Revert "- Updated to 3.0-rc1."
[linux-flexiantxendom0-3.2.10.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/precache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 printk("__find_get_block_slow() failed. "
217                         "block=%llu, b_blocknr=%llu\n",
218                         (unsigned long long)block,
219                         (unsigned long long)bh->b_blocknr);
220                 printk("b_state=0x%08lx, b_size=%zu\n",
221                         bh->b_state, bh->b_size);
222                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
223         }
224 out_unlock:
225         spin_unlock(&bd_mapping->private_lock);
226         page_cache_release(page);
227 out:
228         return ret;
229 }
230
231 /* If invalidate_buffers() will trash dirty buffers, it means some kind
232    of fs corruption is going on. Trashing dirty data always imply losing
233    information that was supposed to be just stored on the physical layer
234    by the user.
235
236    Thus invalidate_buffers in general usage is not allwowed to trash
237    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
238    be preserved.  These buffers are simply skipped.
239   
240    We also skip buffers which are still in use.  For example this can
241    happen if a userspace program is reading the block device.
242
243    NOTE: In the case where the user removed a removable-media-disk even if
244    there's still dirty data not synced on disk (due a bug in the device driver
245    or due an error of the user), by not destroying the dirty buffers we could
246    generate corruption also on the next media inserted, thus a parameter is
247    necessary to handle this case in the most safe way possible (trying
248    to not corrupt also the new disk inserted with the data belonging to
249    the old now corrupted disk). Also for the ramdisk the natural thing
250    to do in order to release the ramdisk memory is to destroy dirty buffers.
251
252    These are two special cases. Normal usage imply the device driver
253    to issue a sync on the device (without waiting I/O completion) and
254    then an invalidate_buffers call that doesn't trash dirty buffers.
255
256    For handling cache coherency with the blkdev pagecache the 'update' case
257    is been introduced. It is needed to re-read from disk any pinned
258    buffer. NOTE: re-reading from disk is destructive so we can do it only
259    when we assume nobody is changing the buffercache under our I/O and when
260    we think the disk contains more recent information than the buffercache.
261    The update == 1 pass marks the buffers we need to update, the update == 2
262    pass does the actual I/O. */
263 void invalidate_bdev(struct block_device *bdev)
264 {
265         struct address_space *mapping = bdev->bd_inode->i_mapping;
266
267         if (mapping->nrpages == 0)
268                 return;
269
270         invalidate_bh_lrus();
271         lru_add_drain_all();    /* make sure all lru add caches are flushed */
272         invalidate_mapping_pages(mapping, 0, -1);
273
274         /* 99% of the time, we don't need to flush the precache on the bdev.
275          * But, for the strange corners, lets be cautious
276          */
277         precache_flush_inode(mapping);
278 }
279 EXPORT_SYMBOL(invalidate_bdev);
280
281 /*
282  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
283  */
284 static void free_more_memory(void)
285 {
286         struct zone *zone;
287         int nid;
288
289         wakeup_flusher_threads(1024);
290         yield();
291
292         for_each_online_node(nid) {
293                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
294                                                 gfp_zone(GFP_NOFS), NULL,
295                                                 &zone);
296                 if (zone)
297                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
298                                                 GFP_NOFS, NULL);
299         }
300 }
301
302 /*
303  * I/O completion handler for block_read_full_page() - pages
304  * which come unlocked at the end of I/O.
305  */
306 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
307 {
308         unsigned long flags;
309         struct buffer_head *first;
310         struct buffer_head *tmp;
311         struct page *page;
312         int page_uptodate = 1;
313
314         BUG_ON(!buffer_async_read(bh));
315
316         page = bh->b_page;
317         if (uptodate) {
318                 set_buffer_uptodate(bh);
319         } else {
320                 clear_buffer_uptodate(bh);
321                 if (!quiet_error(bh))
322                         buffer_io_error(bh);
323                 SetPageError(page);
324         }
325
326         /*
327          * Be _very_ careful from here on. Bad things can happen if
328          * two buffer heads end IO at almost the same time and both
329          * decide that the page is now completely done.
330          */
331         first = page_buffers(page);
332         local_irq_save(flags);
333         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334         clear_buffer_async_read(bh);
335         unlock_buffer(bh);
336         tmp = bh;
337         do {
338                 if (!buffer_uptodate(tmp))
339                         page_uptodate = 0;
340                 if (buffer_async_read(tmp)) {
341                         BUG_ON(!buffer_locked(tmp));
342                         goto still_busy;
343                 }
344                 tmp = tmp->b_this_page;
345         } while (tmp != bh);
346         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347         local_irq_restore(flags);
348
349         /*
350          * If none of the buffers had errors and they are all
351          * uptodate then we can set the page uptodate.
352          */
353         if (page_uptodate && !PageError(page))
354                 SetPageUptodate(page);
355         unlock_page(page);
356         return;
357
358 still_busy:
359         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
360         local_irq_restore(flags);
361         return;
362 }
363
364 /*
365  * Completion handler for block_write_full_page() - pages which are unlocked
366  * during I/O, and which have PageWriteback cleared upon I/O completion.
367  */
368 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
369 {
370         char b[BDEVNAME_SIZE];
371         unsigned long flags;
372         struct buffer_head *first;
373         struct buffer_head *tmp;
374         struct page *page;
375
376         BUG_ON(!buffer_async_write(bh));
377
378         page = bh->b_page;
379         if (uptodate) {
380                 set_buffer_uptodate(bh);
381         } else {
382                 if (!quiet_error(bh)) {
383                         buffer_io_error(bh);
384                         printk(KERN_WARNING "lost page write due to "
385                                         "I/O error on %s\n",
386                                bdevname(bh->b_bdev, b));
387                 }
388                 set_bit(AS_EIO, &page->mapping->flags);
389                 set_buffer_write_io_error(bh);
390                 clear_buffer_uptodate(bh);
391                 SetPageError(page);
392         }
393
394         first = page_buffers(page);
395         local_irq_save(flags);
396         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
397
398         clear_buffer_async_write(bh);
399         unlock_buffer(bh);
400         tmp = bh->b_this_page;
401         while (tmp != bh) {
402                 if (buffer_async_write(tmp)) {
403                         BUG_ON(!buffer_locked(tmp));
404                         goto still_busy;
405                 }
406                 tmp = tmp->b_this_page;
407         }
408         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409         local_irq_restore(flags);
410         end_page_writeback(page);
411         return;
412
413 still_busy:
414         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
415         local_irq_restore(flags);
416         return;
417 }
418 EXPORT_SYMBOL(end_buffer_async_write);
419
420 /*
421  * If a page's buffers are under async readin (end_buffer_async_read
422  * completion) then there is a possibility that another thread of
423  * control could lock one of the buffers after it has completed
424  * but while some of the other buffers have not completed.  This
425  * locked buffer would confuse end_buffer_async_read() into not unlocking
426  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
427  * that this buffer is not under async I/O.
428  *
429  * The page comes unlocked when it has no locked buffer_async buffers
430  * left.
431  *
432  * PageLocked prevents anyone starting new async I/O reads any of
433  * the buffers.
434  *
435  * PageWriteback is used to prevent simultaneous writeout of the same
436  * page.
437  *
438  * PageLocked prevents anyone from starting writeback of a page which is
439  * under read I/O (PageWriteback is only ever set against a locked page).
440  */
441 static void mark_buffer_async_read(struct buffer_head *bh)
442 {
443         bh->b_end_io = end_buffer_async_read;
444         set_buffer_async_read(bh);
445 }
446
447 static void mark_buffer_async_write_endio(struct buffer_head *bh,
448                                           bh_end_io_t *handler)
449 {
450         bh->b_end_io = handler;
451         set_buffer_async_write(bh);
452 }
453
454 void mark_buffer_async_write(struct buffer_head *bh)
455 {
456         mark_buffer_async_write_endio(bh, end_buffer_async_write);
457 }
458 EXPORT_SYMBOL(mark_buffer_async_write);
459
460
461 /*
462  * fs/buffer.c contains helper functions for buffer-backed address space's
463  * fsync functions.  A common requirement for buffer-based filesystems is
464  * that certain data from the backing blockdev needs to be written out for
465  * a successful fsync().  For example, ext2 indirect blocks need to be
466  * written back and waited upon before fsync() returns.
467  *
468  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
469  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
470  * management of a list of dependent buffers at ->i_mapping->private_list.
471  *
472  * Locking is a little subtle: try_to_free_buffers() will remove buffers
473  * from their controlling inode's queue when they are being freed.  But
474  * try_to_free_buffers() will be operating against the *blockdev* mapping
475  * at the time, not against the S_ISREG file which depends on those buffers.
476  * So the locking for private_list is via the private_lock in the address_space
477  * which backs the buffers.  Which is different from the address_space 
478  * against which the buffers are listed.  So for a particular address_space,
479  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
480  * mapping->private_list will always be protected by the backing blockdev's
481  * ->private_lock.
482  *
483  * Which introduces a requirement: all buffers on an address_space's
484  * ->private_list must be from the same address_space: the blockdev's.
485  *
486  * address_spaces which do not place buffers at ->private_list via these
487  * utility functions are free to use private_lock and private_list for
488  * whatever they want.  The only requirement is that list_empty(private_list)
489  * be true at clear_inode() time.
490  *
491  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
492  * filesystems should do that.  invalidate_inode_buffers() should just go
493  * BUG_ON(!list_empty).
494  *
495  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
496  * take an address_space, not an inode.  And it should be called
497  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
498  * queued up.
499  *
500  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
501  * list if it is already on a list.  Because if the buffer is on a list,
502  * it *must* already be on the right one.  If not, the filesystem is being
503  * silly.  This will save a ton of locking.  But first we have to ensure
504  * that buffers are taken *off* the old inode's list when they are freed
505  * (presumably in truncate).  That requires careful auditing of all
506  * filesystems (do it inside bforget()).  It could also be done by bringing
507  * b_inode back.
508  */
509
510 /*
511  * The buffer's backing address_space's private_lock must be held
512  */
513 static void __remove_assoc_queue(struct buffer_head *bh)
514 {
515         list_del_init(&bh->b_assoc_buffers);
516         WARN_ON(!bh->b_assoc_map);
517         if (buffer_write_io_error(bh))
518                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
519         bh->b_assoc_map = NULL;
520 }
521
522 int inode_has_buffers(struct inode *inode)
523 {
524         return !list_empty(&inode->i_data.private_list);
525 }
526
527 /*
528  * osync is designed to support O_SYNC io.  It waits synchronously for
529  * all already-submitted IO to complete, but does not queue any new
530  * writes to the disk.
531  *
532  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
533  * you dirty the buffers, and then use osync_inode_buffers to wait for
534  * completion.  Any other dirty buffers which are not yet queued for
535  * write will not be flushed to disk by the osync.
536  */
537 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
538 {
539         struct buffer_head *bh;
540         struct list_head *p;
541         int err = 0;
542
543         spin_lock(lock);
544 repeat:
545         list_for_each_prev(p, list) {
546                 bh = BH_ENTRY(p);
547                 if (buffer_locked(bh)) {
548                         get_bh(bh);
549                         spin_unlock(lock);
550                         wait_on_buffer(bh);
551                         if (!buffer_uptodate(bh))
552                                 err = -EIO;
553                         brelse(bh);
554                         spin_lock(lock);
555                         goto repeat;
556                 }
557         }
558         spin_unlock(lock);
559         return err;
560 }
561
562 static void do_thaw_one(struct super_block *sb, void *unused)
563 {
564         char b[BDEVNAME_SIZE];
565         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
566                 printk(KERN_WARNING "Emergency Thaw on %s\n",
567                        bdevname(sb->s_bdev, b));
568 }
569
570 static void do_thaw_all(struct work_struct *work)
571 {
572         iterate_supers(do_thaw_one, NULL);
573         kfree(work);
574         printk(KERN_WARNING "Emergency Thaw complete\n");
575 }
576
577 /**
578  * emergency_thaw_all -- forcibly thaw every frozen filesystem
579  *
580  * Used for emergency unfreeze of all filesystems via SysRq
581  */
582 void emergency_thaw_all(void)
583 {
584         struct work_struct *work;
585
586         work = kmalloc(sizeof(*work), GFP_ATOMIC);
587         if (work) {
588                 INIT_WORK(work, do_thaw_all);
589                 schedule_work(work);
590         }
591 }
592
593 /**
594  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
595  * @mapping: the mapping which wants those buffers written
596  *
597  * Starts I/O against the buffers at mapping->private_list, and waits upon
598  * that I/O.
599  *
600  * Basically, this is a convenience function for fsync().
601  * @mapping is a file or directory which needs those buffers to be written for
602  * a successful fsync().
603  */
604 int sync_mapping_buffers(struct address_space *mapping)
605 {
606         struct address_space *buffer_mapping = mapping->assoc_mapping;
607
608         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
609                 return 0;
610
611         return fsync_buffers_list(&buffer_mapping->private_lock,
612                                         &mapping->private_list);
613 }
614 EXPORT_SYMBOL(sync_mapping_buffers);
615
616 /*
617  * Called when we've recently written block `bblock', and it is known that
618  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
619  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
620  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
621  */
622 void write_boundary_block(struct block_device *bdev,
623                         sector_t bblock, unsigned blocksize)
624 {
625         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
626         if (bh) {
627                 if (buffer_dirty(bh))
628                         ll_rw_block(WRITE, 1, &bh);
629                 put_bh(bh);
630         }
631 }
632
633 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
634 {
635         struct address_space *mapping = inode->i_mapping;
636         struct address_space *buffer_mapping = bh->b_page->mapping;
637
638         mark_buffer_dirty(bh);
639         if (!mapping->assoc_mapping) {
640                 mapping->assoc_mapping = buffer_mapping;
641         } else {
642                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
643         }
644         if (!bh->b_assoc_map) {
645                 spin_lock(&buffer_mapping->private_lock);
646                 list_move_tail(&bh->b_assoc_buffers,
647                                 &mapping->private_list);
648                 bh->b_assoc_map = mapping;
649                 spin_unlock(&buffer_mapping->private_lock);
650         }
651 }
652 EXPORT_SYMBOL(mark_buffer_dirty_inode);
653
654 /*
655  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
656  * dirty.
657  *
658  * If warn is true, then emit a warning if the page is not uptodate and has
659  * not been truncated.
660  */
661 static void __set_page_dirty(struct page *page,
662                 struct address_space *mapping, int warn)
663 {
664         spin_lock_irq(&mapping->tree_lock);
665         if (page->mapping) {    /* Race with truncate? */
666                 WARN_ON_ONCE(warn && !PageUptodate(page));
667                 account_page_dirtied(page, mapping);
668                 radix_tree_tag_set(&mapping->page_tree,
669                                 page_index(page), PAGECACHE_TAG_DIRTY);
670         }
671         spin_unlock_irq(&mapping->tree_lock);
672         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
673 }
674
675 /*
676  * Add a page to the dirty page list.
677  *
678  * It is a sad fact of life that this function is called from several places
679  * deeply under spinlocking.  It may not sleep.
680  *
681  * If the page has buffers, the uptodate buffers are set dirty, to preserve
682  * dirty-state coherency between the page and the buffers.  It the page does
683  * not have buffers then when they are later attached they will all be set
684  * dirty.
685  *
686  * The buffers are dirtied before the page is dirtied.  There's a small race
687  * window in which a writepage caller may see the page cleanness but not the
688  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
689  * before the buffers, a concurrent writepage caller could clear the page dirty
690  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
691  * page on the dirty page list.
692  *
693  * We use private_lock to lock against try_to_free_buffers while using the
694  * page's buffer list.  Also use this to protect against clean buffers being
695  * added to the page after it was set dirty.
696  *
697  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
698  * address_space though.
699  */
700 int __set_page_dirty_buffers(struct page *page)
701 {
702         int newly_dirty;
703         struct address_space *mapping = page_mapping(page);
704
705         if (unlikely(!mapping))
706                 return !TestSetPageDirty(page);
707
708         spin_lock(&mapping->private_lock);
709         if (page_has_buffers(page)) {
710                 struct buffer_head *head = page_buffers(page);
711                 struct buffer_head *bh = head;
712
713                 do {
714                         set_buffer_dirty(bh);
715                         bh = bh->b_this_page;
716                 } while (bh != head);
717         }
718         newly_dirty = !TestSetPageDirty(page);
719         spin_unlock(&mapping->private_lock);
720
721         if (newly_dirty)
722                 __set_page_dirty(page, mapping, 1);
723         return newly_dirty;
724 }
725 EXPORT_SYMBOL(__set_page_dirty_buffers);
726
727 /*
728  * Write out and wait upon a list of buffers.
729  *
730  * We have conflicting pressures: we want to make sure that all
731  * initially dirty buffers get waited on, but that any subsequently
732  * dirtied buffers don't.  After all, we don't want fsync to last
733  * forever if somebody is actively writing to the file.
734  *
735  * Do this in two main stages: first we copy dirty buffers to a
736  * temporary inode list, queueing the writes as we go.  Then we clean
737  * up, waiting for those writes to complete.
738  * 
739  * During this second stage, any subsequent updates to the file may end
740  * up refiling the buffer on the original inode's dirty list again, so
741  * there is a chance we will end up with a buffer queued for write but
742  * not yet completed on that list.  So, as a final cleanup we go through
743  * the osync code to catch these locked, dirty buffers without requeuing
744  * any newly dirty buffers for write.
745  */
746 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
747 {
748         struct buffer_head *bh;
749         struct list_head tmp;
750         struct address_space *mapping;
751         int err = 0, err2;
752         struct blk_plug plug;
753
754         INIT_LIST_HEAD(&tmp);
755         blk_start_plug(&plug);
756
757         spin_lock(lock);
758         while (!list_empty(list)) {
759                 bh = BH_ENTRY(list->next);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh) || buffer_locked(bh)) {
766                         list_add(&bh->b_assoc_buffers, &tmp);
767                         bh->b_assoc_map = mapping;
768                         if (buffer_dirty(bh)) {
769                                 get_bh(bh);
770                                 spin_unlock(lock);
771                                 /*
772                                  * Ensure any pending I/O completes so that
773                                  * write_dirty_buffer() actually writes the
774                                  * current contents - it is a noop if I/O is
775                                  * still in flight on potentially older
776                                  * contents.
777                                  */
778                                 write_dirty_buffer(bh, WRITE_SYNC);
779
780                                 /*
781                                  * Kick off IO for the previous mapping. Note
782                                  * that we will not run the very last mapping,
783                                  * wait_on_buffer() will do that for us
784                                  * through sync_buffer().
785                                  */
786                                 brelse(bh);
787                                 spin_lock(lock);
788                         }
789                 }
790         }
791
792         spin_unlock(lock);
793         blk_finish_plug(&plug);
794         spin_lock(lock);
795
796         while (!list_empty(&tmp)) {
797                 bh = BH_ENTRY(tmp.prev);
798                 get_bh(bh);
799                 mapping = bh->b_assoc_map;
800                 __remove_assoc_queue(bh);
801                 /* Avoid race with mark_buffer_dirty_inode() which does
802                  * a lockless check and we rely on seeing the dirty bit */
803                 smp_mb();
804                 if (buffer_dirty(bh)) {
805                         list_add(&bh->b_assoc_buffers,
806                                  &mapping->private_list);
807                         bh->b_assoc_map = mapping;
808                 }
809                 spin_unlock(lock);
810                 wait_on_buffer(bh);
811                 if (!buffer_uptodate(bh))
812                         err = -EIO;
813                 brelse(bh);
814                 spin_lock(lock);
815         }
816         
817         spin_unlock(lock);
818         err2 = osync_buffers_list(lock, list);
819         if (err)
820                 return err;
821         else
822                 return err2;
823 }
824
825 /*
826  * Invalidate any and all dirty buffers on a given inode.  We are
827  * probably unmounting the fs, but that doesn't mean we have already
828  * done a sync().  Just drop the buffers from the inode list.
829  *
830  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
831  * assumes that all the buffers are against the blockdev.  Not true
832  * for reiserfs.
833  */
834 void invalidate_inode_buffers(struct inode *inode)
835 {
836         if (inode_has_buffers(inode)) {
837                 struct address_space *mapping = &inode->i_data;
838                 struct list_head *list = &mapping->private_list;
839                 struct address_space *buffer_mapping = mapping->assoc_mapping;
840
841                 spin_lock(&buffer_mapping->private_lock);
842                 while (!list_empty(list))
843                         __remove_assoc_queue(BH_ENTRY(list->next));
844                 spin_unlock(&buffer_mapping->private_lock);
845         }
846 }
847 EXPORT_SYMBOL(invalidate_inode_buffers);
848
849 /*
850  * Remove any clean buffers from the inode's buffer list.  This is called
851  * when we're trying to free the inode itself.  Those buffers can pin it.
852  *
853  * Returns true if all buffers were removed.
854  */
855 int remove_inode_buffers(struct inode *inode)
856 {
857         int ret = 1;
858
859         if (inode_has_buffers(inode)) {
860                 struct address_space *mapping = &inode->i_data;
861                 struct list_head *list = &mapping->private_list;
862                 struct address_space *buffer_mapping = mapping->assoc_mapping;
863
864                 spin_lock(&buffer_mapping->private_lock);
865                 while (!list_empty(list)) {
866                         struct buffer_head *bh = BH_ENTRY(list->next);
867                         if (buffer_dirty(bh)) {
868                                 ret = 0;
869                                 break;
870                         }
871                         __remove_assoc_queue(bh);
872                 }
873                 spin_unlock(&buffer_mapping->private_lock);
874         }
875         return ret;
876 }
877
878 /*
879  * Create the appropriate buffers when given a page for data area and
880  * the size of each buffer.. Use the bh->b_this_page linked list to
881  * follow the buffers created.  Return NULL if unable to create more
882  * buffers.
883  *
884  * The retry flag is used to differentiate async IO (paging, swapping)
885  * which may not fail from ordinary buffer allocations.
886  */
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888                 int retry)
889 {
890         struct buffer_head *bh, *head;
891         long offset;
892
893 try_again:
894         head = NULL;
895         offset = PAGE_SIZE;
896         while ((offset -= size) >= 0) {
897                 bh = alloc_buffer_head(GFP_NOFS);
898                 if (!bh)
899                         goto no_grow;
900
901                 bh->b_bdev = NULL;
902                 bh->b_this_page = head;
903                 bh->b_blocknr = -1;
904                 head = bh;
905
906                 bh->b_state = 0;
907                 atomic_set(&bh->b_count, 0);
908                 bh->b_size = size;
909
910                 /* Link the buffer to its page */
911                 set_bh_page(bh, page, offset);
912
913                 init_buffer(bh, NULL, NULL);
914         }
915         return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920         if (head) {
921                 do {
922                         bh = head;
923                         head = head->b_this_page;
924                         free_buffer_head(bh);
925                 } while (head);
926         }
927
928         /*
929          * Return failure for non-async IO requests.  Async IO requests
930          * are not allowed to fail, so we have to wait until buffer heads
931          * become available.  But we don't want tasks sleeping with 
932          * partially complete buffers, so all were released above.
933          */
934         if (!retry)
935                 return NULL;
936
937         /* We're _really_ low on memory. Now we just
938          * wait for old buffer heads to become free due to
939          * finishing IO.  Since this is an async request and
940          * the reserve list is empty, we're sure there are 
941          * async buffer heads in use.
942          */
943         free_more_memory();
944         goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951         struct buffer_head *bh, *tail;
952
953         bh = head;
954         do {
955                 tail = bh;
956                 bh = bh->b_this_page;
957         } while (bh);
958         tail->b_this_page = head;
959         attach_page_buffers(page, head);
960 }
961
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */ 
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967                         sector_t block, int size)
968 {
969         struct buffer_head *head = page_buffers(page);
970         struct buffer_head *bh = head;
971         int uptodate = PageUptodate(page);
972
973         do {
974                 if (!buffer_mapped(bh)) {
975                         init_buffer(bh, NULL, NULL);
976                         bh->b_bdev = bdev;
977                         bh->b_blocknr = block;
978                         if (uptodate)
979                                 set_buffer_uptodate(bh);
980                         set_buffer_mapped(bh);
981                 }
982                 block++;
983                 bh = bh->b_this_page;
984         } while (bh != head);
985 }
986
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994                 pgoff_t index, int size)
995 {
996         struct inode *inode = bdev->bd_inode;
997         struct page *page;
998         struct buffer_head *bh;
999
1000         page = find_or_create_page(inode->i_mapping, index,
1001                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002         if (!page)
1003                 return NULL;
1004
1005         BUG_ON(!PageLocked(page));
1006
1007         if (page_has_buffers(page)) {
1008                 bh = page_buffers(page);
1009                 if (bh->b_size == size) {
1010                         init_page_buffers(page, bdev, block, size);
1011                         return page;
1012                 }
1013                 if (!try_to_free_buffers(page))
1014                         goto failed;
1015         }
1016
1017         /*
1018          * Allocate some buffers for this page
1019          */
1020         bh = alloc_page_buffers(page, size, 0);
1021         if (!bh)
1022                 goto failed;
1023
1024         /*
1025          * Link the page to the buffers and initialise them.  Take the
1026          * lock to be atomic wrt __find_get_block(), which does not
1027          * run under the page lock.
1028          */
1029         spin_lock(&inode->i_mapping->private_lock);
1030         link_dev_buffers(page, bh);
1031         init_page_buffers(page, bdev, block, size);
1032         spin_unlock(&inode->i_mapping->private_lock);
1033         return page;
1034
1035 failed:
1036         BUG();
1037         unlock_page(page);
1038         page_cache_release(page);
1039         return NULL;
1040 }
1041
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049         struct page *page;
1050         pgoff_t index;
1051         int sizebits;
1052
1053         sizebits = -1;
1054         do {
1055                 sizebits++;
1056         } while ((size << sizebits) < PAGE_SIZE);
1057
1058         index = block >> sizebits;
1059
1060         /*
1061          * Check for a block which wants to lie outside our maximum possible
1062          * pagecache index.  (this comparison is done using sector_t types).
1063          */
1064         if (unlikely(index != block >> sizebits)) {
1065                 char b[BDEVNAME_SIZE];
1066
1067                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068                         "device %s\n",
1069                         __func__, (unsigned long long)block,
1070                         bdevname(bdev, b));
1071                 return -EIO;
1072         }
1073         block = index << sizebits;
1074         /* Create a page with the proper size buffers.. */
1075         page = grow_dev_page(bdev, block, index, size);
1076         if (!page)
1077                 return 0;
1078         unlock_page(page);
1079         page_cache_release(page);
1080         return 1;
1081 }
1082
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086         /* Size must be multiple of hard sectorsize */
1087         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088                         (size < 512 || size > PAGE_SIZE))) {
1089                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090                                         size);
1091                 printk(KERN_ERR "logical block size: %d\n",
1092                                         bdev_logical_block_size(bdev));
1093
1094                 dump_stack();
1095                 return NULL;
1096         }
1097
1098         for (;;) {
1099                 struct buffer_head * bh;
1100                 int ret;
1101
1102                 bh = __find_get_block(bdev, block, size);
1103                 if (bh)
1104                         return bh;
1105
1106                 ret = grow_buffers(bdev, block, size);
1107                 if (ret < 0)
1108                         return NULL;
1109                 if (ret == 0)
1110                         free_more_memory();
1111         }
1112 }
1113
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and mapping->host->i_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151         WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153         /*
1154          * Very *carefully* optimize the it-is-already-dirty case.
1155          *
1156          * Don't let the final "is it dirty" escape to before we
1157          * perhaps modified the buffer.
1158          */
1159         if (buffer_dirty(bh)) {
1160                 smp_mb();
1161                 if (buffer_dirty(bh))
1162                         return;
1163         }
1164
1165         if (!test_set_buffer_dirty(bh)) {
1166                 struct page *page = bh->b_page;
1167                 if (!TestSetPageDirty(page)) {
1168                         struct address_space *mapping = page_mapping(page);
1169                         if (mapping)
1170                                 __set_page_dirty(page, mapping, 0);
1171                 }
1172         }
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185         if (atomic_read(&buf->b_count)) {
1186                 put_bh(buf);
1187                 return;
1188         }
1189         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199         clear_buffer_dirty(bh);
1200         if (bh->b_assoc_map) {
1201                 struct address_space *buffer_mapping = bh->b_page->mapping;
1202
1203                 spin_lock(&buffer_mapping->private_lock);
1204                 list_del_init(&bh->b_assoc_buffers);
1205                 bh->b_assoc_map = NULL;
1206                 spin_unlock(&buffer_mapping->private_lock);
1207         }
1208         __brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214         lock_buffer(bh);
1215         if (buffer_uptodate(bh)) {
1216                 unlock_buffer(bh);
1217                 return bh;
1218         } else {
1219                 get_bh(bh);
1220                 bh->b_end_io = end_buffer_read_sync;
1221                 submit_bh(READ, bh);
1222                 wait_on_buffer(bh);
1223                 if (buffer_uptodate(bh))
1224                         return bh;
1225         }
1226         brelse(bh);
1227         return NULL;
1228 }
1229
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243
1244 #define BH_LRU_SIZE     8
1245
1246 struct bh_lru {
1247         struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()   local_irq_disable()
1254 #define bh_lru_unlock() local_irq_enable()
1255 #else
1256 #define bh_lru_lock()   preempt_disable()
1257 #define bh_lru_unlock() preempt_enable()
1258 #endif
1259
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263         BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272         struct buffer_head *evictee = NULL;
1273
1274         check_irqs_on();
1275         bh_lru_lock();
1276         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1277                 struct buffer_head *bhs[BH_LRU_SIZE];
1278                 int in;
1279                 int out = 0;
1280
1281                 get_bh(bh);
1282                 bhs[out++] = bh;
1283                 for (in = 0; in < BH_LRU_SIZE; in++) {
1284                         struct buffer_head *bh2 =
1285                                 __this_cpu_read(bh_lrus.bhs[in]);
1286
1287                         if (bh2 == bh) {
1288                                 __brelse(bh2);
1289                         } else {
1290                                 if (out >= BH_LRU_SIZE) {
1291                                         BUG_ON(evictee != NULL);
1292                                         evictee = bh2;
1293                                 } else {
1294                                         bhs[out++] = bh2;
1295                                 }
1296                         }
1297                 }
1298                 while (out < BH_LRU_SIZE)
1299                         bhs[out++] = NULL;
1300                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1301         }
1302         bh_lru_unlock();
1303
1304         if (evictee)
1305                 __brelse(evictee);
1306 }
1307
1308 /*
1309  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1310  */
1311 static struct buffer_head *
1312 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1313 {
1314         struct buffer_head *ret = NULL;
1315         unsigned int i;
1316
1317         check_irqs_on();
1318         bh_lru_lock();
1319         for (i = 0; i < BH_LRU_SIZE; i++) {
1320                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1321
1322                 if (bh && bh->b_bdev == bdev &&
1323                                 bh->b_blocknr == block && bh->b_size == size) {
1324                         if (i) {
1325                                 while (i) {
1326                                         __this_cpu_write(bh_lrus.bhs[i],
1327                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1328                                         i--;
1329                                 }
1330                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1331                         }
1332                         get_bh(bh);
1333                         ret = bh;
1334                         break;
1335                 }
1336         }
1337         bh_lru_unlock();
1338         return ret;
1339 }
1340
1341 /*
1342  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1343  * it in the LRU and mark it as accessed.  If it is not present then return
1344  * NULL
1345  */
1346 struct buffer_head *
1347 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1348 {
1349         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1350
1351         if (bh == NULL) {
1352                 bh = __find_get_block_slow(bdev, block);
1353                 if (bh)
1354                         bh_lru_install(bh);
1355         }
1356         if (bh)
1357                 touch_buffer(bh);
1358         return bh;
1359 }
1360 EXPORT_SYMBOL(__find_get_block);
1361
1362 /*
1363  * __getblk will locate (and, if necessary, create) the buffer_head
1364  * which corresponds to the passed block_device, block and size. The
1365  * returned buffer has its reference count incremented.
1366  *
1367  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1368  * illegal block number, __getblk() will happily return a buffer_head
1369  * which represents the non-existent block.  Very weird.
1370  *
1371  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1372  * attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1376 {
1377         struct buffer_head *bh = __find_get_block(bdev, block, size);
1378
1379         might_sleep();
1380         if (bh == NULL)
1381                 bh = __getblk_slow(bdev, block, size);
1382         return bh;
1383 }
1384 EXPORT_SYMBOL(__getblk);
1385
1386 /*
1387  * Do async read-ahead on a buffer..
1388  */
1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1390 {
1391         struct buffer_head *bh = __getblk(bdev, block, size);
1392         if (likely(bh)) {
1393                 ll_rw_block(READA, 1, &bh);
1394                 brelse(bh);
1395         }
1396 }
1397 EXPORT_SYMBOL(__breadahead);
1398
1399 /**
1400  *  __bread() - reads a specified block and returns the bh
1401  *  @bdev: the block_device to read from
1402  *  @block: number of block
1403  *  @size: size (in bytes) to read
1404  * 
1405  *  Reads a specified block, and returns buffer head that contains it.
1406  *  It returns NULL if the block was unreadable.
1407  */
1408 struct buffer_head *
1409 __bread(struct block_device *bdev, sector_t block, unsigned size)
1410 {
1411         struct buffer_head *bh = __getblk(bdev, block, size);
1412
1413         if (likely(bh) && !buffer_uptodate(bh))
1414                 bh = __bread_slow(bh);
1415         return bh;
1416 }
1417 EXPORT_SYMBOL(__bread);
1418
1419 /*
1420  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1421  * This doesn't race because it runs in each cpu either in irq
1422  * or with preempt disabled.
1423  */
1424 static void invalidate_bh_lru(void *arg)
1425 {
1426         struct bh_lru *b = &get_cpu_var(bh_lrus);
1427         int i;
1428
1429         for (i = 0; i < BH_LRU_SIZE; i++) {
1430                 brelse(b->bhs[i]);
1431                 b->bhs[i] = NULL;
1432         }
1433         put_cpu_var(bh_lrus);
1434 }
1435         
1436 void invalidate_bh_lrus(void)
1437 {
1438         on_each_cpu(invalidate_bh_lru, NULL, 1);
1439 }
1440 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1441
1442 void set_bh_page(struct buffer_head *bh,
1443                 struct page *page, unsigned long offset)
1444 {
1445         bh->b_page = page;
1446         BUG_ON(offset >= PAGE_SIZE);
1447         if (PageHighMem(page))
1448                 /*
1449                  * This catches illegal uses and preserves the offset:
1450                  */
1451                 bh->b_data = (char *)(0 + offset);
1452         else
1453                 bh->b_data = page_address(page) + offset;
1454 }
1455 EXPORT_SYMBOL(set_bh_page);
1456
1457 /*
1458  * Called when truncating a buffer on a page completely.
1459  */
1460 static void discard_buffer(struct buffer_head * bh)
1461 {
1462         lock_buffer(bh);
1463         clear_buffer_dirty(bh);
1464         bh->b_bdev = NULL;
1465         clear_buffer_mapped(bh);
1466         clear_buffer_req(bh);
1467         clear_buffer_new(bh);
1468         clear_buffer_delay(bh);
1469         clear_buffer_unwritten(bh);
1470         unlock_buffer(bh);
1471 }
1472
1473 /**
1474  * block_invalidatepage - invalidate part of all of a buffer-backed page
1475  *
1476  * @page: the page which is affected
1477  * @offset: the index of the truncation point
1478  *
1479  * block_invalidatepage() is called when all or part of the page has become
1480  * invalidatedby a truncate operation.
1481  *
1482  * block_invalidatepage() does not have to release all buffers, but it must
1483  * ensure that no dirty buffer is left outside @offset and that no I/O
1484  * is underway against any of the blocks which are outside the truncation
1485  * point.  Because the caller is about to free (and possibly reuse) those
1486  * blocks on-disk.
1487  */
1488 void block_invalidatepage(struct page *page, unsigned long offset)
1489 {
1490         struct buffer_head *head, *bh, *next;
1491         unsigned int curr_off = 0;
1492
1493         BUG_ON(!PageLocked(page));
1494         if (!page_has_buffers(page))
1495                 goto out;
1496
1497         head = page_buffers(page);
1498         bh = head;
1499         do {
1500                 unsigned int next_off = curr_off + bh->b_size;
1501                 next = bh->b_this_page;
1502
1503                 /*
1504                  * is this block fully invalidated?
1505                  */
1506                 if (offset <= curr_off)
1507                         discard_buffer(bh);
1508                 curr_off = next_off;
1509                 bh = next;
1510         } while (bh != head);
1511
1512         /*
1513          * We release buffers only if the entire page is being invalidated.
1514          * The get_block cached value has been unconditionally invalidated,
1515          * so real IO is not possible anymore.
1516          */
1517         if (offset == 0)
1518                 try_to_release_page(page, 0);
1519 out:
1520         return;
1521 }
1522 EXPORT_SYMBOL(block_invalidatepage);
1523
1524 /*
1525  * We attach and possibly dirty the buffers atomically wrt
1526  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1527  * is already excluded via the page lock.
1528  */
1529 void create_empty_buffers(struct page *page,
1530                         unsigned long blocksize, unsigned long b_state)
1531 {
1532         struct buffer_head *bh, *head, *tail;
1533
1534         head = alloc_page_buffers(page, blocksize, 1);
1535         bh = head;
1536         do {
1537                 bh->b_state |= b_state;
1538                 tail = bh;
1539                 bh = bh->b_this_page;
1540         } while (bh);
1541         tail->b_this_page = head;
1542
1543         spin_lock(&page->mapping->private_lock);
1544         if (PageUptodate(page) || PageDirty(page)) {
1545                 bh = head;
1546                 do {
1547                         if (PageDirty(page))
1548                                 set_buffer_dirty(bh);
1549                         if (PageUptodate(page))
1550                                 set_buffer_uptodate(bh);
1551                         bh = bh->b_this_page;
1552                 } while (bh != head);
1553         }
1554         attach_page_buffers(page, head);
1555         spin_unlock(&page->mapping->private_lock);
1556 }
1557 EXPORT_SYMBOL(create_empty_buffers);
1558
1559 /*
1560  * We are taking a block for data and we don't want any output from any
1561  * buffer-cache aliases starting from return from that function and
1562  * until the moment when something will explicitly mark the buffer
1563  * dirty (hopefully that will not happen until we will free that block ;-)
1564  * We don't even need to mark it not-uptodate - nobody can expect
1565  * anything from a newly allocated buffer anyway. We used to used
1566  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1567  * don't want to mark the alias unmapped, for example - it would confuse
1568  * anyone who might pick it with bread() afterwards...
1569  *
1570  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1571  * be writeout I/O going on against recently-freed buffers.  We don't
1572  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1573  * only if we really need to.  That happens here.
1574  */
1575 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1576 {
1577         struct buffer_head *old_bh;
1578
1579         might_sleep();
1580
1581         old_bh = __find_get_block_slow(bdev, block);
1582         if (old_bh) {
1583                 clear_buffer_dirty(old_bh);
1584                 wait_on_buffer(old_bh);
1585                 clear_buffer_req(old_bh);
1586                 __brelse(old_bh);
1587         }
1588 }
1589 EXPORT_SYMBOL(unmap_underlying_metadata);
1590
1591 /*
1592  * NOTE! All mapped/uptodate combinations are valid:
1593  *
1594  *      Mapped  Uptodate        Meaning
1595  *
1596  *      No      No              "unknown" - must do get_block()
1597  *      No      Yes             "hole" - zero-filled
1598  *      Yes     No              "allocated" - allocated on disk, not read in
1599  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1600  *
1601  * "Dirty" is valid only with the last case (mapped+uptodate).
1602  */
1603
1604 /*
1605  * While block_write_full_page is writing back the dirty buffers under
1606  * the page lock, whoever dirtied the buffers may decide to clean them
1607  * again at any time.  We handle that by only looking at the buffer
1608  * state inside lock_buffer().
1609  *
1610  * If block_write_full_page() is called for regular writeback
1611  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1612  * locked buffer.   This only can happen if someone has written the buffer
1613  * directly, with submit_bh().  At the address_space level PageWriteback
1614  * prevents this contention from occurring.
1615  *
1616  * If block_write_full_page() is called with wbc->sync_mode ==
1617  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1618  * causes the writes to be flagged as synchronous writes.
1619  */
1620 static int __block_write_full_page(struct inode *inode, struct page *page,
1621                         get_block_t *get_block, struct writeback_control *wbc,
1622                         bh_end_io_t *handler)
1623 {
1624         int err;
1625         sector_t block;
1626         sector_t last_block;
1627         struct buffer_head *bh, *head;
1628         const unsigned blocksize = 1 << inode->i_blkbits;
1629         int nr_underway = 0;
1630         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1631                         WRITE_SYNC : WRITE);
1632
1633         BUG_ON(!PageLocked(page));
1634
1635         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1636
1637         if (!page_has_buffers(page)) {
1638                 create_empty_buffers(page, blocksize,
1639                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1640         }
1641
1642         /*
1643          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1644          * here, and the (potentially unmapped) buffers may become dirty at
1645          * any time.  If a buffer becomes dirty here after we've inspected it
1646          * then we just miss that fact, and the page stays dirty.
1647          *
1648          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1649          * handle that here by just cleaning them.
1650          */
1651
1652         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1653         head = page_buffers(page);
1654         bh = head;
1655
1656         /*
1657          * Get all the dirty buffers mapped to disk addresses and
1658          * handle any aliases from the underlying blockdev's mapping.
1659          */
1660         do {
1661                 if (block > last_block) {
1662                         /*
1663                          * mapped buffers outside i_size will occur, because
1664                          * this page can be outside i_size when there is a
1665                          * truncate in progress.
1666                          */
1667                         /*
1668                          * The buffer was zeroed by block_write_full_page()
1669                          */
1670                         clear_buffer_dirty(bh);
1671                         set_buffer_uptodate(bh);
1672                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1673                            buffer_dirty(bh)) {
1674                         WARN_ON(bh->b_size != blocksize);
1675                         err = get_block(inode, block, bh, 1);
1676                         if (err)
1677                                 goto recover;
1678                         clear_buffer_delay(bh);
1679                         if (buffer_new(bh)) {
1680                                 /* blockdev mappings never come here */
1681                                 clear_buffer_new(bh);
1682                                 unmap_underlying_metadata(bh->b_bdev,
1683                                                         bh->b_blocknr);
1684                         }
1685                 }
1686                 bh = bh->b_this_page;
1687                 block++;
1688         } while (bh != head);
1689
1690         do {
1691                 if (!buffer_mapped(bh))
1692                         continue;
1693                 /*
1694                  * If it's a fully non-blocking write attempt and we cannot
1695                  * lock the buffer then redirty the page.  Note that this can
1696                  * potentially cause a busy-wait loop from writeback threads
1697                  * and kswapd activity, but those code paths have their own
1698                  * higher-level throttling.
1699                  */
1700                 if (wbc->sync_mode != WB_SYNC_NONE) {
1701                         lock_buffer(bh);
1702                 } else if (!trylock_buffer(bh)) {
1703                         redirty_page_for_writepage(wbc, page);
1704                         continue;
1705                 }
1706                 if (test_clear_buffer_dirty(bh)) {
1707                         mark_buffer_async_write_endio(bh, handler);
1708                 } else {
1709                         unlock_buffer(bh);
1710                 }
1711         } while ((bh = bh->b_this_page) != head);
1712
1713         /*
1714          * The page and its buffers are protected by PageWriteback(), so we can
1715          * drop the bh refcounts early.
1716          */
1717         BUG_ON(PageWriteback(page));
1718         set_page_writeback(page);
1719
1720         do {
1721                 struct buffer_head *next = bh->b_this_page;
1722                 if (buffer_async_write(bh)) {
1723                         submit_bh(write_op, bh);
1724                         nr_underway++;
1725                 }
1726                 bh = next;
1727         } while (bh != head);
1728         unlock_page(page);
1729
1730         err = 0;
1731 done:
1732         if (nr_underway == 0) {
1733                 /*
1734                  * The page was marked dirty, but the buffers were
1735                  * clean.  Someone wrote them back by hand with
1736                  * ll_rw_block/submit_bh.  A rare case.
1737                  */
1738                 end_page_writeback(page);
1739
1740                 /*
1741                  * The page and buffer_heads can be released at any time from
1742                  * here on.
1743                  */
1744         }
1745         return err;
1746
1747 recover:
1748         /*
1749          * ENOSPC, or some other error.  We may already have added some
1750          * blocks to the file, so we need to write these out to avoid
1751          * exposing stale data.
1752          * The page is currently locked and not marked for writeback
1753          */
1754         bh = head;
1755         /* Recovery: lock and submit the mapped buffers */
1756         do {
1757                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1758                     !buffer_delay(bh)) {
1759                         lock_buffer(bh);
1760                         mark_buffer_async_write_endio(bh, handler);
1761                 } else {
1762                         /*
1763                          * The buffer may have been set dirty during
1764                          * attachment to a dirty page.
1765                          */
1766                         clear_buffer_dirty(bh);
1767                 }
1768         } while ((bh = bh->b_this_page) != head);
1769         SetPageError(page);
1770         BUG_ON(PageWriteback(page));
1771         mapping_set_error(page->mapping, err);
1772         set_page_writeback(page);
1773         do {
1774                 struct buffer_head *next = bh->b_this_page;
1775                 if (buffer_async_write(bh)) {
1776                         clear_buffer_dirty(bh);
1777                         submit_bh(write_op, bh);
1778                         nr_underway++;
1779                 }
1780                 bh = next;
1781         } while (bh != head);
1782         unlock_page(page);
1783         goto done;
1784 }
1785
1786 /*
1787  * If a page has any new buffers, zero them out here, and mark them uptodate
1788  * and dirty so they'll be written out (in order to prevent uninitialised
1789  * block data from leaking). And clear the new bit.
1790  */
1791 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1792 {
1793         unsigned int block_start, block_end;
1794         struct buffer_head *head, *bh;
1795
1796         BUG_ON(!PageLocked(page));
1797         if (!page_has_buffers(page))
1798                 return;
1799
1800         bh = head = page_buffers(page);
1801         block_start = 0;
1802         do {
1803                 block_end = block_start + bh->b_size;
1804
1805                 if (buffer_new(bh)) {
1806                         if (block_end > from && block_start < to) {
1807                                 if (!PageUptodate(page)) {
1808                                         unsigned start, size;
1809
1810                                         start = max(from, block_start);
1811                                         size = min(to, block_end) - start;
1812
1813                                         zero_user(page, start, size);
1814                                         set_buffer_uptodate(bh);
1815                                 }
1816
1817                                 clear_buffer_new(bh);
1818                                 mark_buffer_dirty(bh);
1819                         }
1820                 }
1821
1822                 block_start = block_end;
1823                 bh = bh->b_this_page;
1824         } while (bh != head);
1825 }
1826 EXPORT_SYMBOL(page_zero_new_buffers);
1827
1828 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1829                 get_block_t *get_block)
1830 {
1831         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1832         unsigned to = from + len;
1833         struct inode *inode = page->mapping->host;
1834         unsigned block_start, block_end;
1835         sector_t block;
1836         int err = 0;
1837         unsigned blocksize, bbits;
1838         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1839
1840         BUG_ON(!PageLocked(page));
1841         BUG_ON(from > PAGE_CACHE_SIZE);
1842         BUG_ON(to > PAGE_CACHE_SIZE);
1843         BUG_ON(from > to);
1844
1845         blocksize = 1 << inode->i_blkbits;
1846         if (!page_has_buffers(page))
1847                 create_empty_buffers(page, blocksize, 0);
1848         head = page_buffers(page);
1849
1850         bbits = inode->i_blkbits;
1851         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1852
1853         for(bh = head, block_start = 0; bh != head || !block_start;
1854             block++, block_start=block_end, bh = bh->b_this_page) {
1855                 block_end = block_start + blocksize;
1856                 if (block_end <= from || block_start >= to) {
1857                         if (PageUptodate(page)) {
1858                                 if (!buffer_uptodate(bh))
1859                                         set_buffer_uptodate(bh);
1860                         }
1861                         continue;
1862                 }
1863                 if (buffer_new(bh))
1864                         clear_buffer_new(bh);
1865                 if (!buffer_mapped(bh)) {
1866                         WARN_ON(bh->b_size != blocksize);
1867                         err = get_block(inode, block, bh, 1);
1868                         if (err)
1869                                 break;
1870                         if (buffer_new(bh)) {
1871                                 unmap_underlying_metadata(bh->b_bdev,
1872                                                         bh->b_blocknr);
1873                                 if (PageUptodate(page)) {
1874                                         clear_buffer_new(bh);
1875                                         set_buffer_uptodate(bh);
1876                                         mark_buffer_dirty(bh);
1877                                         continue;
1878                                 }
1879                                 if (block_end > to || block_start < from)
1880                                         zero_user_segments(page,
1881                                                 to, block_end,
1882                                                 block_start, from);
1883                                 continue;
1884                         }
1885                 }
1886                 if (PageUptodate(page)) {
1887                         if (!buffer_uptodate(bh))
1888                                 set_buffer_uptodate(bh);
1889                         continue; 
1890                 }
1891                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1892                     !buffer_unwritten(bh) &&
1893                      (block_start < from || block_end > to)) {
1894                         ll_rw_block(READ, 1, &bh);
1895                         *wait_bh++=bh;
1896                 }
1897         }
1898         /*
1899          * If we issued read requests - let them complete.
1900          */
1901         while(wait_bh > wait) {
1902                 wait_on_buffer(*--wait_bh);
1903                 if (!buffer_uptodate(*wait_bh))
1904                         err = -EIO;
1905         }
1906         if (unlikely(err)) {
1907                 page_zero_new_buffers(page, from, to);
1908                 ClearPageUptodate(page);
1909         }
1910         return err;
1911 }
1912 EXPORT_SYMBOL(__block_write_begin);
1913
1914 static int __block_commit_write(struct inode *inode, struct page *page,
1915                 unsigned from, unsigned to)
1916 {
1917         unsigned block_start, block_end;
1918         int partial = 0;
1919         unsigned blocksize;
1920         struct buffer_head *bh, *head;
1921
1922         blocksize = 1 << inode->i_blkbits;
1923
1924         for(bh = head = page_buffers(page), block_start = 0;
1925             bh != head || !block_start;
1926             block_start=block_end, bh = bh->b_this_page) {
1927                 block_end = block_start + blocksize;
1928                 if (block_end <= from || block_start >= to) {
1929                         if (!buffer_uptodate(bh))
1930                                 partial = 1;
1931                 } else {
1932                         set_buffer_uptodate(bh);
1933                         mark_buffer_dirty(bh);
1934                 }
1935                 clear_buffer_new(bh);
1936         }
1937
1938         /*
1939          * If this is a partial write which happened to make all buffers
1940          * uptodate then we can optimize away a bogus readpage() for
1941          * the next read(). Here we 'discover' whether the page went
1942          * uptodate as a result of this (potentially partial) write.
1943          */
1944         if (!partial)
1945                 SetPageUptodate(page);
1946         return 0;
1947 }
1948
1949 /*
1950  * block_write_begin takes care of the basic task of block allocation and
1951  * bringing partial write blocks uptodate first.
1952  *
1953  * The filesystem needs to handle block truncation upon failure.
1954  */
1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1956                 unsigned flags, struct page **pagep, get_block_t *get_block)
1957 {
1958         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1959         struct page *page;
1960         int status;
1961
1962         page = grab_cache_page_write_begin(mapping, index, flags);
1963         if (!page)
1964                 return -ENOMEM;
1965
1966         status = __block_write_begin(page, pos, len, get_block);
1967         if (unlikely(status)) {
1968                 unlock_page(page);
1969                 page_cache_release(page);
1970                 page = NULL;
1971         }
1972
1973         *pagep = page;
1974         return status;
1975 }
1976 EXPORT_SYMBOL(block_write_begin);
1977
1978 int block_write_end(struct file *file, struct address_space *mapping,
1979                         loff_t pos, unsigned len, unsigned copied,
1980                         struct page *page, void *fsdata)
1981 {
1982         struct inode *inode = mapping->host;
1983         unsigned start;
1984
1985         start = pos & (PAGE_CACHE_SIZE - 1);
1986
1987         if (unlikely(copied < len)) {
1988                 /*
1989                  * The buffers that were written will now be uptodate, so we
1990                  * don't have to worry about a readpage reading them and
1991                  * overwriting a partial write. However if we have encountered
1992                  * a short write and only partially written into a buffer, it
1993                  * will not be marked uptodate, so a readpage might come in and
1994                  * destroy our partial write.
1995                  *
1996                  * Do the simplest thing, and just treat any short write to a
1997                  * non uptodate page as a zero-length write, and force the
1998                  * caller to redo the whole thing.
1999                  */
2000                 if (!PageUptodate(page))
2001                         copied = 0;
2002
2003                 page_zero_new_buffers(page, start+copied, start+len);
2004         }
2005         flush_dcache_page(page);
2006
2007         /* This could be a short (even 0-length) commit */
2008         __block_commit_write(inode, page, start, start+copied);
2009
2010         return copied;
2011 }
2012 EXPORT_SYMBOL(block_write_end);
2013
2014 int generic_write_end(struct file *file, struct address_space *mapping,
2015                         loff_t pos, unsigned len, unsigned copied,
2016                         struct page *page, void *fsdata)
2017 {
2018         struct inode *inode = mapping->host;
2019         int i_size_changed = 0;
2020
2021         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2022
2023         /*
2024          * No need to use i_size_read() here, the i_size
2025          * cannot change under us because we hold i_mutex.
2026          *
2027          * But it's important to update i_size while still holding page lock:
2028          * page writeout could otherwise come in and zero beyond i_size.
2029          */
2030         if (pos+copied > inode->i_size) {
2031                 i_size_write(inode, pos+copied);
2032                 i_size_changed = 1;
2033         }
2034
2035         unlock_page(page);
2036         page_cache_release(page);
2037
2038         /*
2039          * Don't mark the inode dirty under page lock. First, it unnecessarily
2040          * makes the holding time of page lock longer. Second, it forces lock
2041          * ordering of page lock and transaction start for journaling
2042          * filesystems.
2043          */
2044         if (i_size_changed)
2045                 mark_inode_dirty(inode);
2046
2047         return copied;
2048 }
2049 EXPORT_SYMBOL(generic_write_end);
2050
2051 /*
2052  * block_is_partially_uptodate checks whether buffers within a page are
2053  * uptodate or not.
2054  *
2055  * Returns true if all buffers which correspond to a file portion
2056  * we want to read are uptodate.
2057  */
2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2059                                         unsigned long from)
2060 {
2061         struct inode *inode = page->mapping->host;
2062         unsigned block_start, block_end, blocksize;
2063         unsigned to;
2064         struct buffer_head *bh, *head;
2065         int ret = 1;
2066
2067         if (!page_has_buffers(page))
2068                 return 0;
2069
2070         blocksize = 1 << inode->i_blkbits;
2071         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2072         to = from + to;
2073         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2074                 return 0;
2075
2076         head = page_buffers(page);
2077         bh = head;
2078         block_start = 0;
2079         do {
2080                 block_end = block_start + blocksize;
2081                 if (block_end > from && block_start < to) {
2082                         if (!buffer_uptodate(bh)) {
2083                                 ret = 0;
2084                                 break;
2085                         }
2086                         if (block_end >= to)
2087                                 break;
2088                 }
2089                 block_start = block_end;
2090                 bh = bh->b_this_page;
2091         } while (bh != head);
2092
2093         return ret;
2094 }
2095 EXPORT_SYMBOL(block_is_partially_uptodate);
2096
2097 /*
2098  * Generic "read page" function for block devices that have the normal
2099  * get_block functionality. This is most of the block device filesystems.
2100  * Reads the page asynchronously --- the unlock_buffer() and
2101  * set/clear_buffer_uptodate() functions propagate buffer state into the
2102  * page struct once IO has completed.
2103  */
2104 int block_read_full_page(struct page *page, get_block_t *get_block)
2105 {
2106         struct inode *inode = page->mapping->host;
2107         sector_t iblock, lblock;
2108         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2109         unsigned int blocksize;
2110         int nr, i;
2111         int fully_mapped = 1;
2112
2113         BUG_ON(!PageLocked(page));
2114         blocksize = 1 << inode->i_blkbits;
2115         if (!page_has_buffers(page))
2116                 create_empty_buffers(page, blocksize, 0);
2117         head = page_buffers(page);
2118
2119         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2120         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2121         bh = head;
2122         nr = 0;
2123         i = 0;
2124
2125         do {
2126                 if (buffer_uptodate(bh))
2127                         continue;
2128
2129                 if (!buffer_mapped(bh)) {
2130                         int err = 0;
2131
2132                         fully_mapped = 0;
2133                         if (iblock < lblock) {
2134                                 WARN_ON(bh->b_size != blocksize);
2135                                 err = get_block(inode, iblock, bh, 0);
2136                                 if (err)
2137                                         SetPageError(page);
2138                         }
2139                         if (!buffer_mapped(bh)) {
2140                                 zero_user(page, i * blocksize, blocksize);
2141                                 if (!err)
2142                                         set_buffer_uptodate(bh);
2143                                 continue;
2144                         }
2145                         /*
2146                          * get_block() might have updated the buffer
2147                          * synchronously
2148                          */
2149                         if (buffer_uptodate(bh))
2150                                 continue;
2151                 }
2152                 arr[nr++] = bh;
2153         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2154
2155         if (fully_mapped)
2156                 SetPageMappedToDisk(page);
2157
2158         if (!nr) {
2159                 /*
2160                  * All buffers are uptodate - we can set the page uptodate
2161                  * as well. But not if get_block() returned an error.
2162                  */
2163                 if (!PageError(page))
2164                         SetPageUptodate(page);
2165                 unlock_page(page);
2166                 return 0;
2167         }
2168
2169         /* Stage two: lock the buffers */
2170         for (i = 0; i < nr; i++) {
2171                 bh = arr[i];
2172                 lock_buffer(bh);
2173                 mark_buffer_async_read(bh);
2174         }
2175
2176         /*
2177          * Stage 3: start the IO.  Check for uptodateness
2178          * inside the buffer lock in case another process reading
2179          * the underlying blockdev brought it uptodate (the sct fix).
2180          */
2181         for (i = 0; i < nr; i++) {
2182                 bh = arr[i];
2183                 if (buffer_uptodate(bh))
2184                         end_buffer_async_read(bh, 1);
2185                 else
2186                         submit_bh(READ, bh);
2187         }
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(block_read_full_page);
2191
2192 /* utility function for filesystems that need to do work on expanding
2193  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2194  * deal with the hole.  
2195  */
2196 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2197 {
2198         struct address_space *mapping = inode->i_mapping;
2199         struct page *page;
2200         void *fsdata;
2201         int err;
2202
2203         err = inode_newsize_ok(inode, size);
2204         if (err)
2205                 goto out;
2206
2207         err = pagecache_write_begin(NULL, mapping, size, 0,
2208                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2209                                 &page, &fsdata);
2210         if (err)
2211                 goto out;
2212
2213         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2214         BUG_ON(err > 0);
2215
2216 out:
2217         return err;
2218 }
2219 EXPORT_SYMBOL(generic_cont_expand_simple);
2220
2221 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2222                             loff_t pos, loff_t *bytes)
2223 {
2224         struct inode *inode = mapping->host;
2225         unsigned blocksize = 1 << inode->i_blkbits;
2226         struct page *page;
2227         void *fsdata;
2228         pgoff_t index, curidx;
2229         loff_t curpos;
2230         unsigned zerofrom, offset, len;
2231         int err = 0;
2232
2233         index = pos >> PAGE_CACHE_SHIFT;
2234         offset = pos & ~PAGE_CACHE_MASK;
2235
2236         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2237                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2238                 if (zerofrom & (blocksize-1)) {
2239                         *bytes |= (blocksize-1);
2240                         (*bytes)++;
2241                 }
2242                 len = PAGE_CACHE_SIZE - zerofrom;
2243
2244                 err = pagecache_write_begin(file, mapping, curpos, len,
2245                                                 AOP_FLAG_UNINTERRUPTIBLE,
2246                                                 &page, &fsdata);
2247                 if (err)
2248                         goto out;
2249                 zero_user(page, zerofrom, len);
2250                 err = pagecache_write_end(file, mapping, curpos, len, len,
2251                                                 page, fsdata);
2252                 if (err < 0)
2253                         goto out;
2254                 BUG_ON(err != len);
2255                 err = 0;
2256
2257                 balance_dirty_pages_ratelimited(mapping);
2258         }
2259
2260         /* page covers the boundary, find the boundary offset */
2261         if (index == curidx) {
2262                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2263                 /* if we will expand the thing last block will be filled */
2264                 if (offset <= zerofrom) {
2265                         goto out;
2266                 }
2267                 if (zerofrom & (blocksize-1)) {
2268                         *bytes |= (blocksize-1);
2269                         (*bytes)++;
2270                 }
2271                 len = offset - zerofrom;
2272
2273                 err = pagecache_write_begin(file, mapping, curpos, len,
2274                                                 AOP_FLAG_UNINTERRUPTIBLE,
2275                                                 &page, &fsdata);
2276                 if (err)
2277                         goto out;
2278                 zero_user(page, zerofrom, len);
2279                 err = pagecache_write_end(file, mapping, curpos, len, len,
2280                                                 page, fsdata);
2281                 if (err < 0)
2282                         goto out;
2283                 BUG_ON(err != len);
2284                 err = 0;
2285         }
2286 out:
2287         return err;
2288 }
2289
2290 /*
2291  * For moronic filesystems that do not allow holes in file.
2292  * We may have to extend the file.
2293  */
2294 int cont_write_begin(struct file *file, struct address_space *mapping,
2295                         loff_t pos, unsigned len, unsigned flags,
2296                         struct page **pagep, void **fsdata,
2297                         get_block_t *get_block, loff_t *bytes)
2298 {
2299         struct inode *inode = mapping->host;
2300         unsigned blocksize = 1 << inode->i_blkbits;
2301         unsigned zerofrom;
2302         int err;
2303
2304         err = cont_expand_zero(file, mapping, pos, bytes);
2305         if (err)
2306                 return err;
2307
2308         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2309         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2310                 *bytes |= (blocksize-1);
2311                 (*bytes)++;
2312         }
2313
2314         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2315 }
2316 EXPORT_SYMBOL(cont_write_begin);
2317
2318 int block_commit_write(struct page *page, unsigned from, unsigned to)
2319 {
2320         struct inode *inode = page->mapping->host;
2321         __block_commit_write(inode,page,from,to);
2322         return 0;
2323 }
2324 EXPORT_SYMBOL(block_commit_write);
2325
2326 /*
2327  * block_page_mkwrite() is not allowed to change the file size as it gets
2328  * called from a page fault handler when a page is first dirtied. Hence we must
2329  * be careful to check for EOF conditions here. We set the page up correctly
2330  * for a written page which means we get ENOSPC checking when writing into
2331  * holes and correct delalloc and unwritten extent mapping on filesystems that
2332  * support these features.
2333  *
2334  * We are not allowed to take the i_mutex here so we have to play games to
2335  * protect against truncate races as the page could now be beyond EOF.  Because
2336  * truncate writes the inode size before removing pages, once we have the
2337  * page lock we can determine safely if the page is beyond EOF. If it is not
2338  * beyond EOF, then the page is guaranteed safe against truncation until we
2339  * unlock the page.
2340  */
2341 int
2342 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2343                    get_block_t get_block)
2344 {
2345         struct page *page = vmf->page;
2346         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2347         unsigned long end;
2348         loff_t size;
2349         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2350
2351         lock_page(page);
2352         size = i_size_read(inode);
2353         if ((page->mapping != inode->i_mapping) ||
2354             (page_offset(page) > size)) {
2355                 /* page got truncated out from underneath us */
2356                 unlock_page(page);
2357                 goto out;
2358         }
2359
2360         /* page is wholly or partially inside EOF */
2361         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2362                 end = size & ~PAGE_CACHE_MASK;
2363         else
2364                 end = PAGE_CACHE_SIZE;
2365
2366         ret = __block_write_begin(page, 0, end, get_block);
2367         if (!ret)
2368                 ret = block_commit_write(page, 0, end);
2369
2370         if (unlikely(ret)) {
2371                 unlock_page(page);
2372                 if (ret == -ENOMEM)
2373                         ret = VM_FAULT_OOM;
2374                 else /* -ENOSPC, -EIO, etc */
2375                         ret = VM_FAULT_SIGBUS;
2376         } else
2377                 ret = VM_FAULT_LOCKED;
2378
2379 out:
2380         return ret;
2381 }
2382 EXPORT_SYMBOL(block_page_mkwrite);
2383
2384 /*
2385  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2386  * immediately, while under the page lock.  So it needs a special end_io
2387  * handler which does not touch the bh after unlocking it.
2388  */
2389 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2390 {
2391         __end_buffer_read_notouch(bh, uptodate);
2392 }
2393
2394 /*
2395  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2396  * the page (converting it to circular linked list and taking care of page
2397  * dirty races).
2398  */
2399 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2400 {
2401         struct buffer_head *bh;
2402
2403         BUG_ON(!PageLocked(page));
2404
2405         spin_lock(&page->mapping->private_lock);
2406         bh = head;
2407         do {
2408                 if (PageDirty(page))
2409                         set_buffer_dirty(bh);
2410                 if (!bh->b_this_page)
2411                         bh->b_this_page = head;
2412                 bh = bh->b_this_page;
2413         } while (bh != head);
2414         attach_page_buffers(page, head);
2415         spin_unlock(&page->mapping->private_lock);
2416 }
2417
2418 /*
2419  * On entry, the page is fully not uptodate.
2420  * On exit the page is fully uptodate in the areas outside (from,to)
2421  * The filesystem needs to handle block truncation upon failure.
2422  */
2423 int nobh_write_begin(struct address_space *mapping,
2424                         loff_t pos, unsigned len, unsigned flags,
2425                         struct page **pagep, void **fsdata,
2426                         get_block_t *get_block)
2427 {
2428         struct inode *inode = mapping->host;
2429         const unsigned blkbits = inode->i_blkbits;
2430         const unsigned blocksize = 1 << blkbits;
2431         struct buffer_head *head, *bh;
2432         struct page *page;
2433         pgoff_t index;
2434         unsigned from, to;
2435         unsigned block_in_page;
2436         unsigned block_start, block_end;
2437         sector_t block_in_file;
2438         int nr_reads = 0;
2439         int ret = 0;
2440         int is_mapped_to_disk = 1;
2441
2442         index = pos >> PAGE_CACHE_SHIFT;
2443         from = pos & (PAGE_CACHE_SIZE - 1);
2444         to = from + len;
2445
2446         page = grab_cache_page_write_begin(mapping, index, flags);
2447         if (!page)
2448                 return -ENOMEM;
2449         *pagep = page;
2450         *fsdata = NULL;
2451
2452         if (page_has_buffers(page)) {
2453                 ret = __block_write_begin(page, pos, len, get_block);
2454                 if (unlikely(ret))
2455                         goto out_release;
2456                 return ret;
2457         }
2458
2459         if (PageMappedToDisk(page))
2460                 return 0;
2461
2462         /*
2463          * Allocate buffers so that we can keep track of state, and potentially
2464          * attach them to the page if an error occurs. In the common case of
2465          * no error, they will just be freed again without ever being attached
2466          * to the page (which is all OK, because we're under the page lock).
2467          *
2468          * Be careful: the buffer linked list is a NULL terminated one, rather
2469          * than the circular one we're used to.
2470          */
2471         head = alloc_page_buffers(page, blocksize, 0);
2472         if (!head) {
2473                 ret = -ENOMEM;
2474                 goto out_release;
2475         }
2476
2477         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2478
2479         /*
2480          * We loop across all blocks in the page, whether or not they are
2481          * part of the affected region.  This is so we can discover if the
2482          * page is fully mapped-to-disk.
2483          */
2484         for (block_start = 0, block_in_page = 0, bh = head;
2485                   block_start < PAGE_CACHE_SIZE;
2486                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2487                 int create;
2488
2489                 block_end = block_start + blocksize;
2490                 bh->b_state = 0;
2491                 create = 1;
2492                 if (block_start >= to)
2493                         create = 0;
2494                 ret = get_block(inode, block_in_file + block_in_page,
2495                                         bh, create);
2496                 if (ret)
2497                         goto failed;
2498                 if (!buffer_mapped(bh))
2499                         is_mapped_to_disk = 0;
2500                 if (buffer_new(bh))
2501                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2502                 if (PageUptodate(page)) {
2503                         set_buffer_uptodate(bh);
2504                         continue;
2505                 }
2506                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2507                         zero_user_segments(page, block_start, from,
2508                                                         to, block_end);
2509                         continue;
2510                 }
2511                 if (buffer_uptodate(bh))
2512                         continue;       /* reiserfs does this */
2513                 if (block_start < from || block_end > to) {
2514                         lock_buffer(bh);
2515                         bh->b_end_io = end_buffer_read_nobh;
2516                         submit_bh(READ, bh);
2517                         nr_reads++;
2518                 }
2519         }
2520
2521         if (nr_reads) {
2522                 /*
2523                  * The page is locked, so these buffers are protected from
2524                  * any VM or truncate activity.  Hence we don't need to care
2525                  * for the buffer_head refcounts.
2526                  */
2527                 for (bh = head; bh; bh = bh->b_this_page) {
2528                         wait_on_buffer(bh);
2529                         if (!buffer_uptodate(bh))
2530                                 ret = -EIO;
2531                 }
2532                 if (ret)
2533                         goto failed;
2534         }
2535
2536         if (is_mapped_to_disk)
2537                 SetPageMappedToDisk(page);
2538
2539         *fsdata = head; /* to be released by nobh_write_end */
2540
2541         return 0;
2542
2543 failed:
2544         BUG_ON(!ret);
2545         /*
2546          * Error recovery is a bit difficult. We need to zero out blocks that
2547          * were newly allocated, and dirty them to ensure they get written out.
2548          * Buffers need to be attached to the page at this point, otherwise
2549          * the handling of potential IO errors during writeout would be hard
2550          * (could try doing synchronous writeout, but what if that fails too?)
2551          */
2552         attach_nobh_buffers(page, head);
2553         page_zero_new_buffers(page, from, to);
2554
2555 out_release:
2556         unlock_page(page);
2557         page_cache_release(page);
2558         *pagep = NULL;
2559
2560         return ret;
2561 }
2562 EXPORT_SYMBOL(nobh_write_begin);
2563
2564 int nobh_write_end(struct file *file, struct address_space *mapping,
2565                         loff_t pos, unsigned len, unsigned copied,
2566                         struct page *page, void *fsdata)
2567 {
2568         struct inode *inode = page->mapping->host;
2569         struct buffer_head *head = fsdata;
2570         struct buffer_head *bh;
2571         BUG_ON(fsdata != NULL && page_has_buffers(page));
2572
2573         if (unlikely(copied < len) && head)
2574                 attach_nobh_buffers(page, head);
2575         if (page_has_buffers(page))
2576                 return generic_write_end(file, mapping, pos, len,
2577                                         copied, page, fsdata);
2578
2579         SetPageUptodate(page);
2580         set_page_dirty(page);
2581         if (pos+copied > inode->i_size) {
2582                 i_size_write(inode, pos+copied);
2583                 mark_inode_dirty(inode);
2584         }
2585
2586         unlock_page(page);
2587         page_cache_release(page);
2588
2589         while (head) {
2590                 bh = head;
2591                 head = head->b_this_page;
2592                 free_buffer_head(bh);
2593         }
2594
2595         return copied;
2596 }
2597 EXPORT_SYMBOL(nobh_write_end);
2598
2599 /*
2600  * nobh_writepage() - based on block_full_write_page() except
2601  * that it tries to operate without attaching bufferheads to
2602  * the page.
2603  */
2604 int nobh_writepage(struct page *page, get_block_t *get_block,
2605                         struct writeback_control *wbc)
2606 {
2607         struct inode * const inode = page->mapping->host;
2608         loff_t i_size = i_size_read(inode);
2609         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2610         unsigned offset;
2611         int ret;
2612
2613         /* Is the page fully inside i_size? */
2614         if (page->index < end_index)
2615                 goto out;
2616
2617         /* Is the page fully outside i_size? (truncate in progress) */
2618         offset = i_size & (PAGE_CACHE_SIZE-1);
2619         if (page->index >= end_index+1 || !offset) {
2620                 /*
2621                  * The page may have dirty, unmapped buffers.  For example,
2622                  * they may have been added in ext3_writepage().  Make them
2623                  * freeable here, so the page does not leak.
2624                  */
2625 #if 0
2626                 /* Not really sure about this  - do we need this ? */
2627                 if (page->mapping->a_ops->invalidatepage)
2628                         page->mapping->a_ops->invalidatepage(page, offset);
2629 #endif
2630                 unlock_page(page);
2631                 return 0; /* don't care */
2632         }
2633
2634         /*
2635          * The page straddles i_size.  It must be zeroed out on each and every
2636          * writepage invocation because it may be mmapped.  "A file is mapped
2637          * in multiples of the page size.  For a file that is not a multiple of
2638          * the  page size, the remaining memory is zeroed when mapped, and
2639          * writes to that region are not written out to the file."
2640          */
2641         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2642 out:
2643         ret = mpage_writepage(page, get_block, wbc);
2644         if (ret == -EAGAIN)
2645                 ret = __block_write_full_page(inode, page, get_block, wbc,
2646                                               end_buffer_async_write);
2647         return ret;
2648 }
2649 EXPORT_SYMBOL(nobh_writepage);
2650
2651 int nobh_truncate_page(struct address_space *mapping,
2652                         loff_t from, get_block_t *get_block)
2653 {
2654         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2655         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2656         unsigned blocksize;
2657         sector_t iblock;
2658         unsigned length, pos;
2659         struct inode *inode = mapping->host;
2660         struct page *page;
2661         struct buffer_head map_bh;
2662         int err;
2663
2664         blocksize = 1 << inode->i_blkbits;
2665         length = offset & (blocksize - 1);
2666
2667         /* Block boundary? Nothing to do */
2668         if (!length)
2669                 return 0;
2670
2671         length = blocksize - length;
2672         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2673
2674         page = grab_cache_page(mapping, index);
2675         err = -ENOMEM;
2676         if (!page)
2677                 goto out;
2678
2679         if (page_has_buffers(page)) {
2680 has_buffers:
2681                 unlock_page(page);
2682                 page_cache_release(page);
2683                 return block_truncate_page(mapping, from, get_block);
2684         }
2685
2686         /* Find the buffer that contains "offset" */
2687         pos = blocksize;
2688         while (offset >= pos) {
2689                 iblock++;
2690                 pos += blocksize;
2691         }
2692
2693         map_bh.b_size = blocksize;
2694         map_bh.b_state = 0;
2695         err = get_block(inode, iblock, &map_bh, 0);
2696         if (err)
2697                 goto unlock;
2698         /* unmapped? It's a hole - nothing to do */
2699         if (!buffer_mapped(&map_bh))
2700                 goto unlock;
2701
2702         /* Ok, it's mapped. Make sure it's up-to-date */
2703         if (!PageUptodate(page)) {
2704                 err = mapping->a_ops->readpage(NULL, page);
2705                 if (err) {
2706                         page_cache_release(page);
2707                         goto out;
2708                 }
2709                 lock_page(page);
2710                 if (!PageUptodate(page)) {
2711                         err = -EIO;
2712                         goto unlock;
2713                 }
2714                 if (page_has_buffers(page))
2715                         goto has_buffers;
2716         }
2717         zero_user(page, offset, length);
2718         set_page_dirty(page);
2719         err = 0;
2720
2721 unlock:
2722         unlock_page(page);
2723         page_cache_release(page);
2724 out:
2725         return err;
2726 }
2727 EXPORT_SYMBOL(nobh_truncate_page);
2728
2729 int block_truncate_page(struct address_space *mapping,
2730                         loff_t from, get_block_t *get_block)
2731 {
2732         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2733         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2734         unsigned blocksize;
2735         sector_t iblock;
2736         unsigned length, pos;
2737         struct inode *inode = mapping->host;
2738         struct page *page;
2739         struct buffer_head *bh;
2740         int err;
2741
2742         blocksize = 1 << inode->i_blkbits;
2743         length = offset & (blocksize - 1);
2744
2745         /* Block boundary? Nothing to do */
2746         if (!length)
2747                 return 0;
2748
2749         length = blocksize - length;
2750         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2751         
2752         page = grab_cache_page(mapping, index);
2753         err = -ENOMEM;
2754         if (!page)
2755                 goto out;
2756
2757         if (!page_has_buffers(page))
2758                 create_empty_buffers(page, blocksize, 0);
2759
2760         /* Find the buffer that contains "offset" */
2761         bh = page_buffers(page);
2762         pos = blocksize;
2763         while (offset >= pos) {
2764                 bh = bh->b_this_page;
2765                 iblock++;
2766                 pos += blocksize;
2767         }
2768
2769         err = 0;
2770         if (!buffer_mapped(bh)) {
2771                 WARN_ON(bh->b_size != blocksize);
2772                 err = get_block(inode, iblock, bh, 0);
2773                 if (err)
2774                         goto unlock;
2775                 /* unmapped? It's a hole - nothing to do */
2776                 if (!buffer_mapped(bh))
2777                         goto unlock;
2778         }
2779
2780         /* Ok, it's mapped. Make sure it's up-to-date */
2781         if (PageUptodate(page))
2782                 set_buffer_uptodate(bh);
2783
2784         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2785                 err = -EIO;
2786                 ll_rw_block(READ, 1, &bh);
2787                 wait_on_buffer(bh);
2788                 /* Uhhuh. Read error. Complain and punt. */
2789                 if (!buffer_uptodate(bh))
2790                         goto unlock;
2791         }
2792
2793         zero_user(page, offset, length);
2794         mark_buffer_dirty(bh);
2795         err = 0;
2796
2797 unlock:
2798         unlock_page(page);
2799         page_cache_release(page);
2800 out:
2801         return err;
2802 }
2803 EXPORT_SYMBOL(block_truncate_page);
2804
2805 /*
2806  * The generic ->writepage function for buffer-backed address_spaces
2807  * this form passes in the end_io handler used to finish the IO.
2808  */
2809 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2810                         struct writeback_control *wbc, bh_end_io_t *handler)
2811 {
2812         struct inode * const inode = page->mapping->host;
2813         loff_t i_size = i_size_read(inode);
2814         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2815         unsigned offset;
2816
2817         /* Is the page fully inside i_size? */
2818         if (page->index < end_index)
2819                 return __block_write_full_page(inode, page, get_block, wbc,
2820                                                handler);
2821
2822         /* Is the page fully outside i_size? (truncate in progress) */
2823         offset = i_size & (PAGE_CACHE_SIZE-1);
2824         if (page->index >= end_index+1 || !offset) {
2825                 /*
2826                  * The page may have dirty, unmapped buffers.  For example,
2827                  * they may have been added in ext3_writepage().  Make them
2828                  * freeable here, so the page does not leak.
2829                  */
2830                 do_invalidatepage(page, 0);
2831                 unlock_page(page);
2832                 return 0; /* don't care */
2833         }
2834
2835         /*
2836          * The page straddles i_size.  It must be zeroed out on each and every
2837          * writepage invocation because it may be mmapped.  "A file is mapped
2838          * in multiples of the page size.  For a file that is not a multiple of
2839          * the  page size, the remaining memory is zeroed when mapped, and
2840          * writes to that region are not written out to the file."
2841          */
2842         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2843         return __block_write_full_page(inode, page, get_block, wbc, handler);
2844 }
2845 EXPORT_SYMBOL(block_write_full_page_endio);
2846
2847 /*
2848  * The generic ->writepage function for buffer-backed address_spaces
2849  */
2850 int block_write_full_page(struct page *page, get_block_t *get_block,
2851                         struct writeback_control *wbc)
2852 {
2853         return block_write_full_page_endio(page, get_block, wbc,
2854                                            end_buffer_async_write);
2855 }
2856 EXPORT_SYMBOL(block_write_full_page);
2857
2858 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2859                             get_block_t *get_block)
2860 {
2861         struct buffer_head tmp;
2862         struct inode *inode = mapping->host;
2863         tmp.b_state = 0;
2864         tmp.b_blocknr = 0;
2865         tmp.b_size = 1 << inode->i_blkbits;
2866         get_block(inode, block, &tmp, 0);
2867         return tmp.b_blocknr;
2868 }
2869 EXPORT_SYMBOL(generic_block_bmap);
2870
2871 static void end_bio_bh_io_sync(struct bio *bio, int err)
2872 {
2873         struct buffer_head *bh = bio->bi_private;
2874
2875         if (err == -EOPNOTSUPP) {
2876                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2877         }
2878
2879         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2880                 set_bit(BH_Quiet, &bh->b_state);
2881
2882         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2883         bio_put(bio);
2884 }
2885
2886 int submit_bh(int rw, struct buffer_head * bh)
2887 {
2888         struct bio *bio;
2889         int ret = 0;
2890
2891         BUG_ON(!buffer_locked(bh));
2892         BUG_ON(!buffer_mapped(bh));
2893         BUG_ON(!bh->b_end_io);
2894         BUG_ON(buffer_delay(bh));
2895         BUG_ON(buffer_unwritten(bh));
2896
2897         /*
2898          * Only clear out a write error when rewriting
2899          */
2900         if (test_set_buffer_req(bh) && (rw & WRITE))
2901                 clear_buffer_write_io_error(bh);
2902
2903         /*
2904          * from here on down, it's all bio -- do the initial mapping,
2905          * submit_bio -> generic_make_request may further map this bio around
2906          */
2907         bio = bio_alloc(GFP_NOIO, 1);
2908
2909         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2910         bio->bi_bdev = bh->b_bdev;
2911         bio->bi_io_vec[0].bv_page = bh->b_page;
2912         bio->bi_io_vec[0].bv_len = bh->b_size;
2913         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2914
2915         bio->bi_vcnt = 1;
2916         bio->bi_idx = 0;
2917         bio->bi_size = bh->b_size;
2918
2919         bio->bi_end_io = end_bio_bh_io_sync;
2920         bio->bi_private = bh;
2921
2922         bio_get(bio);
2923         submit_bio(rw, bio);
2924
2925         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2926                 ret = -EOPNOTSUPP;
2927
2928         bio_put(bio);
2929         return ret;
2930 }
2931 EXPORT_SYMBOL(submit_bh);
2932
2933 /**
2934  * ll_rw_block: low-level access to block devices (DEPRECATED)
2935  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2936  * @nr: number of &struct buffer_heads in the array
2937  * @bhs: array of pointers to &struct buffer_head
2938  *
2939  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2940  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2941  * %READA option is described in the documentation for generic_make_request()
2942  * which ll_rw_block() calls.
2943  *
2944  * This function drops any buffer that it cannot get a lock on (with the
2945  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2946  * request, and any buffer that appears to be up-to-date when doing read
2947  * request.  Further it marks as clean buffers that are processed for
2948  * writing (the buffer cache won't assume that they are actually clean
2949  * until the buffer gets unlocked).
2950  *
2951  * ll_rw_block sets b_end_io to simple completion handler that marks
2952  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2953  * any waiters. 
2954  *
2955  * All of the buffers must be for the same device, and must also be a
2956  * multiple of the current approved size for the device.
2957  */
2958 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2959 {
2960         int i;
2961
2962         for (i = 0; i < nr; i++) {
2963                 struct buffer_head *bh = bhs[i];
2964
2965                 if (!trylock_buffer(bh))
2966                         continue;
2967                 if (rw == WRITE) {
2968                         if (test_clear_buffer_dirty(bh)) {
2969                                 bh->b_end_io = end_buffer_write_sync;
2970                                 get_bh(bh);
2971                                 submit_bh(WRITE, bh);
2972                                 continue;
2973                         }
2974                 } else {
2975                         if (!buffer_uptodate(bh)) {
2976                                 bh->b_end_io = end_buffer_read_sync;
2977                                 get_bh(bh);
2978                                 submit_bh(rw, bh);
2979                                 continue;
2980                         }
2981                 }
2982                 unlock_buffer(bh);
2983         }
2984 }
2985 EXPORT_SYMBOL(ll_rw_block);
2986
2987 void write_dirty_buffer(struct buffer_head *bh, int rw)
2988 {
2989         lock_buffer(bh);
2990         if (!test_clear_buffer_dirty(bh)) {
2991                 unlock_buffer(bh);
2992                 return;
2993         }
2994         bh->b_end_io = end_buffer_write_sync;
2995         get_bh(bh);
2996         submit_bh(rw, bh);
2997 }
2998 EXPORT_SYMBOL(write_dirty_buffer);
2999
3000 /*
3001  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3002  * and then start new I/O and then wait upon it.  The caller must have a ref on
3003  * the buffer_head.
3004  */
3005 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3006 {
3007         int ret = 0;
3008
3009         WARN_ON(atomic_read(&bh->b_count) < 1);
3010         lock_buffer(bh);
3011         if (test_clear_buffer_dirty(bh)) {
3012                 get_bh(bh);
3013                 bh->b_end_io = end_buffer_write_sync;
3014                 ret = submit_bh(rw, bh);
3015                 wait_on_buffer(bh);
3016                 if (!ret && !buffer_uptodate(bh))
3017                         ret = -EIO;
3018         } else {
3019                 unlock_buffer(bh);
3020         }
3021         return ret;
3022 }
3023 EXPORT_SYMBOL(__sync_dirty_buffer);
3024
3025 int sync_dirty_buffer(struct buffer_head *bh)
3026 {
3027         return __sync_dirty_buffer(bh, WRITE_SYNC);
3028 }
3029 EXPORT_SYMBOL(sync_dirty_buffer);
3030
3031 /*
3032  * try_to_free_buffers() checks if all the buffers on this particular page
3033  * are unused, and releases them if so.
3034  *
3035  * Exclusion against try_to_free_buffers may be obtained by either
3036  * locking the page or by holding its mapping's private_lock.
3037  *
3038  * If the page is dirty but all the buffers are clean then we need to
3039  * be sure to mark the page clean as well.  This is because the page
3040  * may be against a block device, and a later reattachment of buffers
3041  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3042  * filesystem data on the same device.
3043  *
3044  * The same applies to regular filesystem pages: if all the buffers are
3045  * clean then we set the page clean and proceed.  To do that, we require
3046  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3047  * private_lock.
3048  *
3049  * try_to_free_buffers() is non-blocking.
3050  */
3051 static inline int buffer_busy(struct buffer_head *bh)
3052 {
3053         return atomic_read(&bh->b_count) |
3054                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3055 }
3056
3057 static int
3058 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3059 {
3060         struct buffer_head *head = page_buffers(page);
3061         struct buffer_head *bh;
3062
3063         bh = head;
3064         do {
3065                 if (buffer_write_io_error(bh) && page->mapping)
3066                         set_bit(AS_EIO, &page->mapping->flags);
3067                 if (buffer_busy(bh))
3068                         goto failed;
3069                 bh = bh->b_this_page;
3070         } while (bh != head);
3071
3072         do {
3073                 struct buffer_head *next = bh->b_this_page;
3074
3075                 if (bh->b_assoc_map)
3076                         __remove_assoc_queue(bh);
3077                 bh = next;
3078         } while (bh != head);
3079         *buffers_to_free = head;
3080         __clear_page_buffers(page);
3081         return 1;
3082 failed:
3083         return 0;
3084 }
3085
3086 int try_to_free_buffers(struct page *page)
3087 {
3088         struct address_space * const mapping = page->mapping;
3089         struct buffer_head *buffers_to_free = NULL;
3090         int ret = 0;
3091
3092         BUG_ON(!PageLocked(page));
3093         if (PageWriteback(page))
3094                 return 0;
3095
3096         if (mapping == NULL) {          /* can this still happen? */
3097                 ret = drop_buffers(page, &buffers_to_free);
3098                 goto out;
3099         }
3100
3101         spin_lock(&mapping->private_lock);
3102         ret = drop_buffers(page, &buffers_to_free);
3103
3104         /*
3105          * If the filesystem writes its buffers by hand (eg ext3)
3106          * then we can have clean buffers against a dirty page.  We
3107          * clean the page here; otherwise the VM will never notice
3108          * that the filesystem did any IO at all.
3109          *
3110          * Also, during truncate, discard_buffer will have marked all
3111          * the page's buffers clean.  We discover that here and clean
3112          * the page also.
3113          *
3114          * private_lock must be held over this entire operation in order
3115          * to synchronise against __set_page_dirty_buffers and prevent the
3116          * dirty bit from being lost.
3117          */
3118         if (ret)
3119                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3120         spin_unlock(&mapping->private_lock);
3121 out:
3122         if (buffers_to_free) {
3123                 struct buffer_head *bh = buffers_to_free;
3124
3125                 do {
3126                         struct buffer_head *next = bh->b_this_page;
3127                         free_buffer_head(bh);
3128                         bh = next;
3129                 } while (bh != buffers_to_free);
3130         }
3131         return ret;
3132 }
3133 EXPORT_SYMBOL(try_to_free_buffers);
3134
3135 /*
3136  * There are no bdflush tunables left.  But distributions are
3137  * still running obsolete flush daemons, so we terminate them here.
3138  *
3139  * Use of bdflush() is deprecated and will be removed in a future kernel.
3140  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3141  */
3142 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3143 {
3144         static int msg_count;
3145
3146         if (!capable(CAP_SYS_ADMIN))
3147                 return -EPERM;
3148
3149         if (msg_count < 5) {
3150                 msg_count++;
3151                 printk(KERN_INFO
3152                         "warning: process `%s' used the obsolete bdflush"
3153                         " system call\n", current->comm);
3154                 printk(KERN_INFO "Fix your initscripts?\n");
3155         }
3156
3157         if (func == 1)
3158                 do_exit(0);
3159         return 0;
3160 }
3161
3162 /*
3163  * Buffer-head allocation
3164  */
3165 static struct kmem_cache *bh_cachep;
3166
3167 /*
3168  * Once the number of bh's in the machine exceeds this level, we start
3169  * stripping them in writeback.
3170  */
3171 static int max_buffer_heads;
3172
3173 int buffer_heads_over_limit;
3174
3175 struct bh_accounting {
3176         int nr;                 /* Number of live bh's */
3177         int ratelimit;          /* Limit cacheline bouncing */
3178 };
3179
3180 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3181
3182 static void recalc_bh_state(void)
3183 {
3184         int i;
3185         int tot = 0;
3186
3187         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3188                 return;
3189         __this_cpu_write(bh_accounting.ratelimit, 0);
3190         for_each_online_cpu(i)
3191                 tot += per_cpu(bh_accounting, i).nr;
3192         buffer_heads_over_limit = (tot > max_buffer_heads);
3193 }
3194
3195 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3196 {
3197         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3198         if (ret) {
3199                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3200                 preempt_disable();
3201                 __this_cpu_inc(bh_accounting.nr);
3202                 recalc_bh_state();
3203                 preempt_enable();
3204         }
3205         return ret;
3206 }
3207 EXPORT_SYMBOL(alloc_buffer_head);
3208
3209 void free_buffer_head(struct buffer_head *bh)
3210 {
3211         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3212         kmem_cache_free(bh_cachep, bh);
3213         preempt_disable();
3214         __this_cpu_dec(bh_accounting.nr);
3215         recalc_bh_state();
3216         preempt_enable();
3217 }
3218 EXPORT_SYMBOL(free_buffer_head);
3219
3220 static void buffer_exit_cpu(int cpu)
3221 {
3222         int i;
3223         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3224
3225         for (i = 0; i < BH_LRU_SIZE; i++) {
3226                 brelse(b->bhs[i]);
3227                 b->bhs[i] = NULL;
3228         }
3229         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3230         per_cpu(bh_accounting, cpu).nr = 0;
3231 }
3232
3233 static int buffer_cpu_notify(struct notifier_block *self,
3234                               unsigned long action, void *hcpu)
3235 {
3236         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3237                 buffer_exit_cpu((unsigned long)hcpu);
3238         return NOTIFY_OK;
3239 }
3240
3241 /**
3242  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3243  * @bh: struct buffer_head
3244  *
3245  * Return true if the buffer is up-to-date and false,
3246  * with the buffer locked, if not.
3247  */
3248 int bh_uptodate_or_lock(struct buffer_head *bh)
3249 {
3250         if (!buffer_uptodate(bh)) {
3251                 lock_buffer(bh);
3252                 if (!buffer_uptodate(bh))
3253                         return 0;
3254                 unlock_buffer(bh);
3255         }
3256         return 1;
3257 }
3258 EXPORT_SYMBOL(bh_uptodate_or_lock);
3259
3260 /**
3261  * bh_submit_read - Submit a locked buffer for reading
3262  * @bh: struct buffer_head
3263  *
3264  * Returns zero on success and -EIO on error.
3265  */
3266 int bh_submit_read(struct buffer_head *bh)
3267 {
3268         BUG_ON(!buffer_locked(bh));
3269
3270         if (buffer_uptodate(bh)) {
3271                 unlock_buffer(bh);
3272                 return 0;
3273         }
3274
3275         get_bh(bh);
3276         bh->b_end_io = end_buffer_read_sync;
3277         submit_bh(READ, bh);
3278         wait_on_buffer(bh);
3279         if (buffer_uptodate(bh))
3280                 return 0;
3281         return -EIO;
3282 }
3283 EXPORT_SYMBOL(bh_submit_read);
3284
3285 void __init buffer_init(void)
3286 {
3287         int nrpages;
3288
3289         bh_cachep = kmem_cache_create("buffer_head",
3290                         sizeof(struct buffer_head), 0,
3291                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3292                                 SLAB_MEM_SPREAD),
3293                                 NULL);
3294
3295         /*
3296          * Limit the bh occupancy to 10% of ZONE_NORMAL
3297          */
3298         nrpages = (nr_free_buffer_pages() * 10) / 100;
3299         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3300         hotcpu_notifier(buffer_cpu_notify, 0);
3301 }