added some suse-specific patches to the kernel.
[linux-flexiantxendom0-3.2.10.git] / drivers / char / agp / i460-agp.c
1 /*
2  * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
3  * the "Intel 460GTX Chipset Software Developer's Manual":
4  * http://developer.intel.com/design/itanium/downloads/24870401s.htm
5  */
6 /*
7  * 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
8  * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
9  */
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/agp_backend.h>
14
15 #include "agp.h"
16
17 /*
18  * The i460 can operate with large (4MB) pages, but there is no sane way to support this
19  * within the current kernel/DRM environment, so we disable the relevant code for now.
20  * See also comments in ia64_alloc_page()...
21  */
22 #define I460_LARGE_IO_PAGES             0
23
24 #if I460_LARGE_IO_PAGES
25 # define I460_IO_PAGE_SHIFT             i460.io_page_shift
26 #else
27 # define I460_IO_PAGE_SHIFT             12
28 #endif
29
30 #define I460_IOPAGES_PER_KPAGE          (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
31 #define I460_KPAGES_PER_IOPAGE          (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
32 #define I460_SRAM_IO_DISABLE            (1 << 4)
33 #define I460_BAPBASE_ENABLE             (1 << 3)
34 #define I460_AGPSIZ_MASK                0x7
35 #define I460_4M_PS                      (1 << 1)
36
37 /* Control bits for Out-Of-GART coherency and Burst Write Combining */
38 #define I460_GXBCTL_OOG         (1UL << 0)
39 #define I460_GXBCTL_BWC         (1UL << 2)
40
41 /*
42  * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
43  * gatt_table and gatt_table_real pointers a "void *"...
44  */
45 #define RD_GATT(index)          readl((u32 *) i460.gatt + (index))
46 #define WR_GATT(index, val)     writel((val), (u32 *) i460.gatt + (index))
47 /*
48  * The 460 spec says we have to read the last location written to make sure that all
49  * writes have taken effect
50  */
51 #define WR_FLUSH_GATT(index)    RD_GATT(index)
52
53 #define log2(x)                 ffz(~(x))
54
55 static struct {
56         void *gatt;                             /* ioremap'd GATT area */
57
58         /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
59         u8 io_page_shift;
60
61         /* BIOS configures chipset to one of 2 possible apbase values: */
62         u8 dynamic_apbase;
63
64         /* structure for tracking partial use of 4MB GART pages: */
65         struct lp_desc {
66                 unsigned long *alloced_map;     /* bitmap of kernel-pages in use */
67                 int refcount;                   /* number of kernel pages using the large page */
68                 u64 paddr;                      /* physical address of large page */
69         } *lp_desc;
70 } i460;
71
72 static const struct aper_size_info_8 i460_sizes[3] =
73 {
74         /*
75          * The 32GB aperture is only available with a 4M GART page size.  Due to the
76          * dynamic GART page size, we can't figure out page_order or num_entries until
77          * runtime.
78          */
79         {32768, 0, 0, 4},
80         {1024, 0, 0, 2},
81         {256, 0, 0, 1}
82 };
83
84 static struct gatt_mask i460_masks[] =
85 {
86         {
87           .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
88           .type = 0
89         }
90 };
91
92 static int i460_fetch_size (void)
93 {
94         int i;
95         u8 temp;
96         struct aper_size_info_8 *values;
97
98         /* Determine the GART page size */
99         pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
100         i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
101         pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
102
103         if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
104                 printk(KERN_ERR PFX
105                        "I/O (GART) page-size %ZuKB doesn't match expected size %ZuKB\n",
106                        1UL << (i460.io_page_shift - 10), 1UL << (I460_IO_PAGE_SHIFT));
107                 return 0;
108         }
109
110         values = A_SIZE_8(agp_bridge->aperture_sizes);
111
112         pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
113
114         /* Exit now if the IO drivers for the GART SRAMS are turned off */
115         if (temp & I460_SRAM_IO_DISABLE) {
116                 printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
117                 printk(KERN_ERR PFX "AGPGART operation not possible\n");
118                 return 0;
119         }
120
121         /* Make sure we don't try to create an 2 ^ 23 entry GATT */
122         if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
123                 printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
124                 return 0;
125         }
126
127         /* Determine the proper APBASE register */
128         if (temp & I460_BAPBASE_ENABLE)
129                 i460.dynamic_apbase = INTEL_I460_BAPBASE;
130         else
131                 i460.dynamic_apbase = INTEL_I460_APBASE;
132
133         for (i = 0; i < agp_bridge->num_aperture_sizes; i++) {
134                 /*
135                  * Dynamically calculate the proper num_entries and page_order values for
136                  * the define aperture sizes. Take care not to shift off the end of
137                  * values[i].size.
138                  */
139                 values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
140                 values[i].page_order = log2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
141         }
142
143         for (i = 0; i < agp_bridge->num_aperture_sizes; i++) {
144                 /* Neglect control bits when matching up size_value */
145                 if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
146                         agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
147                         agp_bridge->aperture_size_idx = i;
148                         return values[i].size;
149                 }
150         }
151
152         return 0;
153 }
154
155 /* There isn't anything to do here since 460 has no GART TLB. */
156 static void i460_tlb_flush (agp_memory * mem)
157 {
158         return;
159 }
160
161 /*
162  * This utility function is needed to prevent corruption of the control bits
163  * which are stored along with the aperture size in 460's AGPSIZ register
164  */
165 static void i460_write_agpsiz (u8 size_value)
166 {
167         u8 temp;
168
169         pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
170         pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
171                               ((temp & ~I460_AGPSIZ_MASK) | size_value));
172 }
173
174 static void i460_cleanup (void)
175 {
176         struct aper_size_info_8 *previous_size;
177
178         previous_size = A_SIZE_8(agp_bridge->previous_size);
179         i460_write_agpsiz(previous_size->size_value);
180
181         if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
182                 kfree(i460.lp_desc);
183 }
184
185 static int i460_configure (void)
186 {
187         union {
188                 u32 small[2];
189                 u64 large;
190         } temp;
191         size_t size;
192         u8 scratch;
193         struct aper_size_info_8 *current_size;
194
195         temp.large = 0;
196
197         current_size = A_SIZE_8(agp_bridge->current_size);
198         i460_write_agpsiz(current_size->size_value);
199
200         /*
201          * Do the necessary rigmarole to read all eight bytes of APBASE.
202          * This has to be done since the AGP aperture can be above 4GB on
203          * 460 based systems.
204          */
205         pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
206         pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
207
208         /* Clear BAR control bits */
209         agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
210
211         pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
212         pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
213                               (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
214
215         /*
216          * Initialize partial allocation trackers if a GART page is bigger than a kernel
217          * page.
218          */
219         if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
220                 size = current_size->num_entries * sizeof(i460.lp_desc[0]);
221                 i460.lp_desc = kmalloc(size, GFP_KERNEL);
222                 if (!i460.lp_desc)
223                         return -ENOMEM;
224                 memset(i460.lp_desc, 0, size);
225         }
226         return 0;
227 }
228
229 static int i460_create_gatt_table (void)
230 {
231         int page_order, num_entries, i;
232         void *temp;
233
234         /*
235          * Load up the fixed address of the GART SRAMS which hold our GATT table.
236          */
237         temp = agp_bridge->current_size;
238         page_order = A_SIZE_8(temp)->page_order;
239         num_entries = A_SIZE_8(temp)->num_entries;
240
241         i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
242
243         /* These are no good, the should be removed from the agp_bridge strucure... */
244         agp_bridge->gatt_table_real = NULL;
245         agp_bridge->gatt_table = NULL;
246         agp_bridge->gatt_bus_addr = 0;
247
248         for (i = 0; i < num_entries; ++i)
249                 WR_GATT(i, 0);
250         WR_FLUSH_GATT(i - 1);
251         return 0;
252 }
253
254 static int i460_free_gatt_table (void)
255 {
256         int num_entries, i;
257         void *temp;
258
259         temp = agp_bridge->current_size;
260
261         num_entries = A_SIZE_8(temp)->num_entries;
262
263         for (i = 0; i < num_entries; ++i)
264                 WR_GATT(i, 0);
265         WR_FLUSH_GATT(num_entries - 1);
266
267         iounmap(i460.gatt);
268         return 0;
269 }
270
271 /*
272  * The following functions are called when the I/O (GART) page size is smaller than
273  * PAGE_SIZE.
274  */
275
276 static int i460_insert_memory_small_io_page (agp_memory *mem, off_t pg_start, int type)
277 {
278         unsigned long paddr, io_pg_start, io_page_size;
279         int i, j, k, num_entries;
280         void *temp;
281
282         pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
283                  mem, pg_start, type, mem->memory[0]);
284
285         io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
286
287         temp = agp_bridge->current_size;
288         num_entries = A_SIZE_8(temp)->num_entries;
289
290         if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
291                 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
292                 return -EINVAL;
293         }
294
295         j = io_pg_start;
296         while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
297                 if (!PGE_EMPTY(RD_GATT(j))) {
298                         pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
299                                  j, RD_GATT(j));
300                         return -EBUSY;
301                 }
302                 j++;
303         }
304
305         io_page_size = 1UL << I460_IO_PAGE_SHIFT;
306         for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
307                 paddr = mem->memory[i];
308                 for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
309                         WR_GATT(j, agp_bridge->mask_memory(paddr, mem->type));
310         }
311         WR_FLUSH_GATT(j - 1);
312         return 0;
313 }
314
315 static int i460_remove_memory_small_io_page(agp_memory * mem, off_t pg_start, int type)
316 {
317         int i;
318
319         pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
320                  mem, pg_start, type);
321
322         pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
323
324         for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
325                 WR_GATT(i, 0);
326         WR_FLUSH_GATT(i - 1);
327         return 0;
328 }
329
330 #if I460_LARGE_IO_PAGES
331
332 /*
333  * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
334  *
335  * This situation is interesting since AGP memory allocations that are smaller than a
336  * single GART page are possible.  The i460.lp_desc array tracks partial allocation of the
337  * large GART pages to work around this issue.
338  *
339  * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
340  * pg_num.  i460.lp_desc[pg_num].paddr is the physical address of the large page and
341  * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
342  */
343
344 static int i460_alloc_large_page (struct lp_desc *lp)
345 {
346         unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
347         size_t map_size;
348         void *lpage;
349
350         lpage = (void *) __get_free_pages(GFP_KERNEL, order);
351         if (!lpage) {
352                 printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
353                 return -ENOMEM;
354         }
355
356         map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
357         lp->alloced_map = kmalloc(map_size, GFP_KERNEL);
358         if (!lp->alloced_map) {
359                 free_pages((unsigned long) lpage, order);
360                 printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
361                 return -ENOMEM;
362         }
363         memset(lp->alloced_map, 0, map_size);
364
365         lp->paddr = virt_to_phys(lpage);
366         lp->refcount = 0;
367         atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
368         return 0;
369 }
370
371 static void i460_free_large_page (struct lp_desc *lp)
372 {
373         kfree(lp->alloced_map);
374         lp->alloced_map = NULL;
375
376         free_pages((unsigned long) phys_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT);
377         atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
378 }
379
380 static int i460_insert_memory_large_io_page (agp_memory * mem, off_t pg_start, int type)
381 {
382         int i, start_offset, end_offset, idx, pg, num_entries;
383         struct lp_desc *start, *end, *lp;
384         void *temp;
385
386         temp = agp_bridge->current_size;
387         num_entries = A_SIZE_8(temp)->num_entries;
388
389         /* Figure out what pg_start means in terms of our large GART pages */
390         start           = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
391         end             = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
392         start_offset    = pg_start % I460_KPAGES_PER_IOPAGE;
393         end_offset      = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
394
395         if (end > i460.lp_desc + num_entries) {
396                 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
397                 return -EINVAL;
398         }
399
400         /* Check if the requested region of the aperture is free */
401         for (lp = start; lp <= end; ++lp) {
402                 if (!lp->alloced_map)
403                         continue;       /* OK, the entire large page is available... */
404
405                 for (idx = ((lp == start) ? start_offset : 0);
406                      idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
407                      idx++)
408                 {
409                         if (test_bit(idx, lp->alloced_map))
410                                 return -EBUSY;
411                 }
412         }
413
414         for (lp = start, i = 0; lp <= end; ++lp) {
415                 if (!lp->alloced_map) {
416                         /* Allocate new GART pages... */
417                         if (i460_alloc_large_page(lp) < 0)
418                                 return -ENOMEM;
419                         pg = lp - i460.lp_desc;
420                         WR_GATT(pg, agp_bridge->mask_memory(lp->paddr, 0));
421                         WR_FLUSH_GATT(pg);
422                 }
423
424                 for (idx = ((lp == start) ? start_offset : 0);
425                      idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
426                      idx++, i++)
427                 {
428                         mem->memory[i] = lp->paddr + idx*PAGE_SIZE;
429                         __set_bit(idx, lp->alloced_map);
430                         ++lp->refcount;
431                 }
432         }
433         return 0;
434 }
435
436 static int i460_remove_memory_large_io_page (agp_memory * mem, off_t pg_start, int type)
437 {
438         int i, pg, start_offset, end_offset, idx, num_entries;
439         struct lp_desc *start, *end, *lp;
440         void *temp;
441
442         temp = agp_bridge->current_size;
443         num_entries = A_SIZE_8(temp)->num_entries;
444
445         /* Figure out what pg_start means in terms of our large GART pages */
446         start           = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
447         end             = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
448         start_offset    = pg_start % I460_KPAGES_PER_IOPAGE;
449         end_offset      = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
450
451         for (i = 0, lp = start; lp <= end; ++lp) {
452                 for (idx = ((lp == start) ? start_offset : 0);
453                      idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
454                      idx++, i++)
455                 {
456                         mem->memory[i] = 0;
457                         __clear_bit(idx, lp->alloced_map);
458                         --lp->refcount;
459                 }
460
461                 /* Free GART pages if they are unused */
462                 if (lp->refcount == 0) {
463                         pg = lp - i460.lp_desc;
464                         WR_GATT(pg, 0);
465                         WR_FLUSH_GATT(pg);
466                         i460_free_large_page(lp);
467                 }
468         }
469         return 0;
470 }
471
472 /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
473
474 static int i460_insert_memory (agp_memory * mem, off_t pg_start, int type)
475 {
476         if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
477                 return i460_insert_memory_small_io_page(mem, pg_start, type);
478         else
479                 return i460_insert_memory_large_io_page(mem, pg_start, type);
480 }
481
482 static int i460_remove_memory (agp_memory * mem, off_t pg_start, int type)
483 {
484         if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
485                 return i460_remove_memory_small_io_page(mem, pg_start, type);
486         else
487                 return i460_remove_memory_large_io_page(mem, pg_start, type);
488 }
489
490 /*
491  * If the I/O (GART) page size is bigger than the kernel page size, we don't want to
492  * allocate memory until we know where it is to be bound in the aperture (a
493  * multi-kernel-page alloc might fit inside of an already allocated GART page).
494  *
495  * Let's just hope nobody counts on the allocated AGP memory being there before bind time
496  * (I don't think current drivers do)...
497  */
498 static void *i460_alloc_page (void)
499 {
500         void *page;
501
502         if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
503                 page = agp_generic_alloc_page();
504         else
505                 /* Returning NULL would cause problems */
506                 /* AK: really dubious code. */
507                 page = (void *)~0UL;
508         return page;
509 }
510
511 static void i460_destroy_page (void *page)
512 {
513         if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
514                 agp_generic_destroy_page(page);
515 }
516
517 #endif /* I460_LARGE_IO_PAGES */
518
519 static unsigned long i460_mask_memory (unsigned long addr, int type)
520 {
521         /* Make sure the returned address is a valid GATT entry */
522         return (agp_bridge->masks[0].mask
523                 | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xffffff000) >> 12));
524 }
525
526 static int __init intel_i460_setup (struct pci_dev *pdev __attribute__((unused)))
527 {
528         agp_bridge->masks = i460_masks;
529         agp_bridge->aperture_sizes = (void *) i460_sizes;
530         agp_bridge->size_type = U8_APER_SIZE;
531         agp_bridge->num_aperture_sizes = 3;
532         agp_bridge->dev_private_data = NULL;
533         agp_bridge->needs_scratch_page = FALSE;
534         agp_bridge->configure = i460_configure;
535         agp_bridge->fetch_size = i460_fetch_size;
536         agp_bridge->cleanup = i460_cleanup;
537         agp_bridge->tlb_flush = i460_tlb_flush;
538         agp_bridge->mask_memory = i460_mask_memory;
539         agp_bridge->agp_enable = agp_generic_enable;
540         agp_bridge->cache_flush = global_cache_flush;
541         agp_bridge->create_gatt_table = i460_create_gatt_table;
542         agp_bridge->free_gatt_table = i460_free_gatt_table;
543 #if I460_LARGE_IO_PAGES
544         agp_bridge->insert_memory = i460_insert_memory;
545         agp_bridge->remove_memory = i460_remove_memory;
546         agp_bridge->agp_alloc_page = i460_alloc_page;
547         agp_bridge->agp_destroy_page = i460_destroy_page;
548 #else
549         agp_bridge->insert_memory = i460_insert_memory_small_io_page;
550         agp_bridge->remove_memory = i460_remove_memory_small_io_page;
551         agp_bridge->agp_alloc_page = agp_generic_alloc_page;
552         agp_bridge->agp_destroy_page = agp_generic_destroy_page;
553 #endif
554         agp_bridge->alloc_by_type = agp_generic_alloc_by_type;
555         agp_bridge->free_by_type = agp_generic_free_by_type;
556         agp_bridge->suspend = agp_generic_suspend;
557         agp_bridge->resume = agp_generic_resume;
558         agp_bridge->cant_use_aperture = 1;
559         return 0;
560 }
561
562 static struct agp_driver i460_agp_driver = {
563         .owner = THIS_MODULE,
564 };
565
566 static int __init agp_intel_i460_probe (struct pci_dev *dev, const struct pci_device_id *ent)
567 {
568         u8 cap_ptr = 0;
569
570         cap_ptr = pci_find_capability(dev, PCI_CAP_ID_AGP);
571         if (cap_ptr == 0)
572                 return -ENODEV;
573
574         agp_bridge->dev = dev;
575         agp_bridge->capndx = cap_ptr;
576         intel_i460_setup(dev);
577         i460_agp_driver.dev = dev;
578         agp_register_driver(&i460_agp_driver);
579         return 0;
580 }
581
582 static struct pci_device_id agp_intel_i460_pci_table[] __initdata = {
583         {
584         .class          = (PCI_CLASS_BRIDGE_HOST << 8),
585         .class_mask     = ~0,
586         .vendor         = PCI_VENDOR_ID_INTEL,
587         .device         = PCI_DEVICE_ID_INTEL_84460GX,
588         .subvendor      = PCI_ANY_ID,
589         .subdevice      = PCI_ANY_ID,
590         },
591         { }
592 };
593
594 MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
595
596 static struct __initdata pci_driver agp_intel_i460_pci_driver = {
597         .name           = "agpgart-intel-i460",
598         .id_table       = agp_intel_i460_pci_table,
599         .probe          = agp_intel_i460_probe,
600 };
601
602 static int __init agp_intel_i460_init(void)
603 {
604         int ret_val;
605
606         ret_val = pci_module_init(&agp_intel_i460_pci_driver);
607         if (ret_val)
608                 agp_bridge->type = NOT_SUPPORTED;
609
610         return ret_val;
611 }
612
613 static void __exit agp_intel_i460_cleanup(void)
614 {
615         agp_unregister_driver(&i460_agp_driver);
616         pci_unregister_driver(&agp_intel_i460_pci_driver);
617 }
618
619 module_init(agp_intel_i460_init);
620 module_exit(agp_intel_i460_cleanup);
621
622 MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
623 MODULE_LICENSE("GPL and additional rights");