Revert "net: maintain namespace isolation between vlan and real device"
[linux-flexiantxendom0-3.2.10.git] / drivers / cpufreq / exynos-cpufreq.c
1 /*
2  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * EXYNOS - CPU frequency scaling support for EXYNOS series
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/cpufreq.h>
19 #include <linux/suspend.h>
20
21 #include <mach/cpufreq.h>
22
23 #include <plat/cpu.h>
24
25 static struct exynos_dvfs_info *exynos_info;
26
27 static struct regulator *arm_regulator;
28 static struct cpufreq_freqs freqs;
29
30 static unsigned int locking_frequency;
31 static bool frequency_locked;
32 static DEFINE_MUTEX(cpufreq_lock);
33
34 int exynos_verify_speed(struct cpufreq_policy *policy)
35 {
36         return cpufreq_frequency_table_verify(policy,
37                                               exynos_info->freq_table);
38 }
39
40 unsigned int exynos_getspeed(unsigned int cpu)
41 {
42         return clk_get_rate(exynos_info->cpu_clk) / 1000;
43 }
44
45 static int exynos_target(struct cpufreq_policy *policy,
46                           unsigned int target_freq,
47                           unsigned int relation)
48 {
49         unsigned int index, old_index;
50         unsigned int arm_volt, safe_arm_volt = 0;
51         int ret = 0;
52         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
53         unsigned int *volt_table = exynos_info->volt_table;
54         unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
55
56         mutex_lock(&cpufreq_lock);
57
58         freqs.old = policy->cur;
59
60         if (frequency_locked && target_freq != locking_frequency) {
61                 ret = -EAGAIN;
62                 goto out;
63         }
64
65         if (cpufreq_frequency_table_target(policy, freq_table,
66                                            freqs.old, relation, &old_index)) {
67                 ret = -EINVAL;
68                 goto out;
69         }
70
71         if (cpufreq_frequency_table_target(policy, freq_table,
72                                            target_freq, relation, &index)) {
73                 ret = -EINVAL;
74                 goto out;
75         }
76
77         freqs.new = freq_table[index].frequency;
78         freqs.cpu = policy->cpu;
79
80         /*
81          * ARM clock source will be changed APLL to MPLL temporary
82          * To support this level, need to control regulator for
83          * required voltage level
84          */
85         if (exynos_info->need_apll_change != NULL) {
86                 if (exynos_info->need_apll_change(old_index, index) &&
87                    (freq_table[index].frequency < mpll_freq_khz) &&
88                    (freq_table[old_index].frequency < mpll_freq_khz))
89                         safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
90         }
91         arm_volt = volt_table[index];
92
93         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
94
95         /* When the new frequency is higher than current frequency */
96         if ((freqs.new > freqs.old) && !safe_arm_volt) {
97                 /* Firstly, voltage up to increase frequency */
98                 regulator_set_voltage(arm_regulator, arm_volt,
99                                 arm_volt);
100         }
101
102         if (safe_arm_volt)
103                 regulator_set_voltage(arm_regulator, safe_arm_volt,
104                                       safe_arm_volt);
105         if (freqs.new != freqs.old)
106                 exynos_info->set_freq(old_index, index);
107
108         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
109
110         /* When the new frequency is lower than current frequency */
111         if ((freqs.new < freqs.old) ||
112            ((freqs.new > freqs.old) && safe_arm_volt)) {
113                 /* down the voltage after frequency change */
114                 regulator_set_voltage(arm_regulator, arm_volt,
115                                 arm_volt);
116         }
117
118 out:
119         mutex_unlock(&cpufreq_lock);
120
121         return ret;
122 }
123
124 #ifdef CONFIG_PM
125 static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
126 {
127         return 0;
128 }
129
130 static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
131 {
132         return 0;
133 }
134 #endif
135
136 /**
137  * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
138  *                      context
139  * @notifier
140  * @pm_event
141  * @v
142  *
143  * While frequency_locked == true, target() ignores every frequency but
144  * locking_frequency. The locking_frequency value is the initial frequency,
145  * which is set by the bootloader. In order to eliminate possible
146  * inconsistency in clock values, we save and restore frequencies during
147  * suspend and resume and block CPUFREQ activities. Note that the standard
148  * suspend/resume cannot be used as they are too deep (syscore_ops) for
149  * regulator actions.
150  */
151 static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
152                                        unsigned long pm_event, void *v)
153 {
154         struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
155         static unsigned int saved_frequency;
156         unsigned int temp;
157
158         mutex_lock(&cpufreq_lock);
159         switch (pm_event) {
160         case PM_SUSPEND_PREPARE:
161                 if (frequency_locked)
162                         goto out;
163
164                 frequency_locked = true;
165
166                 if (locking_frequency) {
167                         saved_frequency = exynos_getspeed(0);
168
169                         mutex_unlock(&cpufreq_lock);
170                         exynos_target(policy, locking_frequency,
171                                       CPUFREQ_RELATION_H);
172                         mutex_lock(&cpufreq_lock);
173                 }
174                 break;
175
176         case PM_POST_SUSPEND:
177                 if (saved_frequency) {
178                         /*
179                          * While frequency_locked, only locking_frequency
180                          * is valid for target(). In order to use
181                          * saved_frequency while keeping frequency_locked,
182                          * we temporarly overwrite locking_frequency.
183                          */
184                         temp = locking_frequency;
185                         locking_frequency = saved_frequency;
186
187                         mutex_unlock(&cpufreq_lock);
188                         exynos_target(policy, locking_frequency,
189                                       CPUFREQ_RELATION_H);
190                         mutex_lock(&cpufreq_lock);
191
192                         locking_frequency = temp;
193                 }
194                 frequency_locked = false;
195                 break;
196         }
197 out:
198         mutex_unlock(&cpufreq_lock);
199
200         return NOTIFY_OK;
201 }
202
203 static struct notifier_block exynos_cpufreq_nb = {
204         .notifier_call = exynos_cpufreq_pm_notifier,
205 };
206
207 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
208 {
209         policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
210
211         cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
212
213         locking_frequency = exynos_getspeed(0);
214
215         /* set the transition latency value */
216         policy->cpuinfo.transition_latency = 100000;
217
218         /*
219          * EXYNOS4 multi-core processors has 2 cores
220          * that the frequency cannot be set independently.
221          * Each cpu is bound to the same speed.
222          * So the affected cpu is all of the cpus.
223          */
224         if (num_online_cpus() == 1) {
225                 cpumask_copy(policy->related_cpus, cpu_possible_mask);
226                 cpumask_copy(policy->cpus, cpu_online_mask);
227         } else {
228                 cpumask_setall(policy->cpus);
229         }
230
231         return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
232 }
233
234 static struct cpufreq_driver exynos_driver = {
235         .flags          = CPUFREQ_STICKY,
236         .verify         = exynos_verify_speed,
237         .target         = exynos_target,
238         .get            = exynos_getspeed,
239         .init           = exynos_cpufreq_cpu_init,
240         .name           = "exynos_cpufreq",
241 #ifdef CONFIG_PM
242         .suspend        = exynos_cpufreq_suspend,
243         .resume         = exynos_cpufreq_resume,
244 #endif
245 };
246
247 static int __init exynos_cpufreq_init(void)
248 {
249         int ret = -EINVAL;
250
251         exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
252         if (!exynos_info)
253                 return -ENOMEM;
254
255         if (soc_is_exynos4210())
256                 ret = exynos4210_cpufreq_init(exynos_info);
257         else if (soc_is_exynos4212() || soc_is_exynos4412())
258                 ret = exynos4x12_cpufreq_init(exynos_info);
259         else if (soc_is_exynos5250())
260                 ret = exynos5250_cpufreq_init(exynos_info);
261         else
262                 pr_err("%s: CPU type not found\n", __func__);
263
264         if (ret)
265                 goto err_vdd_arm;
266
267         if (exynos_info->set_freq == NULL) {
268                 pr_err("%s: No set_freq function (ERR)\n", __func__);
269                 goto err_vdd_arm;
270         }
271
272         arm_regulator = regulator_get(NULL, "vdd_arm");
273         if (IS_ERR(arm_regulator)) {
274                 pr_err("%s: failed to get resource vdd_arm\n", __func__);
275                 goto err_vdd_arm;
276         }
277
278         register_pm_notifier(&exynos_cpufreq_nb);
279
280         if (cpufreq_register_driver(&exynos_driver)) {
281                 pr_err("%s: failed to register cpufreq driver\n", __func__);
282                 goto err_cpufreq;
283         }
284
285         return 0;
286 err_cpufreq:
287         unregister_pm_notifier(&exynos_cpufreq_nb);
288
289         if (!IS_ERR(arm_regulator))
290                 regulator_put(arm_regulator);
291 err_vdd_arm:
292         kfree(exynos_info);
293         pr_debug("%s: failed initialization\n", __func__);
294         return -EINVAL;
295 }
296 late_initcall(exynos_cpufreq_init);