perf stat: Change noise calculation to use stddev
[linux-flexiantxendom0-3.2.10.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47
48 #include <sys/prctl.h>
49 #include <math.h>
50
51 static struct perf_counter_attr default_attrs[] = {
52
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
57
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
62
63 };
64
65 #define MAX_RUN                 100
66
67 static int                      system_wide                     =  0;
68 static unsigned int             nr_cpus                         =  0;
69 static int                      run_idx                         =  0;
70
71 static int                      run_count                       =  1;
72 static int                      inherit                         =  1;
73 static int                      scale                           =  1;
74 static int                      target_pid                      = -1;
75 static int                      null_run                        =  0;
76
77 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
78
79 static u64                      runtime_nsecs[MAX_RUN];
80 static u64                      walltime_nsecs[MAX_RUN];
81 static u64                      runtime_cycles[MAX_RUN];
82
83 static u64                      event_res[MAX_RUN][MAX_COUNTERS][3];
84 static u64                      event_scaled[MAX_RUN][MAX_COUNTERS];
85
86 struct stats
87 {
88         double sum;
89         double sum_sq;
90 };
91
92 static double avg_stats(struct stats *stats)
93 {
94         return stats->sum / run_count;
95 }
96
97 /*
98  * stddev = sqrt(1/N (\Sum n_i^2) - avg(n)^2)
99  */
100 static double stddev_stats(struct stats *stats)
101 {
102         double avg = stats->sum / run_count;
103
104         return sqrt(stats->sum_sq/run_count - avg*avg);
105 }
106
107 struct stats                    event_res_stats[MAX_COUNTERS][3];
108 struct stats                    event_scaled_stats[MAX_COUNTERS];
109 struct stats                    runtime_nsecs_stats;
110 struct stats                    walltime_nsecs_stats;
111 struct stats                    runtime_cycles_stats;
112
113 #define MATCH_EVENT(t, c, counter)                      \
114         (attrs[counter].type == PERF_TYPE_##t &&        \
115          attrs[counter].config == PERF_COUNT_##c)
116
117 #define ERR_PERF_OPEN \
118 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
119
120 static void create_perf_stat_counter(int counter, int pid)
121 {
122         struct perf_counter_attr *attr = attrs + counter;
123
124         if (scale)
125                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
126                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
127
128         if (system_wide) {
129                 unsigned int cpu;
130
131                 for (cpu = 0; cpu < nr_cpus; cpu++) {
132                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
133                         if (fd[cpu][counter] < 0 && verbose)
134                                 fprintf(stderr, ERR_PERF_OPEN, counter,
135                                         fd[cpu][counter], strerror(errno));
136                 }
137         } else {
138                 attr->inherit        = inherit;
139                 attr->disabled       = 1;
140                 attr->enable_on_exec = 1;
141
142                 fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
143                 if (fd[0][counter] < 0 && verbose)
144                         fprintf(stderr, ERR_PERF_OPEN, counter,
145                                 fd[0][counter], strerror(errno));
146         }
147 }
148
149 /*
150  * Does the counter have nsecs as a unit?
151  */
152 static inline int nsec_counter(int counter)
153 {
154         if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
155             MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
156                 return 1;
157
158         return 0;
159 }
160
161 /*
162  * Read out the results of a single counter:
163  */
164 static void read_counter(int counter)
165 {
166         u64 *count, single_count[3];
167         unsigned int cpu;
168         size_t res, nv;
169         int scaled;
170
171         count = event_res[run_idx][counter];
172
173         count[0] = count[1] = count[2] = 0;
174
175         nv = scale ? 3 : 1;
176         for (cpu = 0; cpu < nr_cpus; cpu++) {
177                 if (fd[cpu][counter] < 0)
178                         continue;
179
180                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
181                 assert(res == nv * sizeof(u64));
182
183                 close(fd[cpu][counter]);
184                 fd[cpu][counter] = -1;
185
186                 count[0] += single_count[0];
187                 if (scale) {
188                         count[1] += single_count[1];
189                         count[2] += single_count[2];
190                 }
191         }
192
193         scaled = 0;
194         if (scale) {
195                 if (count[2] == 0) {
196                         event_scaled[run_idx][counter] = -1;
197                         count[0] = 0;
198                         return;
199                 }
200
201                 if (count[2] < count[1]) {
202                         event_scaled[run_idx][counter] = 1;
203                         count[0] = (unsigned long long)
204                                 ((double)count[0] * count[1] / count[2] + 0.5);
205                 }
206         }
207         /*
208          * Save the full runtime - to allow normalization during printout:
209          */
210         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
211                 runtime_nsecs[run_idx] = count[0];
212         if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
213                 runtime_cycles[run_idx] = count[0];
214 }
215
216 static int run_perf_stat(int argc __used, const char **argv)
217 {
218         unsigned long long t0, t1;
219         int status = 0;
220         int counter;
221         int pid;
222         int child_ready_pipe[2], go_pipe[2];
223         char buf;
224
225         if (!system_wide)
226                 nr_cpus = 1;
227
228         if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
229                 perror("failed to create pipes");
230                 exit(1);
231         }
232
233         if ((pid = fork()) < 0)
234                 perror("failed to fork");
235
236         if (!pid) {
237                 close(child_ready_pipe[0]);
238                 close(go_pipe[1]);
239                 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
240
241                 /*
242                  * Do a dummy execvp to get the PLT entry resolved,
243                  * so we avoid the resolver overhead on the real
244                  * execvp call.
245                  */
246                 execvp("", (char **)argv);
247
248                 /*
249                  * Tell the parent we're ready to go
250                  */
251                 close(child_ready_pipe[1]);
252
253                 /*
254                  * Wait until the parent tells us to go.
255                  */
256                 if (read(go_pipe[0], &buf, 1) == -1)
257                         perror("unable to read pipe");
258
259                 execvp(argv[0], (char **)argv);
260
261                 perror(argv[0]);
262                 exit(-1);
263         }
264
265         /*
266          * Wait for the child to be ready to exec.
267          */
268         close(child_ready_pipe[1]);
269         close(go_pipe[0]);
270         if (read(child_ready_pipe[0], &buf, 1) == -1)
271                 perror("unable to read pipe");
272         close(child_ready_pipe[0]);
273
274         for (counter = 0; counter < nr_counters; counter++)
275                 create_perf_stat_counter(counter, pid);
276
277         /*
278          * Enable counters and exec the command:
279          */
280         t0 = rdclock();
281
282         close(go_pipe[1]);
283         wait(&status);
284
285         t1 = rdclock();
286
287         walltime_nsecs[run_idx] = t1 - t0;
288
289         for (counter = 0; counter < nr_counters; counter++)
290                 read_counter(counter);
291
292         return WEXITSTATUS(status);
293 }
294
295 static void print_noise(double avg, double stddev)
296 {
297         if (run_count > 1)
298                 fprintf(stderr, "   ( +- %7.3f%% )", 100*stddev / avg);
299 }
300
301 static void nsec_printout(int counter, double avg, double stddev)
302 {
303         double msecs = avg / 1e6;
304
305         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
306
307         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
308                 fprintf(stderr, " # %10.3f CPUs ",
309                                 avg / avg_stats(&walltime_nsecs_stats));
310         }
311         print_noise(avg, stddev);
312 }
313
314 static void abs_printout(int counter, double avg, double stddev)
315 {
316         fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
317
318         if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
319                 fprintf(stderr, " # %10.3f IPC  ",
320                                 avg / avg_stats(&runtime_cycles_stats));
321         } else {
322                 fprintf(stderr, " # %10.3f M/sec",
323                                 1000.0 * avg / avg_stats(&runtime_nsecs_stats));
324         }
325         print_noise(avg, stddev);
326 }
327
328 /*
329  * Print out the results of a single counter:
330  */
331 static void print_counter(int counter)
332 {
333         double avg, stddev;
334         int scaled;
335
336         avg    = avg_stats(&event_res_stats[counter][0]);
337         stddev = stddev_stats(&event_res_stats[counter][0]);
338         scaled = avg_stats(&event_scaled_stats[counter]);
339
340         if (scaled == -1) {
341                 fprintf(stderr, " %14s  %-24s\n",
342                         "<not counted>", event_name(counter));
343                 return;
344         }
345
346         if (nsec_counter(counter))
347                 nsec_printout(counter, avg, stddev);
348         else
349                 abs_printout(counter, avg, stddev);
350
351         if (scaled) {
352                 double avg_enabled, avg_running;
353
354                 avg_enabled = avg_stats(&event_res_stats[counter][1]);
355                 avg_running = avg_stats(&event_res_stats[counter][2]);
356
357                 fprintf(stderr, "  (scaled from %.2f%%)",
358                                 100 * avg_running / avg_enabled);
359         }
360
361         fprintf(stderr, "\n");
362 }
363
364 static void update_stats(const char *name, int idx, struct stats *stats, u64 *val)
365 {
366         double sq = *val;
367
368         stats->sum += *val;
369         stats->sum_sq += sq * sq;
370
371         if (verbose > 1)
372                 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
373 }
374
375 /*
376  * Calculate the averages and noises:
377  */
378 static void calc_avg(void)
379 {
380         int i, j;
381
382         if (verbose > 1)
383                 fprintf(stderr, "\n");
384
385         for (i = 0; i < run_count; i++) {
386                 update_stats("runtime", 0, &runtime_nsecs_stats, runtime_nsecs + i);
387                 update_stats("walltime", 0, &walltime_nsecs_stats, walltime_nsecs + i);
388                 update_stats("runtime_cycles", 0, &runtime_cycles_stats, runtime_cycles + i);
389
390                 for (j = 0; j < nr_counters; j++) {
391                         update_stats("counter/0", j,
392                                 event_res_stats[j]+0, event_res[i][j]+0);
393                         update_stats("counter/1", j,
394                                 event_res_stats[j]+1, event_res[i][j]+1);
395                         update_stats("counter/2", j,
396                                 event_res_stats[j]+2, event_res[i][j]+2);
397                         if (event_scaled[i][j] != (u64)-1)
398                                 update_stats("scaled", j,
399                                         event_scaled_stats + j, event_scaled[i]+j);
400                 }
401         }
402 }
403
404 static void print_stat(int argc, const char **argv)
405 {
406         int i, counter;
407
408         calc_avg();
409
410         fflush(stdout);
411
412         fprintf(stderr, "\n");
413         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
414
415         for (i = 1; i < argc; i++)
416                 fprintf(stderr, " %s", argv[i]);
417
418         fprintf(stderr, "\'");
419         if (run_count > 1)
420                 fprintf(stderr, " (%d runs)", run_count);
421         fprintf(stderr, ":\n\n");
422
423         for (counter = 0; counter < nr_counters; counter++)
424                 print_counter(counter);
425
426         fprintf(stderr, "\n");
427         fprintf(stderr, " %14.9f  seconds time elapsed",
428                         avg_stats(&walltime_nsecs_stats)/1e9);
429         if (run_count > 1) {
430                 fprintf(stderr, "   ( +- %7.3f%% )",
431                                 100*stddev_stats(&walltime_nsecs_stats) /
432                                 avg_stats(&walltime_nsecs_stats));
433         }
434         fprintf(stderr, "\n\n");
435 }
436
437 static volatile int signr = -1;
438
439 static void skip_signal(int signo)
440 {
441         signr = signo;
442 }
443
444 static void sig_atexit(void)
445 {
446         if (signr == -1)
447                 return;
448
449         signal(signr, SIG_DFL);
450         kill(getpid(), signr);
451 }
452
453 static const char * const stat_usage[] = {
454         "perf stat [<options>] <command>",
455         NULL
456 };
457
458 static const struct option options[] = {
459         OPT_CALLBACK('e', "event", NULL, "event",
460                      "event selector. use 'perf list' to list available events",
461                      parse_events),
462         OPT_BOOLEAN('i', "inherit", &inherit,
463                     "child tasks inherit counters"),
464         OPT_INTEGER('p', "pid", &target_pid,
465                     "stat events on existing pid"),
466         OPT_BOOLEAN('a', "all-cpus", &system_wide,
467                     "system-wide collection from all CPUs"),
468         OPT_BOOLEAN('c', "scale", &scale,
469                     "scale/normalize counters"),
470         OPT_BOOLEAN('v', "verbose", &verbose,
471                     "be more verbose (show counter open errors, etc)"),
472         OPT_INTEGER('r', "repeat", &run_count,
473                     "repeat command and print average + stddev (max: 100)"),
474         OPT_BOOLEAN('n', "null", &null_run,
475                     "null run - dont start any counters"),
476         OPT_END()
477 };
478
479 int cmd_stat(int argc, const char **argv, const char *prefix __used)
480 {
481         int status;
482
483         argc = parse_options(argc, argv, options, stat_usage,
484                 PARSE_OPT_STOP_AT_NON_OPTION);
485         if (!argc)
486                 usage_with_options(stat_usage, options);
487         if (run_count <= 0 || run_count > MAX_RUN)
488                 usage_with_options(stat_usage, options);
489
490         /* Set attrs and nr_counters if no event is selected and !null_run */
491         if (!null_run && !nr_counters) {
492                 memcpy(attrs, default_attrs, sizeof(default_attrs));
493                 nr_counters = ARRAY_SIZE(default_attrs);
494         }
495
496         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
497         assert(nr_cpus <= MAX_NR_CPUS);
498         assert((int)nr_cpus >= 0);
499
500         /*
501          * We dont want to block the signals - that would cause
502          * child tasks to inherit that and Ctrl-C would not work.
503          * What we want is for Ctrl-C to work in the exec()-ed
504          * task, but being ignored by perf stat itself:
505          */
506         atexit(sig_atexit);
507         signal(SIGINT,  skip_signal);
508         signal(SIGALRM, skip_signal);
509         signal(SIGABRT, skip_signal);
510
511         status = 0;
512         for (run_idx = 0; run_idx < run_count; run_idx++) {
513                 if (run_count != 1 && verbose)
514                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
515                 status = run_perf_stat(argc, argv);
516         }
517
518         print_stat(argc, argv);
519
520         return status;
521 }