update to 2.6.9-rc1
[linux-flexiantxendom0-3.2.10.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/suspend.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* How many pages shrink_cache() should reclaim */
67         int nr_to_reclaim;
68
69         /* Ask shrink_caches, or shrink_zone to scan at this priority */
70         unsigned int priority;
71
72         /* This context's GFP mask */
73         unsigned int gfp_mask;
74
75         int may_writepage;
76 };
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field)                    \
93         do {                                                            \
94                 if ((_page)->lru.prev != _base) {                       \
95                         struct page *prev;                              \
96                                                                         \
97                         prev = lru_to_page(&(_page->lru));              \
98                         prefetch(&prev->_field);                        \
99                 }                                                       \
100         } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
104
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
107         do {                                                            \
108                 if ((_page)->lru.prev != _base) {                       \
109                         struct page *prev;                              \
110                                                                         \
111                         prev = lru_to_page(&(_page->lru));              \
112                         prefetchw(&prev->_field);                       \
113                 }                                                       \
114         } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118
119 /*
120  * From 0 .. 100.  Higher means more swappy.
121  */
122 int vm_swappiness = 60;
123 static long total_memory;
124
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
132 {
133         struct shrinker *shrinker;
134
135         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
136         if (shrinker) {
137                 shrinker->shrinker = theshrinker;
138                 shrinker->seeks = seeks;
139                 shrinker->nr = 0;
140                 down_write(&shrinker_rwsem);
141                 list_add(&shrinker->list, &shrinker_list);
142                 up_write(&shrinker_rwsem);
143         }
144         return shrinker;
145 }
146 EXPORT_SYMBOL(set_shrinker);
147
148 /*
149  * Remove one
150  */
151 void remove_shrinker(struct shrinker *shrinker)
152 {
153         down_write(&shrinker_rwsem);
154         list_del(&shrinker->list);
155         up_write(&shrinker_rwsem);
156         kfree(shrinker);
157 }
158 EXPORT_SYMBOL(remove_shrinker);
159
160 #define SHRINK_BATCH 128
161 /*
162  * Call the shrink functions to age shrinkable caches
163  *
164  * Here we assume it costs one seek to replace a lru page and that it also
165  * takes a seek to recreate a cache object.  With this in mind we age equal
166  * percentages of the lru and ageable caches.  This should balance the seeks
167  * generated by these structures.
168  *
169  * If the vm encounted mapped pages on the LRU it increase the pressure on
170  * slab to avoid swapping.
171  *
172  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
173  *
174  * `lru_pages' represents the number of on-LRU pages in all the zones which
175  * are eligible for the caller's allocation attempt.  It is used for balancing
176  * slab reclaim versus page reclaim.
177  */
178 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
179                         unsigned long lru_pages)
180 {
181         struct shrinker *shrinker;
182
183         if (scanned == 0)
184                 return 0;
185
186         if (!down_read_trylock(&shrinker_rwsem))
187                 return 0;
188
189         list_for_each_entry(shrinker, &shrinker_list, list) {
190                 unsigned long long delta;
191                 unsigned long total_scan;
192
193                 delta = (4 * scanned) / shrinker->seeks;
194                 delta *= (*shrinker->shrinker)(0, gfp_mask);
195                 do_div(delta, lru_pages + 1);
196                 shrinker->nr += delta;
197                 if (shrinker->nr < 0)
198                         shrinker->nr = LONG_MAX;        /* It wrapped! */
199
200                 total_scan = shrinker->nr;
201                 shrinker->nr = 0;
202
203                 while (total_scan >= SHRINK_BATCH) {
204                         long this_scan = SHRINK_BATCH;
205                         int shrink_ret;
206
207                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
208                         if (shrink_ret == -1)
209                                 break;
210                         mod_page_state(slabs_scanned, this_scan);
211                         total_scan -= this_scan;
212
213                         cond_resched();
214                 }
215
216                 shrinker->nr += total_scan;
217         }
218         up_read(&shrinker_rwsem);
219         return 0;
220 }
221
222 /* Must be called with page's rmap lock held. */
223 static inline int page_mapping_inuse(struct page *page)
224 {
225         struct address_space *mapping;
226
227         /* Page is in somebody's page tables. */
228         if (page_mapped(page))
229                 return 1;
230
231         /* Be more reluctant to reclaim swapcache than pagecache */
232         if (PageSwapCache(page))
233                 return 1;
234
235         mapping = page_mapping(page);
236         if (!mapping)
237                 return 0;
238
239         /* File is mmap'd by somebody? */
240         return mapping_mapped(mapping);
241 }
242
243 static inline int is_page_cache_freeable(struct page *page)
244 {
245         return page_count(page) - !!PagePrivate(page) == 2;
246 }
247
248 static int may_write_to_queue(struct backing_dev_info *bdi)
249 {
250         if (current_is_kswapd())
251                 return 1;
252         if (current_is_pdflush())       /* This is unlikely, but why not... */
253                 return 1;
254         if (!bdi_write_congested(bdi))
255                 return 1;
256         if (bdi == current->backing_dev_info)
257                 return 1;
258         return 0;
259 }
260
261 /*
262  * We detected a synchronous write error writing a page out.  Probably
263  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
264  * fsync(), msync() or close().
265  *
266  * The tricky part is that after writepage we cannot touch the mapping: nothing
267  * prevents it from being freed up.  But we have a ref on the page and once
268  * that page is locked, the mapping is pinned.
269  *
270  * We're allowed to run sleeping lock_page() here because we know the caller has
271  * __GFP_FS.
272  */
273 static void handle_write_error(struct address_space *mapping,
274                                 struct page *page, int error)
275 {
276         lock_page(page);
277         if (page_mapping(page) == mapping) {
278                 if (error == -ENOSPC)
279                         set_bit(AS_ENOSPC, &mapping->flags);
280                 else
281                         set_bit(AS_EIO, &mapping->flags);
282         }
283         unlock_page(page);
284 }
285
286 /*
287  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
288  */
289 static pageout_t pageout(struct page *page, struct address_space *mapping)
290 {
291         /*
292          * If the page is dirty, only perform writeback if that write
293          * will be non-blocking.  To prevent this allocation from being
294          * stalled by pagecache activity.  But note that there may be
295          * stalls if we need to run get_block().  We could test
296          * PagePrivate for that.
297          *
298          * If this process is currently in generic_file_write() against
299          * this page's queue, we can perform writeback even if that
300          * will block.
301          *
302          * If the page is swapcache, write it back even if that would
303          * block, for some throttling. This happens by accident, because
304          * swap_backing_dev_info is bust: it doesn't reflect the
305          * congestion state of the swapdevs.  Easy to fix, if needed.
306          * See swapfile.c:page_queue_congested().
307          */
308         if (!is_page_cache_freeable(page))
309                 return PAGE_KEEP;
310         if (!mapping)
311                 return PAGE_KEEP;
312         if (mapping->a_ops->writepage == NULL)
313                 return PAGE_ACTIVATE;
314         if (!may_write_to_queue(mapping->backing_dev_info))
315                 return PAGE_KEEP;
316
317         if (clear_page_dirty_for_io(page)) {
318                 int res;
319                 struct writeback_control wbc = {
320                         .sync_mode = WB_SYNC_NONE,
321                         .nr_to_write = SWAP_CLUSTER_MAX,
322                         .nonblocking = 1,
323                         .for_reclaim = 1,
324                 };
325
326                 SetPageReclaim(page);
327                 res = mapping->a_ops->writepage(page, &wbc);
328                 if (res < 0)
329                         handle_write_error(mapping, page, res);
330                 if (res == WRITEPAGE_ACTIVATE) {
331                         ClearPageReclaim(page);
332                         return PAGE_ACTIVATE;
333                 }
334                 if (!PageWriteback(page)) {
335                         /* synchronous write or broken a_ops? */
336                         ClearPageReclaim(page);
337                 }
338
339                 return PAGE_SUCCESS;
340         }
341
342         return PAGE_CLEAN;
343 }
344
345 /*
346  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
347  */
348 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
349 {
350         LIST_HEAD(ret_pages);
351         struct pagevec freed_pvec;
352         int pgactivate = 0;
353         int reclaimed = 0;
354
355         cond_resched();
356
357         pagevec_init(&freed_pvec, 1);
358         while (!list_empty(page_list)) {
359                 struct address_space *mapping;
360                 struct page *page;
361                 int may_enter_fs;
362                 int referenced;
363
364                 page = lru_to_page(page_list);
365                 list_del(&page->lru);
366
367                 if (TestSetPageLocked(page))
368                         goto keep;
369
370                 BUG_ON(PageActive(page));
371
372                 if (PageWriteback(page))
373                         goto keep_locked;
374
375                 sc->nr_scanned++;
376                 /* Double the slab pressure for mapped and swapcache pages */
377                 if (page_mapped(page) || PageSwapCache(page))
378                         sc->nr_scanned++;
379
380                 page_map_lock(page);
381                 referenced = page_referenced(page);
382                 if (referenced && page_mapping_inuse(page)) {
383                         /* In active use or really unfreeable.  Activate it. */
384                         page_map_unlock(page);
385                         goto activate_locked;
386                 }
387
388 #ifdef CONFIG_SWAP
389                 /*
390                  * Anonymous process memory has backing store?
391                  * Try to allocate it some swap space here.
392                  *
393                  * XXX: implement swap clustering ?
394                  */
395                 if (PageAnon(page) && !PageSwapCache(page)) {
396                         page_map_unlock(page);
397                         if (!add_to_swap(page))
398                                 goto activate_locked;
399                         page_map_lock(page);
400                 }
401 #endif /* CONFIG_SWAP */
402
403                 mapping = page_mapping(page);
404                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
405                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
406
407                 /*
408                  * The page is mapped into the page tables of one or more
409                  * processes. Try to unmap it here.
410                  */
411                 if (page_mapped(page) && mapping) {
412                         switch (try_to_unmap(page)) {
413                         case SWAP_FAIL:
414                                 page_map_unlock(page);
415                                 goto activate_locked;
416                         case SWAP_AGAIN:
417                                 page_map_unlock(page);
418                                 goto keep_locked;
419                         case SWAP_SUCCESS:
420                                 ; /* try to free the page below */
421                         }
422                 }
423                 page_map_unlock(page);
424
425                 if (PageDirty(page)) {
426                         if (referenced)
427                                 goto keep_locked;
428                         if (!may_enter_fs)
429                                 goto keep_locked;
430                         if (laptop_mode && !sc->may_writepage)
431                                 goto keep_locked;
432
433                         /* Page is dirty, try to write it out here */
434                         switch(pageout(page, mapping)) {
435                         case PAGE_KEEP:
436                                 goto keep_locked;
437                         case PAGE_ACTIVATE:
438                                 goto activate_locked;
439                         case PAGE_SUCCESS:
440                                 if (PageWriteback(page) || PageDirty(page))
441                                         goto keep;
442                                 /*
443                                  * A synchronous write - probably a ramdisk.  Go
444                                  * ahead and try to reclaim the page.
445                                  */
446                                 if (TestSetPageLocked(page))
447                                         goto keep;
448                                 if (PageDirty(page) || PageWriteback(page))
449                                         goto keep_locked;
450                                 mapping = page_mapping(page);
451                         case PAGE_CLEAN:
452                                 ; /* try to free the page below */
453                         }
454                 }
455
456                 /*
457                  * If the page has buffers, try to free the buffer mappings
458                  * associated with this page. If we succeed we try to free
459                  * the page as well.
460                  *
461                  * We do this even if the page is PageDirty().
462                  * try_to_release_page() does not perform I/O, but it is
463                  * possible for a page to have PageDirty set, but it is actually
464                  * clean (all its buffers are clean).  This happens if the
465                  * buffers were written out directly, with submit_bh(). ext3
466                  * will do this, as well as the blockdev mapping. 
467                  * try_to_release_page() will discover that cleanness and will
468                  * drop the buffers and mark the page clean - it can be freed.
469                  *
470                  * Rarely, pages can have buffers and no ->mapping.  These are
471                  * the pages which were not successfully invalidated in
472                  * truncate_complete_page().  We try to drop those buffers here
473                  * and if that worked, and the page is no longer mapped into
474                  * process address space (page_count == 1) it can be freed.
475                  * Otherwise, leave the page on the LRU so it is swappable.
476                  */
477                 if (PagePrivate(page)) {
478                         if (!try_to_release_page(page, sc->gfp_mask))
479                                 goto activate_locked;
480                         /*
481                          * file system may manually remove page from the page
482                          * cache in ->releasepage(). Check for this.
483                          */
484                         mapping = page_mapping(page);
485                         if (!mapping && page_count(page) == 1)
486                                 goto free_it;
487                 }
488
489                 if (!mapping)
490                         goto keep_locked;       /* truncate got there first */
491
492                 write_lock_irq(&mapping->tree_lock);
493
494                 /*
495                  * The non-racy check for busy page.  It is critical to check
496                  * PageDirty _after_ making sure that the page is freeable and
497                  * not in use by anybody.       (pagecache + us == 2)
498                  */
499                 if (page_count(page) != 2 || PageDirty(page)) {
500                         write_unlock_irq(&mapping->tree_lock);
501                         goto keep_locked;
502                 }
503
504 #ifdef CONFIG_SWAP
505                 if (PageSwapCache(page)) {
506                         swp_entry_t swap = { .val = page->private };
507                         __delete_from_swap_cache(page);
508                         write_unlock_irq(&mapping->tree_lock);
509                         swap_free(swap);
510                         __put_page(page);       /* The pagecache ref */
511                         goto free_it;
512                 }
513 #endif /* CONFIG_SWAP */
514
515                 __remove_from_page_cache(page);
516                 write_unlock_irq(&mapping->tree_lock);
517                 __put_page(page);
518
519 free_it:
520                 unlock_page(page);
521                 reclaimed++;
522                 if (!pagevec_add(&freed_pvec, page))
523                         __pagevec_release_nonlru(&freed_pvec);
524                 continue;
525
526 activate_locked:
527                 SetPageActive(page);
528                 pgactivate++;
529 keep_locked:
530                 unlock_page(page);
531 keep:
532                 list_add(&page->lru, &ret_pages);
533                 BUG_ON(PageLRU(page));
534         }
535         list_splice(&ret_pages, page_list);
536         if (pagevec_count(&freed_pvec))
537                 __pagevec_release_nonlru(&freed_pvec);
538         mod_page_state(pgactivate, pgactivate);
539         sc->nr_reclaimed += reclaimed;
540         return reclaimed;
541 }
542
543 /*
544  * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
545  * a batch of pages and working on them outside the lock.  Any pages which were
546  * not freed will be added back to the LRU.
547  *
548  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
549  *
550  * For pagecache intensive workloads, the first loop here is the hottest spot
551  * in the kernel (apart from the copy_*_user functions).
552  */
553 static void shrink_cache(struct zone *zone, struct scan_control *sc)
554 {
555         LIST_HEAD(page_list);
556         struct pagevec pvec;
557         int max_scan = sc->nr_to_scan;
558
559         pagevec_init(&pvec, 1);
560
561         lru_add_drain();
562         spin_lock_irq(&zone->lru_lock);
563         while (max_scan > 0) {
564                 struct page *page;
565                 int nr_taken = 0;
566                 int nr_scan = 0;
567                 int nr_freed;
568
569                 while (nr_scan++ < SWAP_CLUSTER_MAX &&
570                                 !list_empty(&zone->inactive_list)) {
571                         page = lru_to_page(&zone->inactive_list);
572
573                         prefetchw_prev_lru_page(page,
574                                                 &zone->inactive_list, flags);
575
576                         if (!TestClearPageLRU(page))
577                                 BUG();
578                         list_del(&page->lru);
579                         if (get_page_testone(page)) {
580                                 /*
581                                  * It is being freed elsewhere
582                                  */
583                                 __put_page(page);
584                                 SetPageLRU(page);
585                                 list_add(&page->lru, &zone->inactive_list);
586                                 continue;
587                         }
588                         list_add(&page->lru, &page_list);
589                         nr_taken++;
590                 }
591                 zone->nr_inactive -= nr_taken;
592                 zone->pages_scanned += nr_taken;
593                 spin_unlock_irq(&zone->lru_lock);
594
595                 if (nr_taken == 0)
596                         goto done;
597
598                 max_scan -= nr_scan;
599                 if (current_is_kswapd())
600                         mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
601                 else
602                         mod_page_state_zone(zone, pgscan_direct, nr_scan);
603                 nr_freed = shrink_list(&page_list, sc);
604                 if (current_is_kswapd())
605                         mod_page_state(kswapd_steal, nr_freed);
606                 mod_page_state_zone(zone, pgsteal, nr_freed);
607                 sc->nr_to_reclaim -= nr_freed;
608
609                 spin_lock_irq(&zone->lru_lock);
610                 /*
611                  * Put back any unfreeable pages.
612                  */
613                 while (!list_empty(&page_list)) {
614                         page = lru_to_page(&page_list);
615                         if (TestSetPageLRU(page))
616                                 BUG();
617                         list_del(&page->lru);
618                         if (PageActive(page))
619                                 add_page_to_active_list(zone, page);
620                         else
621                                 add_page_to_inactive_list(zone, page);
622                         if (!pagevec_add(&pvec, page)) {
623                                 spin_unlock_irq(&zone->lru_lock);
624                                 __pagevec_release(&pvec);
625                                 spin_lock_irq(&zone->lru_lock);
626                         }
627                 }
628         }
629         spin_unlock_irq(&zone->lru_lock);
630 done:
631         pagevec_release(&pvec);
632 }
633
634 /*
635  * This moves pages from the active list to the inactive list.
636  *
637  * We move them the other way if the page is referenced by one or more
638  * processes, from rmap.
639  *
640  * If the pages are mostly unmapped, the processing is fast and it is
641  * appropriate to hold zone->lru_lock across the whole operation.  But if
642  * the pages are mapped, the processing is slow (page_referenced()) so we
643  * should drop zone->lru_lock around each page.  It's impossible to balance
644  * this, so instead we remove the pages from the LRU while processing them.
645  * It is safe to rely on PG_active against the non-LRU pages in here because
646  * nobody will play with that bit on a non-LRU page.
647  *
648  * The downside is that we have to touch page->_count against each page.
649  * But we had to alter page->flags anyway.
650  */
651 static void
652 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
653 {
654         int pgmoved;
655         int pgdeactivate = 0;
656         int pgscanned = 0;
657         int nr_pages = sc->nr_to_scan;
658         LIST_HEAD(l_hold);      /* The pages which were snipped off */
659         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
660         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
661         struct page *page;
662         struct pagevec pvec;
663         int reclaim_mapped = 0;
664         long mapped_ratio;
665         long distress;
666         long swap_tendency;
667
668         lru_add_drain();
669         pgmoved = 0;
670         spin_lock_irq(&zone->lru_lock);
671         while (pgscanned < nr_pages && !list_empty(&zone->active_list)) {
672                 page = lru_to_page(&zone->active_list);
673                 prefetchw_prev_lru_page(page, &zone->active_list, flags);
674                 if (!TestClearPageLRU(page))
675                         BUG();
676                 list_del(&page->lru);
677                 if (get_page_testone(page)) {
678                         /*
679                          * It was already free!  release_pages() or put_page()
680                          * are about to remove it from the LRU and free it. So
681                          * put the refcount back and put the page back on the
682                          * LRU
683                          */
684                         __put_page(page);
685                         SetPageLRU(page);
686                         list_add(&page->lru, &zone->active_list);
687                 } else {
688                         list_add(&page->lru, &l_hold);
689                         pgmoved++;
690                 }
691                 pgscanned++;
692         }
693         zone->nr_active -= pgmoved;
694         spin_unlock_irq(&zone->lru_lock);
695
696         /*
697          * `distress' is a measure of how much trouble we're having reclaiming
698          * pages.  0 -> no problems.  100 -> great trouble.
699          */
700         distress = 100 >> zone->prev_priority;
701
702         /*
703          * The point of this algorithm is to decide when to start reclaiming
704          * mapped memory instead of just pagecache.  Work out how much memory
705          * is mapped.
706          */
707         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
708
709         /*
710          * Now decide how much we really want to unmap some pages.  The mapped
711          * ratio is downgraded - just because there's a lot of mapped memory
712          * doesn't necessarily mean that page reclaim isn't succeeding.
713          *
714          * The distress ratio is important - we don't want to start going oom.
715          *
716          * A 100% value of vm_swappiness overrides this algorithm altogether.
717          */
718         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
719
720         /*
721          * Now use this metric to decide whether to start moving mapped memory
722          * onto the inactive list.
723          */
724         if (swap_tendency >= 100)
725                 reclaim_mapped = 1;
726
727         while (!list_empty(&l_hold)) {
728                 page = lru_to_page(&l_hold);
729                 list_del(&page->lru);
730                 if (page_mapped(page)) {
731                         if (!reclaim_mapped) {
732                                 list_add(&page->lru, &l_active);
733                                 continue;
734                         }
735                         page_map_lock(page);
736                         if (page_referenced(page)) {
737                                 page_map_unlock(page);
738                                 list_add(&page->lru, &l_active);
739                                 continue;
740                         }
741                         page_map_unlock(page);
742                 }
743                 /*
744                  * FIXME: need to consider page_count(page) here if/when we
745                  * reap orphaned pages via the LRU (Daniel's locking stuff)
746                  */
747                 if (total_swap_pages == 0 && PageAnon(page)) {
748                         list_add(&page->lru, &l_active);
749                         continue;
750                 }
751                 list_add(&page->lru, &l_inactive);
752         }
753
754         pagevec_init(&pvec, 1);
755         pgmoved = 0;
756         spin_lock_irq(&zone->lru_lock);
757         while (!list_empty(&l_inactive)) {
758                 page = lru_to_page(&l_inactive);
759                 prefetchw_prev_lru_page(page, &l_inactive, flags);
760                 if (TestSetPageLRU(page))
761                         BUG();
762                 if (!TestClearPageActive(page))
763                         BUG();
764                 list_move(&page->lru, &zone->inactive_list);
765                 pgmoved++;
766                 if (!pagevec_add(&pvec, page)) {
767                         zone->nr_inactive += pgmoved;
768                         spin_unlock_irq(&zone->lru_lock);
769                         pgdeactivate += pgmoved;
770                         pgmoved = 0;
771                         if (buffer_heads_over_limit)
772                                 pagevec_strip(&pvec);
773                         __pagevec_release(&pvec);
774                         spin_lock_irq(&zone->lru_lock);
775                 }
776         }
777         zone->nr_inactive += pgmoved;
778         pgdeactivate += pgmoved;
779         if (buffer_heads_over_limit) {
780                 spin_unlock_irq(&zone->lru_lock);
781                 pagevec_strip(&pvec);
782                 spin_lock_irq(&zone->lru_lock);
783         }
784
785         pgmoved = 0;
786         while (!list_empty(&l_active)) {
787                 page = lru_to_page(&l_active);
788                 prefetchw_prev_lru_page(page, &l_active, flags);
789                 if (TestSetPageLRU(page))
790                         BUG();
791                 BUG_ON(!PageActive(page));
792                 list_move(&page->lru, &zone->active_list);
793                 pgmoved++;
794                 if (!pagevec_add(&pvec, page)) {
795                         zone->nr_active += pgmoved;
796                         pgmoved = 0;
797                         spin_unlock_irq(&zone->lru_lock);
798                         __pagevec_release(&pvec);
799                         spin_lock_irq(&zone->lru_lock);
800                 }
801         }
802         zone->nr_active += pgmoved;
803         spin_unlock_irq(&zone->lru_lock);
804         pagevec_release(&pvec);
805
806         mod_page_state_zone(zone, pgrefill, pgscanned);
807         mod_page_state(pgdeactivate, pgdeactivate);
808 }
809
810 /*
811  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
812  */
813 static void
814 shrink_zone(struct zone *zone, struct scan_control *sc)
815 {
816         unsigned long nr_active;
817         unsigned long nr_inactive;
818
819         /*
820          * Add one to `nr_to_scan' just to make sure that the kernel will
821          * slowly sift through the active list.
822          */
823         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
824         nr_active = zone->nr_scan_active;
825         if (nr_active >= SWAP_CLUSTER_MAX)
826                 zone->nr_scan_active = 0;
827         else
828                 nr_active = 0;
829
830         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
831         nr_inactive = zone->nr_scan_inactive;
832         if (nr_inactive >= SWAP_CLUSTER_MAX)
833                 zone->nr_scan_inactive = 0;
834         else
835                 nr_inactive = 0;
836
837         sc->nr_to_reclaim = SWAP_CLUSTER_MAX;
838
839         while (nr_active || nr_inactive) {
840                 if (nr_active) {
841                         sc->nr_to_scan = min(nr_active,
842                                         (unsigned long)SWAP_CLUSTER_MAX);
843                         nr_active -= sc->nr_to_scan;
844                         refill_inactive_zone(zone, sc);
845                 }
846
847                 if (nr_inactive) {
848                         sc->nr_to_scan = min(nr_inactive,
849                                         (unsigned long)SWAP_CLUSTER_MAX);
850                         nr_inactive -= sc->nr_to_scan;
851                         shrink_cache(zone, sc);
852                         if (sc->nr_to_reclaim <= 0)
853                                 break;
854                 }
855         }
856 }
857
858 /*
859  * This is the direct reclaim path, for page-allocating processes.  We only
860  * try to reclaim pages from zones which will satisfy the caller's allocation
861  * request.
862  *
863  * We reclaim from a zone even if that zone is over pages_high.  Because:
864  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
865  *    allocation or
866  * b) The zones may be over pages_high but they must go *over* pages_high to
867  *    satisfy the `incremental min' zone defense algorithm.
868  *
869  * Returns the number of reclaimed pages.
870  *
871  * If a zone is deemed to be full of pinned pages then just give it a light
872  * scan then give up on it.
873  */
874 static void
875 shrink_caches(struct zone **zones, struct scan_control *sc)
876 {
877         int i;
878
879         for (i = 0; zones[i] != NULL; i++) {
880                 struct zone *zone = zones[i];
881
882                 zone->temp_priority = sc->priority;
883                 if (zone->prev_priority > sc->priority)
884                         zone->prev_priority = sc->priority;
885
886                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
887                         continue;       /* Let kswapd poll it */
888
889                 shrink_zone(zone, sc);
890         }
891 }
892  
893 /*
894  * This is the main entry point to direct page reclaim.
895  *
896  * If a full scan of the inactive list fails to free enough memory then we
897  * are "out of memory" and something needs to be killed.
898  *
899  * If the caller is !__GFP_FS then the probability of a failure is reasonably
900  * high - the zone may be full of dirty or under-writeback pages, which this
901  * caller can't do much about.  We kick pdflush and take explicit naps in the
902  * hope that some of these pages can be written.  But if the allocating task
903  * holds filesystem locks which prevent writeout this might not work, and the
904  * allocation attempt will fail.
905  */
906 int try_to_free_pages(struct zone **zones,
907                 unsigned int gfp_mask, unsigned int order)
908 {
909         int priority;
910         int ret = 0;
911         int total_scanned = 0, total_reclaimed = 0;
912         struct reclaim_state *reclaim_state = current->reclaim_state;
913         struct scan_control sc;
914         unsigned long lru_pages = 0;
915         int i;
916
917         sc.gfp_mask = gfp_mask;
918         sc.may_writepage = 0;
919
920         inc_page_state(allocstall);
921
922         for (i = 0; zones[i] != NULL; i++) {
923                 struct zone *zone = zones[i];
924
925                 zone->temp_priority = DEF_PRIORITY;
926                 lru_pages += zone->nr_active + zone->nr_inactive;
927         }
928
929         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
930                 sc.nr_mapped = read_page_state(nr_mapped);
931                 sc.nr_scanned = 0;
932                 sc.nr_reclaimed = 0;
933                 sc.priority = priority;
934                 shrink_caches(zones, &sc);
935                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
936                 if (reclaim_state) {
937                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
938                         reclaim_state->reclaimed_slab = 0;
939                 }
940                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) {
941                         ret = 1;
942                         goto out;
943                 }
944                 total_scanned += sc.nr_scanned;
945                 total_reclaimed += sc.nr_reclaimed;
946
947                 /*
948                  * Try to write back as many pages as we just scanned.  This
949                  * tends to cause slow streaming writers to write data to the
950                  * disk smoothly, at the dirtying rate, which is nice.   But
951                  * that's undesirable in laptop mode, where we *want* lumpy
952                  * writeout.  So in laptop mode, write out the whole world.
953                  */
954                 if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) {
955                         wakeup_bdflush(laptop_mode ? 0 : total_scanned);
956                         sc.may_writepage = 1;
957                 }
958
959                 /* Take a nap, wait for some writeback to complete */
960                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
961                         blk_congestion_wait(WRITE, HZ/10);
962         }
963         if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
964                 out_of_memory(gfp_mask);
965 out:
966         for (i = 0; zones[i] != 0; i++)
967                 zones[i]->prev_priority = zones[i]->temp_priority;
968         return ret;
969 }
970
971 /*
972  * For kswapd, balance_pgdat() will work across all this node's zones until
973  * they are all at pages_high.
974  *
975  * If `nr_pages' is non-zero then it is the number of pages which are to be
976  * reclaimed, regardless of the zone occupancies.  This is a software suspend
977  * special.
978  *
979  * Returns the number of pages which were actually freed.
980  *
981  * There is special handling here for zones which are full of pinned pages.
982  * This can happen if the pages are all mlocked, or if they are all used by
983  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
984  * What we do is to detect the case where all pages in the zone have been
985  * scanned twice and there has been zero successful reclaim.  Mark the zone as
986  * dead and from now on, only perform a short scan.  Basically we're polling
987  * the zone for when the problem goes away.
988  *
989  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
990  * zones which have free_pages > pages_high, but once a zone is found to have
991  * free_pages <= pages_high, we scan that zone and the lower zones regardless
992  * of the number of free pages in the lower zones.  This interoperates with
993  * the page allocator fallback scheme to ensure that aging of pages is balanced
994  * across the zones.
995  */
996 static int balance_pgdat(pg_data_t *pgdat, int nr_pages)
997 {
998         int to_free = nr_pages;
999         int priority;
1000         int i;
1001         int total_scanned = 0, total_reclaimed = 0;
1002         struct reclaim_state *reclaim_state = current->reclaim_state;
1003         struct scan_control sc;
1004
1005         sc.gfp_mask = GFP_KERNEL;
1006         sc.may_writepage = 0;
1007         sc.nr_mapped = read_page_state(nr_mapped);
1008
1009         inc_page_state(pageoutrun);
1010
1011         for (i = 0; i < pgdat->nr_zones; i++) {
1012                 struct zone *zone = pgdat->node_zones + i;
1013
1014                 zone->temp_priority = DEF_PRIORITY;
1015         }
1016
1017         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1018                 int all_zones_ok = 1;
1019                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1020                 unsigned long lru_pages = 0;
1021
1022                 if (nr_pages == 0) {
1023                         /*
1024                          * Scan in the highmem->dma direction for the highest
1025                          * zone which needs scanning
1026                          */
1027                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1028                                 struct zone *zone = pgdat->node_zones + i;
1029
1030                                 if (zone->all_unreclaimable &&
1031                                                 priority != DEF_PRIORITY)
1032                                         continue;
1033
1034                                 if (zone->free_pages <= zone->pages_high) {
1035                                         end_zone = i;
1036                                         goto scan;
1037                                 }
1038                         }
1039                         goto out;
1040                 } else {
1041                         end_zone = pgdat->nr_zones - 1;
1042                 }
1043 scan:
1044                 for (i = 0; i <= end_zone; i++) {
1045                         struct zone *zone = pgdat->node_zones + i;
1046
1047                         lru_pages += zone->nr_active + zone->nr_inactive;
1048                 }
1049
1050                 /*
1051                  * Now scan the zone in the dma->highmem direction, stopping
1052                  * at the last zone which needs scanning.
1053                  *
1054                  * We do this because the page allocator works in the opposite
1055                  * direction.  This prevents the page allocator from allocating
1056                  * pages behind kswapd's direction of progress, which would
1057                  * cause too much scanning of the lower zones.
1058                  */
1059                 for (i = 0; i <= end_zone; i++) {
1060                         struct zone *zone = pgdat->node_zones + i;
1061
1062                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1063                                 continue;
1064
1065                         if (nr_pages == 0) {    /* Not software suspend */
1066                                 if (zone->free_pages <= zone->pages_high)
1067                                         all_zones_ok = 0;
1068                         }
1069                         zone->temp_priority = priority;
1070                         if (zone->prev_priority > priority)
1071                                 zone->prev_priority = priority;
1072                         sc.nr_scanned = 0;
1073                         sc.nr_reclaimed = 0;
1074                         sc.priority = priority;
1075                         shrink_zone(zone, &sc);
1076                         reclaim_state->reclaimed_slab = 0;
1077                         shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
1078                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1079                         total_reclaimed += sc.nr_reclaimed;
1080                         if (zone->all_unreclaimable)
1081                                 continue;
1082                         if (zone->pages_scanned > zone->present_pages * 2)
1083                                 zone->all_unreclaimable = 1;
1084                         /*
1085                          * If we've done a decent amount of scanning and
1086                          * the reclaim ratio is low, start doing writepage
1087                          * even in laptop mode
1088                          */
1089                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1090                             total_scanned > total_reclaimed+total_reclaimed/2)
1091                                 sc.may_writepage = 1;
1092                 }
1093                 if (nr_pages && to_free > total_reclaimed)
1094                         continue;       /* swsusp: need to do more work */
1095                 if (all_zones_ok)
1096                         break;          /* kswapd: all done */
1097                 /*
1098                  * OK, kswapd is getting into trouble.  Take a nap, then take
1099                  * another pass across the zones.
1100                  */
1101                 if (total_scanned && priority < DEF_PRIORITY - 2)
1102                         blk_congestion_wait(WRITE, HZ/10);
1103         }
1104 out:
1105         for (i = 0; i < pgdat->nr_zones; i++) {
1106                 struct zone *zone = pgdat->node_zones + i;
1107
1108                 zone->prev_priority = zone->temp_priority;
1109         }
1110         return total_reclaimed;
1111 }
1112
1113 /*
1114  * The background pageout daemon, started as a kernel thread
1115  * from the init process. 
1116  *
1117  * This basically trickles out pages so that we have _some_
1118  * free memory available even if there is no other activity
1119  * that frees anything up. This is needed for things like routing
1120  * etc, where we otherwise might have all activity going on in
1121  * asynchronous contexts that cannot page things out.
1122  *
1123  * If there are applications that are active memory-allocators
1124  * (most normal use), this basically shouldn't matter.
1125  */
1126 int kswapd(void *p)
1127 {
1128         pg_data_t *pgdat = (pg_data_t*)p;
1129         struct task_struct *tsk = current;
1130         DEFINE_WAIT(wait);
1131         struct reclaim_state reclaim_state = {
1132                 .reclaimed_slab = 0,
1133         };
1134         cpumask_t cpumask;
1135
1136         daemonize("kswapd%d", pgdat->node_id);
1137         cpumask = node_to_cpumask(pgdat->node_id);
1138         if (!cpus_empty(cpumask))
1139                 set_cpus_allowed(tsk, cpumask);
1140         current->reclaim_state = &reclaim_state;
1141
1142         /*
1143          * Tell the memory management that we're a "memory allocator",
1144          * and that if we need more memory we should get access to it
1145          * regardless (see "__alloc_pages()"). "kswapd" should
1146          * never get caught in the normal page freeing logic.
1147          *
1148          * (Kswapd normally doesn't need memory anyway, but sometimes
1149          * you need a small amount of memory in order to be able to
1150          * page out something else, and this flag essentially protects
1151          * us from recursively trying to free more memory as we're
1152          * trying to free the first piece of memory in the first place).
1153          */
1154         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1155
1156         for ( ; ; ) {
1157                 if (current->flags & PF_FREEZE)
1158                         refrigerator(PF_FREEZE);
1159                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1160                 schedule();
1161                 finish_wait(&pgdat->kswapd_wait, &wait);
1162
1163                 balance_pgdat(pgdat, 0);
1164         }
1165         return 0;
1166 }
1167
1168 /*
1169  * A zone is low on free memory, so wake its kswapd task to service it.
1170  */
1171 void wakeup_kswapd(struct zone *zone)
1172 {
1173         if (zone->free_pages > zone->pages_low)
1174                 return;
1175         if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1176                 return;
1177         wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1178 }
1179
1180 #ifdef CONFIG_PM
1181 /*
1182  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1183  * pages.
1184  */
1185 int shrink_all_memory(int nr_pages)
1186 {
1187         pg_data_t *pgdat;
1188         int nr_to_free = nr_pages;
1189         int ret = 0;
1190         struct reclaim_state reclaim_state = {
1191                 .reclaimed_slab = 0,
1192         };
1193
1194         current->reclaim_state = &reclaim_state;
1195         for_each_pgdat(pgdat) {
1196                 int freed;
1197                 freed = balance_pgdat(pgdat, nr_to_free);
1198                 ret += freed;
1199                 nr_to_free -= freed;
1200                 if (nr_to_free <= 0)
1201                         break;
1202         }
1203         current->reclaim_state = NULL;
1204         return ret;
1205 }
1206 #endif
1207
1208 #ifdef CONFIG_HOTPLUG_CPU
1209 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1210    not required for correctness.  So if the last cpu in a node goes
1211    away, we get changed to run anywhere: as the first one comes back,
1212    restore their cpu bindings. */
1213 static int __devinit cpu_callback(struct notifier_block *nfb,
1214                                   unsigned long action,
1215                                   void *hcpu)
1216 {
1217         pg_data_t *pgdat;
1218         cpumask_t mask;
1219
1220         if (action == CPU_ONLINE) {
1221                 for_each_pgdat(pgdat) {
1222                         mask = node_to_cpumask(pgdat->node_id);
1223                         if (any_online_cpu(mask) != NR_CPUS)
1224                                 /* One of our CPUs online: restore mask */
1225                                 set_cpus_allowed(pgdat->kswapd, mask);
1226                 }
1227         }
1228         return NOTIFY_OK;
1229 }
1230 #endif /* CONFIG_HOTPLUG_CPU */
1231
1232 static int __init kswapd_init(void)
1233 {
1234         pg_data_t *pgdat;
1235         swap_setup();
1236         for_each_pgdat(pgdat)
1237                 pgdat->kswapd
1238                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1239         total_memory = nr_free_pagecache_pages();
1240         hotcpu_notifier(cpu_callback, 0);
1241         return 0;
1242 }
1243
1244 module_init(kswapd_init)