                 e1000e_disable_pcie_master(&adapter->hw);
5522
5523                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5524                         /* enable wakeup by the PHY */
5525                         retval = e1000_init_phy_wakeup(adapter, wufc);
5526                         if (retval)
5527                                 return retval;
5528                 } else {
5529                         /* enable wakeup by the MAC */
5530                         ew32(WUFC, wufc);
5531                         ew32(WUC, E1000_WUC_PME_EN);
5532                 }
5533         } else {
5534                 ew32(WUC, 0);
5535                 ew32(WUFC, 0);
5536         }
5537
5538         *enable_wake = !!wufc;
5539
5540         /* make sure adapter isn't asleep if manageability is enabled */
5541         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5542             (hw->mac.ops.check_mng_mode(hw)))
5543                 *enable_wake = true;
5544
5545         if (adapter->hw.phy.type == e1000_phy_igp_3)
5546                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5547
5548         /*
5549          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5550          * would have already happened in close and is redundant.
5551          */
5552         e1000e_release_hw_control(adapter);
5553
5554         pci_disable_device(pdev);
5555
5556         return 0;
5557 }
5558
5559 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5560 {
5561         if (sleep && wake) {
5562                 pci_prepare_to_sleep(pdev);
5563                 return;
5564         }
5565
5566         pci_wake_from_d3(pdev, wake);
5567         pci_set_power_state(pdev, PCI_D3hot);
5568 }
5569
5570 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5571                                     bool wake)
5572 {
5573         struct net_device *netdev = pci_get_drvdata(pdev);
5574         struct e1000_adapter *adapter = netdev_priv(netdev);
5575
5576         /*
5577          * The pci-e switch on some quad port adapters will report a
5578          * correctable error when the MAC transitions from D0 to D3.  To
5579          * prevent this we need to mask off the correctable errors on the
5580          * downstream port of the pci-e switch.
5581          */
5582         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5583                 struct pci_dev *us_dev = pdev->bus->self;
5584                 int pos = pci_pcie_cap(us_dev);
5585                 u16 devctl;
5586
5587                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5588                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5589                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5590
5591                 e1000_power_off(pdev, sleep, wake);
5592
5593                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5594         } else {
5595                 e1000_power_off(pdev, sleep, wake);
5596         }
5597 }
5598
5599 #ifdef CONFIG_PCIEASPM
5600 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5601 {
5602         pci_disable_link_state_locked(pdev, state);
5603 }
5604 #else
5605 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5606 {
5607         int pos;
5608         u16 reg16;
5609
5610         /*
5611          * Both device and parent should have the same ASPM setting.
5612          * Disable ASPM in downstream component first and then upstream.
5613          */
5614         pos = pci_pcie_cap(pdev);
5615         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5616         reg16 &= ~state;
5617         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5618
5619         if (!pdev->bus->self)
5620                 return;
5621
5622         pos = pci_pcie_cap(pdev->bus->self);
5623         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5624         reg16 &= ~state;
5625         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5626 }
5627 #endif
5628 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5629 {
5630         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5631                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5632                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5633
5634         __e1000e_disable_aspm(pdev, state);
5635 }
5636
5637 #ifdef CONFIG_PM
5638 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5639 {
5640         return !!adapter->tx_ring->buffer_info;
5641 }
5642
5643 static int __e1000_resume(struct pci_dev *pdev)
5644 {
5645         struct net_device *netdev = pci_get_drvdata(pdev);
5646         struct e1000_adapter *adapter = netdev_priv(netdev);
5647         struct e1000_hw *hw = &adapter->hw;
5648         u16 aspm_disable_flag = 0;
5649         u32 err;
5650
5651         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5652                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5653         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5654                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5655         if (aspm_disable_flag)
5656                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5657
5658         pci_set_power_state(pdev, PCI_D0);
5659         pci_restore_state(pdev);
5660         pci_save_state(pdev);
5661
5662         e1000e_set_interrupt_capability(adapter);
5663         if (netif_running(netdev)) {
5664                 err = e1000_request_irq(adapter);
5665                 if (err)
5666                         return err;
5667         }
5668
5669         if (hw->mac.type == e1000_pch2lan)
5670                 e1000_resume_workarounds_pchlan(&adapter->hw);
5671
5672         e1000e_power_up_phy(adapter);
5673
5674         /* report the system wakeup cause from S3/S4 */
5675         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5676                 u16 phy_data;
5677
5678                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5679                 if (phy_data) {
5680                         e_info("PHY Wakeup cause - %s\n",
5681                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5682                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5683                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5684                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5685                                 phy_data & E1000_WUS_LNKC ?
5686                                 "Link Status Change" : "other");
5687                 }
5688                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5689         } else {
5690                 u32 wus = er32(WUS);
5691                 if (wus) {
5692                         e_info("MAC Wakeup cause - %s\n",
5693                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5694                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5695                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5696                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5697                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5698                                 "other");
5699                 }
5700                 ew32(WUS, ~0);
5701         }
5702
5703         e1000e_reset(adapter);
5704
5705         e1000_init_manageability_pt(adapter);
5706
5707         if (netif_running(netdev))
5708                 e1000e_up(adapter);
5709
5710         netif_device_attach(netdev);
5711
5712         /*
5713          * If the controller has AMT, do not set DRV_LOAD until the interface
5714          * is up.  For all other cases, let the f/w know that the h/w is now
5715          * under the control of the driver.
5716          */
5717         if (!(adapter->flags & FLAG_HAS_AMT))
5718                 e1000e_get_hw_control(adapter);
5719
5720         return 0;
5721 }
5722
5723 #ifdef CONFIG_PM_SLEEP
5724 static int e1000_suspend(struct device *dev)
5725 {
5726         struct pci_dev *pdev = to_pci_dev(dev);
5727         int retval;
5728         bool wake;
5729
5730         retval = __e1000_shutdown(pdev, &wake, false);
5731         if (!retval)
5732                 e1000_complete_shutdown(pdev, true, wake);
5733
5734         return retval;
5735 }
5736
5737 static int e1000_resume(struct device *dev)
5738 {
5739         struct pci_dev *pdev = to_pci_dev(dev);
5740         struct net_device *netdev = pci_get_drvdata(pdev);
5741         struct e1000_adapter *adapter = netdev_priv(netdev);
5742
5743         if (e1000e_pm_ready(adapter))
5744                 adapter->idle_check = true;
5745
5746         return __e1000_resume(pdev);
5747 }
5748 #endif /* CONFIG_PM_SLEEP */
5749
5750 #ifdef CONFIG_PM_RUNTIME
5751 static int e1000_runtime_suspend(struct device *dev)
5752 {
5753         struct pci_dev *pdev = to_pci_dev(dev);
5754         struct net_device *netdev = pci_get_drvdata(pdev);
5755         struct e1000_adapter *adapter = netdev_priv(netdev);
5756
5757         if (e1000e_pm_ready(adapter)) {
5758                 bool wake;
5759
5760                 __e1000_shutdown(pdev, &wake, true);
5761         }
5762
5763         return 0;
5764 }
5765
5766 static int e1000_idle(struct device *dev)
5767 {
5768         struct pci_dev *pdev = to_pci_dev(dev);
5769         struct net_device *netdev = pci_get_drvdata(pdev);
5770         struct e1000_adapter *adapter = netdev_priv(netdev);
5771
5772         if (!e1000e_pm_ready(adapter))
5773                 return 0;
5774
5775         if (adapter->idle_check) {
5776                 adapter->idle_check = false;
5777                 if (!e1000e_has_link(adapter))
5778                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5779         }
5780
5781         return -EBUSY;
5782 }
5783
5784 static int e1000_runtime_resume(struct device *dev)
5785 {
5786         struct pci_dev *pdev = to_pci_dev(dev);
5787         struct net_device *netdev = pci_get_drvdata(pdev);
5788         struct e1000_adapter *adapter = netdev_priv(netdev);
5789
5790         if (!e1000e_pm_ready(adapter))
5791                 return 0;
5792
5793         adapter->idle_check = !dev->power.runtime_auto;
5794         return __e1000_resume(pdev);
5795 }
5796 #endif /* CONFIG_PM_RUNTIME */
5797 #endif /* CONFIG_PM */
5798
5799 static void e1000_shutdown(struct pci_dev *pdev)
5800 {
5801         bool wake = false;
5802
5803         __e1000_shutdown(pdev, &wake, false);
5804
5805         if (system_state == SYSTEM_POWER_OFF)
5806                 e1000_complete_shutdown(pdev, false, wake);
5807 }
5808
5809 #ifdef CONFIG_NET_POLL_CONTROLLER
5810
5811 static irqreturn_t e1000_intr_msix(int irq, void *data)
5812 {
5813         struct net_device *netdev = data;
5814         struct e1000_adapter *adapter = netdev_priv(netdev);
5815
5816         if (adapter->msix_entries) {
5817                 int vector, msix_irq;
5818
5819                 vector = 0;
5820                 msix_irq = adapter->msix_entries[vector].vector;
5821                 disable_irq(msix_irq);
5822                 e1000_intr_msix_rx(msix_irq, netdev);
5823                 enable_irq(msix_irq);
5824
5825                 vector++;
5826                 msix_irq = adapter->msix_entries[vector].vector;
5827                 disable_irq(msix_irq);
5828                 e1000_intr_msix_tx(msix_irq, netdev);
5829                 enable_irq(msix_irq);
5830
5831                 vector++;
5832                 msix_irq = adapter->msix_entries[vector].vector;
5833                 disable_irq(msix_irq);
5834                 e1000_msix_other(msix_irq, netdev);
5835                 enable_irq(msix_irq);
5836         }
5837
5838         return IRQ_HANDLED;
5839 }
5840
5841 /*
5842  * Polling 'interrupt' - used by things like netconsole to send skbs
5843  * without having to re-enable interrupts. It's not called while
5844  * the interrupt routine is executing.
5845  */
5846 static void e1000_netpoll(struct net_device *netdev)
5847 {
5848         struct e1000_adapter *adapter = netdev_priv(netdev);
5849
5850         switch (adapter->int_mode) {
5851         case E1000E_INT_MODE_MSIX:
5852                 e1000_intr_msix(adapter->pdev->irq, netdev);
5853                 break;
5854         case E1000E_INT_MODE_MSI:
5855                 disable_irq(adapter->pdev->irq);
5856                 e1000_intr_msi(adapter->pdev->irq, netdev);
5857                 enable_irq(adapter->pdev->irq);
5858                 break;
5859         default: /* E1000E_INT_MODE_LEGACY */
5860                 disable_irq(adapter->pdev->irq);
5861                 e1000_intr(adapter->pdev->irq, netdev);
5862                 enable_irq(adapter->pdev->irq);
5863                 break;
5864         }
5865 }
5866 #endif
5867
5868 /**
5869  * e1000_io_error_detected - called when PCI error is detected
5870  * @pdev: Pointer to PCI device
5871  * @state: The current pci connection state
5872  *
5873  * This function is called after a PCI bus error affecting
5874  * this device has been detected.
5875  */
5876 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5877                                                 pci_channel_state_t state)
5878 {
5879         struct net_device *netdev = pci_get_drvdata(pdev);
5880         struct e1000_adapter *adapter = netdev_priv(netdev);
5881
5882         netif_device_detach(netdev);
5883
5884         if (state == pci_channel_io_perm_failure)
5885                 return PCI_ERS_RESULT_DISCONNECT;
5886
5887         if (netif_running(netdev))
5888                 e1000e_down(adapter);
5889         pci_disable_device(pdev);
5890
5891         /* Request a slot slot reset. */
5892         return PCI_ERS_RESULT_NEED_RESET;
5893 }
5894
5895 /**
5896  * e1000_io_slot_reset - called after the pci bus has been reset.
5897  * @pdev: Pointer to PCI device
5898  *
5899  * Restart the card from scratch, as if from a cold-boot. Implementation
5900  * resembles the first-half of the e1000_resume routine.
5901  */
5902 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5903 {
5904         struct net_device *netdev = pci_get_drvdata(pdev);
5905         struct e1000_adapter *adapter = netdev_priv(netdev);
5906         struct e1000_hw *hw = &adapter->hw;
5907         u16 aspm_disable_flag = 0;
5908         int err;
5909         pci_ers_result_t result;
5910
5911         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5912                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5913         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5914                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5915         if (aspm_disable_flag)
5916                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5917
5918         err = pci_enable_device_mem(pdev);
5919         if (err) {
5920                 dev_err(&pdev->dev,
5921                         "Cannot re-enable PCI device after reset.\n");
5922                 result = PCI_ERS_RESULT_DISCONNECT;
5923         } else {
5924                 pci_set_master(pdev);
5925                 pdev->state_saved = true;
5926                 pci_restore_state(pdev);
5927
5928                 pci_enable_wake(pdev, PCI_D3hot, 0);
5929                 pci_enable_wake(pdev, PCI_D3cold, 0);
5930
5931                 e1000e_reset(adapter);
5932                 ew32(WUS, ~0);
5933                 result = PCI_ERS_RESULT_RECOVERED;
5934         }
5935
5936         pci_cleanup_aer_uncorrect_error_status(pdev);
5937
5938         return result;
5939 }
5940
5941 /**
5942  * e1000_io_resume - called when traffic can start flowing again.
5943  * @pdev: Pointer to PCI device
5944  *
5945  * This callback is called when the error recovery driver tells us that
5946  * its OK to resume normal operation. Implementation resembles the
5947  * second-half of the e1000_resume routine.
5948  */
5949 static void e1000_io_resume(struct pci_dev *pdev)
5950 {
5951         struct net_device *netdev = pci_get_drvdata(pdev);
5952         struct e1000_adapter *adapter = netdev_priv(netdev);
5953
5954         e1000_init_manageability_pt(adapter);
5955
5956         if (netif_running(netdev)) {
5957                 if (e1000e_up(adapter)) {
5958                         dev_err(&pdev->dev,
5959                                 "can't bring device back up after reset\n");
5960                         return;
5961                 }
5962         }
5963
5964         netif_device_attach(netdev);
5965
5966         /*
5967          * If the controller has AMT, do not set DRV_LOAD until the interface
5968          * is up.  For all other cases, let the f/w know that the h/w is now
5969          * under the control of the driver.
5970          */
5971         if (!(adapter->flags & FLAG_HAS_AMT))
5972                 e1000e_get_hw_control(adapter);
5973
5974 }
5975
5976 static void e1000_print_device_info(struct e1000_adapter *adapter)
5977 {
5978         struct e1000_hw *hw = &adapter->hw;
5979         struct net_device *netdev = adapter->netdev;
5980         u32 ret_val;
5981         u8 pba_str[E1000_PBANUM_LENGTH];
5982
5983         /* print bus type/speed/width info */
5984         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5985                /* bus width */
5986                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5987                 "Width x1"),
5988                /* MAC address */
5989                netdev->dev_addr);
5990         e_info("Intel(R) PRO/%s Network Connection\n",
5991                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5992         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5993                                                 E1000_PBANUM_LENGTH);
5994         if (ret_val)
5995                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5996         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5997                hw->mac.type, hw->phy.type, pba_str);
5998 }
5999
6000 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6001 {
6002         struct e1000_hw *hw = &adapter->hw;
6003         int ret_val;
6004         u16 buf = 0;
6005
6006         if (hw->mac.type != e1000_82573)
6007                 return;
6008
6009         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6010         le16_to_cpus(&buf);
6011         if (!ret_val && (!(buf & (1 << 0)))) {
6012                 /* Deep Smart Power Down (DSPD) */
6013                 dev_warn(&adapter->pdev->dev,
6014                          "Warning: detected DSPD enabled in EEPROM\n");
6015         }
6016 }
6017
6018 static int e1000_set_features(struct net_device *netdev,
6019                               netdev_features_t features)
6020 {
6021         struct e1000_adapter *adapter = netdev_priv(netdev);
6022         netdev_features_t changed = features ^ netdev->features;
6023
6024         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6025                 adapter->flags |= FLAG_TSO_FORCE;
6026
6027         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6028                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6029                          NETIF_F_RXALL)))
6030                 return 0;
6031
6032         /*
6033          * IP payload checksum (enabled with jumbos/packet-split when Rx
6034          * checksum is enabled) and generation of RSS hash is mutually
6035          * exclusive in the hardware.
6036          */
6037         if (adapter->rx_ps_pages &&
6038             (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
6039                 e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
6040                 return -EINVAL;
6041         }
6042
6043         if (changed & NETIF_F_RXFCS) {
6044                 if (features & NETIF_F_RXFCS) {
6045                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6046                 } else {
6047                         /* We need to take it back to defaults, which might mean
6048                          * stripping is still disabled at the adapter level.
6049                          */
6050                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6051                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6052                         else
6053                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6054                 }
6055         }
6056
6057         netdev->features = features;
6058
6059         if (netif_running(netdev))
6060                 e1000e_reinit_locked(adapter);
6061         else
6062                 e1000e_reset(adapter);
6063
6064         return 0;
6065 }
6066
6067 static const struct net_device_ops e1000e_netdev_ops = {
6068         .ndo_open               = e1000_open,
6069         .ndo_stop               = e1000_close,
6070         .ndo_start_xmit         = e1000_xmit_frame,
6071         .ndo_get_stats64        = e1000e_get_stats64,
6072         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6073         .ndo_set_mac_address    = e1000_set_mac,
6074         .ndo_change_mtu         = e1000_change_mtu,
6075         .ndo_do_ioctl           = e1000_ioctl,
6076         .ndo_tx_timeout         = e1000_tx_timeout,
6077         .ndo_validate_addr      = eth_validate_addr,
6078
6079         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6080         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6081 #ifdef CONFIG_NET_POLL_CONTROLLER
6082         .ndo_poll_controller    = e1000_netpoll,
6083 #endif
6084         .ndo_set_features = e1000_set_features,
6085 };
6086
6087 /**
6088  * e1000_probe - Device Initialization Routine
6089  * @pdev: PCI device information struct
6090  * @ent: entry in e1000_pci_tbl
6091  *
6092  * Returns 0 on success, negative on failure
6093  *
6094  * e1000_probe initializes an adapter identified by a pci_dev structure.
6095  * The OS initialization, configuring of the adapter private structure,
6096  * and a hardware reset occur.
6097  **/
6098 static int __devinit e1000_probe(struct pci_dev *pdev,
6099                                  const struct pci_device_id *ent)
6100 {
6101         struct net_device *netdev;
6102         struct e1000_adapter *adapter;
6103         struct e1000_hw *hw;
6104         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6105         resource_size_t mmio_start, mmio_len;
6106         resource_size_t flash_start, flash_len;
6107         static int cards_found;
6108         u16 aspm_disable_flag = 0;
6109         int i, err, pci_using_dac;
6110         u16 eeprom_data = 0;
6111         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6112
6113         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6114                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6115         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6116                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6117         if (aspm_disable_flag)
6118                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6119
6120         err = pci_enable_device_mem(pdev);
6121         if (err)
6122                 return err;
6123
6124         pci_using_dac = 0;
6125         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6126         if (!err) {
6127                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6128                 if (!err)
6129                         pci_using_dac = 1;
6130         } else {
6131                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6132                 if (err) {
6133                         err = dma_set_coherent_mask(&pdev->dev,
6134                                                     DMA_BIT_MASK(32));
6135                         if (err) {
6136                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6137                                 goto err_dma;
6138                         }
6139                 }
6140         }
6141
6142         err = pci_request_selected_regions_exclusive(pdev,
6143                                           pci_select_bars(pdev, IORESOURCE_MEM),
6144                                           e1000e_driver_name);
6145         if (err)
6146                 goto err_pci_reg;
6147
6148         /* AER (Advanced Error Reporting) hooks */
6149         pci_enable_pcie_error_reporting(pdev);
6150
6151         pci_set_master(pdev);
6152         /* PCI config space info */
6153         err = pci_save_state(pdev);
6154         if (err)
6155                 goto err_alloc_etherdev;
6156
6157         err = -ENOMEM;
6158         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6159         if (!netdev)
6160                 goto err_alloc_etherdev;
6161
6162         SET_NETDEV_DEV(netdev, &pdev->dev);
6163
6164         netdev->irq = pdev->irq;
6165
6166         pci_set_drvdata(pdev, netdev);
6167         adapter = netdev_priv(netdev);
6168         hw = &adapter->hw;
6169         adapter->netdev = netdev;
6170         adapter->pdev = pdev;
6171         adapter->ei = ei;
6172         adapter->pba = ei->pba;
6173         adapter->flags = ei->flags;
6174         adapter->flags2 = ei->flags2;
6175         adapter->hw.adapter = adapter;
6176         adapter->hw.mac.type = ei->mac;
6177         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6178         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
6179
6180         mmio_start = pci_resource_start(pdev, 0);
6181         mmio_len = pci_resource_len(pdev, 0);
6182
6183         err = -EIO;
6184         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6185         if (!adapter->hw.hw_addr)
6186                 goto err_ioremap;
6187
6188         if ((adapter->flags & FLAG_HAS_FLASH) &&
6189             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6190                 flash_start = pci_resource_start(pdev, 1);
6191                 flash_len = pci_resource_len(pdev, 1);
6192                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6193                 if (!adapter->hw.flash_address)
6194                         goto err_flashmap;
6195         }
6196
6197         /* construct the net_device struct */
6198         netdev->netdev_ops              = &e1000e_netdev_ops;
6199         e1000e_set_ethtool_ops(netdev);
6200         netdev->watchdog_timeo          = 5 * HZ;
6201         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6202         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6203
6204         netdev->mem_start = mmio_start;
6205         netdev->mem_end = mmio_start + mmio_len;
6206
6207         adapter->bd_number = cards_found++;
6208
6209         e1000e_check_options(adapter);
6210
6211         /* setup adapter struct */
6212         err = e1000_sw_init(adapter);
6213         if (err)
6214                 goto err_sw_init;
6215
6216         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6217         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6218         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6219
6220         err = ei->get_variants(adapter);
6221         if (err)
6222                 goto err_hw_init;
6223
6224         if ((adapter->flags & FLAG_IS_ICH) &&
6225             (adapter->flags & FLAG_READ_ONLY_NVM))
6226                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6227
6228         hw->mac.ops.get_bus_info(&adapter->hw);
6229
6230         adapter->hw.phy.autoneg_wait_to_complete = 0;
6231
6232         /* Copper options */
6233         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6234                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6235                 adapter->hw.phy.disable_polarity_correction = 0;
6236                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6237         }
6238
6239         if (hw->phy.ops.check_reset_block(hw))
6240                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6241
6242         /* Set initial default active device features */
6243         netdev->features = (NETIF_F_SG |
6244                             NETIF_F_HW_VLAN_RX |
6245                             NETIF_F_HW_VLAN_TX |
6246                             NETIF_F_TSO |
6247                             NETIF_F_TSO6 |
6248                             NETIF_F_RXHASH |
6249                             NETIF_F_RXCSUM |
6250                             NETIF_F_HW_CSUM);
6251
6252         /* Set user-changeable features (subset of all device features) */
6253         netdev->hw_features = netdev->features;
6254         netdev->hw_features |= NETIF_F_RXFCS;
6255         netdev->priv_flags |= IFF_SUPP_NOFCS;
6256         netdev->hw_features |= NETIF_F_RXALL;
6257
6258         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6259                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6260
6261         netdev->vlan_features |= (NETIF_F_SG |
6262                                   NETIF_F_TSO |
6263                                   NETIF_F_TSO6 |
6264                                   NETIF_F_HW_CSUM);
6265
6266         netdev->priv_flags |= IFF_UNICAST_FLT;
6267
6268         if (pci_using_dac) {
6269                 netdev->features |= NETIF_F_HIGHDMA;
6270                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6271         }
6272
6273         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6274                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6275
6276         /*
6277          * before reading the NVM, reset the controller to
6278          * put the device in a known good starting state
6279          */
6280         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6281
6282         /*
6283          * systems with ASPM and others may see the checksum fail on the first
6284          * attempt. Let's give it a few tries
6285          */
6286         for (i = 0;; i++) {
6287                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6288                         break;
6289                 if (i == 2) {
6290                         e_err("The NVM Checksum Is Not Valid\n");
6291                         err = -EIO;
6292                         goto err_eeprom;
6293                 }
6294         }
6295
6296         e1000_eeprom_checks(adapter);
6297
6298         /* copy the MAC address */
6299         if (e1000e_read_mac_addr(&adapter->hw))
6300                 e_err("NVM Read Error while reading MAC address\n");
6301
6302         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6303         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6304
6305         if (!is_valid_ether_addr(netdev->perm_addr)) {
6306                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6307                 err = -EIO;
6308                 goto err_eeprom;
6309         }
6310
6311         init_timer(&adapter->watchdog_timer);
6312         adapter->watchdog_timer.function = e1000_watchdog;
6313         adapter->watchdog_timer.data = (unsigned long) adapter;
6314
6315         init_timer(&adapter->phy_info_timer);
6316         adapter->phy_info_timer.function = e1000_update_phy_info;
6317         adapter->phy_info_timer.data = (unsigned long) adapter;
6318
6319         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6320         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6321         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6322         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6323         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6324
6325         /* Initialize link parameters. User can change them with ethtool */
6326         adapter->hw.mac.autoneg = 1;
6327         adapter->fc_autoneg = true;
6328         adapter->hw.fc.requested_mode = e1000_fc_default;
6329         adapter->hw.fc.current_mode = e1000_fc_default;
6330         adapter->hw.phy.autoneg_advertised = 0x2f;
6331
6332         /* ring size defaults */
6333         adapter->rx_ring->count = 256;
6334         adapter->tx_ring->count = 256;
6335
6336         /*
6337          * Initial Wake on LAN setting - If APM wake is enabled in
6338          * the EEPROM, enable the ACPI Magic Packet filter
6339          */
6340         if (adapter->flags & FLAG_APME_IN_WUC) {
6341                 /* APME bit in EEPROM is mapped to WUC.APME */
6342                 eeprom_data = er32(WUC);
6343                 eeprom_apme_mask = E1000_WUC_APME;
6344                 if ((hw->mac.type > e1000_ich10lan) &&
6345                     (eeprom_data & E1000_WUC_PHY_WAKE))
6346                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6347         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6348                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6349                     (adapter->hw.bus.func == 1))
6350                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6351                                        1, &eeprom_data);
6352                 else
6353                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6354                                        1, &eeprom_data);
6355         }
6356
6357         /* fetch WoL from EEPROM */
6358         if (eeprom_data & eeprom_apme_mask)
6359                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6360
6361         /*
6362          * now that we have the eeprom settings, apply the special cases
6363          * where the eeprom may be wrong or the board simply won't support
6364          * wake on lan on a particular port
6365          */
6366         if (!(adapter->flags & FLAG_HAS_WOL))
6367                 adapter->eeprom_wol = 0;
6368
6369         /* initialize the wol settings based on the eeprom settings */
6370         adapter->wol = adapter->eeprom_wol;
6371         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6372
6373         /* save off EEPROM version number */
6374         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6375
6376         /* reset the hardware with the new settings */
6377         e1000e_reset(adapter);
6378
6379         /*
6380          * If the controller has AMT, do not set DRV_LOAD until the interface
6381          * is up.  For all other cases, let the f/w know that the h/w is now
6382          * under the control of the driver.
6383          */
6384         if (!(adapter->flags & FLAG_HAS_AMT))
6385                 e1000e_get_hw_control(adapter);
6386
6387         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6388         err = register_netdev(netdev);
6389         if (err)
6390                 goto err_register;
6391
6392         /* carrier off reporting is important to ethtool even BEFORE open */
6393         netif_carrier_off(netdev);
6394
6395         e1000_print_device_info(adapter);
6396
6397         if (pci_dev_run_wake(pdev))
6398                 pm_runtime_put_noidle(&pdev->dev);
6399
6400         return 0;
6401
6402 err_register:
6403         if (!(adapter->flags & FLAG_HAS_AMT))
6404                 e1000e_release_hw_control(adapter);
6405 err_eeprom:
6406         if (!hw->phy.ops.check_reset_block(hw))
6407                 e1000_phy_hw_reset(&adapter->hw);
6408 err_hw_init:
6409         kfree(adapter->tx_ring);
6410         kfree(adapter->rx_ring);
6411 err_sw_init:
6412         if (adapter->hw.flash_address)
6413                 iounmap(adapter->hw.flash_address);
6414         e1000e_reset_interrupt_capability(adapter);
6415 err_flashmap:
6416         iounmap(adapter->hw.hw_addr);
6417 err_ioremap:
6418         free_netdev(netdev);
6419 err_alloc_etherdev:
6420         pci_release_selected_regions(pdev,
6421                                      pci_select_bars(pdev, IORESOURCE_MEM));
6422 err_pci_reg:
6423 err_dma:
6424         pci_disable_device(pdev);
6425         return err;
6426 }
6427
6428 /**
6429  * e1000_remove - Device Removal Routine
6430  * @pdev: PCI device information struct
6431  *
6432  * e1000_remove is called by the PCI subsystem to alert the driver
6433  * that it should release a PCI device.  The could be caused by a
6434  * Hot-Plug event, or because the driver is going to be removed from
6435  * memory.
6436  **/
6437 static void __devexit e1000_remove(struct pci_dev *pdev)
6438 {
6439         struct net_device *netdev = pci_get_drvdata(pdev);
6440         struct e1000_adapter *adapter = netdev_priv(netdev);
6441         bool down = test_bit(__E1000_DOWN, &adapter->state);
6442
6443         /*
6444          * The timers may be rescheduled, so explicitly disable them
6445          * from being rescheduled.
6446          */
6447         if (!down)
6448                 set_bit(__E1000_DOWN, &adapter->state);
6449         del_timer_sync(&adapter->watchdog_timer);
6450         del_timer_sync(&adapter->phy_info_timer);
6451
6452         cancel_work_sync(&adapter->reset_task);
6453         cancel_work_sync(&adapter->watchdog_task);
6454         cancel_work_sync(&adapter->downshift_task);
6455         cancel_work_sync(&adapter->update_phy_task);
6456         cancel_work_sync(&adapter->print_hang_task);
6457
6458         if (!(netdev->flags & IFF_UP))
6459                 e1000_power_down_phy(adapter);
6460
6461         /* Don't lie to e1000_close() down the road. */
6462         if (!down)
6463                 clear_bit(__E1000_DOWN, &adapter->state);
6464         unregister_netdev(netdev);
6465
6466         if (pci_dev_run_wake(pdev))
6467                 pm_runtime_get_noresume(&pdev->dev);
6468
6469         /*
6470          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6471          * would have already happened in close and is redundant.
6472          */
6473         e1000e_release_hw_control(adapter);
6474
6475         e1000e_reset_interrupt_capability(adapter);
6476         kfree(adapter->tx_ring);
6477         kfree(adapter->rx_ring);
6478
6479         iounmap(adapter->hw.hw_addr);
6480         if (adapter->hw.flash_address)
6481                 iounmap(adapter->hw.flash_address);
6482         pci_release_selected_regions(pdev,
6483                                      pci_select_bars(pdev, IORESOURCE_MEM));
6484
6485         free_netdev(netdev);
6486
6487         /* AER disable */
6488         pci_disable_pcie_error_reporting(pdev);
6489
6490         pci_disable_device(pdev);
6491 }
6492
6493 /* PCI Error Recovery (ERS) */
6494 static struct pci_error_handlers e1000_err_handler = {
6495         .error_detected = e1000_io_error_detected,
6496         .slot_reset = e1000_io_slot_reset,
6497         .resume = e1000_io_resume,
6498 };
6499
6500 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6510
6511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6515
6516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6519
6520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6523
6524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6525           board_80003es2lan },
6526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6527           board_80003es2lan },
6528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6529           board_80003es2lan },
6530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6531           board_80003es2lan },
6532
6533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6541
6542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6551
6552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6555
6556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6557         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6559
6560         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6561         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6562         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6563         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6564
6565         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6566         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6567
6568         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6569 };
6570 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6571
6572 #ifdef CONFIG_PM
6573 static const struct dev_pm_ops e1000_pm_ops = {
6574         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6575         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6576                                 e1000_runtime_resume, e1000_idle)
6577 };
6578 #endif
6579
6580 /* PCI Device API Driver */
6581 static struct pci_driver e1000_driver = {
6582         .name     = e1000e_driver_name,
6583         .id_table = e1000_pci_tbl,
6584         .probe    = e1000_probe,
6585         .remove   = __devexit_p(e1000_remove),
6586 #ifdef CONFIG_PM
6587         .driver   = {
6588                 .pm = &e1000_pm_ops,
6589         },
6590 #endif
6591         .shutdown = e1000_shutdown,
6592         .err_handler = &e1000_err_handler
6593 };
6594
6595 /**
6596  * e1000_init_module - Driver Registration Routine
6597  *
6598  * e1000_init_module is the first routine called when the driver is
6599  * loaded. All it does is register with the PCI subsystem.
6600  **/
6601 static int __init e1000_init_module(void)
6602 {
6603         int ret;
6604         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6605                 e1000e_driver_version);
6606         pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6607         ret = pci_register_driver(&e1000_driver);
6608
6609         return ret;
6610 }
6611 module_init(e1000_init_module);
6612
6613 /**
6614  * e1000_exit_module - Driver Exit Cleanup Routine
6615  *
6616  * e1000_exit_module is called just before the driver is removed
6617  * from memory.
6618  **/
6619 static void __exit e1000_exit_module(void)
6620 {
6621         pci_unregister_driver(&e1000_driver);
6622 }
6623 module_exit(e1000_exit_module);
6624
6625
6626 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6627 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6628 MODULE_LICENSE("GPL");
6629 MODULE_VERSION(DRV_VERSION);
6630
6631 /* netdev.c */