percpu: more flexibility for @dyn_size of pcpu_setup_first_chunk()
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kernel / setup_percpu.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/init.h>
4 #include <linux/bootmem.h>
5 #include <linux/percpu.h>
6 #include <linux/kexec.h>
7 #include <linux/crash_dump.h>
8 #include <linux/smp.h>
9 #include <linux/topology.h>
10 #include <linux/pfn.h>
11 #include <asm/sections.h>
12 #include <asm/processor.h>
13 #include <asm/setup.h>
14 #include <asm/mpspec.h>
15 #include <asm/apicdef.h>
16 #include <asm/highmem.h>
17 #include <asm/proto.h>
18 #include <asm/cpumask.h>
19 #include <asm/cpu.h>
20 #include <asm/stackprotector.h>
21
22 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
23 # define DBG(x...) printk(KERN_DEBUG x)
24 #else
25 # define DBG(x...)
26 #endif
27
28 DEFINE_PER_CPU(int, cpu_number);
29 EXPORT_PER_CPU_SYMBOL(cpu_number);
30
31 #ifdef CONFIG_X86_64
32 #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
33 #else
34 #define BOOT_PERCPU_OFFSET 0
35 #endif
36
37 DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
38 EXPORT_PER_CPU_SYMBOL(this_cpu_off);
39
40 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
41         [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
42 };
43 EXPORT_SYMBOL(__per_cpu_offset);
44
45 /*
46  * On x86_64 symbols referenced from code should be reachable using
47  * 32bit relocations.  Reserve space for static percpu variables in
48  * modules so that they are always served from the first chunk which
49  * is located at the percpu segment base.  On x86_32, anything can
50  * address anywhere.  No need to reserve space in the first chunk.
51  */
52 #ifdef CONFIG_X86_64
53 #define PERCPU_FIRST_CHUNK_RESERVE      PERCPU_MODULE_RESERVE
54 #else
55 #define PERCPU_FIRST_CHUNK_RESERVE      0
56 #endif
57
58 /**
59  * pcpu_need_numa - determine percpu allocation needs to consider NUMA
60  *
61  * If NUMA is not configured or there is only one NUMA node available,
62  * there is no reason to consider NUMA.  This function determines
63  * whether percpu allocation should consider NUMA or not.
64  *
65  * RETURNS:
66  * true if NUMA should be considered; otherwise, false.
67  */
68 static bool __init pcpu_need_numa(void)
69 {
70 #ifdef CONFIG_NEED_MULTIPLE_NODES
71         pg_data_t *last = NULL;
72         unsigned int cpu;
73
74         for_each_possible_cpu(cpu) {
75                 int node = early_cpu_to_node(cpu);
76
77                 if (node_online(node) && NODE_DATA(node) &&
78                     last && last != NODE_DATA(node))
79                         return true;
80
81                 last = NODE_DATA(node);
82         }
83 #endif
84         return false;
85 }
86
87 /**
88  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
89  * @cpu: cpu to allocate for
90  * @size: size allocation in bytes
91  * @align: alignment
92  *
93  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
94  * does the right thing for NUMA regardless of the current
95  * configuration.
96  *
97  * RETURNS:
98  * Pointer to the allocated area on success, NULL on failure.
99  */
100 static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
101                                         unsigned long align)
102 {
103         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
104 #ifdef CONFIG_NEED_MULTIPLE_NODES
105         int node = early_cpu_to_node(cpu);
106         void *ptr;
107
108         if (!node_online(node) || !NODE_DATA(node)) {
109                 ptr = __alloc_bootmem_nopanic(size, align, goal);
110                 pr_info("cpu %d has no node %d or node-local memory\n",
111                         cpu, node);
112                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
113                          cpu, size, __pa(ptr));
114         } else {
115                 ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
116                                                    size, align, goal);
117                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
118                          "%016lx\n", cpu, size, node, __pa(ptr));
119         }
120         return ptr;
121 #else
122         return __alloc_bootmem_nopanic(size, align, goal);
123 #endif
124 }
125
126 /*
127  * Remap allocator
128  *
129  * This allocator uses PMD page as unit.  A PMD page is allocated for
130  * each cpu and each is remapped into vmalloc area using PMD mapping.
131  * As PMD page is quite large, only part of it is used for the first
132  * chunk.  Unused part is returned to the bootmem allocator.
133  *
134  * So, the PMD pages are mapped twice - once to the physical mapping
135  * and to the vmalloc area for the first percpu chunk.  The double
136  * mapping does add one more PMD TLB entry pressure but still is much
137  * better than only using 4k mappings while still being NUMA friendly.
138  */
139 #ifdef CONFIG_NEED_MULTIPLE_NODES
140 static size_t pcpur_size __initdata;
141 static void **pcpur_ptrs __initdata;
142
143 static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
144 {
145         size_t off = (size_t)pageno << PAGE_SHIFT;
146
147         if (off >= pcpur_size)
148                 return NULL;
149
150         return virt_to_page(pcpur_ptrs[cpu] + off);
151 }
152
153 static ssize_t __init setup_pcpu_remap(size_t static_size)
154 {
155         static struct vm_struct vm;
156         pg_data_t *last;
157         size_t ptrs_size, dyn_size;
158         unsigned int cpu;
159         ssize_t ret;
160
161         /*
162          * If large page isn't supported, there's no benefit in doing
163          * this.  Also, on non-NUMA, embedding is better.
164          */
165         if (!cpu_has_pse || pcpu_need_numa())
166                 return -EINVAL;
167
168         last = NULL;
169         for_each_possible_cpu(cpu) {
170                 int node = early_cpu_to_node(cpu);
171
172                 if (node_online(node) && NODE_DATA(node) &&
173                     last && last != NODE_DATA(node))
174                         goto proceed;
175
176                 last = NODE_DATA(node);
177         }
178         return -EINVAL;
179
180 proceed:
181         /*
182          * Currently supports only single page.  Supporting multiple
183          * pages won't be too difficult if it ever becomes necessary.
184          */
185         pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
186                                PERCPU_DYNAMIC_RESERVE);
187         if (pcpur_size > PMD_SIZE) {
188                 pr_warning("PERCPU: static data is larger than large page, "
189                            "can't use large page\n");
190                 return -EINVAL;
191         }
192         dyn_size = pcpur_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
193
194         /* allocate pointer array and alloc large pages */
195         ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
196         pcpur_ptrs = alloc_bootmem(ptrs_size);
197
198         for_each_possible_cpu(cpu) {
199                 pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE);
200                 if (!pcpur_ptrs[cpu])
201                         goto enomem;
202
203                 /*
204                  * Only use pcpur_size bytes and give back the rest.
205                  *
206                  * Ingo: The 2MB up-rounding bootmem is needed to make
207                  * sure the partial 2MB page is still fully RAM - it's
208                  * not well-specified to have a PAT-incompatible area
209                  * (unmapped RAM, device memory, etc.) in that hole.
210                  */
211                 free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
212                              PMD_SIZE - pcpur_size);
213
214                 memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
215         }
216
217         /* allocate address and map */
218         vm.flags = VM_ALLOC;
219         vm.size = num_possible_cpus() * PMD_SIZE;
220         vm_area_register_early(&vm, PMD_SIZE);
221
222         for_each_possible_cpu(cpu) {
223                 pmd_t *pmd;
224
225                 pmd = populate_extra_pmd((unsigned long)vm.addr
226                                          + cpu * PMD_SIZE);
227                 set_pmd(pmd, pfn_pmd(page_to_pfn(virt_to_page(pcpur_ptrs[cpu])),
228                                      PAGE_KERNEL_LARGE));
229         }
230
231         /* we're ready, commit */
232         pr_info("PERCPU: Remapped at %p with large pages, static data "
233                 "%zu bytes\n", vm.addr, static_size);
234
235         ret = pcpu_setup_first_chunk(pcpur_get_page, static_size,
236                                      PERCPU_FIRST_CHUNK_RESERVE, dyn_size,
237                                      PMD_SIZE, vm.addr, NULL);
238         goto out_free_ar;
239
240 enomem:
241         for_each_possible_cpu(cpu)
242                 if (pcpur_ptrs[cpu])
243                         free_bootmem(__pa(pcpur_ptrs[cpu]), PMD_SIZE);
244         ret = -ENOMEM;
245 out_free_ar:
246         free_bootmem(__pa(pcpur_ptrs), ptrs_size);
247         return ret;
248 }
249 #else
250 static ssize_t __init setup_pcpu_remap(size_t static_size)
251 {
252         return -EINVAL;
253 }
254 #endif
255
256 /*
257  * Embedding allocator
258  *
259  * The first chunk is sized to just contain the static area plus
260  * module and dynamic reserves, and allocated as a contiguous area
261  * using bootmem allocator and used as-is without being mapped into
262  * vmalloc area.  This enables the first chunk to piggy back on the
263  * linear physical PMD mapping and doesn't add any additional pressure
264  * to TLB.  Note that if the needed size is smaller than the minimum
265  * unit size, the leftover is returned to the bootmem allocator.
266  */
267 static void *pcpue_ptr __initdata;
268 static size_t pcpue_size __initdata;
269 static size_t pcpue_unit_size __initdata;
270
271 static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
272 {
273         size_t off = (size_t)pageno << PAGE_SHIFT;
274
275         if (off >= pcpue_size)
276                 return NULL;
277
278         return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
279 }
280
281 static ssize_t __init setup_pcpu_embed(size_t static_size)
282 {
283         unsigned int cpu;
284         size_t dyn_size;
285
286         /*
287          * If large page isn't supported, there's no benefit in doing
288          * this.  Also, embedding allocation doesn't play well with
289          * NUMA.
290          */
291         if (!cpu_has_pse || pcpu_need_numa())
292                 return -EINVAL;
293
294         /* allocate and copy */
295         pcpue_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
296                                PERCPU_DYNAMIC_RESERVE);
297         pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
298         dyn_size = pcpue_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
299
300         pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
301                                        PAGE_SIZE);
302         if (!pcpue_ptr)
303                 return -ENOMEM;
304
305         for_each_possible_cpu(cpu) {
306                 void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
307
308                 free_bootmem(__pa(ptr + pcpue_size),
309                              pcpue_unit_size - pcpue_size);
310                 memcpy(ptr, __per_cpu_load, static_size);
311         }
312
313         /* we're ready, commit */
314         pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
315                 pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
316
317         return pcpu_setup_first_chunk(pcpue_get_page, static_size,
318                                       PERCPU_FIRST_CHUNK_RESERVE, dyn_size,
319                                       pcpue_unit_size, pcpue_ptr, NULL);
320 }
321
322 /*
323  * 4k page allocator
324  *
325  * This is the basic allocator.  Static percpu area is allocated
326  * page-by-page and most of initialization is done by the generic
327  * setup function.
328  */
329 static struct page **pcpu4k_pages __initdata;
330 static int pcpu4k_nr_static_pages __initdata;
331
332 static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
333 {
334         if (pageno < pcpu4k_nr_static_pages)
335                 return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
336         return NULL;
337 }
338
339 static void __init pcpu4k_populate_pte(unsigned long addr)
340 {
341         populate_extra_pte(addr);
342 }
343
344 static ssize_t __init setup_pcpu_4k(size_t static_size)
345 {
346         size_t pages_size;
347         unsigned int cpu;
348         int i, j;
349         ssize_t ret;
350
351         pcpu4k_nr_static_pages = PFN_UP(static_size);
352
353         /* unaligned allocations can't be freed, round up to page size */
354         pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
355                                * sizeof(pcpu4k_pages[0]));
356         pcpu4k_pages = alloc_bootmem(pages_size);
357
358         /* allocate and copy */
359         j = 0;
360         for_each_possible_cpu(cpu)
361                 for (i = 0; i < pcpu4k_nr_static_pages; i++) {
362                         void *ptr;
363
364                         ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
365                         if (!ptr)
366                                 goto enomem;
367
368                         memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
369                         pcpu4k_pages[j++] = virt_to_page(ptr);
370                 }
371
372         /* we're ready, commit */
373         pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
374                 pcpu4k_nr_static_pages, static_size);
375
376         ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
377                                      PERCPU_FIRST_CHUNK_RESERVE, -1,
378                                      -1, NULL, pcpu4k_populate_pte);
379         goto out_free_ar;
380
381 enomem:
382         while (--j >= 0)
383                 free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
384         ret = -ENOMEM;
385 out_free_ar:
386         free_bootmem(__pa(pcpu4k_pages), pages_size);
387         return ret;
388 }
389
390 static inline void setup_percpu_segment(int cpu)
391 {
392 #ifdef CONFIG_X86_32
393         struct desc_struct gdt;
394
395         pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
396                         0x2 | DESCTYPE_S, 0x8);
397         gdt.s = 1;
398         write_gdt_entry(get_cpu_gdt_table(cpu),
399                         GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
400 #endif
401 }
402
403 /*
404  * Great future plan:
405  * Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
406  * Always point %gs to its beginning
407  */
408 void __init setup_per_cpu_areas(void)
409 {
410         size_t static_size = __per_cpu_end - __per_cpu_start;
411         unsigned int cpu;
412         unsigned long delta;
413         size_t pcpu_unit_size;
414         ssize_t ret;
415
416         pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
417                 NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
418
419         /*
420          * Allocate percpu area.  If PSE is supported, try to make use
421          * of large page mappings.  Please read comments on top of
422          * each allocator for details.
423          */
424         ret = setup_pcpu_remap(static_size);
425         if (ret < 0)
426                 ret = setup_pcpu_embed(static_size);
427         if (ret < 0)
428                 ret = setup_pcpu_4k(static_size);
429         if (ret < 0)
430                 panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
431                       static_size, ret);
432
433         pcpu_unit_size = ret;
434
435         /* alrighty, percpu areas up and running */
436         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
437         for_each_possible_cpu(cpu) {
438                 per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
439                 per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
440                 per_cpu(cpu_number, cpu) = cpu;
441                 setup_percpu_segment(cpu);
442                 setup_stack_canary_segment(cpu);
443                 /*
444                  * Copy data used in early init routines from the
445                  * initial arrays to the per cpu data areas.  These
446                  * arrays then become expendable and the *_early_ptr's
447                  * are zeroed indicating that the static arrays are
448                  * gone.
449                  */
450 #ifdef CONFIG_X86_LOCAL_APIC
451                 per_cpu(x86_cpu_to_apicid, cpu) =
452                         early_per_cpu_map(x86_cpu_to_apicid, cpu);
453                 per_cpu(x86_bios_cpu_apicid, cpu) =
454                         early_per_cpu_map(x86_bios_cpu_apicid, cpu);
455 #endif
456 #ifdef CONFIG_X86_64
457                 per_cpu(irq_stack_ptr, cpu) =
458                         per_cpu(irq_stack_union.irq_stack, cpu) +
459                         IRQ_STACK_SIZE - 64;
460 #ifdef CONFIG_NUMA
461                 per_cpu(x86_cpu_to_node_map, cpu) =
462                         early_per_cpu_map(x86_cpu_to_node_map, cpu);
463 #endif
464 #endif
465                 /*
466                  * Up to this point, the boot CPU has been using .data.init
467                  * area.  Reload any changed state for the boot CPU.
468                  */
469                 if (cpu == boot_cpu_id)
470                         switch_to_new_gdt(cpu);
471         }
472
473         /* indicate the early static arrays will soon be gone */
474 #ifdef CONFIG_X86_LOCAL_APIC
475         early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
476         early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
477 #endif
478 #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
479         early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
480 #endif
481
482         /* Setup node to cpumask map */
483         setup_node_to_cpumask_map();
484
485         /* Setup cpu initialized, callin, callout masks */
486         setup_cpu_local_masks();
487 }