58fa07f010d90b2f460a948dc2c844ef241e3e64
[linux-flexiantxendom0-3.2.10.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/init.h>
20 #include <linux/highmem.h>
21 #include <linux/file.h>
22 #include <linux/writeback.h>
23 #include <linux/suspend.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap-locking.h>
31 #include <linux/topology.h>
32
33 #include <asm/pgalloc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/div64.h>
36
37 #include <linux/swapops.h>
38
39 /*
40  * The "priority" of VM scanning is how much of the queues we will scan in one
41  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
42  * queues ("queue_length >> 12") during an aging round.
43  */
44 #define DEF_PRIORITY 12
45
46 /*
47  * From 0 .. 100.  Higher means more swappy.
48  */
49 int vm_swappiness = 60;
50 static long total_memory;
51
52 #ifdef ARCH_HAS_PREFETCH
53 #define prefetch_prev_lru_page(_page, _base, _field)                    \
54         do {                                                            \
55                 if ((_page)->lru.prev != _base) {                       \
56                         struct page *prev;                              \
57                                                                         \
58                         prev = list_entry(_page->lru.prev,              \
59                                         struct page, lru);              \
60                         prefetch(&prev->_field);                        \
61                 }                                                       \
62         } while (0)
63 #else
64 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
65 #endif
66
67 #ifdef ARCH_HAS_PREFETCHW
68 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
69         do {                                                            \
70                 if ((_page)->lru.prev != _base) {                       \
71                         struct page *prev;                              \
72                                                                         \
73                         prev = list_entry(_page->lru.prev,              \
74                                         struct page, lru);              \
75                         prefetchw(&prev->_field);                       \
76                 }                                                       \
77         } while (0)
78 #else
79 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
80 #endif
81
82 /*
83  * The list of shrinker callbacks used by to apply pressure to
84  * ageable caches.
85  */
86 struct shrinker {
87         shrinker_t              shrinker;
88         struct list_head        list;
89         int                     seeks;  /* seeks to recreate an obj */
90         long                    nr;     /* objs pending delete */
91 };
92
93 static LIST_HEAD(shrinker_list);
94 static DECLARE_MUTEX(shrinker_sem);
95
96 /*
97  * Add a shrinker callback to be called from the vm
98  */
99 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
100 {
101         struct shrinker *shrinker;
102
103         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
104         if (shrinker) {
105                 shrinker->shrinker = theshrinker;
106                 shrinker->seeks = seeks;
107                 shrinker->nr = 0;
108                 down(&shrinker_sem);
109                 list_add(&shrinker->list, &shrinker_list);
110                 up(&shrinker_sem);
111         }
112         return shrinker;
113 }
114
115 /*
116  * Remove one
117  */
118 void remove_shrinker(struct shrinker *shrinker)
119 {
120         down(&shrinker_sem);
121         list_del(&shrinker->list);
122         up(&shrinker_sem);
123         kfree(shrinker);
124 }
125  
126 #define SHRINK_BATCH 128
127 /*
128  * Call the shrink functions to age shrinkable caches
129  *
130  * Here we assume it costs one seek to replace a lru page and that it also
131  * takes a seek to recreate a cache object.  With this in mind we age equal
132  * percentages of the lru and ageable caches.  This should balance the seeks
133  * generated by these structures.
134  *
135  * If the vm encounted mapped pages on the LRU it increase the pressure on
136  * slab to avoid swapping.
137  *
138  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
139  */
140 static int shrink_slab(long scanned, unsigned int gfp_mask)
141 {
142         struct shrinker *shrinker;
143         long pages;
144
145         if (down_trylock(&shrinker_sem))
146                 return 0;
147
148         pages = nr_used_zone_pages();
149         list_for_each_entry(shrinker, &shrinker_list, list) {
150                 unsigned long long delta;
151
152                 delta = scanned * shrinker->seeks;
153                 delta *= (*shrinker->shrinker)(0, gfp_mask);
154                 do_div(delta, pages + 1);
155                 shrinker->nr += delta;
156                 if (shrinker->nr > SHRINK_BATCH) {
157                         long nr_to_scan = shrinker->nr;
158
159                         shrinker->nr = 0;
160                         while (nr_to_scan) {
161                                 long this_scan = nr_to_scan;
162
163                                 if (this_scan > 128)
164                                         this_scan = 128;
165                                 (*shrinker->shrinker)(this_scan, gfp_mask);
166                                 nr_to_scan -= this_scan;
167                                 cond_resched();
168                         }
169                 }
170         }
171         up(&shrinker_sem);
172         return 0;
173 }
174
175 /* Must be called with page's pte_chain_lock held. */
176 static inline int page_mapping_inuse(struct page *page)
177 {
178         struct address_space *mapping = page->mapping;
179
180         /* Page is in somebody's page tables. */
181         if (page_mapped(page))
182                 return 1;
183
184         /* XXX: does this happen ? */
185         if (!mapping)
186                 return 0;
187
188         /* Be more reluctant to reclaim swapcache than pagecache */
189         if (PageSwapCache(page))
190                 return 1;
191
192         /* File is mmap'd by somebody. */
193         if (!list_empty(&mapping->i_mmap))
194                 return 1;
195         if (!list_empty(&mapping->i_mmap_shared))
196                 return 1;
197
198         return 0;
199 }
200
201 static inline int is_page_cache_freeable(struct page *page)
202 {
203         return page_count(page) - !!PagePrivate(page) == 2;
204 }
205
206 static int may_write_to_queue(struct backing_dev_info *bdi)
207 {
208         if (current_is_kswapd())
209                 return 1;
210         if (current_is_pdflush())       /* This is unlikely, but why not... */
211                 return 1;
212         if (!bdi_write_congested(bdi))
213                 return 1;
214         if (bdi == current->backing_dev_info)
215                 return 1;
216         return 0;
217 }
218
219 /*
220  * shrink_list returns the number of reclaimed pages
221  */
222 static int
223 shrink_list(struct list_head *page_list, unsigned int gfp_mask,
224                 int *max_scan, int *nr_mapped)
225 {
226         struct address_space *mapping;
227         LIST_HEAD(ret_pages);
228         struct pagevec freed_pvec;
229         int pgactivate = 0;
230         int ret = 0;
231
232         cond_resched();
233
234         pagevec_init(&freed_pvec, 1);
235         while (!list_empty(page_list)) {
236                 struct page *page;
237                 int may_enter_fs;
238
239                 page = list_entry(page_list->prev, struct page, lru);
240                 list_del(&page->lru);
241
242                 if (TestSetPageLocked(page))
243                         goto keep;
244
245                 /* Double the slab pressure for mapped and swapcache pages */
246                 if (page_mapped(page) || PageSwapCache(page))
247                         (*nr_mapped)++;
248
249                 BUG_ON(PageActive(page));
250                 may_enter_fs = (gfp_mask & __GFP_FS) ||
251                                 (PageSwapCache(page) && (gfp_mask & __GFP_IO));
252
253                 if (PageWriteback(page))
254                         goto keep_locked;
255
256                 pte_chain_lock(page);
257                 if (page_referenced(page) && page_mapping_inuse(page)) {
258                         /* In active use or really unfreeable.  Activate it. */
259                         pte_chain_unlock(page);
260                         goto activate_locked;
261                 }
262
263                 mapping = page->mapping;
264
265 #ifdef CONFIG_SWAP
266                 /*
267                  * Anonymous process memory without backing store. Try to
268                  * allocate it some swap space here.
269                  *
270                  * XXX: implement swap clustering ?
271                  */
272                 if (page_mapped(page) && !mapping && !PagePrivate(page)) {
273                         pte_chain_unlock(page);
274                         if (!add_to_swap(page))
275                                 goto activate_locked;
276                         pte_chain_lock(page);
277                         mapping = page->mapping;
278                 }
279 #endif /* CONFIG_SWAP */
280
281                 /*
282                  * The page is mapped into the page tables of one or more
283                  * processes. Try to unmap it here.
284                  */
285                 if (page_mapped(page) && mapping) {
286                         switch (try_to_unmap(page)) {
287                         case SWAP_FAIL:
288                                 pte_chain_unlock(page);
289                                 goto activate_locked;
290                         case SWAP_AGAIN:
291                                 pte_chain_unlock(page);
292                                 goto keep_locked;
293                         case SWAP_SUCCESS:
294                                 ; /* try to free the page below */
295                         }
296                 }
297                 pte_chain_unlock(page);
298
299                 /*
300                  * If the page is dirty, only perform writeback if that write
301                  * will be non-blocking.  To prevent this allocation from being
302                  * stalled by pagecache activity.  But note that there may be
303                  * stalls if we need to run get_block().  We could test
304                  * PagePrivate for that.
305                  *
306                  * If this process is currently in generic_file_write() against
307                  * this page's queue, we can perform writeback even if that
308                  * will block.
309                  *
310                  * If the page is swapcache, write it back even if that would
311                  * block, for some throttling. This happens by accident, because
312                  * swap_backing_dev_info is bust: it doesn't reflect the
313                  * congestion state of the swapdevs.  Easy to fix, if needed.
314                  * See swapfile.c:page_queue_congested().
315                  */
316                 if (PageDirty(page)) {
317                         if (!is_page_cache_freeable(page))
318                                 goto keep_locked;
319                         if (!mapping)
320                                 goto keep_locked;
321                         if (mapping->a_ops->writepage == NULL)
322                                 goto activate_locked;
323                         if (!may_enter_fs)
324                                 goto keep_locked;
325                         if (!may_write_to_queue(mapping->backing_dev_info))
326                                 goto keep_locked;
327                         spin_lock(&mapping->page_lock);
328                         if (test_clear_page_dirty(page)) {
329                                 int res;
330                                 struct writeback_control wbc = {
331                                         .sync_mode = WB_SYNC_NONE,
332                                         .nr_to_write = SWAP_CLUSTER_MAX,
333                                         .nonblocking = 1,
334                                         .for_reclaim = 1,
335                                 };
336
337                                 list_move(&page->list, &mapping->locked_pages);
338                                 spin_unlock(&mapping->page_lock);
339
340                                 SetPageReclaim(page);
341                                 res = mapping->a_ops->writepage(page, &wbc);
342
343                                 if (res == WRITEPAGE_ACTIVATE) {
344                                         ClearPageReclaim(page);
345                                         goto activate_locked;
346                                 }
347                                 if (!PageWriteback(page)) {
348                                         /* synchronous write or broken a_ops? */
349                                         ClearPageReclaim(page);
350                                 }
351                                 goto keep;
352                         }
353                         spin_unlock(&mapping->page_lock);
354                 }
355
356                 /*
357                  * If the page has buffers, try to free the buffer mappings
358                  * associated with this page. If we succeed we try to free
359                  * the page as well.
360                  *
361                  * We do this even if the page is PageDirty().
362                  * try_to_release_page() does not perform I/O, but it is
363                  * possible for a page to have PageDirty set, but it is actually
364                  * clean (all its buffers are clean).  This happens if the
365                  * buffers were written out directly, with submit_bh(). ext3
366                  * will do this, as well as the blockdev mapping. 
367                  * try_to_release_page() will discover that cleanness and will
368                  * drop the buffers and mark the page clean - it can be freed.
369                  *
370                  * Rarely, pages can have buffers and no ->mapping.  These are
371                  * the pages which were not successfully invalidated in
372                  * truncate_complete_page().  We try to drop those buffers here
373                  * and if that worked, and the page is no longer mapped into
374                  * process address space (page_count == 0) it can be freed.
375                  * Otherwise, leave the page on the LRU so it is swappable.
376                  */
377                 if (PagePrivate(page)) {
378                         if (!try_to_release_page(page, gfp_mask))
379                                 goto activate_locked;
380                         if (!mapping && page_count(page) == 1)
381                                 goto free_it;
382                 }
383
384                 if (!mapping)
385                         goto keep_locked;       /* truncate got there first */
386
387                 spin_lock(&mapping->page_lock);
388
389                 /*
390                  * The non-racy check for busy page.  It is critical to check
391                  * PageDirty _after_ making sure that the page is freeable and
392                  * not in use by anybody.       (pagecache + us == 2)
393                  */
394                 if (page_count(page) != 2 || PageDirty(page)) {
395                         spin_unlock(&mapping->page_lock);
396                         goto keep_locked;
397                 }
398
399 #ifdef CONFIG_SWAP
400                 if (PageSwapCache(page)) {
401                         swp_entry_t swap = { .val = page->index };
402                         __delete_from_swap_cache(page);
403                         spin_unlock(&mapping->page_lock);
404                         swap_free(swap);
405                         __put_page(page);       /* The pagecache ref */
406                         goto free_it;
407                 }
408 #endif /* CONFIG_SWAP */
409
410                 __remove_from_page_cache(page);
411                 spin_unlock(&mapping->page_lock);
412                 __put_page(page);
413
414 free_it:
415                 unlock_page(page);
416                 ret++;
417                 if (!pagevec_add(&freed_pvec, page))
418                         __pagevec_release_nonlru(&freed_pvec);
419                 continue;
420
421 activate_locked:
422                 SetPageActive(page);
423                 pgactivate++;
424 keep_locked:
425                 unlock_page(page);
426 keep:
427                 list_add(&page->lru, &ret_pages);
428                 BUG_ON(PageLRU(page));
429         }
430         list_splice(&ret_pages, page_list);
431         if (pagevec_count(&freed_pvec))
432                 __pagevec_release_nonlru(&freed_pvec);
433         mod_page_state(pgsteal, ret);
434         if (current_is_kswapd())
435                 mod_page_state(kswapd_steal, ret);
436         mod_page_state(pgactivate, pgactivate);
437         return ret;
438 }
439
440 /*
441  * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
442  * a batch of pages and working on them outside the lock.  Any pages which were
443  * not freed will be added back to the LRU.
444  *
445  * shrink_cache() is passed the number of pages to try to free, and returns
446  * the number of pages which were reclaimed.
447  *
448  * For pagecache intensive workloads, the first loop here is the hottest spot
449  * in the kernel (apart from the copy_*_user functions).
450  */
451 static int
452 shrink_cache(const int nr_pages, struct zone *zone,
453                 unsigned int gfp_mask, int max_scan, int *nr_mapped)
454 {
455         LIST_HEAD(page_list);
456         struct pagevec pvec;
457         int nr_to_process;
458         int ret = 0;
459
460         /*
461          * Try to ensure that we free `nr_pages' pages in one pass of the loop.
462          */
463         nr_to_process = nr_pages;
464         if (nr_to_process < SWAP_CLUSTER_MAX)
465                 nr_to_process = SWAP_CLUSTER_MAX;
466
467         pagevec_init(&pvec, 1);
468
469         lru_add_drain();
470         spin_lock_irq(&zone->lru_lock);
471         while (max_scan > 0 && ret < nr_pages) {
472                 struct page *page;
473                 int nr_taken = 0;
474                 int nr_scan = 0;
475                 int nr_freed;
476
477                 while (nr_scan++ < nr_to_process &&
478                                 !list_empty(&zone->inactive_list)) {
479                         page = list_entry(zone->inactive_list.prev,
480                                                 struct page, lru);
481
482                         prefetchw_prev_lru_page(page,
483                                                 &zone->inactive_list, flags);
484
485                         if (!TestClearPageLRU(page))
486                                 BUG();
487                         list_del(&page->lru);
488                         if (page_count(page) == 0) {
489                                 /* It is currently in pagevec_release() */
490                                 SetPageLRU(page);
491                                 list_add(&page->lru, &zone->inactive_list);
492                                 continue;
493                         }
494                         list_add(&page->lru, &page_list);
495                         page_cache_get(page);
496                         nr_taken++;
497                 }
498                 zone->nr_inactive -= nr_taken;
499                 zone->pages_scanned += nr_taken;
500                 spin_unlock_irq(&zone->lru_lock);
501
502                 if (nr_taken == 0)
503                         goto done;
504
505                 max_scan -= nr_scan;
506                 mod_page_state(pgscan, nr_scan);
507                 nr_freed = shrink_list(&page_list, gfp_mask,
508                                         &max_scan, nr_mapped);
509                 ret += nr_freed;
510                 if (nr_freed <= 0 && list_empty(&page_list))
511                         goto done;
512
513                 spin_lock_irq(&zone->lru_lock);
514                 /*
515                  * Put back any unfreeable pages.
516                  */
517                 while (!list_empty(&page_list)) {
518                         page = list_entry(page_list.prev, struct page, lru);
519                         if (TestSetPageLRU(page))
520                                 BUG();
521                         list_del(&page->lru);
522                         if (PageActive(page))
523                                 add_page_to_active_list(zone, page);
524                         else
525                                 add_page_to_inactive_list(zone, page);
526                         if (!pagevec_add(&pvec, page)) {
527                                 spin_unlock_irq(&zone->lru_lock);
528                                 __pagevec_release(&pvec);
529                                 spin_lock_irq(&zone->lru_lock);
530                         }
531                 }
532         }
533         spin_unlock_irq(&zone->lru_lock);
534 done:
535         pagevec_release(&pvec);
536         return ret;
537 }
538
539 /*
540  * This moves pages from the active list to the inactive list.
541  *
542  * We move them the other way if the page is referenced by one or more
543  * processes, from rmap.
544  *
545  * If the pages are mostly unmapped, the processing is fast and it is
546  * appropriate to hold zone->lru_lock across the whole operation.  But if
547  * the pages are mapped, the processing is slow (page_referenced()) so we
548  * should drop zone->lru_lock around each page.  It's impossible to balance
549  * this, so instead we remove the pages from the LRU while processing them.
550  * It is safe to rely on PG_active against the non-LRU pages in here because
551  * nobody will play with that bit on a non-LRU page.
552  *
553  * The downside is that we have to touch page->count against each page.
554  * But we had to alter page->flags anyway.
555  */
556 static void
557 refill_inactive_zone(struct zone *zone, const int nr_pages_in,
558                         struct page_state *ps, int priority)
559 {
560         int pgmoved;
561         int pgdeactivate = 0;
562         int nr_pages = nr_pages_in;
563         LIST_HEAD(l_hold);      /* The pages which were snipped off */
564         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
565         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
566         struct page *page;
567         struct pagevec pvec;
568         int reclaim_mapped = 0;
569         long mapped_ratio;
570         long distress;
571         long swap_tendency;
572
573         lru_add_drain();
574         pgmoved = 0;
575         spin_lock_irq(&zone->lru_lock);
576         while (nr_pages && !list_empty(&zone->active_list)) {
577                 page = list_entry(zone->active_list.prev, struct page, lru);
578                 prefetchw_prev_lru_page(page, &zone->active_list, flags);
579                 if (!TestClearPageLRU(page))
580                         BUG();
581                 list_del(&page->lru);
582                 if (page_count(page) == 0) {
583                         /* It is currently in pagevec_release() */
584                         SetPageLRU(page);
585                         list_add(&page->lru, &zone->active_list);
586                 } else {
587                         page_cache_get(page);
588                         list_add(&page->lru, &l_hold);
589                         pgmoved++;
590                 }
591                 nr_pages--;
592         }
593         zone->nr_active -= pgmoved;
594         spin_unlock_irq(&zone->lru_lock);
595
596         /*
597          * `distress' is a measure of how much trouble we're having reclaiming
598          * pages.  0 -> no problems.  100 -> great trouble.
599          */
600         distress = 100 >> priority;
601
602         /*
603          * The point of this algorithm is to decide when to start reclaiming
604          * mapped memory instead of just pagecache.  Work out how much memory
605          * is mapped.
606          */
607         mapped_ratio = (ps->nr_mapped * 100) / total_memory;
608
609         /*
610          * Now decide how much we really want to unmap some pages.  The mapped
611          * ratio is downgraded - just because there's a lot of mapped memory
612          * doesn't necessarily mean that page reclaim isn't succeeding.
613          *
614          * The distress ratio is important - we don't want to start going oom.
615          *
616          * A 100% value of vm_swappiness overrides this algorithm altogether.
617          */
618         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
619
620         /*
621          * Now use this metric to decide whether to start moving mapped memory
622          * onto the inactive list.
623          */
624         if (swap_tendency >= 100)
625                 reclaim_mapped = 1;
626
627         while (!list_empty(&l_hold)) {
628                 page = list_entry(l_hold.prev, struct page, lru);
629                 list_del(&page->lru);
630                 if (page_mapped(page)) {
631                         pte_chain_lock(page);
632                         if (page_mapped(page) && page_referenced(page)) {
633                                 pte_chain_unlock(page);
634                                 list_add(&page->lru, &l_active);
635                                 continue;
636                         }
637                         pte_chain_unlock(page);
638                         if (!reclaim_mapped) {
639                                 list_add(&page->lru, &l_active);
640                                 continue;
641                         }
642                 }
643                 /*
644                  * FIXME: need to consider page_count(page) here if/when we
645                  * reap orphaned pages via the LRU (Daniel's locking stuff)
646                  */
647                 if (total_swap_pages == 0 && !page->mapping &&
648                                                 !PagePrivate(page)) {
649                         list_add(&page->lru, &l_active);
650                         continue;
651                 }
652                 list_add(&page->lru, &l_inactive);
653         }
654
655         pagevec_init(&pvec, 1);
656         pgmoved = 0;
657         spin_lock_irq(&zone->lru_lock);
658         while (!list_empty(&l_inactive)) {
659                 page = list_entry(l_inactive.prev, struct page, lru);
660                 prefetchw_prev_lru_page(page, &l_inactive, flags);
661                 if (TestSetPageLRU(page))
662                         BUG();
663                 if (!TestClearPageActive(page))
664                         BUG();
665                 list_move(&page->lru, &zone->inactive_list);
666                 pgmoved++;
667                 if (!pagevec_add(&pvec, page)) {
668                         zone->nr_inactive += pgmoved;
669                         spin_unlock_irq(&zone->lru_lock);
670                         pgdeactivate += pgmoved;
671                         pgmoved = 0;
672                         if (buffer_heads_over_limit)
673                                 pagevec_strip(&pvec);
674                         __pagevec_release(&pvec);
675                         spin_lock_irq(&zone->lru_lock);
676                 }
677         }
678         zone->nr_inactive += pgmoved;
679         pgdeactivate += pgmoved;
680         if (buffer_heads_over_limit) {
681                 spin_unlock_irq(&zone->lru_lock);
682                 pagevec_strip(&pvec);
683                 spin_lock_irq(&zone->lru_lock);
684         }
685
686         pgmoved = 0;
687         while (!list_empty(&l_active)) {
688                 page = list_entry(l_active.prev, struct page, lru);
689                 prefetchw_prev_lru_page(page, &l_active, flags);
690                 if (TestSetPageLRU(page))
691                         BUG();
692                 BUG_ON(!PageActive(page));
693                 list_move(&page->lru, &zone->active_list);
694                 pgmoved++;
695                 if (!pagevec_add(&pvec, page)) {
696                         zone->nr_active += pgmoved;
697                         pgmoved = 0;
698                         spin_unlock_irq(&zone->lru_lock);
699                         __pagevec_release(&pvec);
700                         spin_lock_irq(&zone->lru_lock);
701                 }
702         }
703         zone->nr_active += pgmoved;
704         spin_unlock_irq(&zone->lru_lock);
705         pagevec_release(&pvec);
706
707         mod_page_state(pgrefill, nr_pages_in - nr_pages);
708         mod_page_state(pgdeactivate, pgdeactivate);
709 }
710
711 /*
712  * Try to reclaim `nr_pages' from this zone.  Returns the number of reclaimed
713  * pages.  This is a basic per-zone page freer.  Used by both kswapd and
714  * direct reclaim.
715  */
716 static int
717 shrink_zone(struct zone *zone, int max_scan, unsigned int gfp_mask,
718         const int nr_pages, int *nr_mapped, struct page_state *ps, int priority)
719 {
720         unsigned long ratio;
721
722         /*
723          * Try to keep the active list 2/3 of the size of the cache.  And
724          * make sure that refill_inactive is given a decent number of pages.
725          *
726          * The "ratio+1" here is important.  With pagecache-intensive workloads
727          * the inactive list is huge, and `ratio' evaluates to zero all the
728          * time.  Which pins the active list memory.  So we add one to `ratio'
729          * just to make sure that the kernel will slowly sift through the
730          * active list.
731          */
732         ratio = (unsigned long)nr_pages * zone->nr_active /
733                                 ((zone->nr_inactive | 1) * 2);
734         atomic_add(ratio+1, &zone->refill_counter);
735         if (atomic_read(&zone->refill_counter) > SWAP_CLUSTER_MAX) {
736                 int count;
737
738                 /*
739                  * Don't try to bring down too many pages in one attempt.
740                  * If this fails, the caller will increase `priority' and
741                  * we'll try again, with an increased chance of reclaiming
742                  * mapped memory.
743                  */
744                 count = atomic_read(&zone->refill_counter);
745                 if (count > SWAP_CLUSTER_MAX * 4)
746                         count = SWAP_CLUSTER_MAX * 4;
747                 atomic_sub(count, &zone->refill_counter);
748                 refill_inactive_zone(zone, count, ps, priority);
749         }
750         return shrink_cache(nr_pages, zone, gfp_mask,
751                                 max_scan, nr_mapped);
752 }
753
754 /*
755  * This is the direct reclaim path, for page-allocating processes.  We only
756  * try to reclaim pages from zones which will satisfy the caller's allocation
757  * request.
758  *
759  * We reclaim from a zone even if that zone is over pages_high.  Because:
760  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
761  *    allocation or
762  * b) The zones may be over pages_high but they must go *over* pages_high to
763  *    satisfy the `incremental min' zone defense algorithm.
764  *
765  * Returns the number of reclaimed pages.
766  *
767  * If a zone is deemed to be full of pinned pages then just give it a light
768  * scan then give up on it.
769  */
770 static int
771 shrink_caches(struct zone *classzone, int priority, int *total_scanned,
772                 int gfp_mask, int nr_pages, struct page_state *ps)
773 {
774         struct zone *first_classzone;
775         struct zone *zone;
776         int ret = 0;
777
778         first_classzone = classzone->zone_pgdat->node_zones;
779         for (zone = classzone; zone >= first_classzone; zone--) {
780                 int to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX);
781                 int nr_mapped = 0;
782                 int max_scan;
783
784                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
785                         continue;       /* Let kswapd poll it */
786
787                 /*
788                  * If we cannot reclaim `nr_pages' pages by scanning twice
789                  * that many pages then fall back to the next zone.
790                  */
791                 max_scan = zone->nr_inactive >> priority;
792                 if (max_scan < to_reclaim * 2)
793                         max_scan = to_reclaim * 2;
794                 ret += shrink_zone(zone, max_scan, gfp_mask,
795                                 to_reclaim, &nr_mapped, ps, priority);
796                 *total_scanned += max_scan + nr_mapped;
797                 if (ret >= nr_pages)
798                         break;
799         }
800         return ret;
801 }
802  
803 /*
804  * This is the main entry point to direct page reclaim.
805  *
806  * If a full scan of the inactive list fails to free enough memory then we
807  * are "out of memory" and something needs to be killed.
808  *
809  * If the caller is !__GFP_FS then the probability of a failure is reasonably
810  * high - the zone may be full of dirty or under-writeback pages, which this
811  * caller can't do much about.  So for !__GFP_FS callers, we just perform a
812  * small LRU walk and if that didn't work out, fail the allocation back to the
813  * caller.  GFP_NOFS allocators need to know how to deal with it.  Kicking
814  * bdflush, waiting and retrying will work.
815  *
816  * This is a fairly lame algorithm - it can result in excessive CPU burning and
817  * excessive rotation of the inactive list, which is _supposed_ to be an LRU,
818  * yes?
819  */
820 int try_to_free_pages(struct zone *cz,
821                 unsigned int gfp_mask, unsigned int order)
822 {
823         int priority;
824         int ret = 0;
825         const int nr_pages = SWAP_CLUSTER_MAX;
826         int nr_reclaimed = 0;
827         struct reclaim_state *reclaim_state = current->reclaim_state;
828
829         inc_page_state(allocstall);
830
831         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
832                 int total_scanned = 0;
833                 struct page_state ps;
834
835                 get_page_state(&ps);
836                 nr_reclaimed += shrink_caches(cz, priority, &total_scanned,
837                                                 gfp_mask, nr_pages, &ps);
838                 if (nr_reclaimed >= nr_pages) {
839                         ret = 1;
840                         goto out;
841                 }
842                 if (!(gfp_mask & __GFP_FS))
843                         break;          /* Let the caller handle it */
844                 /*
845                  * Try to write back as many pages as we just scanned.  Not
846                  * sure if that makes sense, but it's an attempt to avoid
847                  * creating IO storms unnecessarily
848                  */
849                 wakeup_bdflush(total_scanned);
850
851                 /* Take a nap, wait for some writeback to complete */
852                 blk_congestion_wait(WRITE, HZ/10);
853                 if (cz - cz->zone_pgdat->node_zones < ZONE_HIGHMEM) {
854                         shrink_slab(total_scanned, gfp_mask);
855                         if (reclaim_state) {
856                                 nr_reclaimed += reclaim_state->reclaimed_slab;
857                                 reclaim_state->reclaimed_slab = 0;
858                         }
859                 }
860         }
861         if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
862                 out_of_memory();
863 out:
864         return ret;
865 }
866
867 /*
868  * For kswapd, balance_pgdat() will work across all this node's zones until
869  * they are all at pages_high.
870  *
871  * If `nr_pages' is non-zero then it is the number of pages which are to be
872  * reclaimed, regardless of the zone occupancies.  This is a software suspend
873  * special.
874  *
875  * Returns the number of pages which were actually freed.
876  *
877  * There is special handling here for zones which are full of pinned pages.
878  * This can happen if the pages are all mlocked, or if they are all used by
879  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
880  * What we do is to detect the case where all pages in the zone have been
881  * scanned twice and there has been zero successful reclaim.  Mark the zone as
882  * dead and from now on, only perform a short scan.  Basically we're polling
883  * the zone for when the problem goes away.
884  */
885 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, struct page_state *ps)
886 {
887         int to_free = nr_pages;
888         int priority;
889         int i;
890         struct reclaim_state *reclaim_state = current->reclaim_state;
891
892         inc_page_state(pageoutrun);
893
894         for (priority = DEF_PRIORITY; priority; priority--) {
895                 int all_zones_ok = 1;
896
897                 for (i = 0; i < pgdat->nr_zones; i++) {
898                         struct zone *zone = pgdat->node_zones + i;
899                         int nr_mapped = 0;
900                         int max_scan;
901                         int to_reclaim;
902
903                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
904                                 continue;
905
906                         if (nr_pages && to_free > 0) {  /* Software suspend */
907                                 to_reclaim = min(to_free, SWAP_CLUSTER_MAX*8);
908                         } else {                        /* Zone balancing */
909                                 to_reclaim = zone->pages_high-zone->free_pages;
910                                 if (to_reclaim <= 0)
911                                         continue;
912                         }
913                         all_zones_ok = 0;
914                         max_scan = zone->nr_inactive >> priority;
915                         if (max_scan < to_reclaim * 2)
916                                 max_scan = to_reclaim * 2;
917                         if (max_scan < SWAP_CLUSTER_MAX)
918                                 max_scan = SWAP_CLUSTER_MAX;
919                         to_free -= shrink_zone(zone, max_scan, GFP_KERNEL,
920                                         to_reclaim, &nr_mapped, ps, priority);
921                         if (i < ZONE_HIGHMEM) {
922                                 reclaim_state->reclaimed_slab = 0;
923                                 shrink_slab(max_scan + nr_mapped, GFP_KERNEL);
924                                 to_free += reclaim_state->reclaimed_slab;
925                         }
926                         if (zone->all_unreclaimable)
927                                 continue;
928                         if (zone->pages_scanned > zone->present_pages * 2)
929                                 zone->all_unreclaimable = 1;
930                 }
931                 if (all_zones_ok)
932                         break;
933                 blk_congestion_wait(WRITE, HZ/10);
934         }
935         return nr_pages - to_free;
936 }
937
938 /*
939  * The background pageout daemon, started as a kernel thread
940  * from the init process. 
941  *
942  * This basically trickles out pages so that we have _some_
943  * free memory available even if there is no other activity
944  * that frees anything up. This is needed for things like routing
945  * etc, where we otherwise might have all activity going on in
946  * asynchronous contexts that cannot page things out.
947  *
948  * If there are applications that are active memory-allocators
949  * (most normal use), this basically shouldn't matter.
950  */
951 int kswapd(void *p)
952 {
953         pg_data_t *pgdat = (pg_data_t*)p;
954         struct task_struct *tsk = current;
955         DEFINE_WAIT(wait);
956         struct reclaim_state reclaim_state = {
957                 .reclaimed_slab = 0,
958         };
959         unsigned long cpumask;
960
961         daemonize("kswapd%d", pgdat->node_id);
962         cpumask = node_to_cpumask(pgdat->node_id);
963         if (cpumask)
964                 set_cpus_allowed(tsk, cpumask);
965         current->reclaim_state = &reclaim_state;
966
967         /*
968          * Tell the memory management that we're a "memory allocator",
969          * and that if we need more memory we should get access to it
970          * regardless (see "__alloc_pages()"). "kswapd" should
971          * never get caught in the normal page freeing logic.
972          *
973          * (Kswapd normally doesn't need memory anyway, but sometimes
974          * you need a small amount of memory in order to be able to
975          * page out something else, and this flag essentially protects
976          * us from recursively trying to free more memory as we're
977          * trying to free the first piece of memory in the first place).
978          */
979         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
980
981         for ( ; ; ) {
982                 struct page_state ps;
983
984                 if (current->flags & PF_FREEZE)
985                         refrigerator(PF_IOTHREAD);
986                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
987                 schedule();
988                 finish_wait(&pgdat->kswapd_wait, &wait);
989                 get_page_state(&ps);
990                 balance_pgdat(pgdat, 0, &ps);
991         }
992 }
993
994 /*
995  * A zone is low on free memory, so wake its kswapd task to service it.
996  */
997 void wakeup_kswapd(struct zone *zone)
998 {
999         if (zone->free_pages > zone->pages_low)
1000                 return;
1001         if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1002                 return;
1003         wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1004 }
1005
1006 #ifdef CONFIG_SOFTWARE_SUSPEND
1007 /*
1008  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1009  * pages.
1010  */
1011 int shrink_all_memory(int nr_pages)
1012 {
1013         pg_data_t *pgdat;
1014         int nr_to_free = nr_pages;
1015         int ret = 0;
1016         struct reclaim_state reclaim_state = {
1017                 .reclaimed_slab = 0,
1018         };
1019
1020         current->reclaim_state = &reclaim_state;
1021         for_each_pgdat(pgdat) {
1022                 int freed;
1023                 struct page_state ps;
1024
1025                 get_page_state(&ps);
1026                 freed = balance_pgdat(pgdat, nr_to_free, &ps);
1027                 ret += freed;
1028                 nr_to_free -= freed;
1029                 if (nr_to_free <= 0)
1030                         break;
1031         }
1032         current->reclaim_state = NULL;
1033         return ret;
1034 }
1035 #endif
1036
1037 static int __init kswapd_init(void)
1038 {
1039         pg_data_t *pgdat;
1040         swap_setup();
1041         for_each_pgdat(pgdat)
1042                 kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1043         total_memory = nr_free_pagecache_pages();
1044         return 0;
1045 }
1046
1047 module_init(kswapd_init)