md/raid10: set dev_sectors properly when resizing devices in array.
[linux-flexiantxendom0-3.2.10.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define NR_RAID10_BIOS 256
61
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
71
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74         struct r10conf *conf = data;
75         int size = offsetof(struct r10bio, devs[conf->copies]);
76
77         /* allocate a r10bio with room for raid_disks entries in the
78          * bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r10bio_pool_free(void *r10_bio, void *data)
83 {
84         kfree(r10_bio);
85 }
86
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94
95 /*
96  * When performing a resync, we need to read and compare, so
97  * we need as many pages are there are copies.
98  * When performing a recovery, we need 2 bios, one for read,
99  * one for write (we recover only one drive per r10buf)
100  *
101  */
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104         struct r10conf *conf = data;
105         struct page *page;
106         struct r10bio *r10_bio;
107         struct bio *bio;
108         int i, j;
109         int nalloc;
110
111         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112         if (!r10_bio)
113                 return NULL;
114
115         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116                 nalloc = conf->copies; /* resync */
117         else
118                 nalloc = 2; /* recovery */
119
120         /*
121          * Allocate bios.
122          */
123         for (j = nalloc ; j-- ; ) {
124                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125                 if (!bio)
126                         goto out_free_bio;
127                 r10_bio->devs[j].bio = bio;
128                 if (!conf->have_replacement)
129                         continue;
130                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131                 if (!bio)
132                         goto out_free_bio;
133                 r10_bio->devs[j].repl_bio = bio;
134         }
135         /*
136          * Allocate RESYNC_PAGES data pages and attach them
137          * where needed.
138          */
139         for (j = 0 ; j < nalloc; j++) {
140                 struct bio *rbio = r10_bio->devs[j].repl_bio;
141                 bio = r10_bio->devs[j].bio;
142                 for (i = 0; i < RESYNC_PAGES; i++) {
143                         if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144                                                 &conf->mddev->recovery)) {
145                                 /* we can share bv_page's during recovery */
146                                 struct bio *rbio = r10_bio->devs[0].bio;
147                                 page = rbio->bi_io_vec[i].bv_page;
148                                 get_page(page);
149                         } else
150                                 page = alloc_page(gfp_flags);
151                         if (unlikely(!page))
152                                 goto out_free_pages;
153
154                         bio->bi_io_vec[i].bv_page = page;
155                         if (rbio)
156                                 rbio->bi_io_vec[i].bv_page = page;
157                 }
158         }
159
160         return r10_bio;
161
162 out_free_pages:
163         for ( ; i > 0 ; i--)
164                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
165         while (j--)
166                 for (i = 0; i < RESYNC_PAGES ; i++)
167                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168         j = -1;
169 out_free_bio:
170         while (++j < nalloc) {
171                 bio_put(r10_bio->devs[j].bio);
172                 if (r10_bio->devs[j].repl_bio)
173                         bio_put(r10_bio->devs[j].repl_bio);
174         }
175         r10bio_pool_free(r10_bio, conf);
176         return NULL;
177 }
178
179 static void r10buf_pool_free(void *__r10_bio, void *data)
180 {
181         int i;
182         struct r10conf *conf = data;
183         struct r10bio *r10bio = __r10_bio;
184         int j;
185
186         for (j=0; j < conf->copies; j++) {
187                 struct bio *bio = r10bio->devs[j].bio;
188                 if (bio) {
189                         for (i = 0; i < RESYNC_PAGES; i++) {
190                                 safe_put_page(bio->bi_io_vec[i].bv_page);
191                                 bio->bi_io_vec[i].bv_page = NULL;
192                         }
193                         bio_put(bio);
194                 }
195                 bio = r10bio->devs[j].repl_bio;
196                 if (bio)
197                         bio_put(bio);
198         }
199         r10bio_pool_free(r10bio, conf);
200 }
201
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
203 {
204         int i;
205
206         for (i = 0; i < conf->copies; i++) {
207                 struct bio **bio = & r10_bio->devs[i].bio;
208                 if (!BIO_SPECIAL(*bio))
209                         bio_put(*bio);
210                 *bio = NULL;
211                 bio = &r10_bio->devs[i].repl_bio;
212                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213                         bio_put(*bio);
214                 *bio = NULL;
215         }
216 }
217
218 static void free_r10bio(struct r10bio *r10_bio)
219 {
220         struct r10conf *conf = r10_bio->mddev->private;
221
222         put_all_bios(conf, r10_bio);
223         mempool_free(r10_bio, conf->r10bio_pool);
224 }
225
226 static void put_buf(struct r10bio *r10_bio)
227 {
228         struct r10conf *conf = r10_bio->mddev->private;
229
230         mempool_free(r10_bio, conf->r10buf_pool);
231
232         lower_barrier(conf);
233 }
234
235 static void reschedule_retry(struct r10bio *r10_bio)
236 {
237         unsigned long flags;
238         struct mddev *mddev = r10_bio->mddev;
239         struct r10conf *conf = mddev->private;
240
241         spin_lock_irqsave(&conf->device_lock, flags);
242         list_add(&r10_bio->retry_list, &conf->retry_list);
243         conf->nr_queued ++;
244         spin_unlock_irqrestore(&conf->device_lock, flags);
245
246         /* wake up frozen array... */
247         wake_up(&conf->wait_barrier);
248
249         md_wakeup_thread(mddev->thread);
250 }
251
252 /*
253  * raid_end_bio_io() is called when we have finished servicing a mirrored
254  * operation and are ready to return a success/failure code to the buffer
255  * cache layer.
256  */
257 static void raid_end_bio_io(struct r10bio *r10_bio)
258 {
259         struct bio *bio = r10_bio->master_bio;
260         int done;
261         struct r10conf *conf = r10_bio->mddev->private;
262
263         if (bio->bi_phys_segments) {
264                 unsigned long flags;
265                 spin_lock_irqsave(&conf->device_lock, flags);
266                 bio->bi_phys_segments--;
267                 done = (bio->bi_phys_segments == 0);
268                 spin_unlock_irqrestore(&conf->device_lock, flags);
269         } else
270                 done = 1;
271         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273         if (done) {
274                 bio_endio(bio, 0);
275                 /*
276                  * Wake up any possible resync thread that waits for the device
277                  * to go idle.
278                  */
279                 allow_barrier(conf);
280         }
281         free_r10bio(r10_bio);
282 }
283
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
288 {
289         struct r10conf *conf = r10_bio->mddev->private;
290
291         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292                 r10_bio->devs[slot].addr + (r10_bio->sectors);
293 }
294
295 /*
296  * Find the disk number which triggered given bio
297  */
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299                          struct bio *bio, int *slotp, int *replp)
300 {
301         int slot;
302         int repl = 0;
303
304         for (slot = 0; slot < conf->copies; slot++) {
305                 if (r10_bio->devs[slot].bio == bio)
306                         break;
307                 if (r10_bio->devs[slot].repl_bio == bio) {
308                         repl = 1;
309                         break;
310                 }
311         }
312
313         BUG_ON(slot == conf->copies);
314         update_head_pos(slot, r10_bio);
315
316         if (slotp)
317                 *slotp = slot;
318         if (replp)
319                 *replp = repl;
320         return r10_bio->devs[slot].devnum;
321 }
322
323 static void raid10_end_read_request(struct bio *bio, int error)
324 {
325         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326         struct r10bio *r10_bio = bio->bi_private;
327         int slot, dev;
328         struct md_rdev *rdev;
329         struct r10conf *conf = r10_bio->mddev->private;
330
331
332         slot = r10_bio->read_slot;
333         dev = r10_bio->devs[slot].devnum;
334         rdev = r10_bio->devs[slot].rdev;
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(slot, r10_bio);
339
340         if (uptodate) {
341                 /*
342                  * Set R10BIO_Uptodate in our master bio, so that
343                  * we will return a good error code to the higher
344                  * levels even if IO on some other mirrored buffer fails.
345                  *
346                  * The 'master' represents the composite IO operation to
347                  * user-side. So if something waits for IO, then it will
348                  * wait for the 'master' bio.
349                  */
350                 set_bit(R10BIO_Uptodate, &r10_bio->state);
351         } else {
352                 /* If all other devices that store this block have
353                  * failed, we want to return the error upwards rather
354                  * than fail the last device.  Here we redefine
355                  * "uptodate" to mean "Don't want to retry"
356                  */
357                 unsigned long flags;
358                 spin_lock_irqsave(&conf->device_lock, flags);
359                 if (!enough(conf, rdev->raid_disk))
360                         uptodate = 1;
361                 spin_unlock_irqrestore(&conf->device_lock, flags);
362         }
363         if (uptodate) {
364                 raid_end_bio_io(r10_bio);
365                 rdev_dec_pending(rdev, conf->mddev);
366         } else {
367                 /*
368                  * oops, read error - keep the refcount on the rdev
369                  */
370                 char b[BDEVNAME_SIZE];
371                 printk_ratelimited(KERN_ERR
372                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
373                                    mdname(conf->mddev),
374                                    bdevname(rdev->bdev, b),
375                                    (unsigned long long)r10_bio->sector);
376                 set_bit(R10BIO_ReadError, &r10_bio->state);
377                 reschedule_retry(r10_bio);
378         }
379 }
380
381 static void close_write(struct r10bio *r10_bio)
382 {
383         /* clear the bitmap if all writes complete successfully */
384         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385                         r10_bio->sectors,
386                         !test_bit(R10BIO_Degraded, &r10_bio->state),
387                         0);
388         md_write_end(r10_bio->mddev);
389 }
390
391 static void one_write_done(struct r10bio *r10_bio)
392 {
393         if (atomic_dec_and_test(&r10_bio->remaining)) {
394                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395                         reschedule_retry(r10_bio);
396                 else {
397                         close_write(r10_bio);
398                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399                                 reschedule_retry(r10_bio);
400                         else
401                                 raid_end_bio_io(r10_bio);
402                 }
403         }
404 }
405
406 static void raid10_end_write_request(struct bio *bio, int error)
407 {
408         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409         struct r10bio *r10_bio = bio->bi_private;
410         int dev;
411         int dec_rdev = 1;
412         struct r10conf *conf = r10_bio->mddev->private;
413         int slot, repl;
414         struct md_rdev *rdev = NULL;
415
416         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
417
418         if (repl)
419                 rdev = conf->mirrors[dev].replacement;
420         if (!rdev) {
421                 smp_rmb();
422                 repl = 0;
423                 rdev = conf->mirrors[dev].rdev;
424         }
425         /*
426          * this branch is our 'one mirror IO has finished' event handler:
427          */
428         if (!uptodate) {
429                 if (repl)
430                         /* Never record new bad blocks to replacement,
431                          * just fail it.
432                          */
433                         md_error(rdev->mddev, rdev);
434                 else {
435                         set_bit(WriteErrorSeen, &rdev->flags);
436                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
437                                 set_bit(MD_RECOVERY_NEEDED,
438                                         &rdev->mddev->recovery);
439                         set_bit(R10BIO_WriteError, &r10_bio->state);
440                         dec_rdev = 0;
441                 }
442         } else {
443                 /*
444                  * Set R10BIO_Uptodate in our master bio, so that
445                  * we will return a good error code for to the higher
446                  * levels even if IO on some other mirrored buffer fails.
447                  *
448                  * The 'master' represents the composite IO operation to
449                  * user-side. So if something waits for IO, then it will
450                  * wait for the 'master' bio.
451                  */
452                 sector_t first_bad;
453                 int bad_sectors;
454
455                 set_bit(R10BIO_Uptodate, &r10_bio->state);
456
457                 /* Maybe we can clear some bad blocks. */
458                 if (is_badblock(rdev,
459                                 r10_bio->devs[slot].addr,
460                                 r10_bio->sectors,
461                                 &first_bad, &bad_sectors)) {
462                         bio_put(bio);
463                         if (repl)
464                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465                         else
466                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
467                         dec_rdev = 0;
468                         set_bit(R10BIO_MadeGood, &r10_bio->state);
469                 }
470         }
471
472         /*
473          *
474          * Let's see if all mirrored write operations have finished
475          * already.
476          */
477         one_write_done(r10_bio);
478         if (dec_rdev)
479                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
480 }
481
482 /*
483  * RAID10 layout manager
484  * As well as the chunksize and raid_disks count, there are two
485  * parameters: near_copies and far_copies.
486  * near_copies * far_copies must be <= raid_disks.
487  * Normally one of these will be 1.
488  * If both are 1, we get raid0.
489  * If near_copies == raid_disks, we get raid1.
490  *
491  * Chunks are laid out in raid0 style with near_copies copies of the
492  * first chunk, followed by near_copies copies of the next chunk and
493  * so on.
494  * If far_copies > 1, then after 1/far_copies of the array has been assigned
495  * as described above, we start again with a device offset of near_copies.
496  * So we effectively have another copy of the whole array further down all
497  * the drives, but with blocks on different drives.
498  * With this layout, and block is never stored twice on the one device.
499  *
500  * raid10_find_phys finds the sector offset of a given virtual sector
501  * on each device that it is on.
502  *
503  * raid10_find_virt does the reverse mapping, from a device and a
504  * sector offset to a virtual address
505  */
506
507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
508 {
509         int n,f;
510         sector_t sector;
511         sector_t chunk;
512         sector_t stripe;
513         int dev;
514
515         int slot = 0;
516
517         /* now calculate first sector/dev */
518         chunk = r10bio->sector >> conf->chunk_shift;
519         sector = r10bio->sector & conf->chunk_mask;
520
521         chunk *= conf->near_copies;
522         stripe = chunk;
523         dev = sector_div(stripe, conf->raid_disks);
524         if (conf->far_offset)
525                 stripe *= conf->far_copies;
526
527         sector += stripe << conf->chunk_shift;
528
529         /* and calculate all the others */
530         for (n=0; n < conf->near_copies; n++) {
531                 int d = dev;
532                 sector_t s = sector;
533                 r10bio->devs[slot].addr = sector;
534                 r10bio->devs[slot].devnum = d;
535                 slot++;
536
537                 for (f = 1; f < conf->far_copies; f++) {
538                         d += conf->near_copies;
539                         if (d >= conf->raid_disks)
540                                 d -= conf->raid_disks;
541                         s += conf->stride;
542                         r10bio->devs[slot].devnum = d;
543                         r10bio->devs[slot].addr = s;
544                         slot++;
545                 }
546                 dev++;
547                 if (dev >= conf->raid_disks) {
548                         dev = 0;
549                         sector += (conf->chunk_mask + 1);
550                 }
551         }
552         BUG_ON(slot != conf->copies);
553 }
554
555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
556 {
557         sector_t offset, chunk, vchunk;
558
559         offset = sector & conf->chunk_mask;
560         if (conf->far_offset) {
561                 int fc;
562                 chunk = sector >> conf->chunk_shift;
563                 fc = sector_div(chunk, conf->far_copies);
564                 dev -= fc * conf->near_copies;
565                 if (dev < 0)
566                         dev += conf->raid_disks;
567         } else {
568                 while (sector >= conf->stride) {
569                         sector -= conf->stride;
570                         if (dev < conf->near_copies)
571                                 dev += conf->raid_disks - conf->near_copies;
572                         else
573                                 dev -= conf->near_copies;
574                 }
575                 chunk = sector >> conf->chunk_shift;
576         }
577         vchunk = chunk * conf->raid_disks + dev;
578         sector_div(vchunk, conf->near_copies);
579         return (vchunk << conf->chunk_shift) + offset;
580 }
581
582 /**
583  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
584  *      @q: request queue
585  *      @bvm: properties of new bio
586  *      @biovec: the request that could be merged to it.
587  *
588  *      Return amount of bytes we can accept at this offset
589  *      This requires checking for end-of-chunk if near_copies != raid_disks,
590  *      and for subordinate merge_bvec_fns if merge_check_needed.
591  */
592 static int raid10_mergeable_bvec(struct request_queue *q,
593                                  struct bvec_merge_data *bvm,
594                                  struct bio_vec *biovec)
595 {
596         struct mddev *mddev = q->queuedata;
597         struct r10conf *conf = mddev->private;
598         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
599         int max;
600         unsigned int chunk_sectors = mddev->chunk_sectors;
601         unsigned int bio_sectors = bvm->bi_size >> 9;
602
603         if (conf->near_copies < conf->raid_disks) {
604                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
605                                         + bio_sectors)) << 9;
606                 if (max < 0)
607                         /* bio_add cannot handle a negative return */
608                         max = 0;
609                 if (max <= biovec->bv_len && bio_sectors == 0)
610                         return biovec->bv_len;
611         } else
612                 max = biovec->bv_len;
613
614         if (mddev->merge_check_needed) {
615                 struct r10bio r10_bio;
616                 int s;
617                 r10_bio.sector = sector;
618                 raid10_find_phys(conf, &r10_bio);
619                 rcu_read_lock();
620                 for (s = 0; s < conf->copies; s++) {
621                         int disk = r10_bio.devs[s].devnum;
622                         struct md_rdev *rdev = rcu_dereference(
623                                 conf->mirrors[disk].rdev);
624                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
625                                 struct request_queue *q =
626                                         bdev_get_queue(rdev->bdev);
627                                 if (q->merge_bvec_fn) {
628                                         bvm->bi_sector = r10_bio.devs[s].addr
629                                                 + rdev->data_offset;
630                                         bvm->bi_bdev = rdev->bdev;
631                                         max = min(max, q->merge_bvec_fn(
632                                                           q, bvm, biovec));
633                                 }
634                         }
635                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
636                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
637                                 struct request_queue *q =
638                                         bdev_get_queue(rdev->bdev);
639                                 if (q->merge_bvec_fn) {
640                                         bvm->bi_sector = r10_bio.devs[s].addr
641                                                 + rdev->data_offset;
642                                         bvm->bi_bdev = rdev->bdev;
643                                         max = min(max, q->merge_bvec_fn(
644                                                           q, bvm, biovec));
645                                 }
646                         }
647                 }
648                 rcu_read_unlock();
649         }
650         return max;
651 }
652
653 /*
654  * This routine returns the disk from which the requested read should
655  * be done. There is a per-array 'next expected sequential IO' sector
656  * number - if this matches on the next IO then we use the last disk.
657  * There is also a per-disk 'last know head position' sector that is
658  * maintained from IRQ contexts, both the normal and the resync IO
659  * completion handlers update this position correctly. If there is no
660  * perfect sequential match then we pick the disk whose head is closest.
661  *
662  * If there are 2 mirrors in the same 2 devices, performance degrades
663  * because position is mirror, not device based.
664  *
665  * The rdev for the device selected will have nr_pending incremented.
666  */
667
668 /*
669  * FIXME: possibly should rethink readbalancing and do it differently
670  * depending on near_copies / far_copies geometry.
671  */
672 static struct md_rdev *read_balance(struct r10conf *conf,
673                                     struct r10bio *r10_bio,
674                                     int *max_sectors)
675 {
676         const sector_t this_sector = r10_bio->sector;
677         int disk, slot;
678         int sectors = r10_bio->sectors;
679         int best_good_sectors;
680         sector_t new_distance, best_dist;
681         struct md_rdev *rdev, *best_rdev;
682         int do_balance;
683         int best_slot;
684
685         raid10_find_phys(conf, r10_bio);
686         rcu_read_lock();
687 retry:
688         sectors = r10_bio->sectors;
689         best_slot = -1;
690         best_rdev = NULL;
691         best_dist = MaxSector;
692         best_good_sectors = 0;
693         do_balance = 1;
694         /*
695          * Check if we can balance. We can balance on the whole
696          * device if no resync is going on (recovery is ok), or below
697          * the resync window. We take the first readable disk when
698          * above the resync window.
699          */
700         if (conf->mddev->recovery_cp < MaxSector
701             && (this_sector + sectors >= conf->next_resync))
702                 do_balance = 0;
703
704         for (slot = 0; slot < conf->copies ; slot++) {
705                 sector_t first_bad;
706                 int bad_sectors;
707                 sector_t dev_sector;
708
709                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
710                         continue;
711                 disk = r10_bio->devs[slot].devnum;
712                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
713                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
714                     test_bit(Unmerged, &rdev->flags) ||
715                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
716                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
717                 if (rdev == NULL ||
718                     test_bit(Faulty, &rdev->flags) ||
719                     test_bit(Unmerged, &rdev->flags))
720                         continue;
721                 if (!test_bit(In_sync, &rdev->flags) &&
722                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
723                         continue;
724
725                 dev_sector = r10_bio->devs[slot].addr;
726                 if (is_badblock(rdev, dev_sector, sectors,
727                                 &first_bad, &bad_sectors)) {
728                         if (best_dist < MaxSector)
729                                 /* Already have a better slot */
730                                 continue;
731                         if (first_bad <= dev_sector) {
732                                 /* Cannot read here.  If this is the
733                                  * 'primary' device, then we must not read
734                                  * beyond 'bad_sectors' from another device.
735                                  */
736                                 bad_sectors -= (dev_sector - first_bad);
737                                 if (!do_balance && sectors > bad_sectors)
738                                         sectors = bad_sectors;
739                                 if (best_good_sectors > sectors)
740                                         best_good_sectors = sectors;
741                         } else {
742                                 sector_t good_sectors =
743                                         first_bad - dev_sector;
744                                 if (good_sectors > best_good_sectors) {
745                                         best_good_sectors = good_sectors;
746                                         best_slot = slot;
747                                         best_rdev = rdev;
748                                 }
749                                 if (!do_balance)
750                                         /* Must read from here */
751                                         break;
752                         }
753                         continue;
754                 } else
755                         best_good_sectors = sectors;
756
757                 if (!do_balance)
758                         break;
759
760                 /* This optimisation is debatable, and completely destroys
761                  * sequential read speed for 'far copies' arrays.  So only
762                  * keep it for 'near' arrays, and review those later.
763                  */
764                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
765                         break;
766
767                 /* for far > 1 always use the lowest address */
768                 if (conf->far_copies > 1)
769                         new_distance = r10_bio->devs[slot].addr;
770                 else
771                         new_distance = abs(r10_bio->devs[slot].addr -
772                                            conf->mirrors[disk].head_position);
773                 if (new_distance < best_dist) {
774                         best_dist = new_distance;
775                         best_slot = slot;
776                         best_rdev = rdev;
777                 }
778         }
779         if (slot >= conf->copies) {
780                 slot = best_slot;
781                 rdev = best_rdev;
782         }
783
784         if (slot >= 0) {
785                 atomic_inc(&rdev->nr_pending);
786                 if (test_bit(Faulty, &rdev->flags)) {
787                         /* Cannot risk returning a device that failed
788                          * before we inc'ed nr_pending
789                          */
790                         rdev_dec_pending(rdev, conf->mddev);
791                         goto retry;
792                 }
793                 r10_bio->read_slot = slot;
794         } else
795                 rdev = NULL;
796         rcu_read_unlock();
797         *max_sectors = best_good_sectors;
798
799         return rdev;
800 }
801
802 static int raid10_congested(void *data, int bits)
803 {
804         struct mddev *mddev = data;
805         struct r10conf *conf = mddev->private;
806         int i, ret = 0;
807
808         if ((bits & (1 << BDI_async_congested)) &&
809             conf->pending_count >= max_queued_requests)
810                 return 1;
811
812         if (mddev_congested(mddev, bits))
813                 return 1;
814         rcu_read_lock();
815         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
816                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
817                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
818                         struct request_queue *q = bdev_get_queue(rdev->bdev);
819
820                         ret |= bdi_congested(&q->backing_dev_info, bits);
821                 }
822         }
823         rcu_read_unlock();
824         return ret;
825 }
826
827 static void flush_pending_writes(struct r10conf *conf)
828 {
829         /* Any writes that have been queued but are awaiting
830          * bitmap updates get flushed here.
831          */
832         spin_lock_irq(&conf->device_lock);
833
834         if (conf->pending_bio_list.head) {
835                 struct bio *bio;
836                 bio = bio_list_get(&conf->pending_bio_list);
837                 conf->pending_count = 0;
838                 spin_unlock_irq(&conf->device_lock);
839                 /* flush any pending bitmap writes to disk
840                  * before proceeding w/ I/O */
841                 bitmap_unplug(conf->mddev->bitmap);
842                 wake_up(&conf->wait_barrier);
843
844                 while (bio) { /* submit pending writes */
845                         struct bio *next = bio->bi_next;
846                         bio->bi_next = NULL;
847                         generic_make_request(bio);
848                         bio = next;
849                 }
850         } else
851                 spin_unlock_irq(&conf->device_lock);
852 }
853
854 /* Barriers....
855  * Sometimes we need to suspend IO while we do something else,
856  * either some resync/recovery, or reconfigure the array.
857  * To do this we raise a 'barrier'.
858  * The 'barrier' is a counter that can be raised multiple times
859  * to count how many activities are happening which preclude
860  * normal IO.
861  * We can only raise the barrier if there is no pending IO.
862  * i.e. if nr_pending == 0.
863  * We choose only to raise the barrier if no-one is waiting for the
864  * barrier to go down.  This means that as soon as an IO request
865  * is ready, no other operations which require a barrier will start
866  * until the IO request has had a chance.
867  *
868  * So: regular IO calls 'wait_barrier'.  When that returns there
869  *    is no backgroup IO happening,  It must arrange to call
870  *    allow_barrier when it has finished its IO.
871  * backgroup IO calls must call raise_barrier.  Once that returns
872  *    there is no normal IO happeing.  It must arrange to call
873  *    lower_barrier when the particular background IO completes.
874  */
875
876 static void raise_barrier(struct r10conf *conf, int force)
877 {
878         BUG_ON(force && !conf->barrier);
879         spin_lock_irq(&conf->resync_lock);
880
881         /* Wait until no block IO is waiting (unless 'force') */
882         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
883                             conf->resync_lock, );
884
885         /* block any new IO from starting */
886         conf->barrier++;
887
888         /* Now wait for all pending IO to complete */
889         wait_event_lock_irq(conf->wait_barrier,
890                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
891                             conf->resync_lock, );
892
893         spin_unlock_irq(&conf->resync_lock);
894 }
895
896 static void lower_barrier(struct r10conf *conf)
897 {
898         unsigned long flags;
899         spin_lock_irqsave(&conf->resync_lock, flags);
900         conf->barrier--;
901         spin_unlock_irqrestore(&conf->resync_lock, flags);
902         wake_up(&conf->wait_barrier);
903 }
904
905 static void wait_barrier(struct r10conf *conf)
906 {
907         spin_lock_irq(&conf->resync_lock);
908         if (conf->barrier) {
909                 conf->nr_waiting++;
910                 /* Wait for the barrier to drop.
911                  * However if there are already pending
912                  * requests (preventing the barrier from
913                  * rising completely), and the
914                  * pre-process bio queue isn't empty,
915                  * then don't wait, as we need to empty
916                  * that queue to get the nr_pending
917                  * count down.
918                  */
919                 wait_event_lock_irq(conf->wait_barrier,
920                                     !conf->barrier ||
921                                     (conf->nr_pending &&
922                                      current->bio_list &&
923                                      !bio_list_empty(current->bio_list)),
924                                     conf->resync_lock,
925                         );
926                 conf->nr_waiting--;
927         }
928         conf->nr_pending++;
929         spin_unlock_irq(&conf->resync_lock);
930 }
931
932 static void allow_barrier(struct r10conf *conf)
933 {
934         unsigned long flags;
935         spin_lock_irqsave(&conf->resync_lock, flags);
936         conf->nr_pending--;
937         spin_unlock_irqrestore(&conf->resync_lock, flags);
938         wake_up(&conf->wait_barrier);
939 }
940
941 static void freeze_array(struct r10conf *conf)
942 {
943         /* stop syncio and normal IO and wait for everything to
944          * go quiet.
945          * We increment barrier and nr_waiting, and then
946          * wait until nr_pending match nr_queued+1
947          * This is called in the context of one normal IO request
948          * that has failed. Thus any sync request that might be pending
949          * will be blocked by nr_pending, and we need to wait for
950          * pending IO requests to complete or be queued for re-try.
951          * Thus the number queued (nr_queued) plus this request (1)
952          * must match the number of pending IOs (nr_pending) before
953          * we continue.
954          */
955         spin_lock_irq(&conf->resync_lock);
956         conf->barrier++;
957         conf->nr_waiting++;
958         wait_event_lock_irq(conf->wait_barrier,
959                             conf->nr_pending == conf->nr_queued+1,
960                             conf->resync_lock,
961                             flush_pending_writes(conf));
962
963         spin_unlock_irq(&conf->resync_lock);
964 }
965
966 static void unfreeze_array(struct r10conf *conf)
967 {
968         /* reverse the effect of the freeze */
969         spin_lock_irq(&conf->resync_lock);
970         conf->barrier--;
971         conf->nr_waiting--;
972         wake_up(&conf->wait_barrier);
973         spin_unlock_irq(&conf->resync_lock);
974 }
975
976 static void make_request(struct mddev *mddev, struct bio * bio)
977 {
978         struct r10conf *conf = mddev->private;
979         struct r10bio *r10_bio;
980         struct bio *read_bio;
981         int i;
982         int chunk_sects = conf->chunk_mask + 1;
983         const int rw = bio_data_dir(bio);
984         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
985         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
986         unsigned long flags;
987         struct md_rdev *blocked_rdev;
988         int plugged;
989         int sectors_handled;
990         int max_sectors;
991
992         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
993                 md_flush_request(mddev, bio);
994                 return;
995         }
996
997         /* If this request crosses a chunk boundary, we need to
998          * split it.  This will only happen for 1 PAGE (or less) requests.
999          */
1000         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
1001                       > chunk_sects &&
1002                     conf->near_copies < conf->raid_disks)) {
1003                 struct bio_pair *bp;
1004                 /* Sanity check -- queue functions should prevent this happening */
1005                 if (bio->bi_vcnt != 1 ||
1006                     bio->bi_idx != 0)
1007                         goto bad_map;
1008                 /* This is a one page bio that upper layers
1009                  * refuse to split for us, so we need to split it.
1010                  */
1011                 bp = bio_split(bio,
1012                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1013
1014                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1015                  * If the first succeeds but the second blocks due to the resync
1016                  * thread raising the barrier, we will deadlock because the
1017                  * IO to the underlying device will be queued in generic_make_request
1018                  * and will never complete, so will never reduce nr_pending.
1019                  * So increment nr_waiting here so no new raise_barriers will
1020                  * succeed, and so the second wait_barrier cannot block.
1021                  */
1022                 spin_lock_irq(&conf->resync_lock);
1023                 conf->nr_waiting++;
1024                 spin_unlock_irq(&conf->resync_lock);
1025
1026                 make_request(mddev, &bp->bio1);
1027                 make_request(mddev, &bp->bio2);
1028
1029                 spin_lock_irq(&conf->resync_lock);
1030                 conf->nr_waiting--;
1031                 wake_up(&conf->wait_barrier);
1032                 spin_unlock_irq(&conf->resync_lock);
1033
1034                 bio_pair_release(bp);
1035                 return;
1036         bad_map:
1037                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1038                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1039                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1040
1041                 bio_io_error(bio);
1042                 return;
1043         }
1044
1045         md_write_start(mddev, bio);
1046
1047         /*
1048          * Register the new request and wait if the reconstruction
1049          * thread has put up a bar for new requests.
1050          * Continue immediately if no resync is active currently.
1051          */
1052         wait_barrier(conf);
1053
1054         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1055
1056         r10_bio->master_bio = bio;
1057         r10_bio->sectors = bio->bi_size >> 9;
1058
1059         r10_bio->mddev = mddev;
1060         r10_bio->sector = bio->bi_sector;
1061         r10_bio->state = 0;
1062
1063         /* We might need to issue multiple reads to different
1064          * devices if there are bad blocks around, so we keep
1065          * track of the number of reads in bio->bi_phys_segments.
1066          * If this is 0, there is only one r10_bio and no locking
1067          * will be needed when the request completes.  If it is
1068          * non-zero, then it is the number of not-completed requests.
1069          */
1070         bio->bi_phys_segments = 0;
1071         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1072
1073         if (rw == READ) {
1074                 /*
1075                  * read balancing logic:
1076                  */
1077                 struct md_rdev *rdev;
1078                 int slot;
1079
1080 read_again:
1081                 rdev = read_balance(conf, r10_bio, &max_sectors);
1082                 if (!rdev) {
1083                         raid_end_bio_io(r10_bio);
1084                         return;
1085                 }
1086                 slot = r10_bio->read_slot;
1087
1088                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1089                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1090                             max_sectors);
1091
1092                 r10_bio->devs[slot].bio = read_bio;
1093                 r10_bio->devs[slot].rdev = rdev;
1094
1095                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1096                         rdev->data_offset;
1097                 read_bio->bi_bdev = rdev->bdev;
1098                 read_bio->bi_end_io = raid10_end_read_request;
1099                 read_bio->bi_rw = READ | do_sync;
1100                 read_bio->bi_private = r10_bio;
1101
1102                 if (max_sectors < r10_bio->sectors) {
1103                         /* Could not read all from this device, so we will
1104                          * need another r10_bio.
1105                          */
1106                         sectors_handled = (r10_bio->sectors + max_sectors
1107                                            - bio->bi_sector);
1108                         r10_bio->sectors = max_sectors;
1109                         spin_lock_irq(&conf->device_lock);
1110                         if (bio->bi_phys_segments == 0)
1111                                 bio->bi_phys_segments = 2;
1112                         else
1113                                 bio->bi_phys_segments++;
1114                         spin_unlock(&conf->device_lock);
1115                         /* Cannot call generic_make_request directly
1116                          * as that will be queued in __generic_make_request
1117                          * and subsequent mempool_alloc might block
1118                          * waiting for it.  so hand bio over to raid10d.
1119                          */
1120                         reschedule_retry(r10_bio);
1121
1122                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1123
1124                         r10_bio->master_bio = bio;
1125                         r10_bio->sectors = ((bio->bi_size >> 9)
1126                                             - sectors_handled);
1127                         r10_bio->state = 0;
1128                         r10_bio->mddev = mddev;
1129                         r10_bio->sector = bio->bi_sector + sectors_handled;
1130                         goto read_again;
1131                 } else
1132                         generic_make_request(read_bio);
1133                 return;
1134         }
1135
1136         /*
1137          * WRITE:
1138          */
1139         if (conf->pending_count >= max_queued_requests) {
1140                 md_wakeup_thread(mddev->thread);
1141                 wait_event(conf->wait_barrier,
1142                            conf->pending_count < max_queued_requests);
1143         }
1144         /* first select target devices under rcu_lock and
1145          * inc refcount on their rdev.  Record them by setting
1146          * bios[x] to bio
1147          * If there are known/acknowledged bad blocks on any device
1148          * on which we have seen a write error, we want to avoid
1149          * writing to those blocks.  This potentially requires several
1150          * writes to write around the bad blocks.  Each set of writes
1151          * gets its own r10_bio with a set of bios attached.  The number
1152          * of r10_bios is recored in bio->bi_phys_segments just as with
1153          * the read case.
1154          */
1155         plugged = mddev_check_plugged(mddev);
1156
1157         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1158         raid10_find_phys(conf, r10_bio);
1159 retry_write:
1160         blocked_rdev = NULL;
1161         rcu_read_lock();
1162         max_sectors = r10_bio->sectors;
1163
1164         for (i = 0;  i < conf->copies; i++) {
1165                 int d = r10_bio->devs[i].devnum;
1166                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1167                 struct md_rdev *rrdev = rcu_dereference(
1168                         conf->mirrors[d].replacement);
1169                 if (rdev == rrdev)
1170                         rrdev = NULL;
1171                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172                         atomic_inc(&rdev->nr_pending);
1173                         blocked_rdev = rdev;
1174                         break;
1175                 }
1176                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1177                         atomic_inc(&rrdev->nr_pending);
1178                         blocked_rdev = rrdev;
1179                         break;
1180                 }
1181                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1182                               || test_bit(Unmerged, &rrdev->flags)))
1183                         rrdev = NULL;
1184
1185                 r10_bio->devs[i].bio = NULL;
1186                 r10_bio->devs[i].repl_bio = NULL;
1187                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1188                     test_bit(Unmerged, &rdev->flags)) {
1189                         set_bit(R10BIO_Degraded, &r10_bio->state);
1190                         continue;
1191                 }
1192                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1193                         sector_t first_bad;
1194                         sector_t dev_sector = r10_bio->devs[i].addr;
1195                         int bad_sectors;
1196                         int is_bad;
1197
1198                         is_bad = is_badblock(rdev, dev_sector,
1199                                              max_sectors,
1200                                              &first_bad, &bad_sectors);
1201                         if (is_bad < 0) {
1202                                 /* Mustn't write here until the bad block
1203                                  * is acknowledged
1204                                  */
1205                                 atomic_inc(&rdev->nr_pending);
1206                                 set_bit(BlockedBadBlocks, &rdev->flags);
1207                                 blocked_rdev = rdev;
1208                                 break;
1209                         }
1210                         if (is_bad && first_bad <= dev_sector) {
1211                                 /* Cannot write here at all */
1212                                 bad_sectors -= (dev_sector - first_bad);
1213                                 if (bad_sectors < max_sectors)
1214                                         /* Mustn't write more than bad_sectors
1215                                          * to other devices yet
1216                                          */
1217                                         max_sectors = bad_sectors;
1218                                 /* We don't set R10BIO_Degraded as that
1219                                  * only applies if the disk is missing,
1220                                  * so it might be re-added, and we want to
1221                                  * know to recover this chunk.
1222                                  * In this case the device is here, and the
1223                                  * fact that this chunk is not in-sync is
1224                                  * recorded in the bad block log.
1225                                  */
1226                                 continue;
1227                         }
1228                         if (is_bad) {
1229                                 int good_sectors = first_bad - dev_sector;
1230                                 if (good_sectors < max_sectors)
1231                                         max_sectors = good_sectors;
1232                         }
1233                 }
1234                 r10_bio->devs[i].bio = bio;
1235                 atomic_inc(&rdev->nr_pending);
1236                 if (rrdev) {
1237                         r10_bio->devs[i].repl_bio = bio;
1238                         atomic_inc(&rrdev->nr_pending);
1239                 }
1240         }
1241         rcu_read_unlock();
1242
1243         if (unlikely(blocked_rdev)) {
1244                 /* Have to wait for this device to get unblocked, then retry */
1245                 int j;
1246                 int d;
1247
1248                 for (j = 0; j < i; j++) {
1249                         if (r10_bio->devs[j].bio) {
1250                                 d = r10_bio->devs[j].devnum;
1251                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1252                         }
1253                         if (r10_bio->devs[j].repl_bio) {
1254                                 struct md_rdev *rdev;
1255                                 d = r10_bio->devs[j].devnum;
1256                                 rdev = conf->mirrors[d].replacement;
1257                                 if (!rdev) {
1258                                         /* Race with remove_disk */
1259                                         smp_mb();
1260                                         rdev = conf->mirrors[d].rdev;
1261                                 }
1262                                 rdev_dec_pending(rdev, mddev);
1263                         }
1264                 }
1265                 allow_barrier(conf);
1266                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1267                 wait_barrier(conf);
1268                 goto retry_write;
1269         }
1270
1271         if (max_sectors < r10_bio->sectors) {
1272                 /* We are splitting this into multiple parts, so
1273                  * we need to prepare for allocating another r10_bio.
1274                  */
1275                 r10_bio->sectors = max_sectors;
1276                 spin_lock_irq(&conf->device_lock);
1277                 if (bio->bi_phys_segments == 0)
1278                         bio->bi_phys_segments = 2;
1279                 else
1280                         bio->bi_phys_segments++;
1281                 spin_unlock_irq(&conf->device_lock);
1282         }
1283         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1284
1285         atomic_set(&r10_bio->remaining, 1);
1286         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1287
1288         for (i = 0; i < conf->copies; i++) {
1289                 struct bio *mbio;
1290                 int d = r10_bio->devs[i].devnum;
1291                 if (!r10_bio->devs[i].bio)
1292                         continue;
1293
1294                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1295                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1296                             max_sectors);
1297                 r10_bio->devs[i].bio = mbio;
1298
1299                 mbio->bi_sector = (r10_bio->devs[i].addr+
1300                                    conf->mirrors[d].rdev->data_offset);
1301                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1302                 mbio->bi_end_io = raid10_end_write_request;
1303                 mbio->bi_rw = WRITE | do_sync | do_fua;
1304                 mbio->bi_private = r10_bio;
1305
1306                 atomic_inc(&r10_bio->remaining);
1307                 spin_lock_irqsave(&conf->device_lock, flags);
1308                 bio_list_add(&conf->pending_bio_list, mbio);
1309                 conf->pending_count++;
1310                 spin_unlock_irqrestore(&conf->device_lock, flags);
1311
1312                 if (!r10_bio->devs[i].repl_bio)
1313                         continue;
1314
1315                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1316                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1317                             max_sectors);
1318                 r10_bio->devs[i].repl_bio = mbio;
1319
1320                 /* We are actively writing to the original device
1321                  * so it cannot disappear, so the replacement cannot
1322                  * become NULL here
1323                  */
1324                 mbio->bi_sector = (r10_bio->devs[i].addr+
1325                                    conf->mirrors[d].replacement->data_offset);
1326                 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1327                 mbio->bi_end_io = raid10_end_write_request;
1328                 mbio->bi_rw = WRITE | do_sync | do_fua;
1329                 mbio->bi_private = r10_bio;
1330
1331                 atomic_inc(&r10_bio->remaining);
1332                 spin_lock_irqsave(&conf->device_lock, flags);
1333                 bio_list_add(&conf->pending_bio_list, mbio);
1334                 conf->pending_count++;
1335                 spin_unlock_irqrestore(&conf->device_lock, flags);
1336         }
1337
1338         /* Don't remove the bias on 'remaining' (one_write_done) until
1339          * after checking if we need to go around again.
1340          */
1341
1342         if (sectors_handled < (bio->bi_size >> 9)) {
1343                 one_write_done(r10_bio);
1344                 /* We need another r10_bio.  It has already been counted
1345                  * in bio->bi_phys_segments.
1346                  */
1347                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1348
1349                 r10_bio->master_bio = bio;
1350                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1351
1352                 r10_bio->mddev = mddev;
1353                 r10_bio->sector = bio->bi_sector + sectors_handled;
1354                 r10_bio->state = 0;
1355                 goto retry_write;
1356         }
1357         one_write_done(r10_bio);
1358
1359         /* In case raid10d snuck in to freeze_array */
1360         wake_up(&conf->wait_barrier);
1361
1362         if (do_sync || !mddev->bitmap || !plugged)
1363                 md_wakeup_thread(mddev->thread);
1364 }
1365
1366 static void status(struct seq_file *seq, struct mddev *mddev)
1367 {
1368         struct r10conf *conf = mddev->private;
1369         int i;
1370
1371         if (conf->near_copies < conf->raid_disks)
1372                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1373         if (conf->near_copies > 1)
1374                 seq_printf(seq, " %d near-copies", conf->near_copies);
1375         if (conf->far_copies > 1) {
1376                 if (conf->far_offset)
1377                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1378                 else
1379                         seq_printf(seq, " %d far-copies", conf->far_copies);
1380         }
1381         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1382                                         conf->raid_disks - mddev->degraded);
1383         for (i = 0; i < conf->raid_disks; i++)
1384                 seq_printf(seq, "%s",
1385                               conf->mirrors[i].rdev &&
1386                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1387         seq_printf(seq, "]");
1388 }
1389
1390 /* check if there are enough drives for
1391  * every block to appear on atleast one.
1392  * Don't consider the device numbered 'ignore'
1393  * as we might be about to remove it.
1394  */
1395 static int enough(struct r10conf *conf, int ignore)
1396 {
1397         int first = 0;
1398
1399         do {
1400                 int n = conf->copies;
1401                 int cnt = 0;
1402                 while (n--) {
1403                         if (conf->mirrors[first].rdev &&
1404                             first != ignore)
1405                                 cnt++;
1406                         first = (first+1) % conf->raid_disks;
1407                 }
1408                 if (cnt == 0)
1409                         return 0;
1410         } while (first != 0);
1411         return 1;
1412 }
1413
1414 static void error(struct mddev *mddev, struct md_rdev *rdev)
1415 {
1416         char b[BDEVNAME_SIZE];
1417         struct r10conf *conf = mddev->private;
1418
1419         /*
1420          * If it is not operational, then we have already marked it as dead
1421          * else if it is the last working disks, ignore the error, let the
1422          * next level up know.
1423          * else mark the drive as failed
1424          */
1425         if (test_bit(In_sync, &rdev->flags)
1426             && !enough(conf, rdev->raid_disk))
1427                 /*
1428                  * Don't fail the drive, just return an IO error.
1429                  */
1430                 return;
1431         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1432                 unsigned long flags;
1433                 spin_lock_irqsave(&conf->device_lock, flags);
1434                 mddev->degraded++;
1435                 spin_unlock_irqrestore(&conf->device_lock, flags);
1436                 /*
1437                  * if recovery is running, make sure it aborts.
1438                  */
1439                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1440         }
1441         set_bit(Blocked, &rdev->flags);
1442         set_bit(Faulty, &rdev->flags);
1443         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1444         printk(KERN_ALERT
1445                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1446                "md/raid10:%s: Operation continuing on %d devices.\n",
1447                mdname(mddev), bdevname(rdev->bdev, b),
1448                mdname(mddev), conf->raid_disks - mddev->degraded);
1449 }
1450
1451 static void print_conf(struct r10conf *conf)
1452 {
1453         int i;
1454         struct mirror_info *tmp;
1455
1456         printk(KERN_DEBUG "RAID10 conf printout:\n");
1457         if (!conf) {
1458                 printk(KERN_DEBUG "(!conf)\n");
1459                 return;
1460         }
1461         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1462                 conf->raid_disks);
1463
1464         for (i = 0; i < conf->raid_disks; i++) {
1465                 char b[BDEVNAME_SIZE];
1466                 tmp = conf->mirrors + i;
1467                 if (tmp->rdev)
1468                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1469                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1470                                 !test_bit(Faulty, &tmp->rdev->flags),
1471                                 bdevname(tmp->rdev->bdev,b));
1472         }
1473 }
1474
1475 static void close_sync(struct r10conf *conf)
1476 {
1477         wait_barrier(conf);
1478         allow_barrier(conf);
1479
1480         mempool_destroy(conf->r10buf_pool);
1481         conf->r10buf_pool = NULL;
1482 }
1483
1484 static int raid10_spare_active(struct mddev *mddev)
1485 {
1486         int i;
1487         struct r10conf *conf = mddev->private;
1488         struct mirror_info *tmp;
1489         int count = 0;
1490         unsigned long flags;
1491
1492         /*
1493          * Find all non-in_sync disks within the RAID10 configuration
1494          * and mark them in_sync
1495          */
1496         for (i = 0; i < conf->raid_disks; i++) {
1497                 tmp = conf->mirrors + i;
1498                 if (tmp->replacement
1499                     && tmp->replacement->recovery_offset == MaxSector
1500                     && !test_bit(Faulty, &tmp->replacement->flags)
1501                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1502                         /* Replacement has just become active */
1503                         if (!tmp->rdev
1504                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1505                                 count++;
1506                         if (tmp->rdev) {
1507                                 /* Replaced device not technically faulty,
1508                                  * but we need to be sure it gets removed
1509                                  * and never re-added.
1510                                  */
1511                                 set_bit(Faulty, &tmp->rdev->flags);
1512                                 sysfs_notify_dirent_safe(
1513                                         tmp->rdev->sysfs_state);
1514                         }
1515                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1516                 } else if (tmp->rdev
1517                            && !test_bit(Faulty, &tmp->rdev->flags)
1518                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1519                         count++;
1520                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1521                 }
1522         }
1523         spin_lock_irqsave(&conf->device_lock, flags);
1524         mddev->degraded -= count;
1525         spin_unlock_irqrestore(&conf->device_lock, flags);
1526
1527         print_conf(conf);
1528         return count;
1529 }
1530
1531
1532 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1533 {
1534         struct r10conf *conf = mddev->private;
1535         int err = -EEXIST;
1536         int mirror;
1537         int first = 0;
1538         int last = conf->raid_disks - 1;
1539         struct request_queue *q = bdev_get_queue(rdev->bdev);
1540
1541         if (mddev->recovery_cp < MaxSector)
1542                 /* only hot-add to in-sync arrays, as recovery is
1543                  * very different from resync
1544                  */
1545                 return -EBUSY;
1546         if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
1547                 return -EINVAL;
1548
1549         if (rdev->raid_disk >= 0)
1550                 first = last = rdev->raid_disk;
1551
1552         if (q->merge_bvec_fn) {
1553                 set_bit(Unmerged, &rdev->flags);
1554                 mddev->merge_check_needed = 1;
1555         }
1556
1557         if (rdev->saved_raid_disk >= first &&
1558             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1559                 mirror = rdev->saved_raid_disk;
1560         else
1561                 mirror = first;
1562         for ( ; mirror <= last ; mirror++) {
1563                 struct mirror_info *p = &conf->mirrors[mirror];
1564                 if (p->recovery_disabled == mddev->recovery_disabled)
1565                         continue;
1566                 if (p->rdev) {
1567                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1568                             p->replacement != NULL)
1569                                 continue;
1570                         clear_bit(In_sync, &rdev->flags);
1571                         set_bit(Replacement, &rdev->flags);
1572                         rdev->raid_disk = mirror;
1573                         err = 0;
1574                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1575                                           rdev->data_offset << 9);
1576                         conf->fullsync = 1;
1577                         rcu_assign_pointer(p->replacement, rdev);
1578                         break;
1579                 }
1580
1581                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1582                                   rdev->data_offset << 9);
1583
1584                 p->head_position = 0;
1585                 p->recovery_disabled = mddev->recovery_disabled - 1;
1586                 rdev->raid_disk = mirror;
1587                 err = 0;
1588                 if (rdev->saved_raid_disk != mirror)
1589                         conf->fullsync = 1;
1590                 rcu_assign_pointer(p->rdev, rdev);
1591                 break;
1592         }
1593         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1594                 /* Some requests might not have seen this new
1595                  * merge_bvec_fn.  We must wait for them to complete
1596                  * before merging the device fully.
1597                  * First we make sure any code which has tested
1598                  * our function has submitted the request, then
1599                  * we wait for all outstanding requests to complete.
1600                  */
1601                 synchronize_sched();
1602                 raise_barrier(conf, 0);
1603                 lower_barrier(conf);
1604                 clear_bit(Unmerged, &rdev->flags);
1605         }
1606         md_integrity_add_rdev(rdev, mddev);
1607         print_conf(conf);
1608         return err;
1609 }
1610
1611 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1612 {
1613         struct r10conf *conf = mddev->private;
1614         int err = 0;
1615         int number = rdev->raid_disk;
1616         struct md_rdev **rdevp;
1617         struct mirror_info *p = conf->mirrors + number;
1618
1619         print_conf(conf);
1620         if (rdev == p->rdev)
1621                 rdevp = &p->rdev;
1622         else if (rdev == p->replacement)
1623                 rdevp = &p->replacement;
1624         else
1625                 return 0;
1626
1627         if (test_bit(In_sync, &rdev->flags) ||
1628             atomic_read(&rdev->nr_pending)) {
1629                 err = -EBUSY;
1630                 goto abort;
1631         }
1632         /* Only remove faulty devices if recovery
1633          * is not possible.
1634          */
1635         if (!test_bit(Faulty, &rdev->flags) &&
1636             mddev->recovery_disabled != p->recovery_disabled &&
1637             (!p->replacement || p->replacement == rdev) &&
1638             enough(conf, -1)) {
1639                 err = -EBUSY;
1640                 goto abort;
1641         }
1642         *rdevp = NULL;
1643         synchronize_rcu();
1644         if (atomic_read(&rdev->nr_pending)) {
1645                 /* lost the race, try later */
1646                 err = -EBUSY;
1647                 *rdevp = rdev;
1648                 goto abort;
1649         } else if (p->replacement) {
1650                 /* We must have just cleared 'rdev' */
1651                 p->rdev = p->replacement;
1652                 clear_bit(Replacement, &p->replacement->flags);
1653                 smp_mb(); /* Make sure other CPUs may see both as identical
1654                            * but will never see neither -- if they are careful.
1655                            */
1656                 p->replacement = NULL;
1657                 clear_bit(WantReplacement, &rdev->flags);
1658         } else
1659                 /* We might have just remove the Replacement as faulty
1660                  * Clear the flag just in case
1661                  */
1662                 clear_bit(WantReplacement, &rdev->flags);
1663
1664         err = md_integrity_register(mddev);
1665
1666 abort:
1667
1668         print_conf(conf);
1669         return err;
1670 }
1671
1672
1673 static void end_sync_read(struct bio *bio, int error)
1674 {
1675         struct r10bio *r10_bio = bio->bi_private;
1676         struct r10conf *conf = r10_bio->mddev->private;
1677         int d;
1678
1679         d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1680
1681         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1682                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1683         else
1684                 /* The write handler will notice the lack of
1685                  * R10BIO_Uptodate and record any errors etc
1686                  */
1687                 atomic_add(r10_bio->sectors,
1688                            &conf->mirrors[d].rdev->corrected_errors);
1689
1690         /* for reconstruct, we always reschedule after a read.
1691          * for resync, only after all reads
1692          */
1693         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1694         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1695             atomic_dec_and_test(&r10_bio->remaining)) {
1696                 /* we have read all the blocks,
1697                  * do the comparison in process context in raid10d
1698                  */
1699                 reschedule_retry(r10_bio);
1700         }
1701 }
1702
1703 static void end_sync_request(struct r10bio *r10_bio)
1704 {
1705         struct mddev *mddev = r10_bio->mddev;
1706
1707         while (atomic_dec_and_test(&r10_bio->remaining)) {
1708                 if (r10_bio->master_bio == NULL) {
1709                         /* the primary of several recovery bios */
1710                         sector_t s = r10_bio->sectors;
1711                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1712                             test_bit(R10BIO_WriteError, &r10_bio->state))
1713                                 reschedule_retry(r10_bio);
1714                         else
1715                                 put_buf(r10_bio);
1716                         md_done_sync(mddev, s, 1);
1717                         break;
1718                 } else {
1719                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1720                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1721                             test_bit(R10BIO_WriteError, &r10_bio->state))
1722                                 reschedule_retry(r10_bio);
1723                         else
1724                                 put_buf(r10_bio);
1725                         r10_bio = r10_bio2;
1726                 }
1727         }
1728 }
1729
1730 static void end_sync_write(struct bio *bio, int error)
1731 {
1732         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1733         struct r10bio *r10_bio = bio->bi_private;
1734         struct mddev *mddev = r10_bio->mddev;
1735         struct r10conf *conf = mddev->private;
1736         int d;
1737         sector_t first_bad;
1738         int bad_sectors;
1739         int slot;
1740         int repl;
1741         struct md_rdev *rdev = NULL;
1742
1743         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1744         if (repl)
1745                 rdev = conf->mirrors[d].replacement;
1746         else
1747                 rdev = conf->mirrors[d].rdev;
1748
1749         if (!uptodate) {
1750                 if (repl)
1751                         md_error(mddev, rdev);
1752                 else {
1753                         set_bit(WriteErrorSeen, &rdev->flags);
1754                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1755                                 set_bit(MD_RECOVERY_NEEDED,
1756                                         &rdev->mddev->recovery);
1757                         set_bit(R10BIO_WriteError, &r10_bio->state);
1758                 }
1759         } else if (is_badblock(rdev,
1760                              r10_bio->devs[slot].addr,
1761                              r10_bio->sectors,
1762                              &first_bad, &bad_sectors))
1763                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1764
1765         rdev_dec_pending(rdev, mddev);
1766
1767         end_sync_request(r10_bio);
1768 }
1769
1770 /*
1771  * Note: sync and recover and handled very differently for raid10
1772  * This code is for resync.
1773  * For resync, we read through virtual addresses and read all blocks.
1774  * If there is any error, we schedule a write.  The lowest numbered
1775  * drive is authoritative.
1776  * However requests come for physical address, so we need to map.
1777  * For every physical address there are raid_disks/copies virtual addresses,
1778  * which is always are least one, but is not necessarly an integer.
1779  * This means that a physical address can span multiple chunks, so we may
1780  * have to submit multiple io requests for a single sync request.
1781  */
1782 /*
1783  * We check if all blocks are in-sync and only write to blocks that
1784  * aren't in sync
1785  */
1786 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1787 {
1788         struct r10conf *conf = mddev->private;
1789         int i, first;
1790         struct bio *tbio, *fbio;
1791         int vcnt;
1792
1793         atomic_set(&r10_bio->remaining, 1);
1794
1795         /* find the first device with a block */
1796         for (i=0; i<conf->copies; i++)
1797                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1798                         break;
1799
1800         if (i == conf->copies)
1801                 goto done;
1802
1803         first = i;
1804         fbio = r10_bio->devs[i].bio;
1805
1806         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1807         /* now find blocks with errors */
1808         for (i=0 ; i < conf->copies ; i++) {
1809                 int  j, d;
1810
1811                 tbio = r10_bio->devs[i].bio;
1812
1813                 if (tbio->bi_end_io != end_sync_read)
1814                         continue;
1815                 if (i == first)
1816                         continue;
1817                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1818                         /* We know that the bi_io_vec layout is the same for
1819                          * both 'first' and 'i', so we just compare them.
1820                          * All vec entries are PAGE_SIZE;
1821                          */
1822                         for (j = 0; j < vcnt; j++)
1823                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1824                                            page_address(tbio->bi_io_vec[j].bv_page),
1825                                            fbio->bi_io_vec[j].bv_len))
1826                                         break;
1827                         if (j == vcnt)
1828                                 continue;
1829                         mddev->resync_mismatches += r10_bio->sectors;
1830                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1831                                 /* Don't fix anything. */
1832                                 continue;
1833                 }
1834                 /* Ok, we need to write this bio, either to correct an
1835                  * inconsistency or to correct an unreadable block.
1836                  * First we need to fixup bv_offset, bv_len and
1837                  * bi_vecs, as the read request might have corrupted these
1838                  */
1839                 tbio->bi_vcnt = vcnt;
1840                 tbio->bi_size = r10_bio->sectors << 9;
1841                 tbio->bi_idx = 0;
1842                 tbio->bi_phys_segments = 0;
1843                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1844                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1845                 tbio->bi_next = NULL;
1846                 tbio->bi_rw = WRITE;
1847                 tbio->bi_private = r10_bio;
1848                 tbio->bi_sector = r10_bio->devs[i].addr;
1849
1850                 for (j=0; j < vcnt ; j++) {
1851                         tbio->bi_io_vec[j].bv_offset = 0;
1852                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1853
1854                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1855                                page_address(fbio->bi_io_vec[j].bv_page),
1856                                PAGE_SIZE);
1857                 }
1858                 tbio->bi_end_io = end_sync_write;
1859
1860                 d = r10_bio->devs[i].devnum;
1861                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1862                 atomic_inc(&r10_bio->remaining);
1863                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1864
1865                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1866                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1867                 generic_make_request(tbio);
1868         }
1869
1870         /* Now write out to any replacement devices
1871          * that are active
1872          */
1873         for (i = 0; i < conf->copies; i++) {
1874                 int j, d;
1875
1876                 tbio = r10_bio->devs[i].repl_bio;
1877                 if (!tbio || !tbio->bi_end_io)
1878                         continue;
1879                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1880                     && r10_bio->devs[i].bio != fbio)
1881                         for (j = 0; j < vcnt; j++)
1882                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1883                                        page_address(fbio->bi_io_vec[j].bv_page),
1884                                        PAGE_SIZE);
1885                 d = r10_bio->devs[i].devnum;
1886                 atomic_inc(&r10_bio->remaining);
1887                 md_sync_acct(conf->mirrors[d].replacement->bdev,
1888                              tbio->bi_size >> 9);
1889                 generic_make_request(tbio);
1890         }
1891
1892 done:
1893         if (atomic_dec_and_test(&r10_bio->remaining)) {
1894                 md_done_sync(mddev, r10_bio->sectors, 1);
1895                 put_buf(r10_bio);
1896         }
1897 }
1898
1899 /*
1900  * Now for the recovery code.
1901  * Recovery happens across physical sectors.
1902  * We recover all non-is_sync drives by finding the virtual address of
1903  * each, and then choose a working drive that also has that virt address.
1904  * There is a separate r10_bio for each non-in_sync drive.
1905  * Only the first two slots are in use. The first for reading,
1906  * The second for writing.
1907  *
1908  */
1909 static void fix_recovery_read_error(struct r10bio *r10_bio)
1910 {
1911         /* We got a read error during recovery.
1912          * We repeat the read in smaller page-sized sections.
1913          * If a read succeeds, write it to the new device or record
1914          * a bad block if we cannot.
1915          * If a read fails, record a bad block on both old and
1916          * new devices.
1917          */
1918         struct mddev *mddev = r10_bio->mddev;
1919         struct r10conf *conf = mddev->private;
1920         struct bio *bio = r10_bio->devs[0].bio;
1921         sector_t sect = 0;
1922         int sectors = r10_bio->sectors;
1923         int idx = 0;
1924         int dr = r10_bio->devs[0].devnum;
1925         int dw = r10_bio->devs[1].devnum;
1926
1927         while (sectors) {
1928                 int s = sectors;
1929                 struct md_rdev *rdev;
1930                 sector_t addr;
1931                 int ok;
1932
1933                 if (s > (PAGE_SIZE>>9))
1934                         s = PAGE_SIZE >> 9;
1935
1936                 rdev = conf->mirrors[dr].rdev;
1937                 addr = r10_bio->devs[0].addr + sect,
1938                 ok = sync_page_io(rdev,
1939                                   addr,
1940                                   s << 9,
1941                                   bio->bi_io_vec[idx].bv_page,
1942                                   READ, false);
1943                 if (ok) {
1944                         rdev = conf->mirrors[dw].rdev;
1945                         addr = r10_bio->devs[1].addr + sect;
1946                         ok = sync_page_io(rdev,
1947                                           addr,
1948                                           s << 9,
1949                                           bio->bi_io_vec[idx].bv_page,
1950                                           WRITE, false);
1951                         if (!ok) {
1952                                 set_bit(WriteErrorSeen, &rdev->flags);
1953                                 if (!test_and_set_bit(WantReplacement,
1954                                                       &rdev->flags))
1955                                         set_bit(MD_RECOVERY_NEEDED,
1956                                                 &rdev->mddev->recovery);
1957                         }
1958                 }
1959                 if (!ok) {
1960                         /* We don't worry if we cannot set a bad block -
1961                          * it really is bad so there is no loss in not
1962                          * recording it yet
1963                          */
1964                         rdev_set_badblocks(rdev, addr, s, 0);
1965
1966                         if (rdev != conf->mirrors[dw].rdev) {
1967                                 /* need bad block on destination too */
1968                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1969                                 addr = r10_bio->devs[1].addr + sect;
1970                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1971                                 if (!ok) {
1972                                         /* just abort the recovery */
1973                                         printk(KERN_NOTICE
1974                                                "md/raid10:%s: recovery aborted"
1975                                                " due to read error\n",
1976                                                mdname(mddev));
1977
1978                                         conf->mirrors[dw].recovery_disabled
1979                                                 = mddev->recovery_disabled;
1980                                         set_bit(MD_RECOVERY_INTR,
1981                                                 &mddev->recovery);
1982                                         break;
1983                                 }
1984                         }
1985                 }
1986
1987                 sectors -= s;
1988                 sect += s;
1989                 idx++;
1990         }
1991 }
1992
1993 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1994 {
1995         struct r10conf *conf = mddev->private;
1996         int d;
1997         struct bio *wbio, *wbio2;
1998
1999         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2000                 fix_recovery_read_error(r10_bio);
2001                 end_sync_request(r10_bio);
2002                 return;
2003         }
2004
2005         /*
2006          * share the pages with the first bio
2007          * and submit the write request
2008          */
2009         d = r10_bio->devs[1].devnum;
2010         wbio = r10_bio->devs[1].bio;
2011         wbio2 = r10_bio->devs[1].repl_bio;
2012         if (wbio->bi_end_io) {
2013                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2014                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2015                 generic_make_request(wbio);
2016         }
2017         if (wbio2 && wbio2->bi_end_io) {
2018                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2019                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2020                              wbio2->bi_size >> 9);
2021                 generic_make_request(wbio2);
2022         }
2023 }
2024
2025
2026 /*
2027  * Used by fix_read_error() to decay the per rdev read_errors.
2028  * We halve the read error count for every hour that has elapsed
2029  * since the last recorded read error.
2030  *
2031  */
2032 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2033 {
2034         struct timespec cur_time_mon;
2035         unsigned long hours_since_last;
2036         unsigned int read_errors = atomic_read(&rdev->read_errors);
2037
2038         ktime_get_ts(&cur_time_mon);
2039
2040         if (rdev->last_read_error.tv_sec == 0 &&
2041             rdev->last_read_error.tv_nsec == 0) {
2042                 /* first time we've seen a read error */
2043                 rdev->last_read_error = cur_time_mon;
2044                 return;
2045         }
2046
2047         hours_since_last = (cur_time_mon.tv_sec -
2048                             rdev->last_read_error.tv_sec) / 3600;
2049
2050         rdev->last_read_error = cur_time_mon;
2051
2052         /*
2053          * if hours_since_last is > the number of bits in read_errors
2054          * just set read errors to 0. We do this to avoid
2055          * overflowing the shift of read_errors by hours_since_last.
2056          */
2057         if (hours_since_last >= 8 * sizeof(read_errors))
2058                 atomic_set(&rdev->read_errors, 0);
2059         else
2060                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2061 }
2062
2063 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2064                             int sectors, struct page *page, int rw)
2065 {
2066         sector_t first_bad;
2067         int bad_sectors;
2068
2069         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2070             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2071                 return -1;
2072         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2073                 /* success */
2074                 return 1;
2075         if (rw == WRITE) {
2076                 set_bit(WriteErrorSeen, &rdev->flags);
2077                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2078                         set_bit(MD_RECOVERY_NEEDED,
2079                                 &rdev->mddev->recovery);
2080         }
2081         /* need to record an error - either for the block or the device */
2082         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2083                 md_error(rdev->mddev, rdev);
2084         return 0;
2085 }
2086
2087 /*
2088  * This is a kernel thread which:
2089  *
2090  *      1.      Retries failed read operations on working mirrors.
2091  *      2.      Updates the raid superblock when problems encounter.
2092  *      3.      Performs writes following reads for array synchronising.
2093  */
2094
2095 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2096 {
2097         int sect = 0; /* Offset from r10_bio->sector */
2098         int sectors = r10_bio->sectors;
2099         struct md_rdev*rdev;
2100         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2101         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2102
2103         /* still own a reference to this rdev, so it cannot
2104          * have been cleared recently.
2105          */
2106         rdev = conf->mirrors[d].rdev;
2107
2108         if (test_bit(Faulty, &rdev->flags))
2109                 /* drive has already been failed, just ignore any
2110                    more fix_read_error() attempts */
2111                 return;
2112
2113         check_decay_read_errors(mddev, rdev);
2114         atomic_inc(&rdev->read_errors);
2115         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2116                 char b[BDEVNAME_SIZE];
2117                 bdevname(rdev->bdev, b);
2118
2119                 printk(KERN_NOTICE
2120                        "md/raid10:%s: %s: Raid device exceeded "
2121                        "read_error threshold [cur %d:max %d]\n",
2122                        mdname(mddev), b,
2123                        atomic_read(&rdev->read_errors), max_read_errors);
2124                 printk(KERN_NOTICE
2125                        "md/raid10:%s: %s: Failing raid device\n",
2126                        mdname(mddev), b);
2127                 md_error(mddev, conf->mirrors[d].rdev);
2128                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2129                 return;
2130         }
2131
2132         while(sectors) {
2133                 int s = sectors;
2134                 int sl = r10_bio->read_slot;
2135                 int success = 0;
2136                 int start;
2137
2138                 if (s > (PAGE_SIZE>>9))
2139                         s = PAGE_SIZE >> 9;
2140
2141                 rcu_read_lock();
2142                 do {
2143                         sector_t first_bad;
2144                         int bad_sectors;
2145
2146                         d = r10_bio->devs[sl].devnum;
2147                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2148                         if (rdev &&
2149                             !test_bit(Unmerged, &rdev->flags) &&
2150                             test_bit(In_sync, &rdev->flags) &&
2151                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2152                                         &first_bad, &bad_sectors) == 0) {
2153                                 atomic_inc(&rdev->nr_pending);
2154                                 rcu_read_unlock();
2155                                 success = sync_page_io(rdev,
2156                                                        r10_bio->devs[sl].addr +
2157                                                        sect,
2158                                                        s<<9,
2159                                                        conf->tmppage, READ, false);
2160                                 rdev_dec_pending(rdev, mddev);
2161                                 rcu_read_lock();
2162                                 if (success)
2163                                         break;
2164                         }
2165                         sl++;
2166                         if (sl == conf->copies)
2167                                 sl = 0;
2168                 } while (!success && sl != r10_bio->read_slot);
2169                 rcu_read_unlock();
2170
2171                 if (!success) {
2172                         /* Cannot read from anywhere, just mark the block
2173                          * as bad on the first device to discourage future
2174                          * reads.
2175                          */
2176                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2177                         rdev = conf->mirrors[dn].rdev;
2178
2179                         if (!rdev_set_badblocks(
2180                                     rdev,
2181                                     r10_bio->devs[r10_bio->read_slot].addr
2182                                     + sect,
2183                                     s, 0)) {
2184                                 md_error(mddev, rdev);
2185                                 r10_bio->devs[r10_bio->read_slot].bio
2186                                         = IO_BLOCKED;
2187                         }
2188                         break;
2189                 }
2190
2191                 start = sl;
2192                 /* write it back and re-read */
2193                 rcu_read_lock();
2194                 while (sl != r10_bio->read_slot) {
2195                         char b[BDEVNAME_SIZE];
2196
2197                         if (sl==0)
2198                                 sl = conf->copies;
2199                         sl--;
2200                         d = r10_bio->devs[sl].devnum;
2201                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2202                         if (!rdev ||
2203                             test_bit(Unmerged, &rdev->flags) ||
2204                             !test_bit(In_sync, &rdev->flags))
2205                                 continue;
2206
2207                         atomic_inc(&rdev->nr_pending);
2208                         rcu_read_unlock();
2209                         if (r10_sync_page_io(rdev,
2210                                              r10_bio->devs[sl].addr +
2211                                              sect,
2212                                              s<<9, conf->tmppage, WRITE)
2213                             == 0) {
2214                                 /* Well, this device is dead */
2215                                 printk(KERN_NOTICE
2216                                        "md/raid10:%s: read correction "
2217                                        "write failed"
2218                                        " (%d sectors at %llu on %s)\n",
2219                                        mdname(mddev), s,
2220                                        (unsigned long long)(
2221                                                sect + rdev->data_offset),
2222                                        bdevname(rdev->bdev, b));
2223                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2224                                        "drive\n",
2225                                        mdname(mddev),
2226                                        bdevname(rdev->bdev, b));
2227                         }
2228                         rdev_dec_pending(rdev, mddev);
2229                         rcu_read_lock();
2230                 }
2231                 sl = start;
2232                 while (sl != r10_bio->read_slot) {
2233                         char b[BDEVNAME_SIZE];
2234
2235                         if (sl==0)
2236                                 sl = conf->copies;
2237                         sl--;
2238                         d = r10_bio->devs[sl].devnum;
2239                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2240                         if (!rdev ||
2241                             !test_bit(In_sync, &rdev->flags))
2242                                 continue;
2243
2244                         atomic_inc(&rdev->nr_pending);
2245                         rcu_read_unlock();
2246                         switch (r10_sync_page_io(rdev,
2247                                              r10_bio->devs[sl].addr +
2248                                              sect,
2249                                              s<<9, conf->tmppage,
2250                                                  READ)) {
2251                         case 0:
2252                                 /* Well, this device is dead */
2253                                 printk(KERN_NOTICE
2254                                        "md/raid10:%s: unable to read back "
2255                                        "corrected sectors"
2256                                        " (%d sectors at %llu on %s)\n",
2257                                        mdname(mddev), s,
2258                                        (unsigned long long)(
2259                                                sect + rdev->data_offset),
2260                                        bdevname(rdev->bdev, b));
2261                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2262                                        "drive\n",
2263                                        mdname(mddev),
2264                                        bdevname(rdev->bdev, b));
2265                                 break;
2266                         case 1:
2267                                 printk(KERN_INFO
2268                                        "md/raid10:%s: read error corrected"
2269                                        " (%d sectors at %llu on %s)\n",
2270                                        mdname(mddev), s,
2271                                        (unsigned long long)(
2272                                                sect + rdev->data_offset),
2273                                        bdevname(rdev->bdev, b));
2274                                 atomic_add(s, &rdev->corrected_errors);
2275                         }
2276
2277                         rdev_dec_pending(rdev, mddev);
2278                         rcu_read_lock();
2279                 }
2280                 rcu_read_unlock();
2281
2282                 sectors -= s;
2283                 sect += s;
2284         }
2285 }
2286
2287 static void bi_complete(struct bio *bio, int error)
2288 {
2289         complete((struct completion *)bio->bi_private);
2290 }
2291
2292 static int submit_bio_wait(int rw, struct bio *bio)
2293 {
2294         struct completion event;
2295         rw |= REQ_SYNC;
2296
2297         init_completion(&event);
2298         bio->bi_private = &event;
2299         bio->bi_end_io = bi_complete;
2300         submit_bio(rw, bio);
2301         wait_for_completion(&event);
2302
2303         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2304 }
2305
2306 static int narrow_write_error(struct r10bio *r10_bio, int i)
2307 {
2308         struct bio *bio = r10_bio->master_bio;
2309         struct mddev *mddev = r10_bio->mddev;
2310         struct r10conf *conf = mddev->private;
2311         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2312         /* bio has the data to be written to slot 'i' where
2313          * we just recently had a write error.
2314          * We repeatedly clone the bio and trim down to one block,
2315          * then try the write.  Where the write fails we record
2316          * a bad block.
2317          * It is conceivable that the bio doesn't exactly align with
2318          * blocks.  We must handle this.
2319          *
2320          * We currently own a reference to the rdev.
2321          */
2322
2323         int block_sectors;
2324         sector_t sector;
2325         int sectors;
2326         int sect_to_write = r10_bio->sectors;
2327         int ok = 1;
2328
2329         if (rdev->badblocks.shift < 0)
2330                 return 0;
2331
2332         block_sectors = 1 << rdev->badblocks.shift;
2333         sector = r10_bio->sector;
2334         sectors = ((r10_bio->sector + block_sectors)
2335                    & ~(sector_t)(block_sectors - 1))
2336                 - sector;
2337
2338         while (sect_to_write) {
2339                 struct bio *wbio;
2340                 if (sectors > sect_to_write)
2341                         sectors = sect_to_write;
2342                 /* Write at 'sector' for 'sectors' */
2343                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2344                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2345                 wbio->bi_sector = (r10_bio->devs[i].addr+
2346                                    rdev->data_offset+
2347                                    (sector - r10_bio->sector));
2348                 wbio->bi_bdev = rdev->bdev;
2349                 if (submit_bio_wait(WRITE, wbio) == 0)
2350                         /* Failure! */
2351                         ok = rdev_set_badblocks(rdev, sector,
2352                                                 sectors, 0)
2353                                 && ok;
2354
2355                 bio_put(wbio);
2356                 sect_to_write -= sectors;
2357                 sector += sectors;
2358                 sectors = block_sectors;
2359         }
2360         return ok;
2361 }
2362
2363 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365         int slot = r10_bio->read_slot;
2366         struct bio *bio;
2367         struct r10conf *conf = mddev->private;
2368         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2369         char b[BDEVNAME_SIZE];
2370         unsigned long do_sync;
2371         int max_sectors;
2372
2373         /* we got a read error. Maybe the drive is bad.  Maybe just
2374          * the block and we can fix it.
2375          * We freeze all other IO, and try reading the block from
2376          * other devices.  When we find one, we re-write
2377          * and check it that fixes the read error.
2378          * This is all done synchronously while the array is
2379          * frozen.
2380          */
2381         bio = r10_bio->devs[slot].bio;
2382         bdevname(bio->bi_bdev, b);
2383         bio_put(bio);
2384         r10_bio->devs[slot].bio = NULL;
2385
2386         if (mddev->ro == 0) {
2387                 freeze_array(conf);
2388                 fix_read_error(conf, mddev, r10_bio);
2389                 unfreeze_array(conf);
2390         } else
2391                 r10_bio->devs[slot].bio = IO_BLOCKED;
2392
2393         rdev_dec_pending(rdev, mddev);
2394
2395 read_more:
2396         rdev = read_balance(conf, r10_bio, &max_sectors);
2397         if (rdev == NULL) {
2398                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2399                        " read error for block %llu\n",
2400                        mdname(mddev), b,
2401                        (unsigned long long)r10_bio->sector);
2402                 raid_end_bio_io(r10_bio);
2403                 return;
2404         }
2405
2406         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2407         slot = r10_bio->read_slot;
2408         printk_ratelimited(
2409                 KERN_ERR
2410                 "md/raid10:%s: %s: redirecting"
2411                 "sector %llu to another mirror\n",
2412                 mdname(mddev),
2413                 bdevname(rdev->bdev, b),
2414                 (unsigned long long)r10_bio->sector);
2415         bio = bio_clone_mddev(r10_bio->master_bio,
2416                               GFP_NOIO, mddev);
2417         md_trim_bio(bio,
2418                     r10_bio->sector - bio->bi_sector,
2419                     max_sectors);
2420         r10_bio->devs[slot].bio = bio;
2421         r10_bio->devs[slot].rdev = rdev;
2422         bio->bi_sector = r10_bio->devs[slot].addr
2423                 + rdev->data_offset;
2424         bio->bi_bdev = rdev->bdev;
2425         bio->bi_rw = READ | do_sync;
2426         bio->bi_private = r10_bio;
2427         bio->bi_end_io = raid10_end_read_request;
2428         if (max_sectors < r10_bio->sectors) {
2429                 /* Drat - have to split this up more */
2430                 struct bio *mbio = r10_bio->master_bio;
2431                 int sectors_handled =
2432                         r10_bio->sector + max_sectors
2433                         - mbio->bi_sector;
2434                 r10_bio->sectors = max_sectors;
2435                 spin_lock_irq(&conf->device_lock);
2436                 if (mbio->bi_phys_segments == 0)
2437                         mbio->bi_phys_segments = 2;
2438                 else
2439                         mbio->bi_phys_segments++;
2440                 spin_unlock_irq(&conf->device_lock);
2441                 generic_make_request(bio);
2442
2443                 r10_bio = mempool_alloc(conf->r10bio_pool,
2444                                         GFP_NOIO);
2445                 r10_bio->master_bio = mbio;
2446                 r10_bio->sectors = (mbio->bi_size >> 9)
2447                         - sectors_handled;
2448                 r10_bio->state = 0;
2449                 set_bit(R10BIO_ReadError,
2450                         &r10_bio->state);
2451                 r10_bio->mddev = mddev;
2452                 r10_bio->sector = mbio->bi_sector
2453                         + sectors_handled;
2454
2455                 goto read_more;
2456         } else
2457                 generic_make_request(bio);
2458 }
2459
2460 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2461 {
2462         /* Some sort of write request has finished and it
2463          * succeeded in writing where we thought there was a
2464          * bad block.  So forget the bad block.
2465          * Or possibly if failed and we need to record
2466          * a bad block.
2467          */
2468         int m;
2469         struct md_rdev *rdev;
2470
2471         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2472             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2473                 for (m = 0; m < conf->copies; m++) {
2474                         int dev = r10_bio->devs[m].devnum;
2475                         rdev = conf->mirrors[dev].rdev;
2476                         if (r10_bio->devs[m].bio == NULL)
2477                                 continue;
2478                         if (test_bit(BIO_UPTODATE,
2479                                      &r10_bio->devs[m].bio->bi_flags)) {
2480                                 rdev_clear_badblocks(
2481                                         rdev,
2482                                         r10_bio->devs[m].addr,
2483                                         r10_bio->sectors);
2484                         } else {
2485                                 if (!rdev_set_badblocks(
2486                                             rdev,
2487                                             r10_bio->devs[m].addr,
2488                                             r10_bio->sectors, 0))
2489                                         md_error(conf->mddev, rdev);
2490                         }
2491                         rdev = conf->mirrors[dev].replacement;
2492                         if (r10_bio->devs[m].repl_bio == NULL)
2493                                 continue;
2494                         if (test_bit(BIO_UPTODATE,
2495                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2496                                 rdev_clear_badblocks(
2497                                         rdev,
2498                                         r10_bio->devs[m].addr,
2499                                         r10_bio->sectors);
2500                         } else {
2501                                 if (!rdev_set_badblocks(
2502                                             rdev,
2503                                             r10_bio->devs[m].addr,
2504                                             r10_bio->sectors, 0))
2505                                         md_error(conf->mddev, rdev);
2506                         }
2507                 }
2508                 put_buf(r10_bio);
2509         } else {
2510                 for (m = 0; m < conf->copies; m++) {
2511                         int dev = r10_bio->devs[m].devnum;
2512                         struct bio *bio = r10_bio->devs[m].bio;
2513                         rdev = conf->mirrors[dev].rdev;
2514                         if (bio == IO_MADE_GOOD) {
2515                                 rdev_clear_badblocks(
2516                                         rdev,
2517                                         r10_bio->devs[m].addr,
2518                                         r10_bio->sectors);
2519                                 rdev_dec_pending(rdev, conf->mddev);
2520                         } else if (bio != NULL &&
2521                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2522                                 if (!narrow_write_error(r10_bio, m)) {
2523                                         md_error(conf->mddev, rdev);
2524                                         set_bit(R10BIO_Degraded,
2525                                                 &r10_bio->state);
2526                                 }
2527                                 rdev_dec_pending(rdev, conf->mddev);
2528                         }
2529                         bio = r10_bio->devs[m].repl_bio;
2530                         rdev = conf->mirrors[dev].replacement;
2531                         if (rdev && bio == IO_MADE_GOOD) {
2532                                 rdev_clear_badblocks(
2533                                         rdev,
2534                                         r10_bio->devs[m].addr,
2535                                         r10_bio->sectors);
2536                                 rdev_dec_pending(rdev, conf->mddev);
2537                         }
2538                 }
2539                 if (test_bit(R10BIO_WriteError,
2540                              &r10_bio->state))
2541                         close_write(r10_bio);
2542                 raid_end_bio_io(r10_bio);
2543         }
2544 }
2545
2546 static void raid10d(struct mddev *mddev)
2547 {
2548         struct r10bio *r10_bio;
2549         unsigned long flags;
2550         struct r10conf *conf = mddev->private;
2551         struct list_head *head = &conf->retry_list;
2552         struct blk_plug plug;
2553
2554         md_check_recovery(mddev);
2555
2556         blk_start_plug(&plug);
2557         for (;;) {
2558
2559                 flush_pending_writes(conf);
2560
2561                 spin_lock_irqsave(&conf->device_lock, flags);
2562                 if (list_empty(head)) {
2563                         spin_unlock_irqrestore(&conf->device_lock, flags);
2564                         break;
2565                 }
2566                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2567                 list_del(head->prev);
2568                 conf->nr_queued--;
2569                 spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571                 mddev = r10_bio->mddev;
2572                 conf = mddev->private;
2573                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2574                     test_bit(R10BIO_WriteError, &r10_bio->state))
2575                         handle_write_completed(conf, r10_bio);
2576                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2577                         sync_request_write(mddev, r10_bio);
2578                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2579                         recovery_request_write(mddev, r10_bio);
2580                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2581                         handle_read_error(mddev, r10_bio);
2582                 else {
2583                         /* just a partial read to be scheduled from a
2584                          * separate context
2585                          */
2586                         int slot = r10_bio->read_slot;
2587                         generic_make_request(r10_bio->devs[slot].bio);
2588                 }
2589
2590                 cond_resched();
2591                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2592                         md_check_recovery(mddev);
2593         }
2594         blk_finish_plug(&plug);
2595 }
2596
2597
2598 static int init_resync(struct r10conf *conf)
2599 {
2600         int buffs;
2601         int i;
2602
2603         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2604         BUG_ON(conf->r10buf_pool);
2605         conf->have_replacement = 0;
2606         for (i = 0; i < conf->raid_disks; i++)
2607                 if (conf->mirrors[i].replacement)
2608                         conf->have_replacement = 1;
2609         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2610         if (!conf->r10buf_pool)
2611                 return -ENOMEM;
2612         conf->next_resync = 0;
2613         return 0;
2614 }
2615
2616 /*
2617  * perform a "sync" on one "block"
2618  *
2619  * We need to make sure that no normal I/O request - particularly write
2620  * requests - conflict with active sync requests.
2621  *
2622  * This is achieved by tracking pending requests and a 'barrier' concept
2623  * that can be installed to exclude normal IO requests.
2624  *
2625  * Resync and recovery are handled very differently.
2626  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2627  *
2628  * For resync, we iterate over virtual addresses, read all copies,
2629  * and update if there are differences.  If only one copy is live,
2630  * skip it.
2631  * For recovery, we iterate over physical addresses, read a good
2632  * value for each non-in_sync drive, and over-write.
2633  *
2634  * So, for recovery we may have several outstanding complex requests for a
2635  * given address, one for each out-of-sync device.  We model this by allocating
2636  * a number of r10_bio structures, one for each out-of-sync device.
2637  * As we setup these structures, we collect all bio's together into a list
2638  * which we then process collectively to add pages, and then process again
2639  * to pass to generic_make_request.
2640  *
2641  * The r10_bio structures are linked using a borrowed master_bio pointer.
2642  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2643  * has its remaining count decremented to 0, the whole complex operation
2644  * is complete.
2645  *
2646  */
2647
2648 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2649                              int *skipped, int go_faster)
2650 {
2651         struct r10conf *conf = mddev->private;
2652         struct r10bio *r10_bio;
2653         struct bio *biolist = NULL, *bio;
2654         sector_t max_sector, nr_sectors;
2655         int i;
2656         int max_sync;
2657         sector_t sync_blocks;
2658         sector_t sectors_skipped = 0;
2659         int chunks_skipped = 0;
2660
2661         if (!conf->r10buf_pool)
2662                 if (init_resync(conf))
2663                         return 0;
2664
2665  skipped:
2666         max_sector = mddev->dev_sectors;
2667         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2668                 max_sector = mddev->resync_max_sectors;
2669         if (sector_nr >= max_sector) {
2670                 /* If we aborted, we need to abort the
2671                  * sync on the 'current' bitmap chucks (there can
2672                  * be several when recovering multiple devices).
2673                  * as we may have started syncing it but not finished.
2674                  * We can find the current address in
2675                  * mddev->curr_resync, but for recovery,
2676                  * we need to convert that to several
2677                  * virtual addresses.
2678                  */
2679                 if (mddev->curr_resync < max_sector) { /* aborted */
2680                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2681                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2682                                                 &sync_blocks, 1);
2683                         else for (i=0; i<conf->raid_disks; i++) {
2684                                 sector_t sect =
2685                                         raid10_find_virt(conf, mddev->curr_resync, i);
2686                                 bitmap_end_sync(mddev->bitmap, sect,
2687                                                 &sync_blocks, 1);
2688                         }
2689                 } else {
2690                         /* completed sync */
2691                         if ((!mddev->bitmap || conf->fullsync)
2692                             && conf->have_replacement
2693                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2694                                 /* Completed a full sync so the replacements
2695                                  * are now fully recovered.
2696                                  */
2697                                 for (i = 0; i < conf->raid_disks; i++)
2698                                         if (conf->mirrors[i].replacement)
2699                                                 conf->mirrors[i].replacement
2700                                                         ->recovery_offset
2701                                                         = MaxSector;
2702                         }
2703                         conf->fullsync = 0;
2704                 }
2705                 bitmap_close_sync(mddev->bitmap);
2706                 close_sync(conf);
2707                 *skipped = 1;
2708                 return sectors_skipped;
2709         }
2710         if (chunks_skipped >= conf->raid_disks) {
2711                 /* if there has been nothing to do on any drive,
2712                  * then there is nothing to do at all..
2713                  */
2714                 *skipped = 1;
2715                 return (max_sector - sector_nr) + sectors_skipped;
2716         }
2717
2718         if (max_sector > mddev->resync_max)
2719                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2720
2721         /* make sure whole request will fit in a chunk - if chunks
2722          * are meaningful
2723          */
2724         if (conf->near_copies < conf->raid_disks &&
2725             max_sector > (sector_nr | conf->chunk_mask))
2726                 max_sector = (sector_nr | conf->chunk_mask) + 1;
2727         /*
2728          * If there is non-resync activity waiting for us then
2729          * put in a delay to throttle resync.
2730          */
2731         if (!go_faster && conf->nr_waiting)
2732                 msleep_interruptible(1000);
2733
2734         /* Again, very different code for resync and recovery.
2735          * Both must result in an r10bio with a list of bios that
2736          * have bi_end_io, bi_sector, bi_bdev set,
2737          * and bi_private set to the r10bio.
2738          * For recovery, we may actually create several r10bios
2739          * with 2 bios in each, that correspond to the bios in the main one.
2740          * In this case, the subordinate r10bios link back through a
2741          * borrowed master_bio pointer, and the counter in the master
2742          * includes a ref from each subordinate.
2743          */
2744         /* First, we decide what to do and set ->bi_end_io
2745          * To end_sync_read if we want to read, and
2746          * end_sync_write if we will want to write.
2747          */
2748
2749         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2750         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2751                 /* recovery... the complicated one */
2752                 int j;
2753                 r10_bio = NULL;
2754
2755                 for (i=0 ; i<conf->raid_disks; i++) {
2756                         int still_degraded;
2757                         struct r10bio *rb2;
2758                         sector_t sect;
2759                         int must_sync;
2760                         int any_working;
2761                         struct mirror_info *mirror = &conf->mirrors[i];
2762
2763                         if ((mirror->rdev == NULL ||
2764                              test_bit(In_sync, &mirror->rdev->flags))
2765                             &&
2766                             (mirror->replacement == NULL ||
2767                              test_bit(Faulty,
2768                                       &mirror->replacement->flags)))
2769                                 continue;
2770
2771                         still_degraded = 0;
2772                         /* want to reconstruct this device */
2773                         rb2 = r10_bio;
2774                         sect = raid10_find_virt(conf, sector_nr, i);
2775                         /* Unless we are doing a full sync, or a replacement
2776                          * we only need to recover the block if it is set in
2777                          * the bitmap
2778                          */
2779                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2780                                                       &sync_blocks, 1);
2781                         if (sync_blocks < max_sync)
2782                                 max_sync = sync_blocks;
2783                         if (!must_sync &&
2784                             mirror->replacement == NULL &&
2785                             !conf->fullsync) {
2786                                 /* yep, skip the sync_blocks here, but don't assume
2787                                  * that there will never be anything to do here
2788                                  */
2789                                 chunks_skipped = -1;
2790                                 continue;
2791                         }
2792
2793                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2794                         raise_barrier(conf, rb2 != NULL);
2795                         atomic_set(&r10_bio->remaining, 0);
2796
2797                         r10_bio->master_bio = (struct bio*)rb2;
2798                         if (rb2)
2799                                 atomic_inc(&rb2->remaining);
2800                         r10_bio->mddev = mddev;
2801                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2802                         r10_bio->sector = sect;
2803
2804                         raid10_find_phys(conf, r10_bio);
2805
2806                         /* Need to check if the array will still be
2807                          * degraded
2808                          */
2809                         for (j=0; j<conf->raid_disks; j++)
2810                                 if (conf->mirrors[j].rdev == NULL ||
2811                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2812                                         still_degraded = 1;
2813                                         break;
2814                                 }
2815
2816                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2817                                                       &sync_blocks, still_degraded);
2818
2819                         any_working = 0;
2820                         for (j=0; j<conf->copies;j++) {
2821                                 int k;
2822                                 int d = r10_bio->devs[j].devnum;
2823                                 sector_t from_addr, to_addr;
2824                                 struct md_rdev *rdev;
2825                                 sector_t sector, first_bad;
2826                                 int bad_sectors;
2827                                 if (!conf->mirrors[d].rdev ||
2828                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2829                                         continue;
2830                                 /* This is where we read from */
2831                                 any_working = 1;
2832                                 rdev = conf->mirrors[d].rdev;
2833                                 sector = r10_bio->devs[j].addr;
2834
2835                                 if (is_badblock(rdev, sector, max_sync,
2836                                                 &first_bad, &bad_sectors)) {
2837                                         if (first_bad > sector)
2838                                                 max_sync = first_bad - sector;
2839                                         else {
2840                                                 bad_sectors -= (sector
2841                                                                 - first_bad);
2842                                                 if (max_sync > bad_sectors)
2843                                                         max_sync = bad_sectors;
2844                                                 continue;
2845                                         }
2846                                 }
2847                                 bio = r10_bio->devs[0].bio;
2848                                 bio->bi_next = biolist;
2849                                 biolist = bio;
2850                                 bio->bi_private = r10_bio;
2851                                 bio->bi_end_io = end_sync_read;
2852                                 bio->bi_rw = READ;
2853                                 from_addr = r10_bio->devs[j].addr;
2854                                 bio->bi_sector = from_addr + rdev->data_offset;
2855                                 bio->bi_bdev = rdev->bdev;
2856                                 atomic_inc(&rdev->nr_pending);
2857                                 /* and we write to 'i' (if not in_sync) */
2858
2859                                 for (k=0; k<conf->copies; k++)
2860                                         if (r10_bio->devs[k].devnum == i)
2861                                                 break;
2862                                 BUG_ON(k == conf->copies);
2863                                 to_addr = r10_bio->devs[k].addr;
2864                                 r10_bio->devs[0].devnum = d;
2865                                 r10_bio->devs[0].addr = from_addr;
2866                                 r10_bio->devs[1].devnum = i;
2867                                 r10_bio->devs[1].addr = to_addr;
2868
2869                                 rdev = mirror->rdev;
2870                                 if (!test_bit(In_sync, &rdev->flags)) {
2871                                         bio = r10_bio->devs[1].bio;
2872                                         bio->bi_next = biolist;
2873                                         biolist = bio;
2874                                         bio->bi_private = r10_bio;
2875                                         bio->bi_end_io = end_sync_write;
2876                                         bio->bi_rw = WRITE;
2877                                         bio->bi_sector = to_addr
2878                                                 + rdev->data_offset;
2879                                         bio->bi_bdev = rdev->bdev;
2880                                         atomic_inc(&r10_bio->remaining);
2881                                 } else
2882                                         r10_bio->devs[1].bio->bi_end_io = NULL;
2883
2884                                 /* and maybe write to replacement */
2885                                 bio = r10_bio->devs[1].repl_bio;
2886                                 if (bio)
2887                                         bio->bi_end_io = NULL;
2888                                 rdev = mirror->replacement;
2889                                 /* Note: if rdev != NULL, then bio
2890                                  * cannot be NULL as r10buf_pool_alloc will
2891                                  * have allocated it.
2892                                  * So the second test here is pointless.
2893                                  * But it keeps semantic-checkers happy, and
2894                                  * this comment keeps human reviewers
2895                                  * happy.
2896                                  */
2897                                 if (rdev == NULL || bio == NULL ||
2898                                     test_bit(Faulty, &rdev->flags))
2899                                         break;
2900                                 bio->bi_next = biolist;
2901                                 biolist = bio;
2902                                 bio->bi_private = r10_bio;
2903                                 bio->bi_end_io = end_sync_write;
2904                                 bio->bi_rw = WRITE;
2905                                 bio->bi_sector = to_addr + rdev->data_offset;
2906                                 bio->bi_bdev = rdev->bdev;
2907                                 atomic_inc(&r10_bio->remaining);
2908                                 break;
2909                         }
2910                         if (j == conf->copies) {
2911                                 /* Cannot recover, so abort the recovery or
2912                                  * record a bad block */
2913                                 put_buf(r10_bio);
2914                                 if (rb2)
2915                                         atomic_dec(&rb2->remaining);
2916                                 r10_bio = rb2;
2917                                 if (any_working) {
2918                                         /* problem is that there are bad blocks
2919                                          * on other device(s)
2920                                          */
2921                                         int k;
2922                                         for (k = 0; k < conf->copies; k++)
2923                                                 if (r10_bio->devs[k].devnum == i)
2924                                                         break;
2925                                         if (!test_bit(In_sync,
2926                                                       &mirror->rdev->flags)
2927                                             && !rdev_set_badblocks(
2928                                                     mirror->rdev,
2929                                                     r10_bio->devs[k].addr,
2930                                                     max_sync, 0))
2931                                                 any_working = 0;
2932                                         if (mirror->replacement &&
2933                                             !rdev_set_badblocks(
2934                                                     mirror->replacement,
2935                                                     r10_bio->devs[k].addr,
2936                                                     max_sync, 0))
2937                                                 any_working = 0;
2938                                 }
2939                                 if (!any_working)  {
2940                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
2941                                                               &mddev->recovery))
2942                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
2943                                                        "working devices for recovery.\n",
2944                                                        mdname(mddev));
2945                                         mirror->recovery_disabled
2946                                                 = mddev->recovery_disabled;
2947                                 }
2948                                 break;
2949                         }
2950                 }
2951                 if (biolist == NULL) {
2952                         while (r10_bio) {
2953                                 struct r10bio *rb2 = r10_bio;
2954                                 r10_bio = (struct r10bio*) rb2->master_bio;
2955                                 rb2->master_bio = NULL;
2956                                 put_buf(rb2);
2957                         }
2958                         goto giveup;
2959                 }
2960         } else {
2961                 /* resync. Schedule a read for every block at this virt offset */
2962                 int count = 0;
2963
2964                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2965
2966                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2967                                        &sync_blocks, mddev->degraded) &&
2968                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2969                                                  &mddev->recovery)) {
2970                         /* We can skip this block */
2971                         *skipped = 1;
2972                         return sync_blocks + sectors_skipped;
2973                 }
2974                 if (sync_blocks < max_sync)
2975                         max_sync = sync_blocks;
2976                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2977
2978                 r10_bio->mddev = mddev;
2979                 atomic_set(&r10_bio->remaining, 0);
2980                 raise_barrier(conf, 0);
2981                 conf->next_resync = sector_nr;
2982
2983                 r10_bio->master_bio = NULL;
2984                 r10_bio->sector = sector_nr;
2985                 set_bit(R10BIO_IsSync, &r10_bio->state);
2986                 raid10_find_phys(conf, r10_bio);
2987                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2988
2989                 for (i=0; i<conf->copies; i++) {
2990                         int d = r10_bio->devs[i].devnum;
2991                         sector_t first_bad, sector;
2992                         int bad_sectors;
2993
2994                         if (r10_bio->devs[i].repl_bio)
2995                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2996
2997                         bio = r10_bio->devs[i].bio;
2998                         bio->bi_end_io = NULL;
2999                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3000                         if (conf->mirrors[d].rdev == NULL ||
3001                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3002                                 continue;
3003                         sector = r10_bio->devs[i].addr;
3004                         if (is_badblock(conf->mirrors[d].rdev,
3005                                         sector, max_sync,
3006                                         &first_bad, &bad_sectors)) {
3007                                 if (first_bad > sector)
3008                                         max_sync = first_bad - sector;
3009                                 else {
3010                                         bad_sectors -= (sector - first_bad);
3011                                         if (max_sync > bad_sectors)
3012                                                 max_sync = max_sync;
3013                                         continue;
3014                                 }
3015                         }
3016                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3017                         atomic_inc(&r10_bio->remaining);
3018                         bio->bi_next = biolist;
3019                         biolist = bio;
3020                         bio->bi_private = r10_bio;
3021                         bio->bi_end_io = end_sync_read;
3022                         bio->bi_rw = READ;
3023                         bio->bi_sector = sector +
3024                                 conf->mirrors[d].rdev->data_offset;
3025                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3026                         count++;
3027
3028                         if (conf->mirrors[d].replacement == NULL ||
3029                             test_bit(Faulty,
3030                                      &conf->mirrors[d].replacement->flags))
3031                                 continue;
3032
3033                         /* Need to set up for writing to the replacement */
3034                         bio = r10_bio->devs[i].repl_bio;
3035                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3036
3037                         sector = r10_bio->devs[i].addr;
3038                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3039                         bio->bi_next = biolist;
3040                         biolist = bio;
3041                         bio->bi_private = r10_bio;
3042                         bio->bi_end_io = end_sync_write;
3043                         bio->bi_rw = WRITE;
3044                         bio->bi_sector = sector +
3045                                 conf->mirrors[d].replacement->data_offset;
3046                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3047                         count++;
3048                 }
3049
3050                 if (count < 2) {
3051                         for (i=0; i<conf->copies; i++) {
3052                                 int d = r10_bio->devs[i].devnum;
3053                                 if (r10_bio->devs[i].bio->bi_end_io)
3054                                         rdev_dec_pending(conf->mirrors[d].rdev,
3055                                                          mddev);
3056                                 if (r10_bio->devs[i].repl_bio &&
3057                                     r10_bio->devs[i].repl_bio->bi_end_io)
3058                                         rdev_dec_pending(
3059                                                 conf->mirrors[d].replacement,
3060                                                 mddev);
3061                         }
3062                         put_buf(r10_bio);
3063                         biolist = NULL;
3064                         goto giveup;
3065                 }
3066         }
3067
3068         for (bio = biolist; bio ; bio=bio->bi_next) {
3069
3070                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3071                 if (bio->bi_end_io)
3072                         bio->bi_flags |= 1 << BIO_UPTODATE;
3073                 bio->bi_vcnt = 0;
3074                 bio->bi_idx = 0;
3075                 bio->bi_phys_segments = 0;
3076                 bio->bi_size = 0;
3077         }
3078
3079         nr_sectors = 0;
3080         if (sector_nr + max_sync < max_sector)
3081                 max_sector = sector_nr + max_sync;
3082         do {
3083                 struct page *page;
3084                 int len = PAGE_SIZE;
3085                 if (sector_nr + (len>>9) > max_sector)
3086                         len = (max_sector - sector_nr) << 9;
3087                 if (len == 0)
3088                         break;
3089                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3090                         struct bio *bio2;
3091                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3092                         if (bio_add_page(bio, page, len, 0))
3093                                 continue;
3094
3095                         /* stop here */
3096                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3097                         for (bio2 = biolist;
3098                              bio2 && bio2 != bio;
3099                              bio2 = bio2->bi_next) {
3100                                 /* remove last page from this bio */
3101                                 bio2->bi_vcnt--;
3102                                 bio2->bi_size -= len;
3103                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3104                         }
3105                         goto bio_full;
3106                 }
3107                 nr_sectors += len>>9;
3108                 sector_nr += len>>9;
3109         } while (biolist->bi_vcnt < RESYNC_PAGES);
3110  bio_full:
3111         r10_bio->sectors = nr_sectors;
3112
3113         while (biolist) {
3114                 bio = biolist;
3115                 biolist = biolist->bi_next;
3116
3117                 bio->bi_next = NULL;
3118                 r10_bio = bio->bi_private;
3119                 r10_bio->sectors = nr_sectors;
3120
3121                 if (bio->bi_end_io == end_sync_read) {
3122                         md_sync_acct(bio->bi_bdev, nr_sectors);
3123                         generic_make_request(bio);
3124                 }
3125         }
3126
3127         if (sectors_skipped)
3128                 /* pretend they weren't skipped, it makes
3129                  * no important difference in this case
3130                  */
3131                 md_done_sync(mddev, sectors_skipped, 1);
3132
3133         return sectors_skipped + nr_sectors;
3134  giveup:
3135         /* There is nowhere to write, so all non-sync
3136          * drives must be failed or in resync, all drives
3137          * have a bad block, so try the next chunk...
3138          */
3139         if (sector_nr + max_sync < max_sector)
3140                 max_sector = sector_nr + max_sync;
3141
3142         sectors_skipped += (max_sector - sector_nr);
3143         chunks_skipped ++;
3144         sector_nr = max_sector;
3145         goto skipped;
3146 }
3147
3148 static sector_t
3149 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3150 {
3151         sector_t size;
3152         struct r10conf *conf = mddev->private;
3153
3154         if (!raid_disks)
3155                 raid_disks = conf->raid_disks;
3156         if (!sectors)
3157                 sectors = conf->dev_sectors;
3158
3159         size = sectors >> conf->chunk_shift;
3160         sector_div(size, conf->far_copies);
3161         size = size * raid_disks;
3162         sector_div(size, conf->near_copies);
3163
3164         return size << conf->chunk_shift;
3165 }
3166
3167 static void calc_sectors(struct r10conf *conf, sector_t size)
3168 {
3169         /* Calculate the number of sectors-per-device that will
3170          * actually be used, and set conf->dev_sectors and
3171          * conf->stride
3172          */
3173
3174         size = size >> conf->chunk_shift;
3175         sector_div(size, conf->far_copies);
3176         size = size * conf->raid_disks;
3177         sector_div(size, conf->near_copies);
3178         /* 'size' is now the number of chunks in the array */
3179         /* calculate "used chunks per device" */
3180         size = size * conf->copies;
3181
3182         /* We need to round up when dividing by raid_disks to
3183          * get the stride size.
3184          */
3185         size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks);
3186
3187         conf->dev_sectors = size << conf->chunk_shift;
3188
3189         if (conf->far_offset)
3190                 conf->stride = 1 << conf->chunk_shift;
3191         else {
3192                 sector_div(size, conf->near_copies);
3193                 conf->stride = size << conf->chunk_shift;
3194         }
3195 }
3196
3197 static struct r10conf *setup_conf(struct mddev *mddev)
3198 {
3199         struct r10conf *conf = NULL;
3200         int nc, fc, fo;
3201         int err = -EINVAL;
3202
3203         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3204             !is_power_of_2(mddev->new_chunk_sectors)) {
3205                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3206                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3207                        mdname(mddev), PAGE_SIZE);
3208                 goto out;
3209         }
3210
3211         nc = mddev->new_layout & 255;
3212         fc = (mddev->new_layout >> 8) & 255;
3213         fo = mddev->new_layout & (1<<16);
3214
3215         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3216             (mddev->new_layout >> 17)) {
3217                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3218                        mdname(mddev), mddev->new_layout);
3219                 goto out;
3220         }
3221
3222         err = -ENOMEM;
3223         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3224         if (!conf)
3225                 goto out;
3226
3227         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3228                                 GFP_KERNEL);
3229         if (!conf->mirrors)
3230                 goto out;
3231
3232         conf->tmppage = alloc_page(GFP_KERNEL);
3233         if (!conf->tmppage)
3234                 goto out;
3235
3236
3237         conf->raid_disks = mddev->raid_disks;
3238         conf->near_copies = nc;
3239         conf->far_copies = fc;
3240         conf->copies = nc*fc;
3241         conf->far_offset = fo;
3242         conf->chunk_mask = mddev->new_chunk_sectors - 1;
3243         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3244
3245         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3246                                            r10bio_pool_free, conf);
3247         if (!conf->r10bio_pool)
3248                 goto out;
3249
3250         calc_sectors(conf, mddev->dev_sectors);
3251
3252         spin_lock_init(&conf->device_lock);
3253         INIT_LIST_HEAD(&conf->retry_list);
3254
3255         spin_lock_init(&conf->resync_lock);
3256         init_waitqueue_head(&conf->wait_barrier);
3257
3258         conf->thread = md_register_thread(raid10d, mddev, NULL);
3259         if (!conf->thread)
3260                 goto out;
3261
3262         conf->mddev = mddev;
3263         return conf;
3264
3265  out:
3266         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3267                mdname(mddev));
3268         if (conf) {
3269                 if (conf->r10bio_pool)
3270                         mempool_destroy(conf->r10bio_pool);
3271                 kfree(conf->mirrors);
3272                 safe_put_page(conf->tmppage);
3273                 kfree(conf);
3274         }
3275         return ERR_PTR(err);
3276 }
3277
3278 static int run(struct mddev *mddev)
3279 {
3280         struct r10conf *conf;
3281         int i, disk_idx, chunk_size;
3282         struct mirror_info *disk;
3283         struct md_rdev *rdev;
3284         sector_t size;
3285
3286         /*
3287          * copy the already verified devices into our private RAID10
3288          * bookkeeping area. [whatever we allocate in run(),
3289          * should be freed in stop()]
3290          */
3291
3292         if (mddev->private == NULL) {
3293                 conf = setup_conf(mddev);
3294                 if (IS_ERR(conf))
3295                         return PTR_ERR(conf);
3296                 mddev->private = conf;
3297         }
3298         conf = mddev->private;
3299         if (!conf)
3300                 goto out;
3301
3302         mddev->thread = conf->thread;
3303         conf->thread = NULL;
3304
3305         chunk_size = mddev->chunk_sectors << 9;
3306         blk_queue_io_min(mddev->queue, chunk_size);
3307         if (conf->raid_disks % conf->near_copies)
3308                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3309         else
3310                 blk_queue_io_opt(mddev->queue, chunk_size *
3311                                  (conf->raid_disks / conf->near_copies));
3312
3313         rdev_for_each(rdev, mddev) {
3314
3315                 disk_idx = rdev->raid_disk;
3316                 if (disk_idx >= conf->raid_disks
3317                     || disk_idx < 0)
3318                         continue;
3319                 disk = conf->mirrors + disk_idx;
3320
3321                 if (test_bit(Replacement, &rdev->flags)) {
3322                         if (disk->replacement)
3323                                 goto out_free_conf;
3324                         disk->replacement = rdev;
3325                 } else {
3326                         if (disk->rdev)
3327                                 goto out_free_conf;
3328                         disk->rdev = rdev;
3329                 }
3330
3331                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3332                                   rdev->data_offset << 9);
3333
3334                 disk->head_position = 0;
3335         }
3336         /* need to check that every block has at least one working mirror */
3337         if (!enough(conf, -1)) {
3338                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3339                        mdname(mddev));
3340                 goto out_free_conf;
3341         }
3342
3343         mddev->degraded = 0;
3344         for (i = 0; i < conf->raid_disks; i++) {
3345
3346                 disk = conf->mirrors + i;
3347
3348                 if (!disk->rdev && disk->replacement) {
3349                         /* The replacement is all we have - use it */
3350                         disk->rdev = disk->replacement;
3351                         disk->replacement = NULL;
3352                         clear_bit(Replacement, &disk->rdev->flags);
3353                 }
3354
3355                 if (!disk->rdev ||
3356                     !test_bit(In_sync, &disk->rdev->flags)) {
3357                         disk->head_position = 0;
3358                         mddev->degraded++;
3359                         if (disk->rdev)
3360                                 conf->fullsync = 1;
3361                 }
3362                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3363         }
3364
3365         if (mddev->recovery_cp != MaxSector)
3366                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3367                        " -- starting background reconstruction\n",
3368                        mdname(mddev));
3369         printk(KERN_INFO
3370                 "md/raid10:%s: active with %d out of %d devices\n",
3371                 mdname(mddev), conf->raid_disks - mddev->degraded,
3372                 conf->raid_disks);
3373         /*
3374          * Ok, everything is just fine now
3375          */
3376         mddev->dev_sectors = conf->dev_sectors;
3377         size = raid10_size(mddev, 0, 0);
3378         md_set_array_sectors(mddev, size);
3379         mddev->resync_max_sectors = size;
3380
3381         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3382         mddev->queue->backing_dev_info.congested_data = mddev;
3383
3384         /* Calculate max read-ahead size.
3385          * We need to readahead at least twice a whole stripe....
3386          * maybe...
3387          */
3388         {
3389                 int stripe = conf->raid_disks *
3390                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3391                 stripe /= conf->near_copies;
3392                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3393                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3394         }
3395
3396         blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3397
3398         if (md_integrity_register(mddev))
3399                 goto out_free_conf;
3400
3401         return 0;
3402
3403 out_free_conf:
3404         md_unregister_thread(&mddev->thread);
3405         if (conf->r10bio_pool)
3406                 mempool_destroy(conf->r10bio_pool);
3407         safe_put_page(conf->tmppage);
3408         kfree(conf->mirrors);
3409         kfree(conf);
3410         mddev->private = NULL;
3411 out:
3412         return -EIO;
3413 }
3414
3415 static int stop(struct mddev *mddev)
3416 {
3417         struct r10conf *conf = mddev->private;
3418
3419         raise_barrier(conf, 0);
3420         lower_barrier(conf);
3421
3422         md_unregister_thread(&mddev->thread);
3423         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3424         if (conf->r10bio_pool)
3425                 mempool_destroy(conf->r10bio_pool);
3426         kfree(conf->mirrors);
3427         kfree(conf);
3428         mddev->private = NULL;
3429         return 0;
3430 }
3431
3432 static void raid10_quiesce(struct mddev *mddev, int state)
3433 {
3434         struct r10conf *conf = mddev->private;
3435
3436         switch(state) {
3437         case 1:
3438                 raise_barrier(conf, 0);
3439                 break;
3440         case 0:
3441                 lower_barrier(conf);
3442                 break;
3443         }
3444 }
3445
3446 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3447 {
3448         /* Resize of 'far' arrays is not supported.
3449          * For 'near' and 'offset' arrays we can set the
3450          * number of sectors used to be an appropriate multiple
3451          * of the chunk size.
3452          * For 'offset', this is far_copies*chunksize.
3453          * For 'near' the multiplier is the LCM of
3454          * near_copies and raid_disks.
3455          * So if far_copies > 1 && !far_offset, fail.
3456          * Else find LCM(raid_disks, near_copy)*far_copies and
3457          * multiply by chunk_size.  Then round to this number.
3458          * This is mostly done by raid10_size()
3459          */
3460         struct r10conf *conf = mddev->private;
3461         sector_t oldsize, size;
3462
3463         if (conf->far_copies > 1 && !conf->far_offset)
3464                 return -EINVAL;
3465
3466         oldsize = raid10_size(mddev, 0, 0);
3467         size = raid10_size(mddev, sectors, 0);
3468         md_set_array_sectors(mddev, size);
3469         if (mddev->array_sectors > size)
3470                 return -EINVAL;
3471         set_capacity(mddev->gendisk, mddev->array_sectors);
3472         revalidate_disk(mddev->gendisk);
3473         if (sectors > mddev->dev_sectors &&
3474             mddev->recovery_cp > oldsize) {
3475                 mddev->recovery_cp = oldsize;
3476                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3477         }
3478         calc_sectors(conf, sectors);
3479         mddev->dev_sectors = conf->dev_sectors;
3480         mddev->resync_max_sectors = size;
3481         return 0;
3482 }
3483
3484 static void *raid10_takeover_raid0(struct mddev *mddev)
3485 {
3486         struct md_rdev *rdev;
3487         struct r10conf *conf;
3488
3489         if (mddev->degraded > 0) {
3490                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3491                        mdname(mddev));
3492                 return ERR_PTR(-EINVAL);
3493         }
3494
3495         /* Set new parameters */
3496         mddev->new_level = 10;
3497         /* new layout: far_copies = 1, near_copies = 2 */
3498         mddev->new_layout = (1<<8) + 2;
3499         mddev->new_chunk_sectors = mddev->chunk_sectors;
3500         mddev->delta_disks = mddev->raid_disks;
3501         mddev->raid_disks *= 2;
3502         /* make sure it will be not marked as dirty */
3503         mddev->recovery_cp = MaxSector;
3504
3505         conf = setup_conf(mddev);
3506         if (!IS_ERR(conf)) {
3507                 rdev_for_each(rdev, mddev)
3508                         if (rdev->raid_disk >= 0)
3509                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3510                 conf->barrier = 1;
3511         }
3512
3513         return conf;
3514 }
3515
3516 static void *raid10_takeover(struct mddev *mddev)
3517 {
3518         struct r0conf *raid0_conf;
3519
3520         /* raid10 can take over:
3521          *  raid0 - providing it has only two drives
3522          */
3523         if (mddev->level == 0) {
3524                 /* for raid0 takeover only one zone is supported */
3525                 raid0_conf = mddev->private;
3526                 if (raid0_conf->nr_strip_zones > 1) {
3527                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3528                                " with more than one zone.\n",
3529                                mdname(mddev));
3530                         return ERR_PTR(-EINVAL);
3531                 }
3532                 return raid10_takeover_raid0(mddev);
3533         }
3534         return ERR_PTR(-EINVAL);
3535 }
3536
3537 static struct md_personality raid10_personality =
3538 {
3539         .name           = "raid10",
3540         .level          = 10,
3541         .owner          = THIS_MODULE,
3542         .make_request   = make_request,
3543         .run            = run,
3544         .stop           = stop,
3545         .status         = status,
3546         .error_handler  = error,
3547         .hot_add_disk   = raid10_add_disk,
3548         .hot_remove_disk= raid10_remove_disk,
3549         .spare_active   = raid10_spare_active,
3550         .sync_request   = sync_request,
3551         .quiesce        = raid10_quiesce,
3552         .size           = raid10_size,
3553         .resize         = raid10_resize,
3554         .takeover       = raid10_takeover,
3555 };
3556
3557 static int __init raid_init(void)
3558 {
3559         return register_md_personality(&raid10_personality);
3560 }
3561
3562 static void raid_exit(void)
3563 {
3564         unregister_md_personality(&raid10_personality);
3565 }
3566
3567 module_init(raid_init);
3568 module_exit(raid_exit);
3569 MODULE_LICENSE("GPL");
3570 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3571 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3572 MODULE_ALIAS("md-raid10");
3573 MODULE_ALIAS("md-level-10");
3574
3575 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);