KVM: Improve TSC offset matching
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
100 static u32 tsc_tolerance_ppm = 250;
101 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106         int nr;
107         u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111         struct user_return_notifier urn;
112         bool registered;
113         struct kvm_shared_msr_values {
114                 u64 host;
115                 u64 curr;
116         } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123         { "pf_fixed", VCPU_STAT(pf_fixed) },
124         { "pf_guest", VCPU_STAT(pf_guest) },
125         { "tlb_flush", VCPU_STAT(tlb_flush) },
126         { "invlpg", VCPU_STAT(invlpg) },
127         { "exits", VCPU_STAT(exits) },
128         { "io_exits", VCPU_STAT(io_exits) },
129         { "mmio_exits", VCPU_STAT(mmio_exits) },
130         { "signal_exits", VCPU_STAT(signal_exits) },
131         { "irq_window", VCPU_STAT(irq_window_exits) },
132         { "nmi_window", VCPU_STAT(nmi_window_exits) },
133         { "halt_exits", VCPU_STAT(halt_exits) },
134         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135         { "hypercalls", VCPU_STAT(hypercalls) },
136         { "request_irq", VCPU_STAT(request_irq_exits) },
137         { "irq_exits", VCPU_STAT(irq_exits) },
138         { "host_state_reload", VCPU_STAT(host_state_reload) },
139         { "efer_reload", VCPU_STAT(efer_reload) },
140         { "fpu_reload", VCPU_STAT(fpu_reload) },
141         { "insn_emulation", VCPU_STAT(insn_emulation) },
142         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143         { "irq_injections", VCPU_STAT(irq_injections) },
144         { "nmi_injections", VCPU_STAT(nmi_injections) },
145         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149         { "mmu_flooded", VM_STAT(mmu_flooded) },
150         { "mmu_recycled", VM_STAT(mmu_recycled) },
151         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152         { "mmu_unsync", VM_STAT(mmu_unsync) },
153         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154         { "largepages", VM_STAT(lpages) },
155         { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
161
162 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
163 {
164         int i;
165         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
166                 vcpu->arch.apf.gfns[i] = ~0;
167 }
168
169 static void kvm_on_user_return(struct user_return_notifier *urn)
170 {
171         unsigned slot;
172         struct kvm_shared_msrs *locals
173                 = container_of(urn, struct kvm_shared_msrs, urn);
174         struct kvm_shared_msr_values *values;
175
176         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
177                 values = &locals->values[slot];
178                 if (values->host != values->curr) {
179                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
180                         values->curr = values->host;
181                 }
182         }
183         locals->registered = false;
184         user_return_notifier_unregister(urn);
185 }
186
187 static void shared_msr_update(unsigned slot, u32 msr)
188 {
189         struct kvm_shared_msrs *smsr;
190         u64 value;
191
192         smsr = &__get_cpu_var(shared_msrs);
193         /* only read, and nobody should modify it at this time,
194          * so don't need lock */
195         if (slot >= shared_msrs_global.nr) {
196                 printk(KERN_ERR "kvm: invalid MSR slot!");
197                 return;
198         }
199         rdmsrl_safe(msr, &value);
200         smsr->values[slot].host = value;
201         smsr->values[slot].curr = value;
202 }
203
204 void kvm_define_shared_msr(unsigned slot, u32 msr)
205 {
206         if (slot >= shared_msrs_global.nr)
207                 shared_msrs_global.nr = slot + 1;
208         shared_msrs_global.msrs[slot] = msr;
209         /* we need ensured the shared_msr_global have been updated */
210         smp_wmb();
211 }
212 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
213
214 static void kvm_shared_msr_cpu_online(void)
215 {
216         unsigned i;
217
218         for (i = 0; i < shared_msrs_global.nr; ++i)
219                 shared_msr_update(i, shared_msrs_global.msrs[i]);
220 }
221
222 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
223 {
224         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
225
226         if (((value ^ smsr->values[slot].curr) & mask) == 0)
227                 return;
228         smsr->values[slot].curr = value;
229         wrmsrl(shared_msrs_global.msrs[slot], value);
230         if (!smsr->registered) {
231                 smsr->urn.on_user_return = kvm_on_user_return;
232                 user_return_notifier_register(&smsr->urn);
233                 smsr->registered = true;
234         }
235 }
236 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
237
238 static void drop_user_return_notifiers(void *ignore)
239 {
240         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
241
242         if (smsr->registered)
243                 kvm_on_user_return(&smsr->urn);
244 }
245
246 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
247 {
248         if (irqchip_in_kernel(vcpu->kvm))
249                 return vcpu->arch.apic_base;
250         else
251                 return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257         /* TODO: reserve bits check */
258         if (irqchip_in_kernel(vcpu->kvm))
259                 kvm_lapic_set_base(vcpu, data);
260         else
261                 vcpu->arch.apic_base = data;
262 }
263 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
264
265 #define EXCPT_BENIGN            0
266 #define EXCPT_CONTRIBUTORY      1
267 #define EXCPT_PF                2
268
269 static int exception_class(int vector)
270 {
271         switch (vector) {
272         case PF_VECTOR:
273                 return EXCPT_PF;
274         case DE_VECTOR:
275         case TS_VECTOR:
276         case NP_VECTOR:
277         case SS_VECTOR:
278         case GP_VECTOR:
279                 return EXCPT_CONTRIBUTORY;
280         default:
281                 break;
282         }
283         return EXCPT_BENIGN;
284 }
285
286 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
287                 unsigned nr, bool has_error, u32 error_code,
288                 bool reinject)
289 {
290         u32 prev_nr;
291         int class1, class2;
292
293         kvm_make_request(KVM_REQ_EVENT, vcpu);
294
295         if (!vcpu->arch.exception.pending) {
296         queue:
297                 vcpu->arch.exception.pending = true;
298                 vcpu->arch.exception.has_error_code = has_error;
299                 vcpu->arch.exception.nr = nr;
300                 vcpu->arch.exception.error_code = error_code;
301                 vcpu->arch.exception.reinject = reinject;
302                 return;
303         }
304
305         /* to check exception */
306         prev_nr = vcpu->arch.exception.nr;
307         if (prev_nr == DF_VECTOR) {
308                 /* triple fault -> shutdown */
309                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
310                 return;
311         }
312         class1 = exception_class(prev_nr);
313         class2 = exception_class(nr);
314         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
315                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
316                 /* generate double fault per SDM Table 5-5 */
317                 vcpu->arch.exception.pending = true;
318                 vcpu->arch.exception.has_error_code = true;
319                 vcpu->arch.exception.nr = DF_VECTOR;
320                 vcpu->arch.exception.error_code = 0;
321         } else
322                 /* replace previous exception with a new one in a hope
323                    that instruction re-execution will regenerate lost
324                    exception */
325                 goto queue;
326 }
327
328 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, false);
331 }
332 EXPORT_SYMBOL_GPL(kvm_queue_exception);
333
334 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, true);
337 }
338 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
339
340 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
341 {
342         if (err)
343                 kvm_inject_gp(vcpu, 0);
344         else
345                 kvm_x86_ops->skip_emulated_instruction(vcpu);
346 }
347 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
348
349 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 {
351         ++vcpu->stat.pf_guest;
352         vcpu->arch.cr2 = fault->address;
353         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
356
357 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
358 {
359         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
360                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
361         else
362                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
363 }
364
365 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
366 {
367         atomic_inc(&vcpu->arch.nmi_queued);
368         kvm_make_request(KVM_REQ_NMI, vcpu);
369 }
370 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
371
372 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373 {
374         kvm_multiple_exception(vcpu, nr, true, error_code, false);
375 }
376 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
377
378 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, true);
381 }
382 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
383
384 /*
385  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
386  * a #GP and return false.
387  */
388 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
389 {
390         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
391                 return true;
392         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
393         return false;
394 }
395 EXPORT_SYMBOL_GPL(kvm_require_cpl);
396
397 /*
398  * This function will be used to read from the physical memory of the currently
399  * running guest. The difference to kvm_read_guest_page is that this function
400  * can read from guest physical or from the guest's guest physical memory.
401  */
402 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
403                             gfn_t ngfn, void *data, int offset, int len,
404                             u32 access)
405 {
406         gfn_t real_gfn;
407         gpa_t ngpa;
408
409         ngpa     = gfn_to_gpa(ngfn);
410         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
411         if (real_gfn == UNMAPPED_GVA)
412                 return -EFAULT;
413
414         real_gfn = gpa_to_gfn(real_gfn);
415
416         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
417 }
418 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
419
420 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
421                                void *data, int offset, int len, u32 access)
422 {
423         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
424                                        data, offset, len, access);
425 }
426
427 /*
428  * Load the pae pdptrs.  Return true is they are all valid.
429  */
430 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
431 {
432         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
433         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
434         int i;
435         int ret;
436         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
437
438         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
439                                       offset * sizeof(u64), sizeof(pdpte),
440                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
441         if (ret < 0) {
442                 ret = 0;
443                 goto out;
444         }
445         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
446                 if (is_present_gpte(pdpte[i]) &&
447                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
448                         ret = 0;
449                         goto out;
450                 }
451         }
452         ret = 1;
453
454         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
455         __set_bit(VCPU_EXREG_PDPTR,
456                   (unsigned long *)&vcpu->arch.regs_avail);
457         __set_bit(VCPU_EXREG_PDPTR,
458                   (unsigned long *)&vcpu->arch.regs_dirty);
459 out:
460
461         return ret;
462 }
463 EXPORT_SYMBOL_GPL(load_pdptrs);
464
465 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
466 {
467         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468         bool changed = true;
469         int offset;
470         gfn_t gfn;
471         int r;
472
473         if (is_long_mode(vcpu) || !is_pae(vcpu))
474                 return false;
475
476         if (!test_bit(VCPU_EXREG_PDPTR,
477                       (unsigned long *)&vcpu->arch.regs_avail))
478                 return true;
479
480         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
481         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
482         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
483                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
484         if (r < 0)
485                 goto out;
486         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 out:
488
489         return changed;
490 }
491
492 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493 {
494         unsigned long old_cr0 = kvm_read_cr0(vcpu);
495         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
496                                     X86_CR0_CD | X86_CR0_NW;
497
498         cr0 |= X86_CR0_ET;
499
500 #ifdef CONFIG_X86_64
501         if (cr0 & 0xffffffff00000000UL)
502                 return 1;
503 #endif
504
505         cr0 &= ~CR0_RESERVED_BITS;
506
507         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
508                 return 1;
509
510         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
511                 return 1;
512
513         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
514 #ifdef CONFIG_X86_64
515                 if ((vcpu->arch.efer & EFER_LME)) {
516                         int cs_db, cs_l;
517
518                         if (!is_pae(vcpu))
519                                 return 1;
520                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521                         if (cs_l)
522                                 return 1;
523                 } else
524 #endif
525                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526                                                  kvm_read_cr3(vcpu)))
527                         return 1;
528         }
529
530         kvm_x86_ops->set_cr0(vcpu, cr0);
531
532         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533                 kvm_clear_async_pf_completion_queue(vcpu);
534                 kvm_async_pf_hash_reset(vcpu);
535         }
536
537         if ((cr0 ^ old_cr0) & update_bits)
538                 kvm_mmu_reset_context(vcpu);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551         u64 xcr0;
552
553         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
554         if (index != XCR_XFEATURE_ENABLED_MASK)
555                 return 1;
556         xcr0 = xcr;
557         if (kvm_x86_ops->get_cpl(vcpu) != 0)
558                 return 1;
559         if (!(xcr0 & XSTATE_FP))
560                 return 1;
561         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562                 return 1;
563         if (xcr0 & ~host_xcr0)
564                 return 1;
565         vcpu->arch.xcr0 = xcr0;
566         vcpu->guest_xcr0_loaded = 0;
567         return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572         if (__kvm_set_xcr(vcpu, index, xcr)) {
573                 kvm_inject_gp(vcpu, 0);
574                 return 1;
575         }
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582         unsigned long old_cr4 = kvm_read_cr4(vcpu);
583         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584                                    X86_CR4_PAE | X86_CR4_SMEP;
585         if (cr4 & CR4_RESERVED_BITS)
586                 return 1;
587
588         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589                 return 1;
590
591         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592                 return 1;
593
594         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595                 return 1;
596
597         if (is_long_mode(vcpu)) {
598                 if (!(cr4 & X86_CR4_PAE))
599                         return 1;
600         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601                    && ((cr4 ^ old_cr4) & pdptr_bits)
602                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603                                    kvm_read_cr3(vcpu)))
604                 return 1;
605
606         if (kvm_x86_ops->set_cr4(vcpu, cr4))
607                 return 1;
608
609         if ((cr4 ^ old_cr4) & pdptr_bits)
610                 kvm_mmu_reset_context(vcpu);
611
612         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
613                 kvm_update_cpuid(vcpu);
614
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_cr4);
618
619 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
620 {
621         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
622                 kvm_mmu_sync_roots(vcpu);
623                 kvm_mmu_flush_tlb(vcpu);
624                 return 0;
625         }
626
627         if (is_long_mode(vcpu)) {
628                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
629                         return 1;
630         } else {
631                 if (is_pae(vcpu)) {
632                         if (cr3 & CR3_PAE_RESERVED_BITS)
633                                 return 1;
634                         if (is_paging(vcpu) &&
635                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
636                                 return 1;
637                 }
638                 /*
639                  * We don't check reserved bits in nonpae mode, because
640                  * this isn't enforced, and VMware depends on this.
641                  */
642         }
643
644         /*
645          * Does the new cr3 value map to physical memory? (Note, we
646          * catch an invalid cr3 even in real-mode, because it would
647          * cause trouble later on when we turn on paging anyway.)
648          *
649          * A real CPU would silently accept an invalid cr3 and would
650          * attempt to use it - with largely undefined (and often hard
651          * to debug) behavior on the guest side.
652          */
653         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
654                 return 1;
655         vcpu->arch.cr3 = cr3;
656         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
657         vcpu->arch.mmu.new_cr3(vcpu);
658         return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr3);
661
662 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663 {
664         if (cr8 & CR8_RESERVED_BITS)
665                 return 1;
666         if (irqchip_in_kernel(vcpu->kvm))
667                 kvm_lapic_set_tpr(vcpu, cr8);
668         else
669                 vcpu->arch.cr8 = cr8;
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr8);
673
674 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
675 {
676         if (irqchip_in_kernel(vcpu->kvm))
677                 return kvm_lapic_get_cr8(vcpu);
678         else
679                 return vcpu->arch.cr8;
680 }
681 EXPORT_SYMBOL_GPL(kvm_get_cr8);
682
683 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
684 {
685         switch (dr) {
686         case 0 ... 3:
687                 vcpu->arch.db[dr] = val;
688                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
689                         vcpu->arch.eff_db[dr] = val;
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1; /* #UD */
694                 /* fall through */
695         case 6:
696                 if (val & 0xffffffff00000000ULL)
697                         return -1; /* #GP */
698                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
699                 break;
700         case 5:
701                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702                         return 1; /* #UD */
703                 /* fall through */
704         default: /* 7 */
705                 if (val & 0xffffffff00000000ULL)
706                         return -1; /* #GP */
707                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
708                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
709                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
710                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
711                 }
712                 break;
713         }
714
715         return 0;
716 }
717
718 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         int res;
721
722         res = __kvm_set_dr(vcpu, dr, val);
723         if (res > 0)
724                 kvm_queue_exception(vcpu, UD_VECTOR);
725         else if (res < 0)
726                 kvm_inject_gp(vcpu, 0);
727
728         return res;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_dr);
731
732 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
733 {
734         switch (dr) {
735         case 0 ... 3:
736                 *val = vcpu->arch.db[dr];
737                 break;
738         case 4:
739                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
740                         return 1;
741                 /* fall through */
742         case 6:
743                 *val = vcpu->arch.dr6;
744                 break;
745         case 5:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         default: /* 7 */
750                 *val = vcpu->arch.dr7;
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         if (_kvm_get_dr(vcpu, dr, val)) {
760                 kvm_queue_exception(vcpu, UD_VECTOR);
761                 return 1;
762         }
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_dr);
766
767 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
768 {
769         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
770         u64 data;
771         int err;
772
773         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
774         if (err)
775                 return err;
776         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
777         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
778         return err;
779 }
780 EXPORT_SYMBOL_GPL(kvm_rdpmc);
781
782 /*
783  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
784  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
785  *
786  * This list is modified at module load time to reflect the
787  * capabilities of the host cpu. This capabilities test skips MSRs that are
788  * kvm-specific. Those are put in the beginning of the list.
789  */
790
791 #define KVM_SAVE_MSRS_BEGIN     9
792 static u32 msrs_to_save[] = {
793         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
794         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
795         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
796         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
797         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
798         MSR_STAR,
799 #ifdef CONFIG_X86_64
800         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
801 #endif
802         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 };
804
805 static unsigned num_msrs_to_save;
806
807 static u32 emulated_msrs[] = {
808         MSR_IA32_TSCDEADLINE,
809         MSR_IA32_MISC_ENABLE,
810         MSR_IA32_MCG_STATUS,
811         MSR_IA32_MCG_CTL,
812 };
813
814 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
815 {
816         u64 old_efer = vcpu->arch.efer;
817
818         if (efer & efer_reserved_bits)
819                 return 1;
820
821         if (is_paging(vcpu)
822             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
823                 return 1;
824
825         if (efer & EFER_FFXSR) {
826                 struct kvm_cpuid_entry2 *feat;
827
828                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
829                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
830                         return 1;
831         }
832
833         if (efer & EFER_SVME) {
834                 struct kvm_cpuid_entry2 *feat;
835
836                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
837                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
838                         return 1;
839         }
840
841         efer &= ~EFER_LMA;
842         efer |= vcpu->arch.efer & EFER_LMA;
843
844         kvm_x86_ops->set_efer(vcpu, efer);
845
846         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
847
848         /* Update reserved bits */
849         if ((efer ^ old_efer) & EFER_NX)
850                 kvm_mmu_reset_context(vcpu);
851
852         return 0;
853 }
854
855 void kvm_enable_efer_bits(u64 mask)
856 {
857        efer_reserved_bits &= ~mask;
858 }
859 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860
861
862 /*
863  * Writes msr value into into the appropriate "register".
864  * Returns 0 on success, non-0 otherwise.
865  * Assumes vcpu_load() was already called.
866  */
867 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
868 {
869         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 }
871
872 /*
873  * Adapt set_msr() to msr_io()'s calling convention
874  */
875 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
876 {
877         return kvm_set_msr(vcpu, index, *data);
878 }
879
880 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
881 {
882         int version;
883         int r;
884         struct pvclock_wall_clock wc;
885         struct timespec boot;
886
887         if (!wall_clock)
888                 return;
889
890         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
891         if (r)
892                 return;
893
894         if (version & 1)
895                 ++version;  /* first time write, random junk */
896
897         ++version;
898
899         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
900
901         /*
902          * The guest calculates current wall clock time by adding
903          * system time (updated by kvm_guest_time_update below) to the
904          * wall clock specified here.  guest system time equals host
905          * system time for us, thus we must fill in host boot time here.
906          */
907         getboottime(&boot);
908
909         wc.sec = boot.tv_sec;
910         wc.nsec = boot.tv_nsec;
911         wc.version = version;
912
913         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
914
915         version++;
916         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
917 }
918
919 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
920 {
921         uint32_t quotient, remainder;
922
923         /* Don't try to replace with do_div(), this one calculates
924          * "(dividend << 32) / divisor" */
925         __asm__ ( "divl %4"
926                   : "=a" (quotient), "=d" (remainder)
927                   : "0" (0), "1" (dividend), "r" (divisor) );
928         return quotient;
929 }
930
931 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
932                                s8 *pshift, u32 *pmultiplier)
933 {
934         uint64_t scaled64;
935         int32_t  shift = 0;
936         uint64_t tps64;
937         uint32_t tps32;
938
939         tps64 = base_khz * 1000LL;
940         scaled64 = scaled_khz * 1000LL;
941         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
942                 tps64 >>= 1;
943                 shift--;
944         }
945
946         tps32 = (uint32_t)tps64;
947         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
948                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
949                         scaled64 >>= 1;
950                 else
951                         tps32 <<= 1;
952                 shift++;
953         }
954
955         *pshift = shift;
956         *pmultiplier = div_frac(scaled64, tps32);
957
958         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
959                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 }
961
962 static inline u64 get_kernel_ns(void)
963 {
964         struct timespec ts;
965
966         WARN_ON(preemptible());
967         ktime_get_ts(&ts);
968         monotonic_to_bootbased(&ts);
969         return timespec_to_ns(&ts);
970 }
971
972 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
973 unsigned long max_tsc_khz;
974
975 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
976 {
977         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
978                                    vcpu->arch.virtual_tsc_shift);
979 }
980
981 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
982 {
983         u64 v = (u64)khz * (1000000 + ppm);
984         do_div(v, 1000000);
985         return v;
986 }
987
988 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
989 {
990         u32 thresh_lo, thresh_hi;
991         int use_scaling = 0;
992
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &vcpu->arch.virtual_tsc_shift,
996                            &vcpu->arch.virtual_tsc_mult);
997         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
998
999         /*
1000          * Compute the variation in TSC rate which is acceptable
1001          * within the range of tolerance and decide if the
1002          * rate being applied is within that bounds of the hardware
1003          * rate.  If so, no scaling or compensation need be done.
1004          */
1005         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1006         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1007         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1008                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1009                 use_scaling = 1;
1010         }
1011         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1012 }
1013
1014 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1015 {
1016         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1017                                       vcpu->arch.virtual_tsc_mult,
1018                                       vcpu->arch.virtual_tsc_shift);
1019         tsc += vcpu->arch.last_tsc_write;
1020         return tsc;
1021 }
1022
1023 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         u64 offset, ns, elapsed;
1027         unsigned long flags;
1028         s64 nsdiff;
1029
1030         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1031         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1032         ns = get_kernel_ns();
1033         elapsed = ns - kvm->arch.last_tsc_nsec;
1034
1035         /* n.b - signed multiplication and division required */
1036         nsdiff = data - kvm->arch.last_tsc_write;
1037 #ifdef CONFIG_X86_64
1038         nsdiff = (nsdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1039 #else
1040         /* do_div() only does unsigned */
1041         asm("idivl %2; xor %%edx, %%edx"
1042             : "=A"(nsdiff)
1043             : "A"(nsdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1044 #endif
1045         nsdiff -= elapsed;
1046         if (nsdiff < 0)
1047                 nsdiff = -nsdiff;
1048
1049         /*
1050          * Special case: TSC write with a small delta (1 second) of virtual
1051          * cycle time against real time is interpreted as an attempt to
1052          * synchronize the CPU.
1053          *
1054          * For a reliable TSC, we can match TSC offsets, and for an unstable
1055          * TSC, we add elapsed time in this computation.  We could let the
1056          * compensation code attempt to catch up if we fall behind, but
1057          * it's better to try to match offsets from the beginning.
1058          */
1059         if (nsdiff < NSEC_PER_SEC &&
1060             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1061                 if (!check_tsc_unstable()) {
1062                         offset = kvm->arch.last_tsc_offset;
1063                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1064                 } else {
1065                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1066                         data += delta;
1067                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1068                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1069                 }
1070                 ns = kvm->arch.last_tsc_nsec;
1071         }
1072         kvm->arch.last_tsc_nsec = ns;
1073         kvm->arch.last_tsc_write = data;
1074         kvm->arch.last_tsc_offset = offset;
1075         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1076         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1077         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1078
1079         /* Reset of TSC must disable overshoot protection below */
1080         vcpu->arch.hv_clock.tsc_timestamp = 0;
1081         vcpu->arch.last_tsc_write = data;
1082         vcpu->arch.last_tsc_nsec = ns;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1085
1086 static int kvm_guest_time_update(struct kvm_vcpu *v)
1087 {
1088         unsigned long flags;
1089         struct kvm_vcpu_arch *vcpu = &v->arch;
1090         void *shared_kaddr;
1091         unsigned long this_tsc_khz;
1092         s64 kernel_ns, max_kernel_ns;
1093         u64 tsc_timestamp;
1094
1095         /* Keep irq disabled to prevent changes to the clock */
1096         local_irq_save(flags);
1097         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1098         kernel_ns = get_kernel_ns();
1099         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1100         if (unlikely(this_tsc_khz == 0)) {
1101                 local_irq_restore(flags);
1102                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1103                 return 1;
1104         }
1105
1106         /*
1107          * We may have to catch up the TSC to match elapsed wall clock
1108          * time for two reasons, even if kvmclock is used.
1109          *   1) CPU could have been running below the maximum TSC rate
1110          *   2) Broken TSC compensation resets the base at each VCPU
1111          *      entry to avoid unknown leaps of TSC even when running
1112          *      again on the same CPU.  This may cause apparent elapsed
1113          *      time to disappear, and the guest to stand still or run
1114          *      very slowly.
1115          */
1116         if (vcpu->tsc_catchup) {
1117                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1118                 if (tsc > tsc_timestamp) {
1119                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1120                         tsc_timestamp = tsc;
1121                 }
1122         }
1123
1124         local_irq_restore(flags);
1125
1126         if (!vcpu->time_page)
1127                 return 0;
1128
1129         /*
1130          * Time as measured by the TSC may go backwards when resetting the base
1131          * tsc_timestamp.  The reason for this is that the TSC resolution is
1132          * higher than the resolution of the other clock scales.  Thus, many
1133          * possible measurments of the TSC correspond to one measurement of any
1134          * other clock, and so a spread of values is possible.  This is not a
1135          * problem for the computation of the nanosecond clock; with TSC rates
1136          * around 1GHZ, there can only be a few cycles which correspond to one
1137          * nanosecond value, and any path through this code will inevitably
1138          * take longer than that.  However, with the kernel_ns value itself,
1139          * the precision may be much lower, down to HZ granularity.  If the
1140          * first sampling of TSC against kernel_ns ends in the low part of the
1141          * range, and the second in the high end of the range, we can get:
1142          *
1143          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1144          *
1145          * As the sampling errors potentially range in the thousands of cycles,
1146          * it is possible such a time value has already been observed by the
1147          * guest.  To protect against this, we must compute the system time as
1148          * observed by the guest and ensure the new system time is greater.
1149          */
1150         max_kernel_ns = 0;
1151         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1152                 max_kernel_ns = vcpu->last_guest_tsc -
1153                                 vcpu->hv_clock.tsc_timestamp;
1154                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1155                                     vcpu->hv_clock.tsc_to_system_mul,
1156                                     vcpu->hv_clock.tsc_shift);
1157                 max_kernel_ns += vcpu->last_kernel_ns;
1158         }
1159
1160         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1161                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1162                                    &vcpu->hv_clock.tsc_shift,
1163                                    &vcpu->hv_clock.tsc_to_system_mul);
1164                 vcpu->hw_tsc_khz = this_tsc_khz;
1165         }
1166
1167         if (max_kernel_ns > kernel_ns)
1168                 kernel_ns = max_kernel_ns;
1169
1170         /* With all the info we got, fill in the values */
1171         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1172         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1173         vcpu->last_kernel_ns = kernel_ns;
1174         vcpu->last_guest_tsc = tsc_timestamp;
1175         vcpu->hv_clock.flags = 0;
1176
1177         /*
1178          * The interface expects us to write an even number signaling that the
1179          * update is finished. Since the guest won't see the intermediate
1180          * state, we just increase by 2 at the end.
1181          */
1182         vcpu->hv_clock.version += 2;
1183
1184         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1185
1186         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1187                sizeof(vcpu->hv_clock));
1188
1189         kunmap_atomic(shared_kaddr, KM_USER0);
1190
1191         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1192         return 0;
1193 }
1194
1195 static bool msr_mtrr_valid(unsigned msr)
1196 {
1197         switch (msr) {
1198         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1199         case MSR_MTRRfix64K_00000:
1200         case MSR_MTRRfix16K_80000:
1201         case MSR_MTRRfix16K_A0000:
1202         case MSR_MTRRfix4K_C0000:
1203         case MSR_MTRRfix4K_C8000:
1204         case MSR_MTRRfix4K_D0000:
1205         case MSR_MTRRfix4K_D8000:
1206         case MSR_MTRRfix4K_E0000:
1207         case MSR_MTRRfix4K_E8000:
1208         case MSR_MTRRfix4K_F0000:
1209         case MSR_MTRRfix4K_F8000:
1210         case MSR_MTRRdefType:
1211         case MSR_IA32_CR_PAT:
1212                 return true;
1213         case 0x2f8:
1214                 return true;
1215         }
1216         return false;
1217 }
1218
1219 static bool valid_pat_type(unsigned t)
1220 {
1221         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1222 }
1223
1224 static bool valid_mtrr_type(unsigned t)
1225 {
1226         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1227 }
1228
1229 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         int i;
1232
1233         if (!msr_mtrr_valid(msr))
1234                 return false;
1235
1236         if (msr == MSR_IA32_CR_PAT) {
1237                 for (i = 0; i < 8; i++)
1238                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1239                                 return false;
1240                 return true;
1241         } else if (msr == MSR_MTRRdefType) {
1242                 if (data & ~0xcff)
1243                         return false;
1244                 return valid_mtrr_type(data & 0xff);
1245         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1246                 for (i = 0; i < 8 ; i++)
1247                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1248                                 return false;
1249                 return true;
1250         }
1251
1252         /* variable MTRRs */
1253         return valid_mtrr_type(data & 0xff);
1254 }
1255
1256 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1257 {
1258         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1259
1260         if (!mtrr_valid(vcpu, msr, data))
1261                 return 1;
1262
1263         if (msr == MSR_MTRRdefType) {
1264                 vcpu->arch.mtrr_state.def_type = data;
1265                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1266         } else if (msr == MSR_MTRRfix64K_00000)
1267                 p[0] = data;
1268         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1269                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1270         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1271                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1272         else if (msr == MSR_IA32_CR_PAT)
1273                 vcpu->arch.pat = data;
1274         else {  /* Variable MTRRs */
1275                 int idx, is_mtrr_mask;
1276                 u64 *pt;
1277
1278                 idx = (msr - 0x200) / 2;
1279                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1280                 if (!is_mtrr_mask)
1281                         pt =
1282                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1283                 else
1284                         pt =
1285                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1286                 *pt = data;
1287         }
1288
1289         kvm_mmu_reset_context(vcpu);
1290         return 0;
1291 }
1292
1293 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1294 {
1295         u64 mcg_cap = vcpu->arch.mcg_cap;
1296         unsigned bank_num = mcg_cap & 0xff;
1297
1298         switch (msr) {
1299         case MSR_IA32_MCG_STATUS:
1300                 vcpu->arch.mcg_status = data;
1301                 break;
1302         case MSR_IA32_MCG_CTL:
1303                 if (!(mcg_cap & MCG_CTL_P))
1304                         return 1;
1305                 if (data != 0 && data != ~(u64)0)
1306                         return -1;
1307                 vcpu->arch.mcg_ctl = data;
1308                 break;
1309         default:
1310                 if (msr >= MSR_IA32_MC0_CTL &&
1311                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1312                         u32 offset = msr - MSR_IA32_MC0_CTL;
1313                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1314                          * some Linux kernels though clear bit 10 in bank 4 to
1315                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1316                          * this to avoid an uncatched #GP in the guest
1317                          */
1318                         if ((offset & 0x3) == 0 &&
1319                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1320                                 return -1;
1321                         vcpu->arch.mce_banks[offset] = data;
1322                         break;
1323                 }
1324                 return 1;
1325         }
1326         return 0;
1327 }
1328
1329 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1330 {
1331         struct kvm *kvm = vcpu->kvm;
1332         int lm = is_long_mode(vcpu);
1333         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1334                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1335         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1336                 : kvm->arch.xen_hvm_config.blob_size_32;
1337         u32 page_num = data & ~PAGE_MASK;
1338         u64 page_addr = data & PAGE_MASK;
1339         u8 *page;
1340         int r;
1341
1342         r = -E2BIG;
1343         if (page_num >= blob_size)
1344                 goto out;
1345         r = -ENOMEM;
1346         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1347         if (IS_ERR(page)) {
1348                 r = PTR_ERR(page);
1349                 goto out;
1350         }
1351         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1352                 goto out_free;
1353         r = 0;
1354 out_free:
1355         kfree(page);
1356 out:
1357         return r;
1358 }
1359
1360 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1361 {
1362         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1363 }
1364
1365 static bool kvm_hv_msr_partition_wide(u32 msr)
1366 {
1367         bool r = false;
1368         switch (msr) {
1369         case HV_X64_MSR_GUEST_OS_ID:
1370         case HV_X64_MSR_HYPERCALL:
1371                 r = true;
1372                 break;
1373         }
1374
1375         return r;
1376 }
1377
1378 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1379 {
1380         struct kvm *kvm = vcpu->kvm;
1381
1382         switch (msr) {
1383         case HV_X64_MSR_GUEST_OS_ID:
1384                 kvm->arch.hv_guest_os_id = data;
1385                 /* setting guest os id to zero disables hypercall page */
1386                 if (!kvm->arch.hv_guest_os_id)
1387                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1388                 break;
1389         case HV_X64_MSR_HYPERCALL: {
1390                 u64 gfn;
1391                 unsigned long addr;
1392                 u8 instructions[4];
1393
1394                 /* if guest os id is not set hypercall should remain disabled */
1395                 if (!kvm->arch.hv_guest_os_id)
1396                         break;
1397                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1398                         kvm->arch.hv_hypercall = data;
1399                         break;
1400                 }
1401                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1402                 addr = gfn_to_hva(kvm, gfn);
1403                 if (kvm_is_error_hva(addr))
1404                         return 1;
1405                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1406                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1407                 if (__copy_to_user((void __user *)addr, instructions, 4))
1408                         return 1;
1409                 kvm->arch.hv_hypercall = data;
1410                 break;
1411         }
1412         default:
1413                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1414                           "data 0x%llx\n", msr, data);
1415                 return 1;
1416         }
1417         return 0;
1418 }
1419
1420 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1421 {
1422         switch (msr) {
1423         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1424                 unsigned long addr;
1425
1426                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1427                         vcpu->arch.hv_vapic = data;
1428                         break;
1429                 }
1430                 addr = gfn_to_hva(vcpu->kvm, data >>
1431                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1432                 if (kvm_is_error_hva(addr))
1433                         return 1;
1434                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1435                         return 1;
1436                 vcpu->arch.hv_vapic = data;
1437                 break;
1438         }
1439         case HV_X64_MSR_EOI:
1440                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1441         case HV_X64_MSR_ICR:
1442                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1443         case HV_X64_MSR_TPR:
1444                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1445         default:
1446                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1447                           "data 0x%llx\n", msr, data);
1448                 return 1;
1449         }
1450
1451         return 0;
1452 }
1453
1454 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1455 {
1456         gpa_t gpa = data & ~0x3f;
1457
1458         /* Bits 2:5 are resrved, Should be zero */
1459         if (data & 0x3c)
1460                 return 1;
1461
1462         vcpu->arch.apf.msr_val = data;
1463
1464         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1465                 kvm_clear_async_pf_completion_queue(vcpu);
1466                 kvm_async_pf_hash_reset(vcpu);
1467                 return 0;
1468         }
1469
1470         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1471                 return 1;
1472
1473         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1474         kvm_async_pf_wakeup_all(vcpu);
1475         return 0;
1476 }
1477
1478 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1479 {
1480         if (vcpu->arch.time_page) {
1481                 kvm_release_page_dirty(vcpu->arch.time_page);
1482                 vcpu->arch.time_page = NULL;
1483         }
1484 }
1485
1486 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1487 {
1488         u64 delta;
1489
1490         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1491                 return;
1492
1493         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1494         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1495         vcpu->arch.st.accum_steal = delta;
1496 }
1497
1498 static void record_steal_time(struct kvm_vcpu *vcpu)
1499 {
1500         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1501                 return;
1502
1503         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1504                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1505                 return;
1506
1507         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1508         vcpu->arch.st.steal.version += 2;
1509         vcpu->arch.st.accum_steal = 0;
1510
1511         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1512                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1513 }
1514
1515 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1516 {
1517         bool pr = false;
1518
1519         switch (msr) {
1520         case MSR_EFER:
1521                 return set_efer(vcpu, data);
1522         case MSR_K7_HWCR:
1523                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1524                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1525                 if (data != 0) {
1526                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1527                                 data);
1528                         return 1;
1529                 }
1530                 break;
1531         case MSR_FAM10H_MMIO_CONF_BASE:
1532                 if (data != 0) {
1533                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1534                                 "0x%llx\n", data);
1535                         return 1;
1536                 }
1537                 break;
1538         case MSR_AMD64_NB_CFG:
1539                 break;
1540         case MSR_IA32_DEBUGCTLMSR:
1541                 if (!data) {
1542                         /* We support the non-activated case already */
1543                         break;
1544                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1545                         /* Values other than LBR and BTF are vendor-specific,
1546                            thus reserved and should throw a #GP */
1547                         return 1;
1548                 }
1549                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1550                         __func__, data);
1551                 break;
1552         case MSR_IA32_UCODE_REV:
1553         case MSR_IA32_UCODE_WRITE:
1554         case MSR_VM_HSAVE_PA:
1555         case MSR_AMD64_PATCH_LOADER:
1556                 break;
1557         case 0x200 ... 0x2ff:
1558                 return set_msr_mtrr(vcpu, msr, data);
1559         case MSR_IA32_APICBASE:
1560                 kvm_set_apic_base(vcpu, data);
1561                 break;
1562         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1563                 return kvm_x2apic_msr_write(vcpu, msr, data);
1564         case MSR_IA32_TSCDEADLINE:
1565                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1566                 break;
1567         case MSR_IA32_MISC_ENABLE:
1568                 vcpu->arch.ia32_misc_enable_msr = data;
1569                 break;
1570         case MSR_KVM_WALL_CLOCK_NEW:
1571         case MSR_KVM_WALL_CLOCK:
1572                 vcpu->kvm->arch.wall_clock = data;
1573                 kvm_write_wall_clock(vcpu->kvm, data);
1574                 break;
1575         case MSR_KVM_SYSTEM_TIME_NEW:
1576         case MSR_KVM_SYSTEM_TIME: {
1577                 kvmclock_reset(vcpu);
1578
1579                 vcpu->arch.time = data;
1580                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1581
1582                 /* we verify if the enable bit is set... */
1583                 if (!(data & 1))
1584                         break;
1585
1586                 /* ...but clean it before doing the actual write */
1587                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1588
1589                 vcpu->arch.time_page =
1590                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1591
1592                 if (is_error_page(vcpu->arch.time_page)) {
1593                         kvm_release_page_clean(vcpu->arch.time_page);
1594                         vcpu->arch.time_page = NULL;
1595                 }
1596                 break;
1597         }
1598         case MSR_KVM_ASYNC_PF_EN:
1599                 if (kvm_pv_enable_async_pf(vcpu, data))
1600                         return 1;
1601                 break;
1602         case MSR_KVM_STEAL_TIME:
1603
1604                 if (unlikely(!sched_info_on()))
1605                         return 1;
1606
1607                 if (data & KVM_STEAL_RESERVED_MASK)
1608                         return 1;
1609
1610                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1611                                                         data & KVM_STEAL_VALID_BITS))
1612                         return 1;
1613
1614                 vcpu->arch.st.msr_val = data;
1615
1616                 if (!(data & KVM_MSR_ENABLED))
1617                         break;
1618
1619                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1620
1621                 preempt_disable();
1622                 accumulate_steal_time(vcpu);
1623                 preempt_enable();
1624
1625                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1626
1627                 break;
1628
1629         case MSR_IA32_MCG_CTL:
1630         case MSR_IA32_MCG_STATUS:
1631         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1632                 return set_msr_mce(vcpu, msr, data);
1633
1634         /* Performance counters are not protected by a CPUID bit,
1635          * so we should check all of them in the generic path for the sake of
1636          * cross vendor migration.
1637          * Writing a zero into the event select MSRs disables them,
1638          * which we perfectly emulate ;-). Any other value should be at least
1639          * reported, some guests depend on them.
1640          */
1641         case MSR_K7_EVNTSEL0:
1642         case MSR_K7_EVNTSEL1:
1643         case MSR_K7_EVNTSEL2:
1644         case MSR_K7_EVNTSEL3:
1645                 if (data != 0)
1646                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1647                                 "0x%x data 0x%llx\n", msr, data);
1648                 break;
1649         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1650          * so we ignore writes to make it happy.
1651          */
1652         case MSR_K7_PERFCTR0:
1653         case MSR_K7_PERFCTR1:
1654         case MSR_K7_PERFCTR2:
1655         case MSR_K7_PERFCTR3:
1656                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1657                         "0x%x data 0x%llx\n", msr, data);
1658                 break;
1659         case MSR_P6_PERFCTR0:
1660         case MSR_P6_PERFCTR1:
1661                 pr = true;
1662         case MSR_P6_EVNTSEL0:
1663         case MSR_P6_EVNTSEL1:
1664                 if (kvm_pmu_msr(vcpu, msr))
1665                         return kvm_pmu_set_msr(vcpu, msr, data);
1666
1667                 if (pr || data != 0)
1668                         pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1669                                 "0x%x data 0x%llx\n", msr, data);
1670                 break;
1671         case MSR_K7_CLK_CTL:
1672                 /*
1673                  * Ignore all writes to this no longer documented MSR.
1674                  * Writes are only relevant for old K7 processors,
1675                  * all pre-dating SVM, but a recommended workaround from
1676                  * AMD for these chips. It is possible to speicify the
1677                  * affected processor models on the command line, hence
1678                  * the need to ignore the workaround.
1679                  */
1680                 break;
1681         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1682                 if (kvm_hv_msr_partition_wide(msr)) {
1683                         int r;
1684                         mutex_lock(&vcpu->kvm->lock);
1685                         r = set_msr_hyperv_pw(vcpu, msr, data);
1686                         mutex_unlock(&vcpu->kvm->lock);
1687                         return r;
1688                 } else
1689                         return set_msr_hyperv(vcpu, msr, data);
1690                 break;
1691         case MSR_IA32_BBL_CR_CTL3:
1692                 /* Drop writes to this legacy MSR -- see rdmsr
1693                  * counterpart for further detail.
1694                  */
1695                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1696                 break;
1697         case MSR_AMD64_OSVW_ID_LENGTH:
1698                 if (!guest_cpuid_has_osvw(vcpu))
1699                         return 1;
1700                 vcpu->arch.osvw.length = data;
1701                 break;
1702         case MSR_AMD64_OSVW_STATUS:
1703                 if (!guest_cpuid_has_osvw(vcpu))
1704                         return 1;
1705                 vcpu->arch.osvw.status = data;
1706                 break;
1707         default:
1708                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1709                         return xen_hvm_config(vcpu, data);
1710                 if (kvm_pmu_msr(vcpu, msr))
1711                         return kvm_pmu_set_msr(vcpu, msr, data);
1712                 if (!ignore_msrs) {
1713                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1714                                 msr, data);
1715                         return 1;
1716                 } else {
1717                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1718                                 msr, data);
1719                         break;
1720                 }
1721         }
1722         return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1725
1726
1727 /*
1728  * Reads an msr value (of 'msr_index') into 'pdata'.
1729  * Returns 0 on success, non-0 otherwise.
1730  * Assumes vcpu_load() was already called.
1731  */
1732 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1733 {
1734         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1735 }
1736
1737 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1738 {
1739         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1740
1741         if (!msr_mtrr_valid(msr))
1742                 return 1;
1743
1744         if (msr == MSR_MTRRdefType)
1745                 *pdata = vcpu->arch.mtrr_state.def_type +
1746                          (vcpu->arch.mtrr_state.enabled << 10);
1747         else if (msr == MSR_MTRRfix64K_00000)
1748                 *pdata = p[0];
1749         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1750                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1751         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1752                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1753         else if (msr == MSR_IA32_CR_PAT)
1754                 *pdata = vcpu->arch.pat;
1755         else {  /* Variable MTRRs */
1756                 int idx, is_mtrr_mask;
1757                 u64 *pt;
1758
1759                 idx = (msr - 0x200) / 2;
1760                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1761                 if (!is_mtrr_mask)
1762                         pt =
1763                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1764                 else
1765                         pt =
1766                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1767                 *pdata = *pt;
1768         }
1769
1770         return 0;
1771 }
1772
1773 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1774 {
1775         u64 data;
1776         u64 mcg_cap = vcpu->arch.mcg_cap;
1777         unsigned bank_num = mcg_cap & 0xff;
1778
1779         switch (msr) {
1780         case MSR_IA32_P5_MC_ADDR:
1781         case MSR_IA32_P5_MC_TYPE:
1782                 data = 0;
1783                 break;
1784         case MSR_IA32_MCG_CAP:
1785                 data = vcpu->arch.mcg_cap;
1786                 break;
1787         case MSR_IA32_MCG_CTL:
1788                 if (!(mcg_cap & MCG_CTL_P))
1789                         return 1;
1790                 data = vcpu->arch.mcg_ctl;
1791                 break;
1792         case MSR_IA32_MCG_STATUS:
1793                 data = vcpu->arch.mcg_status;
1794                 break;
1795         default:
1796                 if (msr >= MSR_IA32_MC0_CTL &&
1797                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1798                         u32 offset = msr - MSR_IA32_MC0_CTL;
1799                         data = vcpu->arch.mce_banks[offset];
1800                         break;
1801                 }
1802                 return 1;
1803         }
1804         *pdata = data;
1805         return 0;
1806 }
1807
1808 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1809 {
1810         u64 data = 0;
1811         struct kvm *kvm = vcpu->kvm;
1812
1813         switch (msr) {
1814         case HV_X64_MSR_GUEST_OS_ID:
1815                 data = kvm->arch.hv_guest_os_id;
1816                 break;
1817         case HV_X64_MSR_HYPERCALL:
1818                 data = kvm->arch.hv_hypercall;
1819                 break;
1820         default:
1821                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1822                 return 1;
1823         }
1824
1825         *pdata = data;
1826         return 0;
1827 }
1828
1829 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1830 {
1831         u64 data = 0;
1832
1833         switch (msr) {
1834         case HV_X64_MSR_VP_INDEX: {
1835                 int r;
1836                 struct kvm_vcpu *v;
1837                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1838                         if (v == vcpu)
1839                                 data = r;
1840                 break;
1841         }
1842         case HV_X64_MSR_EOI:
1843                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1844         case HV_X64_MSR_ICR:
1845                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1846         case HV_X64_MSR_TPR:
1847                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1848         case HV_X64_MSR_APIC_ASSIST_PAGE:
1849                 data = vcpu->arch.hv_vapic;
1850                 break;
1851         default:
1852                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1853                 return 1;
1854         }
1855         *pdata = data;
1856         return 0;
1857 }
1858
1859 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1860 {
1861         u64 data;
1862
1863         switch (msr) {
1864         case MSR_IA32_PLATFORM_ID:
1865         case MSR_IA32_EBL_CR_POWERON:
1866         case MSR_IA32_DEBUGCTLMSR:
1867         case MSR_IA32_LASTBRANCHFROMIP:
1868         case MSR_IA32_LASTBRANCHTOIP:
1869         case MSR_IA32_LASTINTFROMIP:
1870         case MSR_IA32_LASTINTTOIP:
1871         case MSR_K8_SYSCFG:
1872         case MSR_K7_HWCR:
1873         case MSR_VM_HSAVE_PA:
1874         case MSR_K7_EVNTSEL0:
1875         case MSR_K7_PERFCTR0:
1876         case MSR_K8_INT_PENDING_MSG:
1877         case MSR_AMD64_NB_CFG:
1878         case MSR_FAM10H_MMIO_CONF_BASE:
1879                 data = 0;
1880                 break;
1881         case MSR_P6_PERFCTR0:
1882         case MSR_P6_PERFCTR1:
1883         case MSR_P6_EVNTSEL0:
1884         case MSR_P6_EVNTSEL1:
1885                 if (kvm_pmu_msr(vcpu, msr))
1886                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1887                 data = 0;
1888                 break;
1889         case MSR_IA32_UCODE_REV:
1890                 data = 0x100000000ULL;
1891                 break;
1892         case MSR_MTRRcap:
1893                 data = 0x500 | KVM_NR_VAR_MTRR;
1894                 break;
1895         case 0x200 ... 0x2ff:
1896                 return get_msr_mtrr(vcpu, msr, pdata);
1897         case 0xcd: /* fsb frequency */
1898                 data = 3;
1899                 break;
1900                 /*
1901                  * MSR_EBC_FREQUENCY_ID
1902                  * Conservative value valid for even the basic CPU models.
1903                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1904                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1905                  * and 266MHz for model 3, or 4. Set Core Clock
1906                  * Frequency to System Bus Frequency Ratio to 1 (bits
1907                  * 31:24) even though these are only valid for CPU
1908                  * models > 2, however guests may end up dividing or
1909                  * multiplying by zero otherwise.
1910                  */
1911         case MSR_EBC_FREQUENCY_ID:
1912                 data = 1 << 24;
1913                 break;
1914         case MSR_IA32_APICBASE:
1915                 data = kvm_get_apic_base(vcpu);
1916                 break;
1917         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1918                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1919                 break;
1920         case MSR_IA32_TSCDEADLINE:
1921                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1922                 break;
1923         case MSR_IA32_MISC_ENABLE:
1924                 data = vcpu->arch.ia32_misc_enable_msr;
1925                 break;
1926         case MSR_IA32_PERF_STATUS:
1927                 /* TSC increment by tick */
1928                 data = 1000ULL;
1929                 /* CPU multiplier */
1930                 data |= (((uint64_t)4ULL) << 40);
1931                 break;
1932         case MSR_EFER:
1933                 data = vcpu->arch.efer;
1934                 break;
1935         case MSR_KVM_WALL_CLOCK:
1936         case MSR_KVM_WALL_CLOCK_NEW:
1937                 data = vcpu->kvm->arch.wall_clock;
1938                 break;
1939         case MSR_KVM_SYSTEM_TIME:
1940         case MSR_KVM_SYSTEM_TIME_NEW:
1941                 data = vcpu->arch.time;
1942                 break;
1943         case MSR_KVM_ASYNC_PF_EN:
1944                 data = vcpu->arch.apf.msr_val;
1945                 break;
1946         case MSR_KVM_STEAL_TIME:
1947                 data = vcpu->arch.st.msr_val;
1948                 break;
1949         case MSR_IA32_P5_MC_ADDR:
1950         case MSR_IA32_P5_MC_TYPE:
1951         case MSR_IA32_MCG_CAP:
1952         case MSR_IA32_MCG_CTL:
1953         case MSR_IA32_MCG_STATUS:
1954         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1955                 return get_msr_mce(vcpu, msr, pdata);
1956         case MSR_K7_CLK_CTL:
1957                 /*
1958                  * Provide expected ramp-up count for K7. All other
1959                  * are set to zero, indicating minimum divisors for
1960                  * every field.
1961                  *
1962                  * This prevents guest kernels on AMD host with CPU
1963                  * type 6, model 8 and higher from exploding due to
1964                  * the rdmsr failing.
1965                  */
1966                 data = 0x20000000;
1967                 break;
1968         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1969                 if (kvm_hv_msr_partition_wide(msr)) {
1970                         int r;
1971                         mutex_lock(&vcpu->kvm->lock);
1972                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1973                         mutex_unlock(&vcpu->kvm->lock);
1974                         return r;
1975                 } else
1976                         return get_msr_hyperv(vcpu, msr, pdata);
1977                 break;
1978         case MSR_IA32_BBL_CR_CTL3:
1979                 /* This legacy MSR exists but isn't fully documented in current
1980                  * silicon.  It is however accessed by winxp in very narrow
1981                  * scenarios where it sets bit #19, itself documented as
1982                  * a "reserved" bit.  Best effort attempt to source coherent
1983                  * read data here should the balance of the register be
1984                  * interpreted by the guest:
1985                  *
1986                  * L2 cache control register 3: 64GB range, 256KB size,
1987                  * enabled, latency 0x1, configured
1988                  */
1989                 data = 0xbe702111;
1990                 break;
1991         case MSR_AMD64_OSVW_ID_LENGTH:
1992                 if (!guest_cpuid_has_osvw(vcpu))
1993                         return 1;
1994                 data = vcpu->arch.osvw.length;
1995                 break;
1996         case MSR_AMD64_OSVW_STATUS:
1997                 if (!guest_cpuid_has_osvw(vcpu))
1998                         return 1;
1999                 data = vcpu->arch.osvw.status;
2000                 break;
2001         default:
2002                 if (kvm_pmu_msr(vcpu, msr))
2003                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2004                 if (!ignore_msrs) {
2005                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2006                         return 1;
2007                 } else {
2008                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2009                         data = 0;
2010                 }
2011                 break;
2012         }
2013         *pdata = data;
2014         return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2017
2018 /*
2019  * Read or write a bunch of msrs. All parameters are kernel addresses.
2020  *
2021  * @return number of msrs set successfully.
2022  */
2023 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2024                     struct kvm_msr_entry *entries,
2025                     int (*do_msr)(struct kvm_vcpu *vcpu,
2026                                   unsigned index, u64 *data))
2027 {
2028         int i, idx;
2029
2030         idx = srcu_read_lock(&vcpu->kvm->srcu);
2031         for (i = 0; i < msrs->nmsrs; ++i)
2032                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2033                         break;
2034         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2035
2036         return i;
2037 }
2038
2039 /*
2040  * Read or write a bunch of msrs. Parameters are user addresses.
2041  *
2042  * @return number of msrs set successfully.
2043  */
2044 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2045                   int (*do_msr)(struct kvm_vcpu *vcpu,
2046                                 unsigned index, u64 *data),
2047                   int writeback)
2048 {
2049         struct kvm_msrs msrs;
2050         struct kvm_msr_entry *entries;
2051         int r, n;
2052         unsigned size;
2053
2054         r = -EFAULT;
2055         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2056                 goto out;
2057
2058         r = -E2BIG;
2059         if (msrs.nmsrs >= MAX_IO_MSRS)
2060                 goto out;
2061
2062         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2063         entries = memdup_user(user_msrs->entries, size);
2064         if (IS_ERR(entries)) {
2065                 r = PTR_ERR(entries);
2066                 goto out;
2067         }
2068
2069         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2070         if (r < 0)
2071                 goto out_free;
2072
2073         r = -EFAULT;
2074         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2075                 goto out_free;
2076
2077         r = n;
2078
2079 out_free:
2080         kfree(entries);
2081 out:
2082         return r;
2083 }
2084
2085 int kvm_dev_ioctl_check_extension(long ext)
2086 {
2087         int r;
2088
2089         switch (ext) {
2090         case KVM_CAP_IRQCHIP:
2091         case KVM_CAP_HLT:
2092         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2093         case KVM_CAP_SET_TSS_ADDR:
2094         case KVM_CAP_EXT_CPUID:
2095         case KVM_CAP_CLOCKSOURCE:
2096         case KVM_CAP_PIT:
2097         case KVM_CAP_NOP_IO_DELAY:
2098         case KVM_CAP_MP_STATE:
2099         case KVM_CAP_SYNC_MMU:
2100         case KVM_CAP_USER_NMI:
2101         case KVM_CAP_REINJECT_CONTROL:
2102         case KVM_CAP_IRQ_INJECT_STATUS:
2103         case KVM_CAP_ASSIGN_DEV_IRQ:
2104         case KVM_CAP_IRQFD:
2105         case KVM_CAP_IOEVENTFD:
2106         case KVM_CAP_PIT2:
2107         case KVM_CAP_PIT_STATE2:
2108         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2109         case KVM_CAP_XEN_HVM:
2110         case KVM_CAP_ADJUST_CLOCK:
2111         case KVM_CAP_VCPU_EVENTS:
2112         case KVM_CAP_HYPERV:
2113         case KVM_CAP_HYPERV_VAPIC:
2114         case KVM_CAP_HYPERV_SPIN:
2115         case KVM_CAP_PCI_SEGMENT:
2116         case KVM_CAP_DEBUGREGS:
2117         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2118         case KVM_CAP_XSAVE:
2119         case KVM_CAP_ASYNC_PF:
2120         case KVM_CAP_GET_TSC_KHZ:
2121                 r = 1;
2122                 break;
2123         case KVM_CAP_COALESCED_MMIO:
2124                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2125                 break;
2126         case KVM_CAP_VAPIC:
2127                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2128                 break;
2129         case KVM_CAP_NR_VCPUS:
2130                 r = KVM_SOFT_MAX_VCPUS;
2131                 break;
2132         case KVM_CAP_MAX_VCPUS:
2133                 r = KVM_MAX_VCPUS;
2134                 break;
2135         case KVM_CAP_NR_MEMSLOTS:
2136                 r = KVM_MEMORY_SLOTS;
2137                 break;
2138         case KVM_CAP_PV_MMU:    /* obsolete */
2139                 r = 0;
2140                 break;
2141         case KVM_CAP_IOMMU:
2142                 r = iommu_present(&pci_bus_type);
2143                 break;
2144         case KVM_CAP_MCE:
2145                 r = KVM_MAX_MCE_BANKS;
2146                 break;
2147         case KVM_CAP_XCRS:
2148                 r = cpu_has_xsave;
2149                 break;
2150         case KVM_CAP_TSC_CONTROL:
2151                 r = kvm_has_tsc_control;
2152                 break;
2153         case KVM_CAP_TSC_DEADLINE_TIMER:
2154                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2155                 break;
2156         default:
2157                 r = 0;
2158                 break;
2159         }
2160         return r;
2161
2162 }
2163
2164 long kvm_arch_dev_ioctl(struct file *filp,
2165                         unsigned int ioctl, unsigned long arg)
2166 {
2167         void __user *argp = (void __user *)arg;
2168         long r;
2169
2170         switch (ioctl) {
2171         case KVM_GET_MSR_INDEX_LIST: {
2172                 struct kvm_msr_list __user *user_msr_list = argp;
2173                 struct kvm_msr_list msr_list;
2174                 unsigned n;
2175
2176                 r = -EFAULT;
2177                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2178                         goto out;
2179                 n = msr_list.nmsrs;
2180                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2181                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2182                         goto out;
2183                 r = -E2BIG;
2184                 if (n < msr_list.nmsrs)
2185                         goto out;
2186                 r = -EFAULT;
2187                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2188                                  num_msrs_to_save * sizeof(u32)))
2189                         goto out;
2190                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2191                                  &emulated_msrs,
2192                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2193                         goto out;
2194                 r = 0;
2195                 break;
2196         }
2197         case KVM_GET_SUPPORTED_CPUID: {
2198                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2199                 struct kvm_cpuid2 cpuid;
2200
2201                 r = -EFAULT;
2202                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2203                         goto out;
2204                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2205                                                       cpuid_arg->entries);
2206                 if (r)
2207                         goto out;
2208
2209                 r = -EFAULT;
2210                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2211                         goto out;
2212                 r = 0;
2213                 break;
2214         }
2215         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2216                 u64 mce_cap;
2217
2218                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2219                 r = -EFAULT;
2220                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2221                         goto out;
2222                 r = 0;
2223                 break;
2224         }
2225         default:
2226                 r = -EINVAL;
2227         }
2228 out:
2229         return r;
2230 }
2231
2232 static void wbinvd_ipi(void *garbage)
2233 {
2234         wbinvd();
2235 }
2236
2237 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2238 {
2239         return vcpu->kvm->arch.iommu_domain &&
2240                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2241 }
2242
2243 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245         /* Address WBINVD may be executed by guest */
2246         if (need_emulate_wbinvd(vcpu)) {
2247                 if (kvm_x86_ops->has_wbinvd_exit())
2248                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2249                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2250                         smp_call_function_single(vcpu->cpu,
2251                                         wbinvd_ipi, NULL, 1);
2252         }
2253
2254         kvm_x86_ops->vcpu_load(vcpu, cpu);
2255         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2256                 /* Make sure TSC doesn't go backwards */
2257                 s64 tsc_delta;
2258                 u64 tsc;
2259
2260                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2261                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2262                              tsc - vcpu->arch.last_guest_tsc;
2263
2264                 if (tsc_delta < 0)
2265                         mark_tsc_unstable("KVM discovered backwards TSC");
2266                 if (check_tsc_unstable()) {
2267                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2268                         vcpu->arch.tsc_catchup = 1;
2269                 }
2270                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2271                 if (vcpu->cpu != cpu)
2272                         kvm_migrate_timers(vcpu);
2273                 vcpu->cpu = cpu;
2274         }
2275
2276         accumulate_steal_time(vcpu);
2277         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2278 }
2279
2280 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2281 {
2282         kvm_x86_ops->vcpu_put(vcpu);
2283         kvm_put_guest_fpu(vcpu);
2284         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2285 }
2286
2287 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2288                                     struct kvm_lapic_state *s)
2289 {
2290         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2291
2292         return 0;
2293 }
2294
2295 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2296                                     struct kvm_lapic_state *s)
2297 {
2298         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2299         kvm_apic_post_state_restore(vcpu);
2300         update_cr8_intercept(vcpu);
2301
2302         return 0;
2303 }
2304
2305 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2306                                     struct kvm_interrupt *irq)
2307 {
2308         if (irq->irq < 0 || irq->irq >= 256)
2309                 return -EINVAL;
2310         if (irqchip_in_kernel(vcpu->kvm))
2311                 return -ENXIO;
2312
2313         kvm_queue_interrupt(vcpu, irq->irq, false);
2314         kvm_make_request(KVM_REQ_EVENT, vcpu);
2315
2316         return 0;
2317 }
2318
2319 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2320 {
2321         kvm_inject_nmi(vcpu);
2322
2323         return 0;
2324 }
2325
2326 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2327                                            struct kvm_tpr_access_ctl *tac)
2328 {
2329         if (tac->flags)
2330                 return -EINVAL;
2331         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2332         return 0;
2333 }
2334
2335 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2336                                         u64 mcg_cap)
2337 {
2338         int r;
2339         unsigned bank_num = mcg_cap & 0xff, bank;
2340
2341         r = -EINVAL;
2342         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2343                 goto out;
2344         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2345                 goto out;
2346         r = 0;
2347         vcpu->arch.mcg_cap = mcg_cap;
2348         /* Init IA32_MCG_CTL to all 1s */
2349         if (mcg_cap & MCG_CTL_P)
2350                 vcpu->arch.mcg_ctl = ~(u64)0;
2351         /* Init IA32_MCi_CTL to all 1s */
2352         for (bank = 0; bank < bank_num; bank++)
2353                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2354 out:
2355         return r;
2356 }
2357
2358 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2359                                       struct kvm_x86_mce *mce)
2360 {
2361         u64 mcg_cap = vcpu->arch.mcg_cap;
2362         unsigned bank_num = mcg_cap & 0xff;
2363         u64 *banks = vcpu->arch.mce_banks;
2364
2365         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2366                 return -EINVAL;
2367         /*
2368          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2369          * reporting is disabled
2370          */
2371         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2372             vcpu->arch.mcg_ctl != ~(u64)0)
2373                 return 0;
2374         banks += 4 * mce->bank;
2375         /*
2376          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2377          * reporting is disabled for the bank
2378          */
2379         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2380                 return 0;
2381         if (mce->status & MCI_STATUS_UC) {
2382                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2383                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2384                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2385                         return 0;
2386                 }
2387                 if (banks[1] & MCI_STATUS_VAL)
2388                         mce->status |= MCI_STATUS_OVER;
2389                 banks[2] = mce->addr;
2390                 banks[3] = mce->misc;
2391                 vcpu->arch.mcg_status = mce->mcg_status;
2392                 banks[1] = mce->status;
2393                 kvm_queue_exception(vcpu, MC_VECTOR);
2394         } else if (!(banks[1] & MCI_STATUS_VAL)
2395                    || !(banks[1] & MCI_STATUS_UC)) {
2396                 if (banks[1] & MCI_STATUS_VAL)
2397                         mce->status |= MCI_STATUS_OVER;
2398                 banks[2] = mce->addr;
2399                 banks[3] = mce->misc;
2400                 banks[1] = mce->status;
2401         } else
2402                 banks[1] |= MCI_STATUS_OVER;
2403         return 0;
2404 }
2405
2406 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2407                                                struct kvm_vcpu_events *events)
2408 {
2409         process_nmi(vcpu);
2410         events->exception.injected =
2411                 vcpu->arch.exception.pending &&
2412                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2413         events->exception.nr = vcpu->arch.exception.nr;
2414         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2415         events->exception.pad = 0;
2416         events->exception.error_code = vcpu->arch.exception.error_code;
2417
2418         events->interrupt.injected =
2419                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2420         events->interrupt.nr = vcpu->arch.interrupt.nr;
2421         events->interrupt.soft = 0;
2422         events->interrupt.shadow =
2423                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2424                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2425
2426         events->nmi.injected = vcpu->arch.nmi_injected;
2427         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2428         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2429         events->nmi.pad = 0;
2430
2431         events->sipi_vector = vcpu->arch.sipi_vector;
2432
2433         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2434                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2435                          | KVM_VCPUEVENT_VALID_SHADOW);
2436         memset(&events->reserved, 0, sizeof(events->reserved));
2437 }
2438
2439 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2440                                               struct kvm_vcpu_events *events)
2441 {
2442         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2443                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2444                               | KVM_VCPUEVENT_VALID_SHADOW))
2445                 return -EINVAL;
2446
2447         process_nmi(vcpu);
2448         vcpu->arch.exception.pending = events->exception.injected;
2449         vcpu->arch.exception.nr = events->exception.nr;
2450         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2451         vcpu->arch.exception.error_code = events->exception.error_code;
2452
2453         vcpu->arch.interrupt.pending = events->interrupt.injected;
2454         vcpu->arch.interrupt.nr = events->interrupt.nr;
2455         vcpu->arch.interrupt.soft = events->interrupt.soft;
2456         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2457                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2458                                                   events->interrupt.shadow);
2459
2460         vcpu->arch.nmi_injected = events->nmi.injected;
2461         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2462                 vcpu->arch.nmi_pending = events->nmi.pending;
2463         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2464
2465         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2466                 vcpu->arch.sipi_vector = events->sipi_vector;
2467
2468         kvm_make_request(KVM_REQ_EVENT, vcpu);
2469
2470         return 0;
2471 }
2472
2473 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2474                                              struct kvm_debugregs *dbgregs)
2475 {
2476         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2477         dbgregs->dr6 = vcpu->arch.dr6;
2478         dbgregs->dr7 = vcpu->arch.dr7;
2479         dbgregs->flags = 0;
2480         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2481 }
2482
2483 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2484                                             struct kvm_debugregs *dbgregs)
2485 {
2486         if (dbgregs->flags)
2487                 return -EINVAL;
2488
2489         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2490         vcpu->arch.dr6 = dbgregs->dr6;
2491         vcpu->arch.dr7 = dbgregs->dr7;
2492
2493         return 0;
2494 }
2495
2496 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2497                                          struct kvm_xsave *guest_xsave)
2498 {
2499         if (cpu_has_xsave)
2500                 memcpy(guest_xsave->region,
2501                         &vcpu->arch.guest_fpu.state->xsave,
2502                         xstate_size);
2503         else {
2504                 memcpy(guest_xsave->region,
2505                         &vcpu->arch.guest_fpu.state->fxsave,
2506                         sizeof(struct i387_fxsave_struct));
2507                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2508                         XSTATE_FPSSE;
2509         }
2510 }
2511
2512 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2513                                         struct kvm_xsave *guest_xsave)
2514 {
2515         u64 xstate_bv =
2516                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2517
2518         if (cpu_has_xsave)
2519                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2520                         guest_xsave->region, xstate_size);
2521         else {
2522                 if (xstate_bv & ~XSTATE_FPSSE)
2523                         return -EINVAL;
2524                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2525                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2526         }
2527         return 0;
2528 }
2529
2530 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2531                                         struct kvm_xcrs *guest_xcrs)
2532 {
2533         if (!cpu_has_xsave) {
2534                 guest_xcrs->nr_xcrs = 0;
2535                 return;
2536         }
2537
2538         guest_xcrs->nr_xcrs = 1;
2539         guest_xcrs->flags = 0;
2540         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2541         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2542 }
2543
2544 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2545                                        struct kvm_xcrs *guest_xcrs)
2546 {
2547         int i, r = 0;
2548
2549         if (!cpu_has_xsave)
2550                 return -EINVAL;
2551
2552         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2553                 return -EINVAL;
2554
2555         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2556                 /* Only support XCR0 currently */
2557                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2558                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2559                                 guest_xcrs->xcrs[0].value);
2560                         break;
2561                 }
2562         if (r)
2563                 r = -EINVAL;
2564         return r;
2565 }
2566
2567 long kvm_arch_vcpu_ioctl(struct file *filp,
2568                          unsigned int ioctl, unsigned long arg)
2569 {
2570         struct kvm_vcpu *vcpu = filp->private_data;
2571         void __user *argp = (void __user *)arg;
2572         int r;
2573         union {
2574                 struct kvm_lapic_state *lapic;
2575                 struct kvm_xsave *xsave;
2576                 struct kvm_xcrs *xcrs;
2577                 void *buffer;
2578         } u;
2579
2580         u.buffer = NULL;
2581         switch (ioctl) {
2582         case KVM_GET_LAPIC: {
2583                 r = -EINVAL;
2584                 if (!vcpu->arch.apic)
2585                         goto out;
2586                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2587
2588                 r = -ENOMEM;
2589                 if (!u.lapic)
2590                         goto out;
2591                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2592                 if (r)
2593                         goto out;
2594                 r = -EFAULT;
2595                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_SET_LAPIC: {
2601                 r = -EINVAL;
2602                 if (!vcpu->arch.apic)
2603                         goto out;
2604                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2605                 if (IS_ERR(u.lapic)) {
2606                         r = PTR_ERR(u.lapic);
2607                         goto out;
2608                 }
2609
2610                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2611                 if (r)
2612                         goto out;
2613                 r = 0;
2614                 break;
2615         }
2616         case KVM_INTERRUPT: {
2617                 struct kvm_interrupt irq;
2618
2619                 r = -EFAULT;
2620                 if (copy_from_user(&irq, argp, sizeof irq))
2621                         goto out;
2622                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2623                 if (r)
2624                         goto out;
2625                 r = 0;
2626                 break;
2627         }
2628         case KVM_NMI: {
2629                 r = kvm_vcpu_ioctl_nmi(vcpu);
2630                 if (r)
2631                         goto out;
2632                 r = 0;
2633                 break;
2634         }
2635         case KVM_SET_CPUID: {
2636                 struct kvm_cpuid __user *cpuid_arg = argp;
2637                 struct kvm_cpuid cpuid;
2638
2639                 r = -EFAULT;
2640                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2641                         goto out;
2642                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2643                 if (r)
2644                         goto out;
2645                 break;
2646         }
2647         case KVM_SET_CPUID2: {
2648                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2649                 struct kvm_cpuid2 cpuid;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2653                         goto out;
2654                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2655                                               cpuid_arg->entries);
2656                 if (r)
2657                         goto out;
2658                 break;
2659         }
2660         case KVM_GET_CPUID2: {
2661                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2662                 struct kvm_cpuid2 cpuid;
2663
2664                 r = -EFAULT;
2665                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2666                         goto out;
2667                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2668                                               cpuid_arg->entries);
2669                 if (r)
2670                         goto out;
2671                 r = -EFAULT;
2672                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2673                         goto out;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_GET_MSRS:
2678                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2679                 break;
2680         case KVM_SET_MSRS:
2681                 r = msr_io(vcpu, argp, do_set_msr, 0);
2682                 break;
2683         case KVM_TPR_ACCESS_REPORTING: {
2684                 struct kvm_tpr_access_ctl tac;
2685
2686                 r = -EFAULT;
2687                 if (copy_from_user(&tac, argp, sizeof tac))
2688                         goto out;
2689                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2690                 if (r)
2691                         goto out;
2692                 r = -EFAULT;
2693                 if (copy_to_user(argp, &tac, sizeof tac))
2694                         goto out;
2695                 r = 0;
2696                 break;
2697         };
2698         case KVM_SET_VAPIC_ADDR: {
2699                 struct kvm_vapic_addr va;
2700
2701                 r = -EINVAL;
2702                 if (!irqchip_in_kernel(vcpu->kvm))
2703                         goto out;
2704                 r = -EFAULT;
2705                 if (copy_from_user(&va, argp, sizeof va))
2706                         goto out;
2707                 r = 0;
2708                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2709                 break;
2710         }
2711         case KVM_X86_SETUP_MCE: {
2712                 u64 mcg_cap;
2713
2714                 r = -EFAULT;
2715                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2716                         goto out;
2717                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2718                 break;
2719         }
2720         case KVM_X86_SET_MCE: {
2721                 struct kvm_x86_mce mce;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&mce, argp, sizeof mce))
2725                         goto out;
2726                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2727                 break;
2728         }
2729         case KVM_GET_VCPU_EVENTS: {
2730                 struct kvm_vcpu_events events;
2731
2732                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2733
2734                 r = -EFAULT;
2735                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2736                         break;
2737                 r = 0;
2738                 break;
2739         }
2740         case KVM_SET_VCPU_EVENTS: {
2741                 struct kvm_vcpu_events events;
2742
2743                 r = -EFAULT;
2744                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2745                         break;
2746
2747                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2748                 break;
2749         }
2750         case KVM_GET_DEBUGREGS: {
2751                 struct kvm_debugregs dbgregs;
2752
2753                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2754
2755                 r = -EFAULT;
2756                 if (copy_to_user(argp, &dbgregs,
2757                                  sizeof(struct kvm_debugregs)))
2758                         break;
2759                 r = 0;
2760                 break;
2761         }
2762         case KVM_SET_DEBUGREGS: {
2763                 struct kvm_debugregs dbgregs;
2764
2765                 r = -EFAULT;
2766                 if (copy_from_user(&dbgregs, argp,
2767                                    sizeof(struct kvm_debugregs)))
2768                         break;
2769
2770                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2771                 break;
2772         }
2773         case KVM_GET_XSAVE: {
2774                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2775                 r = -ENOMEM;
2776                 if (!u.xsave)
2777                         break;
2778
2779                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2780
2781                 r = -EFAULT;
2782                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2783                         break;
2784                 r = 0;
2785                 break;
2786         }
2787         case KVM_SET_XSAVE: {
2788                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2789                 if (IS_ERR(u.xsave)) {
2790                         r = PTR_ERR(u.xsave);
2791                         goto out;
2792                 }
2793
2794                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2795                 break;
2796         }
2797         case KVM_GET_XCRS: {
2798                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2799                 r = -ENOMEM;
2800                 if (!u.xcrs)
2801                         break;
2802
2803                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2804
2805                 r = -EFAULT;
2806                 if (copy_to_user(argp, u.xcrs,
2807                                  sizeof(struct kvm_xcrs)))
2808                         break;
2809                 r = 0;
2810                 break;
2811         }
2812         case KVM_SET_XCRS: {
2813                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2814                 if (IS_ERR(u.xcrs)) {
2815                         r = PTR_ERR(u.xcrs);
2816                         goto out;
2817                 }
2818
2819                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2820                 break;
2821         }
2822         case KVM_SET_TSC_KHZ: {
2823                 u32 user_tsc_khz;
2824
2825                 r = -EINVAL;
2826                 user_tsc_khz = (u32)arg;
2827
2828                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2829                         goto out;
2830
2831                 if (user_tsc_khz == 0)
2832                         user_tsc_khz = tsc_khz;
2833
2834                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2835
2836                 r = 0;
2837                 goto out;
2838         }
2839         case KVM_GET_TSC_KHZ: {
2840                 r = vcpu->arch.virtual_tsc_khz;
2841                 goto out;
2842         }
2843         default:
2844                 r = -EINVAL;
2845         }
2846 out:
2847         kfree(u.buffer);
2848         return r;
2849 }
2850
2851 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2852 {
2853         return VM_FAULT_SIGBUS;
2854 }
2855
2856 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2857 {
2858         int ret;
2859
2860         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2861                 return -1;
2862         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2863         return ret;
2864 }
2865
2866 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2867                                               u64 ident_addr)
2868 {
2869         kvm->arch.ept_identity_map_addr = ident_addr;
2870         return 0;
2871 }
2872
2873 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2874                                           u32 kvm_nr_mmu_pages)
2875 {
2876         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2877                 return -EINVAL;
2878
2879         mutex_lock(&kvm->slots_lock);
2880         spin_lock(&kvm->mmu_lock);
2881
2882         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2883         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2884
2885         spin_unlock(&kvm->mmu_lock);
2886         mutex_unlock(&kvm->slots_lock);
2887         return 0;
2888 }
2889
2890 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2891 {
2892         return kvm->arch.n_max_mmu_pages;
2893 }
2894
2895 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2896 {
2897         int r;
2898
2899         r = 0;
2900         switch (chip->chip_id) {
2901         case KVM_IRQCHIP_PIC_MASTER:
2902                 memcpy(&chip->chip.pic,
2903                         &pic_irqchip(kvm)->pics[0],
2904                         sizeof(struct kvm_pic_state));
2905                 break;
2906         case KVM_IRQCHIP_PIC_SLAVE:
2907                 memcpy(&chip->chip.pic,
2908                         &pic_irqchip(kvm)->pics[1],
2909                         sizeof(struct kvm_pic_state));
2910                 break;
2911         case KVM_IRQCHIP_IOAPIC:
2912                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2913                 break;
2914         default:
2915                 r = -EINVAL;
2916                 break;
2917         }
2918         return r;
2919 }
2920
2921 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2922 {
2923         int r;
2924
2925         r = 0;
2926         switch (chip->chip_id) {
2927         case KVM_IRQCHIP_PIC_MASTER:
2928                 spin_lock(&pic_irqchip(kvm)->lock);
2929                 memcpy(&pic_irqchip(kvm)->pics[0],
2930                         &chip->chip.pic,
2931                         sizeof(struct kvm_pic_state));
2932                 spin_unlock(&pic_irqchip(kvm)->lock);
2933                 break;
2934         case KVM_IRQCHIP_PIC_SLAVE:
2935                 spin_lock(&pic_irqchip(kvm)->lock);
2936                 memcpy(&pic_irqchip(kvm)->pics[1],
2937                         &chip->chip.pic,
2938                         sizeof(struct kvm_pic_state));
2939                 spin_unlock(&pic_irqchip(kvm)->lock);
2940                 break;
2941         case KVM_IRQCHIP_IOAPIC:
2942                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2943                 break;
2944         default:
2945                 r = -EINVAL;
2946                 break;
2947         }
2948         kvm_pic_update_irq(pic_irqchip(kvm));
2949         return r;
2950 }
2951
2952 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2953 {
2954         int r = 0;
2955
2956         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2957         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2958         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2959         return r;
2960 }
2961
2962 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2963 {
2964         int r = 0;
2965
2966         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2967         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2968         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2969         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2970         return r;
2971 }
2972
2973 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2974 {
2975         int r = 0;
2976
2977         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2978         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2979                 sizeof(ps->channels));
2980         ps->flags = kvm->arch.vpit->pit_state.flags;
2981         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2982         memset(&ps->reserved, 0, sizeof(ps->reserved));
2983         return r;
2984 }
2985
2986 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2987 {
2988         int r = 0, start = 0;
2989         u32 prev_legacy, cur_legacy;
2990         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2991         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2992         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2993         if (!prev_legacy && cur_legacy)
2994                 start = 1;
2995         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2996                sizeof(kvm->arch.vpit->pit_state.channels));
2997         kvm->arch.vpit->pit_state.flags = ps->flags;
2998         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2999         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3000         return r;
3001 }
3002
3003 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3004                                  struct kvm_reinject_control *control)
3005 {
3006         if (!kvm->arch.vpit)
3007                 return -ENXIO;
3008         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3009         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3010         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3011         return 0;
3012 }
3013
3014 /**
3015  * write_protect_slot - write protect a slot for dirty logging
3016  * @kvm: the kvm instance
3017  * @memslot: the slot we protect
3018  * @dirty_bitmap: the bitmap indicating which pages are dirty
3019  * @nr_dirty_pages: the number of dirty pages
3020  *
3021  * We have two ways to find all sptes to protect:
3022  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3023  *    checks ones that have a spte mapping a page in the slot.
3024  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3025  *
3026  * Generally speaking, if there are not so many dirty pages compared to the
3027  * number of shadow pages, we should use the latter.
3028  *
3029  * Note that letting others write into a page marked dirty in the old bitmap
3030  * by using the remaining tlb entry is not a problem.  That page will become
3031  * write protected again when we flush the tlb and then be reported dirty to
3032  * the user space by copying the old bitmap.
3033  */
3034 static void write_protect_slot(struct kvm *kvm,
3035                                struct kvm_memory_slot *memslot,
3036                                unsigned long *dirty_bitmap,
3037                                unsigned long nr_dirty_pages)
3038 {
3039         /* Not many dirty pages compared to # of shadow pages. */
3040         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3041                 unsigned long gfn_offset;
3042
3043                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3044                         unsigned long gfn = memslot->base_gfn + gfn_offset;
3045
3046                         spin_lock(&kvm->mmu_lock);
3047                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3048                         spin_unlock(&kvm->mmu_lock);
3049                 }
3050                 kvm_flush_remote_tlbs(kvm);
3051         } else {
3052                 spin_lock(&kvm->mmu_lock);
3053                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3054                 spin_unlock(&kvm->mmu_lock);
3055         }
3056 }
3057
3058 /*
3059  * Get (and clear) the dirty memory log for a memory slot.
3060  */
3061 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3062                                       struct kvm_dirty_log *log)
3063 {
3064         int r;
3065         struct kvm_memory_slot *memslot;
3066         unsigned long n, nr_dirty_pages;
3067
3068         mutex_lock(&kvm->slots_lock);
3069
3070         r = -EINVAL;
3071         if (log->slot >= KVM_MEMORY_SLOTS)
3072                 goto out;
3073
3074         memslot = id_to_memslot(kvm->memslots, log->slot);
3075         r = -ENOENT;
3076         if (!memslot->dirty_bitmap)
3077                 goto out;
3078
3079         n = kvm_dirty_bitmap_bytes(memslot);
3080         nr_dirty_pages = memslot->nr_dirty_pages;
3081
3082         /* If nothing is dirty, don't bother messing with page tables. */
3083         if (nr_dirty_pages) {
3084                 struct kvm_memslots *slots, *old_slots;
3085                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3086
3087                 dirty_bitmap = memslot->dirty_bitmap;
3088                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3089                 if (dirty_bitmap == dirty_bitmap_head)
3090                         dirty_bitmap_head += n / sizeof(long);
3091                 memset(dirty_bitmap_head, 0, n);
3092
3093                 r = -ENOMEM;
3094                 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3095                 if (!slots)
3096                         goto out;
3097
3098                 memslot = id_to_memslot(slots, log->slot);
3099                 memslot->nr_dirty_pages = 0;
3100                 memslot->dirty_bitmap = dirty_bitmap_head;
3101                 update_memslots(slots, NULL);
3102
3103                 old_slots = kvm->memslots;
3104                 rcu_assign_pointer(kvm->memslots, slots);
3105                 synchronize_srcu_expedited(&kvm->srcu);
3106                 kfree(old_slots);
3107
3108                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3109
3110                 r = -EFAULT;
3111                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3112                         goto out;
3113         } else {
3114                 r = -EFAULT;
3115                 if (clear_user(log->dirty_bitmap, n))
3116                         goto out;
3117         }
3118
3119         r = 0;
3120 out:
3121         mutex_unlock(&kvm->slots_lock);
3122         return r;
3123 }
3124
3125 long kvm_arch_vm_ioctl(struct file *filp,
3126                        unsigned int ioctl, unsigned long arg)
3127 {
3128         struct kvm *kvm = filp->private_data;
3129         void __user *argp = (void __user *)arg;
3130         int r = -ENOTTY;
3131         /*
3132          * This union makes it completely explicit to gcc-3.x
3133          * that these two variables' stack usage should be
3134          * combined, not added together.
3135          */
3136         union {
3137                 struct kvm_pit_state ps;
3138                 struct kvm_pit_state2 ps2;
3139                 struct kvm_pit_config pit_config;
3140         } u;
3141
3142         switch (ioctl) {
3143         case KVM_SET_TSS_ADDR:
3144                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3145                 if (r < 0)
3146                         goto out;
3147                 break;
3148         case KVM_SET_IDENTITY_MAP_ADDR: {
3149                 u64 ident_addr;
3150
3151                 r = -EFAULT;
3152                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3153                         goto out;
3154                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3155                 if (r < 0)
3156                         goto out;
3157                 break;
3158         }
3159         case KVM_SET_NR_MMU_PAGES:
3160                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3161                 if (r)
3162                         goto out;
3163                 break;
3164         case KVM_GET_NR_MMU_PAGES:
3165                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3166                 break;
3167         case KVM_CREATE_IRQCHIP: {
3168                 struct kvm_pic *vpic;
3169
3170                 mutex_lock(&kvm->lock);
3171                 r = -EEXIST;
3172                 if (kvm->arch.vpic)
3173                         goto create_irqchip_unlock;
3174                 r = -ENOMEM;
3175                 vpic = kvm_create_pic(kvm);
3176                 if (vpic) {
3177                         r = kvm_ioapic_init(kvm);
3178                         if (r) {
3179                                 mutex_lock(&kvm->slots_lock);
3180                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3181                                                           &vpic->dev_master);
3182                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3183                                                           &vpic->dev_slave);
3184                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3185                                                           &vpic->dev_eclr);
3186                                 mutex_unlock(&kvm->slots_lock);
3187                                 kfree(vpic);
3188                                 goto create_irqchip_unlock;
3189                         }
3190                 } else
3191                         goto create_irqchip_unlock;
3192                 smp_wmb();
3193                 kvm->arch.vpic = vpic;
3194                 smp_wmb();
3195                 r = kvm_setup_default_irq_routing(kvm);
3196                 if (r) {
3197                         mutex_lock(&kvm->slots_lock);
3198                         mutex_lock(&kvm->irq_lock);
3199                         kvm_ioapic_destroy(kvm);
3200                         kvm_destroy_pic(kvm);
3201                         mutex_unlock(&kvm->irq_lock);
3202                         mutex_unlock(&kvm->slots_lock);
3203                 }
3204         create_irqchip_unlock:
3205                 mutex_unlock(&kvm->lock);
3206                 break;
3207         }
3208         case KVM_CREATE_PIT:
3209                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3210                 goto create_pit;
3211         case KVM_CREATE_PIT2:
3212                 r = -EFAULT;
3213                 if (copy_from_user(&u.pit_config, argp,
3214                                    sizeof(struct kvm_pit_config)))
3215                         goto out;
3216         create_pit:
3217                 mutex_lock(&kvm->slots_lock);
3218                 r = -EEXIST;
3219                 if (kvm->arch.vpit)
3220                         goto create_pit_unlock;
3221                 r = -ENOMEM;
3222                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3223                 if (kvm->arch.vpit)
3224                         r = 0;
3225         create_pit_unlock:
3226                 mutex_unlock(&kvm->slots_lock);
3227                 break;
3228         case KVM_IRQ_LINE_STATUS:
3229         case KVM_IRQ_LINE: {
3230                 struct kvm_irq_level irq_event;
3231
3232                 r = -EFAULT;
3233                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3234                         goto out;
3235                 r = -ENXIO;
3236                 if (irqchip_in_kernel(kvm)) {
3237                         __s32 status;
3238                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3239                                         irq_event.irq, irq_event.level);
3240                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3241                                 r = -EFAULT;
3242                                 irq_event.status = status;
3243                                 if (copy_to_user(argp, &irq_event,
3244                                                         sizeof irq_event))
3245                                         goto out;
3246                         }
3247                         r = 0;
3248                 }
3249                 break;
3250         }
3251         case KVM_GET_IRQCHIP: {
3252                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3253                 struct kvm_irqchip *chip;
3254
3255                 chip = memdup_user(argp, sizeof(*chip));
3256                 if (IS_ERR(chip)) {
3257                         r = PTR_ERR(chip);
3258                         goto out;
3259                 }
3260
3261                 r = -ENXIO;
3262                 if (!irqchip_in_kernel(kvm))
3263                         goto get_irqchip_out;
3264                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3265                 if (r)
3266                         goto get_irqchip_out;
3267                 r = -EFAULT;
3268                 if (copy_to_user(argp, chip, sizeof *chip))
3269                         goto get_irqchip_out;
3270                 r = 0;
3271         get_irqchip_out:
3272                 kfree(chip);
3273                 if (r)
3274                         goto out;
3275                 break;
3276         }
3277         case KVM_SET_IRQCHIP: {
3278                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3279                 struct kvm_irqchip *chip;
3280
3281                 chip = memdup_user(argp, sizeof(*chip));
3282                 if (IS_ERR(chip)) {
3283                         r = PTR_ERR(chip);
3284                         goto out;
3285                 }
3286
3287                 r = -ENXIO;
3288                 if (!irqchip_in_kernel(kvm))
3289                         goto set_irqchip_out;
3290                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3291                 if (r)
3292                         goto set_irqchip_out;
3293                 r = 0;
3294         set_irqchip_out:
3295                 kfree(chip);
3296                 if (r)
3297                         goto out;
3298                 break;
3299         }
3300         case KVM_GET_PIT: {
3301                 r = -EFAULT;
3302                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3303                         goto out;
3304                 r = -ENXIO;
3305                 if (!kvm->arch.vpit)
3306                         goto out;
3307                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3308                 if (r)
3309                         goto out;
3310                 r = -EFAULT;
3311                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3312                         goto out;
3313                 r = 0;
3314                 break;
3315         }
3316         case KVM_SET_PIT: {
3317                 r = -EFAULT;
3318                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3319                         goto out;
3320                 r = -ENXIO;
3321                 if (!kvm->arch.vpit)
3322                         goto out;
3323                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3324                 if (r)
3325                         goto out;
3326                 r = 0;
3327                 break;
3328         }
3329         case KVM_GET_PIT2: {
3330                 r = -ENXIO;
3331                 if (!kvm->arch.vpit)
3332                         goto out;
3333                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3334                 if (r)
3335                         goto out;
3336                 r = -EFAULT;
3337                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3338                         goto out;
3339                 r = 0;
3340                 break;
3341         }
3342         case KVM_SET_PIT2: {
3343                 r = -EFAULT;
3344                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3345                         goto out;
3346                 r = -ENXIO;
3347                 if (!kvm->arch.vpit)
3348                         goto out;
3349                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3350                 if (r)
3351                         goto out;
3352                 r = 0;
3353                 break;
3354         }
3355         case KVM_REINJECT_CONTROL: {
3356                 struct kvm_reinject_control control;
3357                 r =  -EFAULT;
3358                 if (copy_from_user(&control, argp, sizeof(control)))
3359                         goto out;
3360                 r = kvm_vm_ioctl_reinject(kvm, &control);
3361                 if (r)
3362                         goto out;
3363                 r = 0;
3364                 break;
3365         }
3366         case KVM_XEN_HVM_CONFIG: {
3367                 r = -EFAULT;
3368                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3369                                    sizeof(struct kvm_xen_hvm_config)))
3370                         goto out;
3371                 r = -EINVAL;
3372                 if (kvm->arch.xen_hvm_config.flags)
3373                         goto out;
3374                 r = 0;
3375                 break;
3376         }
3377         case KVM_SET_CLOCK: {
3378                 struct kvm_clock_data user_ns;
3379                 u64 now_ns;
3380                 s64 delta;
3381
3382                 r = -EFAULT;
3383                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3384                         goto out;
3385
3386                 r = -EINVAL;
3387                 if (user_ns.flags)
3388                         goto out;
3389
3390                 r = 0;
3391                 local_irq_disable();
3392                 now_ns = get_kernel_ns();
3393                 delta = user_ns.clock - now_ns;
3394                 local_irq_enable();
3395                 kvm->arch.kvmclock_offset = delta;
3396                 break;
3397         }
3398         case KVM_GET_CLOCK: {
3399                 struct kvm_clock_data user_ns;
3400                 u64 now_ns;
3401
3402                 local_irq_disable();
3403                 now_ns = get_kernel_ns();
3404                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3405                 local_irq_enable();
3406                 user_ns.flags = 0;
3407                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3408
3409                 r = -EFAULT;
3410                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3411                         goto out;
3412                 r = 0;
3413                 break;
3414         }
3415
3416         default:
3417                 ;
3418         }
3419 out:
3420         return r;
3421 }
3422
3423 static void kvm_init_msr_list(void)
3424 {
3425         u32 dummy[2];
3426         unsigned i, j;
3427
3428         /* skip the first msrs in the list. KVM-specific */
3429         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3430                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3431                         continue;
3432                 if (j < i)
3433                         msrs_to_save[j] = msrs_to_save[i];
3434                 j++;
3435         }
3436         num_msrs_to_save = j;
3437 }
3438
3439 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3440                            const void *v)
3441 {
3442         int handled = 0;
3443         int n;
3444
3445         do {
3446                 n = min(len, 8);
3447                 if (!(vcpu->arch.apic &&
3448                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3449                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3450                         break;
3451                 handled += n;
3452                 addr += n;
3453                 len -= n;
3454                 v += n;
3455         } while (len);
3456
3457         return handled;
3458 }
3459
3460 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3461 {
3462         int handled = 0;
3463         int n;
3464
3465         do {
3466                 n = min(len, 8);
3467                 if (!(vcpu->arch.apic &&
3468                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3469                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3470                         break;
3471                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3472                 handled += n;
3473                 addr += n;
3474                 len -= n;
3475                 v += n;
3476         } while (len);
3477
3478         return handled;
3479 }
3480
3481 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3482                         struct kvm_segment *var, int seg)
3483 {
3484         kvm_x86_ops->set_segment(vcpu, var, seg);
3485 }
3486
3487 void kvm_get_segment(struct kvm_vcpu *vcpu,
3488                      struct kvm_segment *var, int seg)
3489 {
3490         kvm_x86_ops->get_segment(vcpu, var, seg);
3491 }
3492
3493 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3494 {
3495         gpa_t t_gpa;
3496         struct x86_exception exception;
3497
3498         BUG_ON(!mmu_is_nested(vcpu));
3499
3500         /* NPT walks are always user-walks */
3501         access |= PFERR_USER_MASK;
3502         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3503
3504         return t_gpa;
3505 }
3506
3507 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3508                               struct x86_exception *exception)
3509 {
3510         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3511         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3512 }
3513
3514  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3515                                 struct x86_exception *exception)
3516 {
3517         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3518         access |= PFERR_FETCH_MASK;
3519         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3520 }
3521
3522 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3523                                struct x86_exception *exception)
3524 {
3525         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3526         access |= PFERR_WRITE_MASK;
3527         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3528 }
3529
3530 /* uses this to access any guest's mapped memory without checking CPL */
3531 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3532                                 struct x86_exception *exception)
3533 {
3534         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3535 }
3536
3537 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3538                                       struct kvm_vcpu *vcpu, u32 access,
3539                                       struct x86_exception *exception)
3540 {
3541         void *data = val;
3542         int r = X86EMUL_CONTINUE;
3543
3544         while (bytes) {
3545                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3546                                                             exception);
3547                 unsigned offset = addr & (PAGE_SIZE-1);
3548                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3549                 int ret;
3550
3551                 if (gpa == UNMAPPED_GVA)
3552                         return X86EMUL_PROPAGATE_FAULT;
3553                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3554                 if (ret < 0) {
3555                         r = X86EMUL_IO_NEEDED;
3556                         goto out;
3557                 }
3558
3559                 bytes -= toread;
3560                 data += toread;
3561                 addr += toread;
3562         }
3563 out:
3564         return r;
3565 }
3566
3567 /* used for instruction fetching */
3568 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3569                                 gva_t addr, void *val, unsigned int bytes,
3570                                 struct x86_exception *exception)
3571 {
3572         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3573         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3574
3575         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3576                                           access | PFERR_FETCH_MASK,
3577                                           exception);
3578 }
3579
3580 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3581                                gva_t addr, void *val, unsigned int bytes,
3582                                struct x86_exception *exception)
3583 {
3584         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3585         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3586
3587         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3588                                           exception);
3589 }
3590 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3591
3592 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3593                                       gva_t addr, void *val, unsigned int bytes,
3594                                       struct x86_exception *exception)
3595 {
3596         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3597         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3598 }
3599
3600 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3601                                        gva_t addr, void *val,
3602                                        unsigned int bytes,
3603                                        struct x86_exception *exception)
3604 {
3605         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3606         void *data = val;
3607         int r = X86EMUL_CONTINUE;
3608
3609         while (bytes) {
3610                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3611                                                              PFERR_WRITE_MASK,
3612                                                              exception);
3613                 unsigned offset = addr & (PAGE_SIZE-1);
3614                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3615                 int ret;
3616
3617                 if (gpa == UNMAPPED_GVA)
3618                         return X86EMUL_PROPAGATE_FAULT;
3619                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3620                 if (ret < 0) {
3621                         r = X86EMUL_IO_NEEDED;
3622                         goto out;
3623                 }
3624
3625                 bytes -= towrite;
3626                 data += towrite;
3627                 addr += towrite;
3628         }
3629 out:
3630         return r;
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3633
3634 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3635                                 gpa_t *gpa, struct x86_exception *exception,
3636                                 bool write)
3637 {
3638         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3639
3640         if (vcpu_match_mmio_gva(vcpu, gva) &&
3641                   check_write_user_access(vcpu, write, access,
3642                   vcpu->arch.access)) {
3643                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3644                                         (gva & (PAGE_SIZE - 1));
3645                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3646                 return 1;
3647         }
3648
3649         if (write)
3650                 access |= PFERR_WRITE_MASK;
3651
3652         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3653
3654         if (*gpa == UNMAPPED_GVA)
3655                 return -1;
3656
3657         /* For APIC access vmexit */
3658         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3659                 return 1;
3660
3661         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3662                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3663                 return 1;
3664         }
3665
3666         return 0;
3667 }
3668
3669 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3670                         const void *val, int bytes)
3671 {
3672         int ret;
3673
3674         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3675         if (ret < 0)
3676                 return 0;
3677         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3678         return 1;
3679 }
3680
3681 struct read_write_emulator_ops {
3682         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3683                                   int bytes);
3684         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3685                                   void *val, int bytes);
3686         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3687                                int bytes, void *val);
3688         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3689                                     void *val, int bytes);
3690         bool write;
3691 };
3692
3693 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3694 {
3695         if (vcpu->mmio_read_completed) {
3696                 memcpy(val, vcpu->mmio_data, bytes);
3697                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3698                                vcpu->mmio_phys_addr, *(u64 *)val);
3699                 vcpu->mmio_read_completed = 0;
3700                 return 1;
3701         }
3702
3703         return 0;
3704 }
3705
3706 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3707                         void *val, int bytes)
3708 {
3709         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3710 }
3711
3712 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3713                          void *val, int bytes)
3714 {
3715         return emulator_write_phys(vcpu, gpa, val, bytes);
3716 }
3717
3718 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3719 {
3720         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3721         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3722 }
3723
3724 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3725                           void *val, int bytes)
3726 {
3727         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3728         return X86EMUL_IO_NEEDED;
3729 }
3730
3731 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3732                            void *val, int bytes)
3733 {
3734         memcpy(vcpu->mmio_data, val, bytes);
3735         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3736         return X86EMUL_CONTINUE;
3737 }
3738
3739 static struct read_write_emulator_ops read_emultor = {
3740         .read_write_prepare = read_prepare,
3741         .read_write_emulate = read_emulate,
3742         .read_write_mmio = vcpu_mmio_read,
3743         .read_write_exit_mmio = read_exit_mmio,
3744 };
3745
3746 static struct read_write_emulator_ops write_emultor = {
3747         .read_write_emulate = write_emulate,
3748         .read_write_mmio = write_mmio,
3749         .read_write_exit_mmio = write_exit_mmio,
3750         .write = true,
3751 };
3752
3753 static int emulator_read_write_onepage(unsigned long addr, void *val,
3754                                        unsigned int bytes,
3755                                        struct x86_exception *exception,
3756                                        struct kvm_vcpu *vcpu,
3757                                        struct read_write_emulator_ops *ops)
3758 {
3759         gpa_t gpa;
3760         int handled, ret;
3761         bool write = ops->write;
3762
3763         if (ops->read_write_prepare &&
3764                   ops->read_write_prepare(vcpu, val, bytes))
3765                 return X86EMUL_CONTINUE;
3766
3767         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3768
3769         if (ret < 0)
3770                 return X86EMUL_PROPAGATE_FAULT;
3771
3772         /* For APIC access vmexit */
3773         if (ret)
3774                 goto mmio;
3775
3776         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3777                 return X86EMUL_CONTINUE;
3778
3779 mmio:
3780         /*
3781          * Is this MMIO handled locally?
3782          */
3783         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3784         if (handled == bytes)
3785                 return X86EMUL_CONTINUE;
3786
3787         gpa += handled;
3788         bytes -= handled;
3789         val += handled;
3790
3791         vcpu->mmio_needed = 1;
3792         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3793         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3794         vcpu->mmio_size = bytes;
3795         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3796         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3797         vcpu->mmio_index = 0;
3798
3799         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3800 }
3801
3802 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3803                         void *val, unsigned int bytes,
3804                         struct x86_exception *exception,
3805                         struct read_write_emulator_ops *ops)
3806 {
3807         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3808
3809         /* Crossing a page boundary? */
3810         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3811                 int rc, now;
3812
3813                 now = -addr & ~PAGE_MASK;
3814                 rc = emulator_read_write_onepage(addr, val, now, exception,
3815                                                  vcpu, ops);
3816
3817                 if (rc != X86EMUL_CONTINUE)
3818                         return rc;
3819                 addr += now;
3820                 val += now;
3821                 bytes -= now;
3822         }
3823
3824         return emulator_read_write_onepage(addr, val, bytes, exception,
3825                                            vcpu, ops);
3826 }
3827
3828 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3829                                   unsigned long addr,
3830                                   void *val,
3831                                   unsigned int bytes,
3832                                   struct x86_exception *exception)
3833 {
3834         return emulator_read_write(ctxt, addr, val, bytes,
3835                                    exception, &read_emultor);
3836 }
3837
3838 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3839                             unsigned long addr,
3840                             const void *val,
3841                             unsigned int bytes,
3842                             struct x86_exception *exception)
3843 {
3844         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3845                                    exception, &write_emultor);
3846 }
3847
3848 #define CMPXCHG_TYPE(t, ptr, old, new) \
3849         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3850
3851 #ifdef CONFIG_X86_64
3852 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3853 #else
3854 #  define CMPXCHG64(ptr, old, new) \
3855         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3856 #endif
3857
3858 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3859                                      unsigned long addr,
3860                                      const void *old,
3861                                      const void *new,
3862                                      unsigned int bytes,
3863                                      struct x86_exception *exception)
3864 {
3865         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3866         gpa_t gpa;
3867         struct page *page;
3868         char *kaddr;
3869         bool exchanged;
3870
3871         /* guests cmpxchg8b have to be emulated atomically */
3872         if (bytes > 8 || (bytes & (bytes - 1)))
3873                 goto emul_write;
3874
3875         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3876
3877         if (gpa == UNMAPPED_GVA ||
3878             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3879                 goto emul_write;
3880
3881         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3882                 goto emul_write;
3883
3884         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3885         if (is_error_page(page)) {
3886                 kvm_release_page_clean(page);
3887                 goto emul_write;
3888         }
3889
3890         kaddr = kmap_atomic(page, KM_USER0);
3891         kaddr += offset_in_page(gpa);
3892         switch (bytes) {
3893         case 1:
3894                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3895                 break;
3896         case 2:
3897                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3898                 break;
3899         case 4:
3900                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3901                 break;
3902         case 8:
3903                 exchanged = CMPXCHG64(kaddr, old, new);
3904                 break;
3905         default:
3906                 BUG();
3907         }
3908         kunmap_atomic(kaddr, KM_USER0);
3909         kvm_release_page_dirty(page);
3910
3911         if (!exchanged)
3912                 return X86EMUL_CMPXCHG_FAILED;
3913
3914         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3915
3916         return X86EMUL_CONTINUE;
3917
3918 emul_write:
3919         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3920
3921         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3922 }
3923
3924 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3925 {
3926         /* TODO: String I/O for in kernel device */
3927         int r;
3928
3929         if (vcpu->arch.pio.in)
3930                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3931                                     vcpu->arch.pio.size, pd);
3932         else
3933                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3934                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3935                                      pd);
3936         return r;
3937 }
3938
3939 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3940                                unsigned short port, void *val,
3941                                unsigned int count, bool in)
3942 {
3943         trace_kvm_pio(!in, port, size, count);
3944
3945         vcpu->arch.pio.port = port;
3946         vcpu->arch.pio.in = in;
3947         vcpu->arch.pio.count  = count;
3948         vcpu->arch.pio.size = size;
3949
3950         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3951                 vcpu->arch.pio.count = 0;
3952                 return 1;
3953         }
3954
3955         vcpu->run->exit_reason = KVM_EXIT_IO;
3956         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3957         vcpu->run->io.size = size;
3958         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3959         vcpu->run->io.count = count;
3960         vcpu->run->io.port = port;
3961
3962         return 0;
3963 }
3964
3965 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3966                                     int size, unsigned short port, void *val,
3967                                     unsigned int count)
3968 {
3969         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3970         int ret;
3971
3972         if (vcpu->arch.pio.count)
3973                 goto data_avail;
3974
3975         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3976         if (ret) {
3977 data_avail:
3978                 memcpy(val, vcpu->arch.pio_data, size * count);
3979                 vcpu->arch.pio.count = 0;
3980                 return 1;
3981         }
3982
3983         return 0;
3984 }
3985
3986 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3987                                      int size, unsigned short port,
3988                                      const void *val, unsigned int count)
3989 {
3990         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3991
3992         memcpy(vcpu->arch.pio_data, val, size * count);
3993         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3994 }
3995
3996 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3997 {
3998         return kvm_x86_ops->get_segment_base(vcpu, seg);
3999 }
4000
4001 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4002 {
4003         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4004 }
4005
4006 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4007 {
4008         if (!need_emulate_wbinvd(vcpu))
4009                 return X86EMUL_CONTINUE;
4010
4011         if (kvm_x86_ops->has_wbinvd_exit()) {
4012                 int cpu = get_cpu();
4013
4014                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4015                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4016                                 wbinvd_ipi, NULL, 1);
4017                 put_cpu();
4018                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4019         } else
4020                 wbinvd();
4021         return X86EMUL_CONTINUE;
4022 }
4023 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4024
4025 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4026 {
4027         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4028 }
4029
4030 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4031 {
4032         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4033 }
4034
4035 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4036 {
4037
4038         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4039 }
4040
4041 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4042 {
4043         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4044 }
4045
4046 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4047 {
4048         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4049         unsigned long value;
4050
4051         switch (cr) {
4052         case 0:
4053                 value = kvm_read_cr0(vcpu);
4054                 break;
4055         case 2:
4056                 value = vcpu->arch.cr2;
4057                 break;
4058         case 3:
4059                 value = kvm_read_cr3(vcpu);
4060                 break;
4061         case 4:
4062                 value = kvm_read_cr4(vcpu);
4063                 break;
4064         case 8:
4065                 value = kvm_get_cr8(vcpu);
4066                 break;
4067         default:
4068                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4069                 return 0;
4070         }
4071
4072         return value;
4073 }
4074
4075 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4076 {
4077         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4078         int res = 0;
4079
4080         switch (cr) {
4081         case 0:
4082                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4083                 break;
4084         case 2:
4085                 vcpu->arch.cr2 = val;
4086                 break;
4087         case 3:
4088                 res = kvm_set_cr3(vcpu, val);
4089                 break;
4090         case 4:
4091                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4092                 break;
4093         case 8:
4094                 res = kvm_set_cr8(vcpu, val);
4095                 break;
4096         default:
4097                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4098                 res = -1;
4099         }
4100
4101         return res;
4102 }
4103
4104 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4105 {
4106         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4107 }
4108
4109 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4110 {
4111         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4112 }
4113
4114 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4115 {
4116         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4117 }
4118
4119 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4120 {
4121         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4122 }
4123
4124 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4125 {
4126         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4127 }
4128
4129 static unsigned long emulator_get_cached_segment_base(
4130         struct x86_emulate_ctxt *ctxt, int seg)
4131 {
4132         return get_segment_base(emul_to_vcpu(ctxt), seg);
4133 }
4134
4135 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4136                                  struct desc_struct *desc, u32 *base3,
4137                                  int seg)
4138 {
4139         struct kvm_segment var;
4140
4141         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4142         *selector = var.selector;
4143
4144         if (var.unusable)
4145                 return false;
4146
4147         if (var.g)
4148                 var.limit >>= 12;
4149         set_desc_limit(desc, var.limit);
4150         set_desc_base(desc, (unsigned long)var.base);
4151 #ifdef CONFIG_X86_64
4152         if (base3)
4153                 *base3 = var.base >> 32;
4154 #endif
4155         desc->type = var.type;
4156         desc->s = var.s;
4157         desc->dpl = var.dpl;
4158         desc->p = var.present;
4159         desc->avl = var.avl;
4160         desc->l = var.l;
4161         desc->d = var.db;
4162         desc->g = var.g;
4163
4164         return true;
4165 }
4166
4167 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4168                                  struct desc_struct *desc, u32 base3,
4169                                  int seg)
4170 {
4171         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4172         struct kvm_segment var;
4173
4174         var.selector = selector;
4175         var.base = get_desc_base(desc);
4176 #ifdef CONFIG_X86_64
4177         var.base |= ((u64)base3) << 32;
4178 #endif
4179         var.limit = get_desc_limit(desc);
4180         if (desc->g)
4181                 var.limit = (var.limit << 12) | 0xfff;
4182         var.type = desc->type;
4183         var.present = desc->p;
4184         var.dpl = desc->dpl;
4185         var.db = desc->d;
4186         var.s = desc->s;
4187         var.l = desc->l;
4188         var.g = desc->g;
4189         var.avl = desc->avl;
4190         var.present = desc->p;
4191         var.unusable = !var.present;
4192         var.padding = 0;
4193
4194         kvm_set_segment(vcpu, &var, seg);
4195         return;
4196 }
4197
4198 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4199                             u32 msr_index, u64 *pdata)
4200 {
4201         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4202 }
4203
4204 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4205                             u32 msr_index, u64 data)
4206 {
4207         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4208 }
4209
4210 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4211                              u32 pmc, u64 *pdata)
4212 {
4213         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4214 }
4215
4216 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4217 {
4218         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4219 }
4220
4221 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4222 {
4223         preempt_disable();
4224         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4225         /*
4226          * CR0.TS may reference the host fpu state, not the guest fpu state,
4227          * so it may be clear at this point.
4228          */
4229         clts();
4230 }
4231
4232 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4233 {
4234         preempt_enable();
4235 }
4236
4237 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4238                               struct x86_instruction_info *info,
4239                               enum x86_intercept_stage stage)
4240 {
4241         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4242 }
4243
4244 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4245                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4246 {
4247         struct kvm_cpuid_entry2 *cpuid = NULL;
4248
4249         if (eax && ecx)
4250                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4251                                             *eax, *ecx);
4252
4253         if (cpuid) {
4254                 *eax = cpuid->eax;
4255                 *ecx = cpuid->ecx;
4256                 if (ebx)
4257                         *ebx = cpuid->ebx;
4258                 if (edx)
4259                         *edx = cpuid->edx;
4260                 return true;
4261         }
4262
4263         return false;
4264 }
4265
4266 static struct x86_emulate_ops emulate_ops = {
4267         .read_std            = kvm_read_guest_virt_system,
4268         .write_std           = kvm_write_guest_virt_system,
4269         .fetch               = kvm_fetch_guest_virt,
4270         .read_emulated       = emulator_read_emulated,
4271         .write_emulated      = emulator_write_emulated,
4272         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4273         .invlpg              = emulator_invlpg,
4274         .pio_in_emulated     = emulator_pio_in_emulated,
4275         .pio_out_emulated    = emulator_pio_out_emulated,
4276         .get_segment         = emulator_get_segment,
4277         .set_segment         = emulator_set_segment,
4278         .get_cached_segment_base = emulator_get_cached_segment_base,
4279         .get_gdt             = emulator_get_gdt,
4280         .get_idt             = emulator_get_idt,
4281         .set_gdt             = emulator_set_gdt,
4282         .set_idt             = emulator_set_idt,
4283         .get_cr              = emulator_get_cr,
4284         .set_cr              = emulator_set_cr,
4285         .cpl                 = emulator_get_cpl,
4286         .get_dr              = emulator_get_dr,
4287         .set_dr              = emulator_set_dr,
4288         .set_msr             = emulator_set_msr,
4289         .get_msr             = emulator_get_msr,
4290         .read_pmc            = emulator_read_pmc,
4291         .halt                = emulator_halt,
4292         .wbinvd              = emulator_wbinvd,
4293         .fix_hypercall       = emulator_fix_hypercall,
4294         .get_fpu             = emulator_get_fpu,
4295         .put_fpu             = emulator_put_fpu,
4296         .intercept           = emulator_intercept,
4297         .get_cpuid           = emulator_get_cpuid,
4298 };
4299
4300 static void cache_all_regs(struct kvm_vcpu *vcpu)
4301 {
4302         kvm_register_read(vcpu, VCPU_REGS_RAX);
4303         kvm_register_read(vcpu, VCPU_REGS_RSP);
4304         kvm_register_read(vcpu, VCPU_REGS_RIP);
4305         vcpu->arch.regs_dirty = ~0;
4306 }
4307
4308 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4309 {
4310         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4311         /*
4312          * an sti; sti; sequence only disable interrupts for the first
4313          * instruction. So, if the last instruction, be it emulated or
4314          * not, left the system with the INT_STI flag enabled, it
4315          * means that the last instruction is an sti. We should not
4316          * leave the flag on in this case. The same goes for mov ss
4317          */
4318         if (!(int_shadow & mask))
4319                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4320 }
4321
4322 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4323 {
4324         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4325         if (ctxt->exception.vector == PF_VECTOR)
4326                 kvm_propagate_fault(vcpu, &ctxt->exception);
4327         else if (ctxt->exception.error_code_valid)
4328                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4329                                       ctxt->exception.error_code);
4330         else
4331                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4332 }
4333
4334 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4335                               const unsigned long *regs)
4336 {
4337         memset(&ctxt->twobyte, 0,
4338                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4339         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4340
4341         ctxt->fetch.start = 0;
4342         ctxt->fetch.end = 0;
4343         ctxt->io_read.pos = 0;
4344         ctxt->io_read.end = 0;
4345         ctxt->mem_read.pos = 0;
4346         ctxt->mem_read.end = 0;
4347 }
4348
4349 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4350 {
4351         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4352         int cs_db, cs_l;
4353
4354         /*
4355          * TODO: fix emulate.c to use guest_read/write_register
4356          * instead of direct ->regs accesses, can save hundred cycles
4357          * on Intel for instructions that don't read/change RSP, for
4358          * for example.
4359          */
4360         cache_all_regs(vcpu);
4361
4362         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4363
4364         ctxt->eflags = kvm_get_rflags(vcpu);
4365         ctxt->eip = kvm_rip_read(vcpu);
4366         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4367                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4368                      cs_l                               ? X86EMUL_MODE_PROT64 :
4369                      cs_db                              ? X86EMUL_MODE_PROT32 :
4370                                                           X86EMUL_MODE_PROT16;
4371         ctxt->guest_mode = is_guest_mode(vcpu);
4372
4373         init_decode_cache(ctxt, vcpu->arch.regs);
4374         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4375 }
4376
4377 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4378 {
4379         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4380         int ret;
4381
4382         init_emulate_ctxt(vcpu);
4383
4384         ctxt->op_bytes = 2;
4385         ctxt->ad_bytes = 2;
4386         ctxt->_eip = ctxt->eip + inc_eip;
4387         ret = emulate_int_real(ctxt, irq);
4388
4389         if (ret != X86EMUL_CONTINUE)
4390                 return EMULATE_FAIL;
4391
4392         ctxt->eip = ctxt->_eip;
4393         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4394         kvm_rip_write(vcpu, ctxt->eip);
4395         kvm_set_rflags(vcpu, ctxt->eflags);
4396
4397         if (irq == NMI_VECTOR)
4398                 vcpu->arch.nmi_pending = 0;
4399         else
4400                 vcpu->arch.interrupt.pending = false;
4401
4402         return EMULATE_DONE;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4405
4406 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4407 {
4408         int r = EMULATE_DONE;
4409
4410         ++vcpu->stat.insn_emulation_fail;
4411         trace_kvm_emulate_insn_failed(vcpu);
4412         if (!is_guest_mode(vcpu)) {
4413                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4414                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4415                 vcpu->run->internal.ndata = 0;
4416                 r = EMULATE_FAIL;
4417         }
4418         kvm_queue_exception(vcpu, UD_VECTOR);
4419
4420         return r;
4421 }
4422
4423 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4424 {
4425         gpa_t gpa;
4426
4427         if (tdp_enabled)
4428                 return false;
4429
4430         /*
4431          * if emulation was due to access to shadowed page table
4432          * and it failed try to unshadow page and re-entetr the
4433          * guest to let CPU execute the instruction.
4434          */
4435         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4436                 return true;
4437
4438         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4439
4440         if (gpa == UNMAPPED_GVA)
4441                 return true; /* let cpu generate fault */
4442
4443         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4444                 return true;
4445
4446         return false;
4447 }
4448
4449 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4450                               unsigned long cr2,  int emulation_type)
4451 {
4452         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4454
4455         last_retry_eip = vcpu->arch.last_retry_eip;
4456         last_retry_addr = vcpu->arch.last_retry_addr;
4457
4458         /*
4459          * If the emulation is caused by #PF and it is non-page_table
4460          * writing instruction, it means the VM-EXIT is caused by shadow
4461          * page protected, we can zap the shadow page and retry this
4462          * instruction directly.
4463          *
4464          * Note: if the guest uses a non-page-table modifying instruction
4465          * on the PDE that points to the instruction, then we will unmap
4466          * the instruction and go to an infinite loop. So, we cache the
4467          * last retried eip and the last fault address, if we meet the eip
4468          * and the address again, we can break out of the potential infinite
4469          * loop.
4470          */
4471         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4472
4473         if (!(emulation_type & EMULTYPE_RETRY))
4474                 return false;
4475
4476         if (x86_page_table_writing_insn(ctxt))
4477                 return false;
4478
4479         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4480                 return false;
4481
4482         vcpu->arch.last_retry_eip = ctxt->eip;
4483         vcpu->arch.last_retry_addr = cr2;
4484
4485         if (!vcpu->arch.mmu.direct_map)
4486                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4487
4488         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4489
4490         return true;
4491 }
4492
4493 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4494                             unsigned long cr2,
4495                             int emulation_type,
4496                             void *insn,
4497                             int insn_len)
4498 {
4499         int r;
4500         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4501         bool writeback = true;
4502
4503         kvm_clear_exception_queue(vcpu);
4504
4505         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4506                 init_emulate_ctxt(vcpu);
4507                 ctxt->interruptibility = 0;
4508                 ctxt->have_exception = false;
4509                 ctxt->perm_ok = false;
4510
4511                 ctxt->only_vendor_specific_insn
4512                         = emulation_type & EMULTYPE_TRAP_UD;
4513
4514                 r = x86_decode_insn(ctxt, insn, insn_len);
4515
4516                 trace_kvm_emulate_insn_start(vcpu);
4517                 ++vcpu->stat.insn_emulation;
4518                 if (r != EMULATION_OK)  {
4519                         if (emulation_type & EMULTYPE_TRAP_UD)
4520                                 return EMULATE_FAIL;
4521                         if (reexecute_instruction(vcpu, cr2))
4522                                 return EMULATE_DONE;
4523                         if (emulation_type & EMULTYPE_SKIP)
4524                                 return EMULATE_FAIL;
4525                         return handle_emulation_failure(vcpu);
4526                 }
4527         }
4528
4529         if (emulation_type & EMULTYPE_SKIP) {
4530                 kvm_rip_write(vcpu, ctxt->_eip);
4531                 return EMULATE_DONE;
4532         }
4533
4534         if (retry_instruction(ctxt, cr2, emulation_type))
4535                 return EMULATE_DONE;
4536
4537         /* this is needed for vmware backdoor interface to work since it
4538            changes registers values  during IO operation */
4539         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4540                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4541                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4542         }
4543
4544 restart:
4545         r = x86_emulate_insn(ctxt);
4546
4547         if (r == EMULATION_INTERCEPTED)
4548                 return EMULATE_DONE;
4549
4550         if (r == EMULATION_FAILED) {
4551                 if (reexecute_instruction(vcpu, cr2))
4552                         return EMULATE_DONE;
4553
4554                 return handle_emulation_failure(vcpu);
4555         }
4556
4557         if (ctxt->have_exception) {
4558                 inject_emulated_exception(vcpu);
4559                 r = EMULATE_DONE;
4560         } else if (vcpu->arch.pio.count) {
4561                 if (!vcpu->arch.pio.in)
4562                         vcpu->arch.pio.count = 0;
4563                 else
4564                         writeback = false;
4565                 r = EMULATE_DO_MMIO;
4566         } else if (vcpu->mmio_needed) {
4567                 if (!vcpu->mmio_is_write)
4568                         writeback = false;
4569                 r = EMULATE_DO_MMIO;
4570         } else if (r == EMULATION_RESTART)
4571                 goto restart;
4572         else
4573                 r = EMULATE_DONE;
4574
4575         if (writeback) {
4576                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4577                 kvm_set_rflags(vcpu, ctxt->eflags);
4578                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4579                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4580                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4581                 kvm_rip_write(vcpu, ctxt->eip);
4582         } else
4583                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4584
4585         return r;
4586 }
4587 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4588
4589 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4590 {
4591         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4592         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4593                                             size, port, &val, 1);
4594         /* do not return to emulator after return from userspace */
4595         vcpu->arch.pio.count = 0;
4596         return ret;
4597 }
4598 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4599
4600 static void tsc_bad(void *info)
4601 {
4602         __this_cpu_write(cpu_tsc_khz, 0);
4603 }
4604
4605 static void tsc_khz_changed(void *data)
4606 {
4607         struct cpufreq_freqs *freq = data;
4608         unsigned long khz = 0;
4609
4610         if (data)
4611                 khz = freq->new;
4612         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4613                 khz = cpufreq_quick_get(raw_smp_processor_id());
4614         if (!khz)
4615                 khz = tsc_khz;
4616         __this_cpu_write(cpu_tsc_khz, khz);
4617 }
4618
4619 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4620                                      void *data)
4621 {
4622         struct cpufreq_freqs *freq = data;
4623         struct kvm *kvm;
4624         struct kvm_vcpu *vcpu;
4625         int i, send_ipi = 0;
4626
4627         /*
4628          * We allow guests to temporarily run on slowing clocks,
4629          * provided we notify them after, or to run on accelerating
4630          * clocks, provided we notify them before.  Thus time never
4631          * goes backwards.
4632          *
4633          * However, we have a problem.  We can't atomically update
4634          * the frequency of a given CPU from this function; it is
4635          * merely a notifier, which can be called from any CPU.
4636          * Changing the TSC frequency at arbitrary points in time
4637          * requires a recomputation of local variables related to
4638          * the TSC for each VCPU.  We must flag these local variables
4639          * to be updated and be sure the update takes place with the
4640          * new frequency before any guests proceed.
4641          *
4642          * Unfortunately, the combination of hotplug CPU and frequency
4643          * change creates an intractable locking scenario; the order
4644          * of when these callouts happen is undefined with respect to
4645          * CPU hotplug, and they can race with each other.  As such,
4646          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4647          * undefined; you can actually have a CPU frequency change take
4648          * place in between the computation of X and the setting of the
4649          * variable.  To protect against this problem, all updates of
4650          * the per_cpu tsc_khz variable are done in an interrupt
4651          * protected IPI, and all callers wishing to update the value
4652          * must wait for a synchronous IPI to complete (which is trivial
4653          * if the caller is on the CPU already).  This establishes the
4654          * necessary total order on variable updates.
4655          *
4656          * Note that because a guest time update may take place
4657          * anytime after the setting of the VCPU's request bit, the
4658          * correct TSC value must be set before the request.  However,
4659          * to ensure the update actually makes it to any guest which
4660          * starts running in hardware virtualization between the set
4661          * and the acquisition of the spinlock, we must also ping the
4662          * CPU after setting the request bit.
4663          *
4664          */
4665
4666         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4667                 return 0;
4668         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4669                 return 0;
4670
4671         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4672
4673         raw_spin_lock(&kvm_lock);
4674         list_for_each_entry(kvm, &vm_list, vm_list) {
4675                 kvm_for_each_vcpu(i, vcpu, kvm) {
4676                         if (vcpu->cpu != freq->cpu)
4677                                 continue;
4678                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4679                         if (vcpu->cpu != smp_processor_id())
4680                                 send_ipi = 1;
4681                 }
4682         }
4683         raw_spin_unlock(&kvm_lock);
4684
4685         if (freq->old < freq->new && send_ipi) {
4686                 /*
4687                  * We upscale the frequency.  Must make the guest
4688                  * doesn't see old kvmclock values while running with
4689                  * the new frequency, otherwise we risk the guest sees
4690                  * time go backwards.
4691                  *
4692                  * In case we update the frequency for another cpu
4693                  * (which might be in guest context) send an interrupt
4694                  * to kick the cpu out of guest context.  Next time
4695                  * guest context is entered kvmclock will be updated,
4696                  * so the guest will not see stale values.
4697                  */
4698                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4699         }
4700         return 0;
4701 }
4702
4703 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4704         .notifier_call  = kvmclock_cpufreq_notifier
4705 };
4706
4707 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4708                                         unsigned long action, void *hcpu)
4709 {
4710         unsigned int cpu = (unsigned long)hcpu;
4711
4712         switch (action) {
4713                 case CPU_ONLINE:
4714                 case CPU_DOWN_FAILED:
4715                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4716                         break;
4717                 case CPU_DOWN_PREPARE:
4718                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4719                         break;
4720         }
4721         return NOTIFY_OK;
4722 }
4723
4724 static struct notifier_block kvmclock_cpu_notifier_block = {
4725         .notifier_call  = kvmclock_cpu_notifier,
4726         .priority = -INT_MAX
4727 };
4728
4729 static void kvm_timer_init(void)
4730 {
4731         int cpu;
4732
4733         max_tsc_khz = tsc_khz;
4734         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4735         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4736 #ifdef CONFIG_CPU_FREQ
4737                 struct cpufreq_policy policy;
4738                 memset(&policy, 0, sizeof(policy));
4739                 cpu = get_cpu();
4740                 cpufreq_get_policy(&policy, cpu);
4741                 if (policy.cpuinfo.max_freq)
4742                         max_tsc_khz = policy.cpuinfo.max_freq;
4743                 put_cpu();
4744 #endif
4745                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4746                                           CPUFREQ_TRANSITION_NOTIFIER);
4747         }
4748         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4749         for_each_online_cpu(cpu)
4750                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4751 }
4752
4753 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4754
4755 int kvm_is_in_guest(void)
4756 {
4757         return __this_cpu_read(current_vcpu) != NULL;
4758 }
4759
4760 static int kvm_is_user_mode(void)
4761 {
4762         int user_mode = 3;
4763
4764         if (__this_cpu_read(current_vcpu))
4765                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4766
4767         return user_mode != 0;
4768 }
4769
4770 static unsigned long kvm_get_guest_ip(void)
4771 {
4772         unsigned long ip = 0;
4773
4774         if (__this_cpu_read(current_vcpu))
4775                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4776
4777         return ip;
4778 }
4779
4780 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4781         .is_in_guest            = kvm_is_in_guest,
4782         .is_user_mode           = kvm_is_user_mode,
4783         .get_guest_ip           = kvm_get_guest_ip,
4784 };
4785
4786 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4787 {
4788         __this_cpu_write(current_vcpu, vcpu);
4789 }
4790 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4791
4792 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4793 {
4794         __this_cpu_write(current_vcpu, NULL);
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4797
4798 static void kvm_set_mmio_spte_mask(void)
4799 {
4800         u64 mask;
4801         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4802
4803         /*
4804          * Set the reserved bits and the present bit of an paging-structure
4805          * entry to generate page fault with PFER.RSV = 1.
4806          */
4807         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4808         mask |= 1ull;
4809
4810 #ifdef CONFIG_X86_64
4811         /*
4812          * If reserved bit is not supported, clear the present bit to disable
4813          * mmio page fault.
4814          */
4815         if (maxphyaddr == 52)
4816                 mask &= ~1ull;
4817 #endif
4818
4819         kvm_mmu_set_mmio_spte_mask(mask);
4820 }
4821
4822 int kvm_arch_init(void *opaque)
4823 {
4824         int r;
4825         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4826
4827         if (kvm_x86_ops) {
4828                 printk(KERN_ERR "kvm: already loaded the other module\n");
4829                 r = -EEXIST;
4830                 goto out;
4831         }
4832
4833         if (!ops->cpu_has_kvm_support()) {
4834                 printk(KERN_ERR "kvm: no hardware support\n");
4835                 r = -EOPNOTSUPP;
4836                 goto out;
4837         }
4838         if (ops->disabled_by_bios()) {
4839                 printk(KERN_ERR "kvm: disabled by bios\n");
4840                 r = -EOPNOTSUPP;
4841                 goto out;
4842         }
4843
4844         r = kvm_mmu_module_init();
4845         if (r)
4846                 goto out;
4847
4848         kvm_set_mmio_spte_mask();
4849         kvm_init_msr_list();
4850
4851         kvm_x86_ops = ops;
4852         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4853                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4854
4855         kvm_timer_init();
4856
4857         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4858
4859         if (cpu_has_xsave)
4860                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4861
4862         return 0;
4863
4864 out:
4865         return r;
4866 }
4867
4868 void kvm_arch_exit(void)
4869 {
4870         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4871
4872         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4873                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4874                                             CPUFREQ_TRANSITION_NOTIFIER);
4875         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4876         kvm_x86_ops = NULL;
4877         kvm_mmu_module_exit();
4878 }
4879
4880 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4881 {
4882         ++vcpu->stat.halt_exits;
4883         if (irqchip_in_kernel(vcpu->kvm)) {
4884                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4885                 return 1;
4886         } else {
4887                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4888                 return 0;
4889         }
4890 }
4891 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4892
4893 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4894 {
4895         u64 param, ingpa, outgpa, ret;
4896         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4897         bool fast, longmode;
4898         int cs_db, cs_l;
4899
4900         /*
4901          * hypercall generates UD from non zero cpl and real mode
4902          * per HYPER-V spec
4903          */
4904         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4905                 kvm_queue_exception(vcpu, UD_VECTOR);
4906                 return 0;
4907         }
4908
4909         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4910         longmode = is_long_mode(vcpu) && cs_l == 1;
4911
4912         if (!longmode) {
4913                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4914                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4915                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4916                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4917                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4918                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4919         }
4920 #ifdef CONFIG_X86_64
4921         else {
4922                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4923                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4924                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4925         }
4926 #endif
4927
4928         code = param & 0xffff;
4929         fast = (param >> 16) & 0x1;
4930         rep_cnt = (param >> 32) & 0xfff;
4931         rep_idx = (param >> 48) & 0xfff;
4932
4933         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4934
4935         switch (code) {
4936         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4937                 kvm_vcpu_on_spin(vcpu);
4938                 break;
4939         default:
4940                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4941                 break;
4942         }
4943
4944         ret = res | (((u64)rep_done & 0xfff) << 32);
4945         if (longmode) {
4946                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4947         } else {
4948                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4949                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4950         }
4951
4952         return 1;
4953 }
4954
4955 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4956 {
4957         unsigned long nr, a0, a1, a2, a3, ret;
4958         int r = 1;
4959
4960         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4961                 return kvm_hv_hypercall(vcpu);
4962
4963         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4964         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4965         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4966         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4967         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4968
4969         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4970
4971         if (!is_long_mode(vcpu)) {
4972                 nr &= 0xFFFFFFFF;
4973                 a0 &= 0xFFFFFFFF;
4974                 a1 &= 0xFFFFFFFF;
4975                 a2 &= 0xFFFFFFFF;
4976                 a3 &= 0xFFFFFFFF;
4977         }
4978
4979         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4980                 ret = -KVM_EPERM;
4981                 goto out;
4982         }
4983
4984         switch (nr) {
4985         case KVM_HC_VAPIC_POLL_IRQ:
4986                 ret = 0;
4987                 break;
4988         default:
4989                 ret = -KVM_ENOSYS;
4990                 break;
4991         }
4992 out:
4993         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4994         ++vcpu->stat.hypercalls;
4995         return r;
4996 }
4997 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4998
4999 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5000 {
5001         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5002         char instruction[3];
5003         unsigned long rip = kvm_rip_read(vcpu);
5004
5005         /*
5006          * Blow out the MMU to ensure that no other VCPU has an active mapping
5007          * to ensure that the updated hypercall appears atomically across all
5008          * VCPUs.
5009          */
5010         kvm_mmu_zap_all(vcpu->kvm);
5011
5012         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5013
5014         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5015 }
5016
5017 /*
5018  * Check if userspace requested an interrupt window, and that the
5019  * interrupt window is open.
5020  *
5021  * No need to exit to userspace if we already have an interrupt queued.
5022  */
5023 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5024 {
5025         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5026                 vcpu->run->request_interrupt_window &&
5027                 kvm_arch_interrupt_allowed(vcpu));
5028 }
5029
5030 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5031 {
5032         struct kvm_run *kvm_run = vcpu->run;
5033
5034         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5035         kvm_run->cr8 = kvm_get_cr8(vcpu);
5036         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5037         if (irqchip_in_kernel(vcpu->kvm))
5038                 kvm_run->ready_for_interrupt_injection = 1;
5039         else
5040                 kvm_run->ready_for_interrupt_injection =
5041                         kvm_arch_interrupt_allowed(vcpu) &&
5042                         !kvm_cpu_has_interrupt(vcpu) &&
5043                         !kvm_event_needs_reinjection(vcpu);
5044 }
5045
5046 static void vapic_enter(struct kvm_vcpu *vcpu)
5047 {
5048         struct kvm_lapic *apic = vcpu->arch.apic;
5049         struct page *page;
5050
5051         if (!apic || !apic->vapic_addr)
5052                 return;
5053
5054         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5055
5056         vcpu->arch.apic->vapic_page = page;
5057 }
5058
5059 static void vapic_exit(struct kvm_vcpu *vcpu)
5060 {
5061         struct kvm_lapic *apic = vcpu->arch.apic;
5062         int idx;
5063
5064         if (!apic || !apic->vapic_addr)
5065                 return;
5066
5067         idx = srcu_read_lock(&vcpu->kvm->srcu);
5068         kvm_release_page_dirty(apic->vapic_page);
5069         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5070         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5071 }
5072
5073 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5074 {
5075         int max_irr, tpr;
5076
5077         if (!kvm_x86_ops->update_cr8_intercept)
5078                 return;
5079
5080         if (!vcpu->arch.apic)
5081                 return;
5082
5083         if (!vcpu->arch.apic->vapic_addr)
5084                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5085         else
5086                 max_irr = -1;
5087
5088         if (max_irr != -1)
5089                 max_irr >>= 4;
5090
5091         tpr = kvm_lapic_get_cr8(vcpu);
5092
5093         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5094 }
5095
5096 static void inject_pending_event(struct kvm_vcpu *vcpu)
5097 {
5098         /* try to reinject previous events if any */
5099         if (vcpu->arch.exception.pending) {
5100                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5101                                         vcpu->arch.exception.has_error_code,
5102                                         vcpu->arch.exception.error_code);
5103                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5104                                           vcpu->arch.exception.has_error_code,
5105                                           vcpu->arch.exception.error_code,
5106                                           vcpu->arch.exception.reinject);
5107                 return;
5108         }
5109
5110         if (vcpu->arch.nmi_injected) {
5111                 kvm_x86_ops->set_nmi(vcpu);
5112                 return;
5113         }
5114
5115         if (vcpu->arch.interrupt.pending) {
5116                 kvm_x86_ops->set_irq(vcpu);
5117                 return;
5118         }
5119
5120         /* try to inject new event if pending */
5121         if (vcpu->arch.nmi_pending) {
5122                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5123                         --vcpu->arch.nmi_pending;
5124                         vcpu->arch.nmi_injected = true;
5125                         kvm_x86_ops->set_nmi(vcpu);
5126                 }
5127         } else if (kvm_cpu_has_interrupt(vcpu)) {
5128                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5129                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5130                                             false);
5131                         kvm_x86_ops->set_irq(vcpu);
5132                 }
5133         }
5134 }
5135
5136 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5137 {
5138         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5139                         !vcpu->guest_xcr0_loaded) {
5140                 /* kvm_set_xcr() also depends on this */
5141                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5142                 vcpu->guest_xcr0_loaded = 1;
5143         }
5144 }
5145
5146 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5147 {
5148         if (vcpu->guest_xcr0_loaded) {
5149                 if (vcpu->arch.xcr0 != host_xcr0)
5150                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5151                 vcpu->guest_xcr0_loaded = 0;
5152         }
5153 }
5154
5155 static void process_nmi(struct kvm_vcpu *vcpu)
5156 {
5157         unsigned limit = 2;
5158
5159         /*
5160          * x86 is limited to one NMI running, and one NMI pending after it.
5161          * If an NMI is already in progress, limit further NMIs to just one.
5162          * Otherwise, allow two (and we'll inject the first one immediately).
5163          */
5164         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5165                 limit = 1;
5166
5167         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5168         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5169         kvm_make_request(KVM_REQ_EVENT, vcpu);
5170 }
5171
5172 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5173 {
5174         int r;
5175         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5176                 vcpu->run->request_interrupt_window;
5177         bool req_immediate_exit = 0;
5178
5179         if (vcpu->requests) {
5180                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5181                         kvm_mmu_unload(vcpu);
5182                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5183                         __kvm_migrate_timers(vcpu);
5184                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5185                         r = kvm_guest_time_update(vcpu);
5186                         if (unlikely(r))
5187                                 goto out;
5188                 }
5189                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5190                         kvm_mmu_sync_roots(vcpu);
5191                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5192                         kvm_x86_ops->tlb_flush(vcpu);
5193                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5194                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5195                         r = 0;
5196                         goto out;
5197                 }
5198                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5199                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5200                         r = 0;
5201                         goto out;
5202                 }
5203                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5204                         vcpu->fpu_active = 0;
5205                         kvm_x86_ops->fpu_deactivate(vcpu);
5206                 }
5207                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5208                         /* Page is swapped out. Do synthetic halt */
5209                         vcpu->arch.apf.halted = true;
5210                         r = 1;
5211                         goto out;
5212                 }
5213                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5214                         record_steal_time(vcpu);
5215                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5216                         process_nmi(vcpu);
5217                 req_immediate_exit =
5218                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5219                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5220                         kvm_handle_pmu_event(vcpu);
5221                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5222                         kvm_deliver_pmi(vcpu);
5223         }
5224
5225         r = kvm_mmu_reload(vcpu);
5226         if (unlikely(r))
5227                 goto out;
5228
5229         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5230                 inject_pending_event(vcpu);
5231
5232                 /* enable NMI/IRQ window open exits if needed */
5233                 if (vcpu->arch.nmi_pending)
5234                         kvm_x86_ops->enable_nmi_window(vcpu);
5235                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5236                         kvm_x86_ops->enable_irq_window(vcpu);
5237
5238                 if (kvm_lapic_enabled(vcpu)) {
5239                         update_cr8_intercept(vcpu);
5240                         kvm_lapic_sync_to_vapic(vcpu);
5241                 }
5242         }
5243
5244         preempt_disable();
5245
5246         kvm_x86_ops->prepare_guest_switch(vcpu);
5247         if (vcpu->fpu_active)
5248                 kvm_load_guest_fpu(vcpu);
5249         kvm_load_guest_xcr0(vcpu);
5250
5251         vcpu->mode = IN_GUEST_MODE;
5252
5253         /* We should set ->mode before check ->requests,
5254          * see the comment in make_all_cpus_request.
5255          */
5256         smp_mb();
5257
5258         local_irq_disable();
5259
5260         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5261             || need_resched() || signal_pending(current)) {
5262                 vcpu->mode = OUTSIDE_GUEST_MODE;
5263                 smp_wmb();
5264                 local_irq_enable();
5265                 preempt_enable();
5266                 kvm_x86_ops->cancel_injection(vcpu);
5267                 r = 1;
5268                 goto out;
5269         }
5270
5271         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5272
5273         if (req_immediate_exit)
5274                 smp_send_reschedule(vcpu->cpu);
5275
5276         kvm_guest_enter();
5277
5278         if (unlikely(vcpu->arch.switch_db_regs)) {
5279                 set_debugreg(0, 7);
5280                 set_debugreg(vcpu->arch.eff_db[0], 0);
5281                 set_debugreg(vcpu->arch.eff_db[1], 1);
5282                 set_debugreg(vcpu->arch.eff_db[2], 2);
5283                 set_debugreg(vcpu->arch.eff_db[3], 3);
5284         }
5285
5286         trace_kvm_entry(vcpu->vcpu_id);
5287         kvm_x86_ops->run(vcpu);
5288
5289         /*
5290          * If the guest has used debug registers, at least dr7
5291          * will be disabled while returning to the host.
5292          * If we don't have active breakpoints in the host, we don't
5293          * care about the messed up debug address registers. But if
5294          * we have some of them active, restore the old state.
5295          */
5296         if (hw_breakpoint_active())
5297                 hw_breakpoint_restore();
5298
5299         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5300
5301         vcpu->mode = OUTSIDE_GUEST_MODE;
5302         smp_wmb();
5303         local_irq_enable();
5304
5305         ++vcpu->stat.exits;
5306
5307         /*
5308          * We must have an instruction between local_irq_enable() and
5309          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5310          * the interrupt shadow.  The stat.exits increment will do nicely.
5311          * But we need to prevent reordering, hence this barrier():
5312          */
5313         barrier();
5314
5315         kvm_guest_exit();
5316
5317         preempt_enable();
5318
5319         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5320
5321         /*
5322          * Profile KVM exit RIPs:
5323          */
5324         if (unlikely(prof_on == KVM_PROFILING)) {
5325                 unsigned long rip = kvm_rip_read(vcpu);
5326                 profile_hit(KVM_PROFILING, (void *)rip);
5327         }
5328
5329         if (unlikely(vcpu->arch.tsc_always_catchup))
5330                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5331
5332         kvm_lapic_sync_from_vapic(vcpu);
5333
5334         r = kvm_x86_ops->handle_exit(vcpu);
5335 out:
5336         return r;
5337 }
5338
5339
5340 static int __vcpu_run(struct kvm_vcpu *vcpu)
5341 {
5342         int r;
5343         struct kvm *kvm = vcpu->kvm;
5344
5345         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5346                 pr_debug("vcpu %d received sipi with vector # %x\n",
5347                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5348                 kvm_lapic_reset(vcpu);
5349                 r = kvm_arch_vcpu_reset(vcpu);
5350                 if (r)
5351                         return r;
5352                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5353         }
5354
5355         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5356         vapic_enter(vcpu);
5357
5358         r = 1;
5359         while (r > 0) {
5360                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5361                     !vcpu->arch.apf.halted)
5362                         r = vcpu_enter_guest(vcpu);
5363                 else {
5364                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5365                         kvm_vcpu_block(vcpu);
5366                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5367                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5368                         {
5369                                 switch(vcpu->arch.mp_state) {
5370                                 case KVM_MP_STATE_HALTED:
5371                                         vcpu->arch.mp_state =
5372                                                 KVM_MP_STATE_RUNNABLE;
5373                                 case KVM_MP_STATE_RUNNABLE:
5374                                         vcpu->arch.apf.halted = false;
5375                                         break;
5376                                 case KVM_MP_STATE_SIPI_RECEIVED:
5377                                 default:
5378                                         r = -EINTR;
5379                                         break;
5380                                 }
5381                         }
5382                 }
5383
5384                 if (r <= 0)
5385                         break;
5386
5387                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5388                 if (kvm_cpu_has_pending_timer(vcpu))
5389                         kvm_inject_pending_timer_irqs(vcpu);
5390
5391                 if (dm_request_for_irq_injection(vcpu)) {
5392                         r = -EINTR;
5393                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5394                         ++vcpu->stat.request_irq_exits;
5395                 }
5396
5397                 kvm_check_async_pf_completion(vcpu);
5398
5399                 if (signal_pending(current)) {
5400                         r = -EINTR;
5401                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5402                         ++vcpu->stat.signal_exits;
5403                 }
5404                 if (need_resched()) {
5405                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5406                         kvm_resched(vcpu);
5407                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5408                 }
5409         }
5410
5411         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5412
5413         vapic_exit(vcpu);
5414
5415         return r;
5416 }
5417
5418 static int complete_mmio(struct kvm_vcpu *vcpu)
5419 {
5420         struct kvm_run *run = vcpu->run;
5421         int r;
5422
5423         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5424                 return 1;
5425
5426         if (vcpu->mmio_needed) {
5427                 vcpu->mmio_needed = 0;
5428                 if (!vcpu->mmio_is_write)
5429                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5430                                run->mmio.data, 8);
5431                 vcpu->mmio_index += 8;
5432                 if (vcpu->mmio_index < vcpu->mmio_size) {
5433                         run->exit_reason = KVM_EXIT_MMIO;
5434                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5435                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5436                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5437                         run->mmio.is_write = vcpu->mmio_is_write;
5438                         vcpu->mmio_needed = 1;
5439                         return 0;
5440                 }
5441                 if (vcpu->mmio_is_write)
5442                         return 1;
5443                 vcpu->mmio_read_completed = 1;
5444         }
5445         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5446         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5447         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5448         if (r != EMULATE_DONE)
5449                 return 0;
5450         return 1;
5451 }
5452
5453 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5454 {
5455         int r;
5456         sigset_t sigsaved;
5457
5458         if (!tsk_used_math(current) && init_fpu(current))
5459                 return -ENOMEM;
5460
5461         if (vcpu->sigset_active)
5462                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5463
5464         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5465                 kvm_vcpu_block(vcpu);
5466                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5467                 r = -EAGAIN;
5468                 goto out;
5469         }
5470
5471         /* re-sync apic's tpr */
5472         if (!irqchip_in_kernel(vcpu->kvm)) {
5473                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5474                         r = -EINVAL;
5475                         goto out;
5476                 }
5477         }
5478
5479         r = complete_mmio(vcpu);
5480         if (r <= 0)
5481                 goto out;
5482
5483         r = __vcpu_run(vcpu);
5484
5485 out:
5486         post_kvm_run_save(vcpu);
5487         if (vcpu->sigset_active)
5488                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5489
5490         return r;
5491 }
5492
5493 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5494 {
5495         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5496                 /*
5497                  * We are here if userspace calls get_regs() in the middle of
5498                  * instruction emulation. Registers state needs to be copied
5499                  * back from emulation context to vcpu. Usrapace shouldn't do
5500                  * that usually, but some bad designed PV devices (vmware
5501                  * backdoor interface) need this to work
5502                  */
5503                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5504                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5505                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5506         }
5507         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5508         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5509         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5510         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5511         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5512         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5513         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5514         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5515 #ifdef CONFIG_X86_64
5516         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5517         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5518         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5519         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5520         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5521         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5522         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5523         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5524 #endif
5525
5526         regs->rip = kvm_rip_read(vcpu);
5527         regs->rflags = kvm_get_rflags(vcpu);
5528
5529         return 0;
5530 }
5531
5532 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5533 {
5534         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5535         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5536
5537         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5538         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5539         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5540         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5541         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5542         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5543         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5544         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5545 #ifdef CONFIG_X86_64
5546         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5547         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5548         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5549         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5550         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5551         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5552         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5553         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5554 #endif
5555
5556         kvm_rip_write(vcpu, regs->rip);
5557         kvm_set_rflags(vcpu, regs->rflags);
5558
5559         vcpu->arch.exception.pending = false;
5560
5561         kvm_make_request(KVM_REQ_EVENT, vcpu);
5562
5563         return 0;
5564 }
5565
5566 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5567 {
5568         struct kvm_segment cs;
5569
5570         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5571         *db = cs.db;
5572         *l = cs.l;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5575
5576 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5577                                   struct kvm_sregs *sregs)
5578 {
5579         struct desc_ptr dt;
5580
5581         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5582         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5583         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5584         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5585         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5586         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5587
5588         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5589         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5590
5591         kvm_x86_ops->get_idt(vcpu, &dt);
5592         sregs->idt.limit = dt.size;
5593         sregs->idt.base = dt.address;
5594         kvm_x86_ops->get_gdt(vcpu, &dt);
5595         sregs->gdt.limit = dt.size;
5596         sregs->gdt.base = dt.address;
5597
5598         sregs->cr0 = kvm_read_cr0(vcpu);
5599         sregs->cr2 = vcpu->arch.cr2;
5600         sregs->cr3 = kvm_read_cr3(vcpu);
5601         sregs->cr4 = kvm_read_cr4(vcpu);
5602         sregs->cr8 = kvm_get_cr8(vcpu);
5603         sregs->efer = vcpu->arch.efer;
5604         sregs->apic_base = kvm_get_apic_base(vcpu);
5605
5606         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5607
5608         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5609                 set_bit(vcpu->arch.interrupt.nr,
5610                         (unsigned long *)sregs->interrupt_bitmap);
5611
5612         return 0;
5613 }
5614
5615 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5616                                     struct kvm_mp_state *mp_state)
5617 {
5618         mp_state->mp_state = vcpu->arch.mp_state;
5619         return 0;
5620 }
5621
5622 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5623                                     struct kvm_mp_state *mp_state)
5624 {
5625         vcpu->arch.mp_state = mp_state->mp_state;
5626         kvm_make_request(KVM_REQ_EVENT, vcpu);
5627         return 0;
5628 }
5629
5630 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5631                     bool has_error_code, u32 error_code)
5632 {
5633         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5634         int ret;
5635
5636         init_emulate_ctxt(vcpu);
5637
5638         ret = emulator_task_switch(ctxt, tss_selector, reason,
5639                                    has_error_code, error_code);
5640
5641         if (ret)
5642                 return EMULATE_FAIL;
5643
5644         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5645         kvm_rip_write(vcpu, ctxt->eip);
5646         kvm_set_rflags(vcpu, ctxt->eflags);
5647         kvm_make_request(KVM_REQ_EVENT, vcpu);
5648         return EMULATE_DONE;
5649 }
5650 EXPORT_SYMBOL_GPL(kvm_task_switch);
5651
5652 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5653                                   struct kvm_sregs *sregs)
5654 {
5655         int mmu_reset_needed = 0;
5656         int pending_vec, max_bits, idx;
5657         struct desc_ptr dt;
5658
5659         dt.size = sregs->idt.limit;
5660         dt.address = sregs->idt.base;
5661         kvm_x86_ops->set_idt(vcpu, &dt);
5662         dt.size = sregs->gdt.limit;
5663         dt.address = sregs->gdt.base;
5664         kvm_x86_ops->set_gdt(vcpu, &dt);
5665
5666         vcpu->arch.cr2 = sregs->cr2;
5667         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5668         vcpu->arch.cr3 = sregs->cr3;
5669         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5670
5671         kvm_set_cr8(vcpu, sregs->cr8);
5672
5673         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5674         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5675         kvm_set_apic_base(vcpu, sregs->apic_base);
5676
5677         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5678         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5679         vcpu->arch.cr0 = sregs->cr0;
5680
5681         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5682         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5683         if (sregs->cr4 & X86_CR4_OSXSAVE)
5684                 kvm_update_cpuid(vcpu);
5685
5686         idx = srcu_read_lock(&vcpu->kvm->srcu);
5687         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5688                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5689                 mmu_reset_needed = 1;
5690         }
5691         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5692
5693         if (mmu_reset_needed)
5694                 kvm_mmu_reset_context(vcpu);
5695
5696         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5697         pending_vec = find_first_bit(
5698                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5699         if (pending_vec < max_bits) {
5700                 kvm_queue_interrupt(vcpu, pending_vec, false);
5701                 pr_debug("Set back pending irq %d\n", pending_vec);
5702         }
5703
5704         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5705         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5706         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5707         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5708         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5709         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5710
5711         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5712         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5713
5714         update_cr8_intercept(vcpu);
5715
5716         /* Older userspace won't unhalt the vcpu on reset. */
5717         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5718             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5719             !is_protmode(vcpu))
5720                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5721
5722         kvm_make_request(KVM_REQ_EVENT, vcpu);
5723
5724         return 0;
5725 }
5726
5727 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5728                                         struct kvm_guest_debug *dbg)
5729 {
5730         unsigned long rflags;
5731         int i, r;
5732
5733         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5734                 r = -EBUSY;
5735                 if (vcpu->arch.exception.pending)
5736                         goto out;
5737                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5738                         kvm_queue_exception(vcpu, DB_VECTOR);
5739                 else
5740                         kvm_queue_exception(vcpu, BP_VECTOR);
5741         }
5742
5743         /*
5744          * Read rflags as long as potentially injected trace flags are still
5745          * filtered out.
5746          */
5747         rflags = kvm_get_rflags(vcpu);
5748
5749         vcpu->guest_debug = dbg->control;
5750         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5751                 vcpu->guest_debug = 0;
5752
5753         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5754                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5755                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5756                 vcpu->arch.switch_db_regs =
5757                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5758         } else {
5759                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5760                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5761                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5762         }
5763
5764         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5765                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5766                         get_segment_base(vcpu, VCPU_SREG_CS);
5767
5768         /*
5769          * Trigger an rflags update that will inject or remove the trace
5770          * flags.
5771          */
5772         kvm_set_rflags(vcpu, rflags);
5773
5774         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5775
5776         r = 0;
5777
5778 out:
5779
5780         return r;
5781 }
5782
5783 /*
5784  * Translate a guest virtual address to a guest physical address.
5785  */
5786 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5787                                     struct kvm_translation *tr)
5788 {
5789         unsigned long vaddr = tr->linear_address;
5790         gpa_t gpa;
5791         int idx;
5792
5793         idx = srcu_read_lock(&vcpu->kvm->srcu);
5794         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5795         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5796         tr->physical_address = gpa;
5797         tr->valid = gpa != UNMAPPED_GVA;
5798         tr->writeable = 1;
5799         tr->usermode = 0;
5800
5801         return 0;
5802 }
5803
5804 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5805 {
5806         struct i387_fxsave_struct *fxsave =
5807                         &vcpu->arch.guest_fpu.state->fxsave;
5808
5809         memcpy(fpu->fpr, fxsave->st_space, 128);
5810         fpu->fcw = fxsave->cwd;
5811         fpu->fsw = fxsave->swd;
5812         fpu->ftwx = fxsave->twd;
5813         fpu->last_opcode = fxsave->fop;
5814         fpu->last_ip = fxsave->rip;
5815         fpu->last_dp = fxsave->rdp;
5816         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5817
5818         return 0;
5819 }
5820
5821 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5822 {
5823         struct i387_fxsave_struct *fxsave =
5824                         &vcpu->arch.guest_fpu.state->fxsave;
5825
5826         memcpy(fxsave->st_space, fpu->fpr, 128);
5827         fxsave->cwd = fpu->fcw;
5828         fxsave->swd = fpu->fsw;
5829         fxsave->twd = fpu->ftwx;
5830         fxsave->fop = fpu->last_opcode;
5831         fxsave->rip = fpu->last_ip;
5832         fxsave->rdp = fpu->last_dp;
5833         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5834
5835         return 0;
5836 }
5837
5838 int fx_init(struct kvm_vcpu *vcpu)
5839 {
5840         int err;
5841
5842         err = fpu_alloc(&vcpu->arch.guest_fpu);
5843         if (err)
5844                 return err;
5845
5846         fpu_finit(&vcpu->arch.guest_fpu);
5847
5848         /*
5849          * Ensure guest xcr0 is valid for loading
5850          */
5851         vcpu->arch.xcr0 = XSTATE_FP;
5852
5853         vcpu->arch.cr0 |= X86_CR0_ET;
5854
5855         return 0;
5856 }
5857 EXPORT_SYMBOL_GPL(fx_init);
5858
5859 static void fx_free(struct kvm_vcpu *vcpu)
5860 {
5861         fpu_free(&vcpu->arch.guest_fpu);
5862 }
5863
5864 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5865 {
5866         if (vcpu->guest_fpu_loaded)
5867                 return;
5868
5869         /*
5870          * Restore all possible states in the guest,
5871          * and assume host would use all available bits.
5872          * Guest xcr0 would be loaded later.
5873          */
5874         kvm_put_guest_xcr0(vcpu);
5875         vcpu->guest_fpu_loaded = 1;
5876         unlazy_fpu(current);
5877         fpu_restore_checking(&vcpu->arch.guest_fpu);
5878         trace_kvm_fpu(1);
5879 }
5880
5881 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5882 {
5883         kvm_put_guest_xcr0(vcpu);
5884
5885         if (!vcpu->guest_fpu_loaded)
5886                 return;
5887
5888         vcpu->guest_fpu_loaded = 0;
5889         fpu_save_init(&vcpu->arch.guest_fpu);
5890         ++vcpu->stat.fpu_reload;
5891         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5892         trace_kvm_fpu(0);
5893 }
5894
5895 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5896 {
5897         kvmclock_reset(vcpu);
5898
5899         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5900         fx_free(vcpu);
5901         kvm_x86_ops->vcpu_free(vcpu);
5902 }
5903
5904 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5905                                                 unsigned int id)
5906 {
5907         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5908                 printk_once(KERN_WARNING
5909                 "kvm: SMP vm created on host with unstable TSC; "
5910                 "guest TSC will not be reliable\n");
5911         return kvm_x86_ops->vcpu_create(kvm, id);
5912 }
5913
5914 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5915 {
5916         int r;
5917
5918         vcpu->arch.mtrr_state.have_fixed = 1;
5919         vcpu_load(vcpu);
5920         r = kvm_arch_vcpu_reset(vcpu);
5921         if (r == 0)
5922                 r = kvm_mmu_setup(vcpu);
5923         vcpu_put(vcpu);
5924
5925         return r;
5926 }
5927
5928 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5929 {
5930         vcpu->arch.apf.msr_val = 0;
5931
5932         vcpu_load(vcpu);
5933         kvm_mmu_unload(vcpu);
5934         vcpu_put(vcpu);
5935
5936         fx_free(vcpu);
5937         kvm_x86_ops->vcpu_free(vcpu);
5938 }
5939
5940 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5941 {
5942         atomic_set(&vcpu->arch.nmi_queued, 0);
5943         vcpu->arch.nmi_pending = 0;
5944         vcpu->arch.nmi_injected = false;
5945
5946         vcpu->arch.switch_db_regs = 0;
5947         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5948         vcpu->arch.dr6 = DR6_FIXED_1;
5949         vcpu->arch.dr7 = DR7_FIXED_1;
5950
5951         kvm_make_request(KVM_REQ_EVENT, vcpu);
5952         vcpu->arch.apf.msr_val = 0;
5953         vcpu->arch.st.msr_val = 0;
5954
5955         kvmclock_reset(vcpu);
5956
5957         kvm_clear_async_pf_completion_queue(vcpu);
5958         kvm_async_pf_hash_reset(vcpu);
5959         vcpu->arch.apf.halted = false;
5960
5961         kvm_pmu_reset(vcpu);
5962
5963         return kvm_x86_ops->vcpu_reset(vcpu);
5964 }
5965
5966 int kvm_arch_hardware_enable(void *garbage)
5967 {
5968         struct kvm *kvm;
5969         struct kvm_vcpu *vcpu;
5970         int i;
5971
5972         kvm_shared_msr_cpu_online();
5973         list_for_each_entry(kvm, &vm_list, vm_list)
5974                 kvm_for_each_vcpu(i, vcpu, kvm)
5975                         if (vcpu->cpu == smp_processor_id())
5976                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5977         return kvm_x86_ops->hardware_enable(garbage);
5978 }
5979
5980 void kvm_arch_hardware_disable(void *garbage)
5981 {
5982         kvm_x86_ops->hardware_disable(garbage);
5983         drop_user_return_notifiers(garbage);
5984 }
5985
5986 int kvm_arch_hardware_setup(void)
5987 {
5988         return kvm_x86_ops->hardware_setup();
5989 }
5990
5991 void kvm_arch_hardware_unsetup(void)
5992 {
5993         kvm_x86_ops->hardware_unsetup();
5994 }
5995
5996 void kvm_arch_check_processor_compat(void *rtn)
5997 {
5998         kvm_x86_ops->check_processor_compatibility(rtn);
5999 }
6000
6001 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6002 {
6003         struct page *page;
6004         struct kvm *kvm;
6005         int r;
6006
6007         BUG_ON(vcpu->kvm == NULL);
6008         kvm = vcpu->kvm;
6009
6010         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6011         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6012                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6013         else
6014                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6015
6016         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6017         if (!page) {
6018                 r = -ENOMEM;
6019                 goto fail;
6020         }
6021         vcpu->arch.pio_data = page_address(page);
6022
6023         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6024
6025         r = kvm_mmu_create(vcpu);
6026         if (r < 0)
6027                 goto fail_free_pio_data;
6028
6029         if (irqchip_in_kernel(kvm)) {
6030                 r = kvm_create_lapic(vcpu);
6031                 if (r < 0)
6032                         goto fail_mmu_destroy;
6033         }
6034
6035         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6036                                        GFP_KERNEL);
6037         if (!vcpu->arch.mce_banks) {
6038                 r = -ENOMEM;
6039                 goto fail_free_lapic;
6040         }
6041         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6042
6043         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6044                 goto fail_free_mce_banks;
6045
6046         kvm_async_pf_hash_reset(vcpu);
6047         kvm_pmu_init(vcpu);
6048
6049         return 0;
6050 fail_free_mce_banks:
6051         kfree(vcpu->arch.mce_banks);
6052 fail_free_lapic:
6053         kvm_free_lapic(vcpu);
6054 fail_mmu_destroy:
6055         kvm_mmu_destroy(vcpu);
6056 fail_free_pio_data:
6057         free_page((unsigned long)vcpu->arch.pio_data);
6058 fail:
6059         return r;
6060 }
6061
6062 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6063 {
6064         int idx;
6065
6066         kvm_pmu_destroy(vcpu);
6067         kfree(vcpu->arch.mce_banks);
6068         kvm_free_lapic(vcpu);
6069         idx = srcu_read_lock(&vcpu->kvm->srcu);
6070         kvm_mmu_destroy(vcpu);
6071         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6072         free_page((unsigned long)vcpu->arch.pio_data);
6073 }
6074
6075 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6076 {
6077         if (type)
6078                 return -EINVAL;
6079
6080         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6081         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6082
6083         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6084         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6085
6086         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6087
6088         return 0;
6089 }
6090
6091 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6092 {
6093         vcpu_load(vcpu);
6094         kvm_mmu_unload(vcpu);
6095         vcpu_put(vcpu);
6096 }
6097
6098 static void kvm_free_vcpus(struct kvm *kvm)
6099 {
6100         unsigned int i;
6101         struct kvm_vcpu *vcpu;
6102
6103         /*
6104          * Unpin any mmu pages first.
6105          */
6106         kvm_for_each_vcpu(i, vcpu, kvm) {
6107                 kvm_clear_async_pf_completion_queue(vcpu);
6108                 kvm_unload_vcpu_mmu(vcpu);
6109         }
6110         kvm_for_each_vcpu(i, vcpu, kvm)
6111                 kvm_arch_vcpu_free(vcpu);
6112
6113         mutex_lock(&kvm->lock);
6114         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6115                 kvm->vcpus[i] = NULL;
6116
6117         atomic_set(&kvm->online_vcpus, 0);
6118         mutex_unlock(&kvm->lock);
6119 }
6120
6121 void kvm_arch_sync_events(struct kvm *kvm)
6122 {
6123         kvm_free_all_assigned_devices(kvm);
6124         kvm_free_pit(kvm);
6125 }
6126
6127 void kvm_arch_destroy_vm(struct kvm *kvm)
6128 {
6129         kvm_iommu_unmap_guest(kvm);
6130         kfree(kvm->arch.vpic);
6131         kfree(kvm->arch.vioapic);
6132         kvm_free_vcpus(kvm);
6133         if (kvm->arch.apic_access_page)
6134                 put_page(kvm->arch.apic_access_page);
6135         if (kvm->arch.ept_identity_pagetable)
6136                 put_page(kvm->arch.ept_identity_pagetable);
6137 }
6138
6139 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6140                                 struct kvm_memory_slot *memslot,
6141                                 struct kvm_memory_slot old,
6142                                 struct kvm_userspace_memory_region *mem,
6143                                 int user_alloc)
6144 {
6145         int npages = memslot->npages;
6146         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6147
6148         /* Prevent internal slot pages from being moved by fork()/COW. */
6149         if (memslot->id >= KVM_MEMORY_SLOTS)
6150                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6151
6152         /*To keep backward compatibility with older userspace,
6153          *x86 needs to hanlde !user_alloc case.
6154          */
6155         if (!user_alloc) {
6156                 if (npages && !old.rmap) {
6157                         unsigned long userspace_addr;
6158
6159                         down_write(&current->mm->mmap_sem);
6160                         userspace_addr = do_mmap(NULL, 0,
6161                                                  npages * PAGE_SIZE,
6162                                                  PROT_READ | PROT_WRITE,
6163                                                  map_flags,
6164                                                  0);
6165                         up_write(&current->mm->mmap_sem);
6166
6167                         if (IS_ERR((void *)userspace_addr))
6168                                 return PTR_ERR((void *)userspace_addr);
6169
6170                         memslot->userspace_addr = userspace_addr;
6171                 }
6172         }
6173
6174
6175         return 0;
6176 }
6177
6178 void kvm_arch_commit_memory_region(struct kvm *kvm,
6179                                 struct kvm_userspace_memory_region *mem,
6180                                 struct kvm_memory_slot old,
6181                                 int user_alloc)
6182 {
6183
6184         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6185
6186         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6187                 int ret;
6188
6189                 down_write(&current->mm->mmap_sem);
6190                 ret = do_munmap(current->mm, old.userspace_addr,
6191                                 old.npages * PAGE_SIZE);
6192                 up_write(&current->mm->mmap_sem);
6193                 if (ret < 0)
6194                         printk(KERN_WARNING
6195                                "kvm_vm_ioctl_set_memory_region: "
6196                                "failed to munmap memory\n");
6197         }
6198
6199         if (!kvm->arch.n_requested_mmu_pages)
6200                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6201
6202         spin_lock(&kvm->mmu_lock);
6203         if (nr_mmu_pages)
6204                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6205         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6206         spin_unlock(&kvm->mmu_lock);
6207 }
6208
6209 void kvm_arch_flush_shadow(struct kvm *kvm)
6210 {
6211         kvm_mmu_zap_all(kvm);
6212         kvm_reload_remote_mmus(kvm);
6213 }
6214
6215 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6216 {
6217         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6218                 !vcpu->arch.apf.halted)
6219                 || !list_empty_careful(&vcpu->async_pf.done)
6220                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6221                 || atomic_read(&vcpu->arch.nmi_queued) ||
6222                 (kvm_arch_interrupt_allowed(vcpu) &&
6223                  kvm_cpu_has_interrupt(vcpu));
6224 }
6225
6226 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6227 {
6228         int me;
6229         int cpu = vcpu->cpu;
6230
6231         if (waitqueue_active(&vcpu->wq)) {
6232                 wake_up_interruptible(&vcpu->wq);
6233                 ++vcpu->stat.halt_wakeup;
6234         }
6235
6236         me = get_cpu();
6237         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6238                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6239                         smp_send_reschedule(cpu);
6240         put_cpu();
6241 }
6242
6243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6244 {
6245         return kvm_x86_ops->interrupt_allowed(vcpu);
6246 }
6247
6248 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6249 {
6250         unsigned long current_rip = kvm_rip_read(vcpu) +
6251                 get_segment_base(vcpu, VCPU_SREG_CS);
6252
6253         return current_rip == linear_rip;
6254 }
6255 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6256
6257 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6258 {
6259         unsigned long rflags;
6260
6261         rflags = kvm_x86_ops->get_rflags(vcpu);
6262         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6263                 rflags &= ~X86_EFLAGS_TF;
6264         return rflags;
6265 }
6266 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6267
6268 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6269 {
6270         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6271             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6272                 rflags |= X86_EFLAGS_TF;
6273         kvm_x86_ops->set_rflags(vcpu, rflags);
6274         kvm_make_request(KVM_REQ_EVENT, vcpu);
6275 }
6276 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6277
6278 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6279 {
6280         int r;
6281
6282         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6283               is_error_page(work->page))
6284                 return;
6285
6286         r = kvm_mmu_reload(vcpu);
6287         if (unlikely(r))
6288                 return;
6289
6290         if (!vcpu->arch.mmu.direct_map &&
6291               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6292                 return;
6293
6294         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6295 }
6296
6297 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6298 {
6299         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6300 }
6301
6302 static inline u32 kvm_async_pf_next_probe(u32 key)
6303 {
6304         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6305 }
6306
6307 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6308 {
6309         u32 key = kvm_async_pf_hash_fn(gfn);
6310
6311         while (vcpu->arch.apf.gfns[key] != ~0)
6312                 key = kvm_async_pf_next_probe(key);
6313
6314         vcpu->arch.apf.gfns[key] = gfn;
6315 }
6316
6317 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6318 {
6319         int i;
6320         u32 key = kvm_async_pf_hash_fn(gfn);
6321
6322         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6323                      (vcpu->arch.apf.gfns[key] != gfn &&
6324                       vcpu->arch.apf.gfns[key] != ~0); i++)
6325                 key = kvm_async_pf_next_probe(key);
6326
6327         return key;
6328 }
6329
6330 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6331 {
6332         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6333 }
6334
6335 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6336 {
6337         u32 i, j, k;
6338
6339         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6340         while (true) {
6341                 vcpu->arch.apf.gfns[i] = ~0;
6342                 do {
6343                         j = kvm_async_pf_next_probe(j);
6344                         if (vcpu->arch.apf.gfns[j] == ~0)
6345                                 return;
6346                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6347                         /*
6348                          * k lies cyclically in ]i,j]
6349                          * |    i.k.j |
6350                          * |....j i.k.| or  |.k..j i...|
6351                          */
6352                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6353                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6354                 i = j;
6355         }
6356 }
6357
6358 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6359 {
6360
6361         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6362                                       sizeof(val));
6363 }
6364
6365 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6366                                      struct kvm_async_pf *work)
6367 {
6368         struct x86_exception fault;
6369
6370         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6371         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6372
6373         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6374             (vcpu->arch.apf.send_user_only &&
6375              kvm_x86_ops->get_cpl(vcpu) == 0))
6376                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6377         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6378                 fault.vector = PF_VECTOR;
6379                 fault.error_code_valid = true;
6380                 fault.error_code = 0;
6381                 fault.nested_page_fault = false;
6382                 fault.address = work->arch.token;
6383                 kvm_inject_page_fault(vcpu, &fault);
6384         }
6385 }
6386
6387 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6388                                  struct kvm_async_pf *work)
6389 {
6390         struct x86_exception fault;
6391
6392         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6393         if (is_error_page(work->page))
6394                 work->arch.token = ~0; /* broadcast wakeup */
6395         else
6396                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6397
6398         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6399             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6400                 fault.vector = PF_VECTOR;
6401                 fault.error_code_valid = true;
6402                 fault.error_code = 0;
6403                 fault.nested_page_fault = false;
6404                 fault.address = work->arch.token;
6405                 kvm_inject_page_fault(vcpu, &fault);
6406         }
6407         vcpu->arch.apf.halted = false;
6408 }
6409
6410 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6411 {
6412         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6413                 return true;
6414         else
6415                 return !kvm_event_needs_reinjection(vcpu) &&
6416                         kvm_x86_ops->interrupt_allowed(vcpu);
6417 }
6418
6419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);