e1000: convert mdelay to msleep
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem *ce4100_gbe_mdio_base_virt;
40
41 char e1000_driver_name[] = "e1000";
42 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version[] = DRV_VERSION;
45 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
46
47 /* e1000_pci_tbl - PCI Device ID Table
48  *
49  * Last entry must be all 0s
50  *
51  * Macro expands to...
52  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
53  */
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
55         INTEL_E1000_ETHERNET_DEVICE(0x1000),
56         INTEL_E1000_ETHERNET_DEVICE(0x1001),
57         INTEL_E1000_ETHERNET_DEVICE(0x1004),
58         INTEL_E1000_ETHERNET_DEVICE(0x1008),
59         INTEL_E1000_ETHERNET_DEVICE(0x1009),
60         INTEL_E1000_ETHERNET_DEVICE(0x100C),
61         INTEL_E1000_ETHERNET_DEVICE(0x100D),
62         INTEL_E1000_ETHERNET_DEVICE(0x100E),
63         INTEL_E1000_ETHERNET_DEVICE(0x100F),
64         INTEL_E1000_ETHERNET_DEVICE(0x1010),
65         INTEL_E1000_ETHERNET_DEVICE(0x1011),
66         INTEL_E1000_ETHERNET_DEVICE(0x1012),
67         INTEL_E1000_ETHERNET_DEVICE(0x1013),
68         INTEL_E1000_ETHERNET_DEVICE(0x1014),
69         INTEL_E1000_ETHERNET_DEVICE(0x1015),
70         INTEL_E1000_ETHERNET_DEVICE(0x1016),
71         INTEL_E1000_ETHERNET_DEVICE(0x1017),
72         INTEL_E1000_ETHERNET_DEVICE(0x1018),
73         INTEL_E1000_ETHERNET_DEVICE(0x1019),
74         INTEL_E1000_ETHERNET_DEVICE(0x101A),
75         INTEL_E1000_ETHERNET_DEVICE(0x101D),
76         INTEL_E1000_ETHERNET_DEVICE(0x101E),
77         INTEL_E1000_ETHERNET_DEVICE(0x1026),
78         INTEL_E1000_ETHERNET_DEVICE(0x1027),
79         INTEL_E1000_ETHERNET_DEVICE(0x1028),
80         INTEL_E1000_ETHERNET_DEVICE(0x1075),
81         INTEL_E1000_ETHERNET_DEVICE(0x1076),
82         INTEL_E1000_ETHERNET_DEVICE(0x1077),
83         INTEL_E1000_ETHERNET_DEVICE(0x1078),
84         INTEL_E1000_ETHERNET_DEVICE(0x1079),
85         INTEL_E1000_ETHERNET_DEVICE(0x107A),
86         INTEL_E1000_ETHERNET_DEVICE(0x107B),
87         INTEL_E1000_ETHERNET_DEVICE(0x107C),
88         INTEL_E1000_ETHERNET_DEVICE(0x108A),
89         INTEL_E1000_ETHERNET_DEVICE(0x1099),
90         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
97
98 int e1000_up(struct e1000_adapter *adapter);
99 void e1000_down(struct e1000_adapter *adapter);
100 void e1000_reinit_locked(struct e1000_adapter *adapter);
101 void e1000_reset(struct e1000_adapter *adapter);
102 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
103 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
104 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
105 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
106 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *txdr);
108 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rxdr);
110 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
111                              struct e1000_tx_ring *tx_ring);
112 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
113                              struct e1000_rx_ring *rx_ring);
114 void e1000_update_stats(struct e1000_adapter *adapter);
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_rx_mode(struct net_device *netdev);
134 static void e1000_update_phy_info_task(struct work_struct *work);
135 static void e1000_watchdog(struct work_struct *work);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
137 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
138                                     struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data);
143 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                struct e1000_tx_ring *tx_ring);
145 static int e1000_clean(struct napi_struct *napi, int budget);
146 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
147                                struct e1000_rx_ring *rx_ring,
148                                int *work_done, int work_to_do);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
150                                      struct e1000_rx_ring *rx_ring,
151                                      int *work_done, int work_to_do);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153                                    struct e1000_rx_ring *rx_ring,
154                                    int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156                                          struct e1000_rx_ring *rx_ring,
157                                          int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160                            int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev, u32 features);
171 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
172 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190         "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = __devexit_p(e1000_remove),
208 #ifdef CONFIG_PM
209         /* Power Management Hooks */
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
223 module_param(debug, int, 0);
224 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
225
226 /**
227  * e1000_get_hw_dev - return device
228  * used by hardware layer to print debugging information
229  *
230  **/
231 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
232 {
233         struct e1000_adapter *adapter = hw->back;
234         return adapter->netdev;
235 }
236
237 /**
238  * e1000_init_module - Driver Registration Routine
239  *
240  * e1000_init_module is the first routine called when the driver is
241  * loaded. All it does is register with the PCI subsystem.
242  **/
243
244 static int __init e1000_init_module(void)
245 {
246         int ret;
247         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249         pr_info("%s\n", e1000_copyright);
250
251         ret = pci_register_driver(&e1000_driver);
252         if (copybreak != COPYBREAK_DEFAULT) {
253                 if (copybreak == 0)
254                         pr_info("copybreak disabled\n");
255                 else
256                         pr_info("copybreak enabled for "
257                                    "packets <= %u bytes\n", copybreak);
258         }
259         return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270
271 static void __exit e1000_exit_module(void)
272 {
273         pci_unregister_driver(&e1000_driver);
274 }
275
276 module_exit(e1000_exit_module);
277
278 static int e1000_request_irq(struct e1000_adapter *adapter)
279 {
280         struct net_device *netdev = adapter->netdev;
281         irq_handler_t handler = e1000_intr;
282         int irq_flags = IRQF_SHARED;
283         int err;
284
285         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
286                           netdev);
287         if (err) {
288                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
289         }
290
291         return err;
292 }
293
294 static void e1000_free_irq(struct e1000_adapter *adapter)
295 {
296         struct net_device *netdev = adapter->netdev;
297
298         free_irq(adapter->pdev->irq, netdev);
299 }
300
301 /**
302  * e1000_irq_disable - Mask off interrupt generation on the NIC
303  * @adapter: board private structure
304  **/
305
306 static void e1000_irq_disable(struct e1000_adapter *adapter)
307 {
308         struct e1000_hw *hw = &adapter->hw;
309
310         ew32(IMC, ~0);
311         E1000_WRITE_FLUSH();
312         synchronize_irq(adapter->pdev->irq);
313 }
314
315 /**
316  * e1000_irq_enable - Enable default interrupt generation settings
317  * @adapter: board private structure
318  **/
319
320 static void e1000_irq_enable(struct e1000_adapter *adapter)
321 {
322         struct e1000_hw *hw = &adapter->hw;
323
324         ew32(IMS, IMS_ENABLE_MASK);
325         E1000_WRITE_FLUSH();
326 }
327
328 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
329 {
330         struct e1000_hw *hw = &adapter->hw;
331         struct net_device *netdev = adapter->netdev;
332         u16 vid = hw->mng_cookie.vlan_id;
333         u16 old_vid = adapter->mng_vlan_id;
334
335         if (!e1000_vlan_used(adapter))
336                 return;
337
338         if (!test_bit(vid, adapter->active_vlans)) {
339                 if (hw->mng_cookie.status &
340                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
341                         e1000_vlan_rx_add_vid(netdev, vid);
342                         adapter->mng_vlan_id = vid;
343                 } else {
344                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
345                 }
346                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
347                     (vid != old_vid) &&
348                     !test_bit(old_vid, adapter->active_vlans))
349                         e1000_vlan_rx_kill_vid(netdev, old_vid);
350         } else {
351                 adapter->mng_vlan_id = vid;
352         }
353 }
354
355 static void e1000_init_manageability(struct e1000_adapter *adapter)
356 {
357         struct e1000_hw *hw = &adapter->hw;
358
359         if (adapter->en_mng_pt) {
360                 u32 manc = er32(MANC);
361
362                 /* disable hardware interception of ARP */
363                 manc &= ~(E1000_MANC_ARP_EN);
364
365                 ew32(MANC, manc);
366         }
367 }
368
369 static void e1000_release_manageability(struct e1000_adapter *adapter)
370 {
371         struct e1000_hw *hw = &adapter->hw;
372
373         if (adapter->en_mng_pt) {
374                 u32 manc = er32(MANC);
375
376                 /* re-enable hardware interception of ARP */
377                 manc |= E1000_MANC_ARP_EN;
378
379                 ew32(MANC, manc);
380         }
381 }
382
383 /**
384  * e1000_configure - configure the hardware for RX and TX
385  * @adapter = private board structure
386  **/
387 static void e1000_configure(struct e1000_adapter *adapter)
388 {
389         struct net_device *netdev = adapter->netdev;
390         int i;
391
392         e1000_set_rx_mode(netdev);
393
394         e1000_restore_vlan(adapter);
395         e1000_init_manageability(adapter);
396
397         e1000_configure_tx(adapter);
398         e1000_setup_rctl(adapter);
399         e1000_configure_rx(adapter);
400         /* call E1000_DESC_UNUSED which always leaves
401          * at least 1 descriptor unused to make sure
402          * next_to_use != next_to_clean */
403         for (i = 0; i < adapter->num_rx_queues; i++) {
404                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
405                 adapter->alloc_rx_buf(adapter, ring,
406                                       E1000_DESC_UNUSED(ring));
407         }
408 }
409
410 int e1000_up(struct e1000_adapter *adapter)
411 {
412         struct e1000_hw *hw = &adapter->hw;
413
414         /* hardware has been reset, we need to reload some things */
415         e1000_configure(adapter);
416
417         clear_bit(__E1000_DOWN, &adapter->flags);
418
419         napi_enable(&adapter->napi);
420
421         e1000_irq_enable(adapter);
422
423         netif_wake_queue(adapter->netdev);
424
425         /* fire a link change interrupt to start the watchdog */
426         ew32(ICS, E1000_ICS_LSC);
427         return 0;
428 }
429
430 /**
431  * e1000_power_up_phy - restore link in case the phy was powered down
432  * @adapter: address of board private structure
433  *
434  * The phy may be powered down to save power and turn off link when the
435  * driver is unloaded and wake on lan is not enabled (among others)
436  * *** this routine MUST be followed by a call to e1000_reset ***
437  *
438  **/
439
440 void e1000_power_up_phy(struct e1000_adapter *adapter)
441 {
442         struct e1000_hw *hw = &adapter->hw;
443         u16 mii_reg = 0;
444
445         /* Just clear the power down bit to wake the phy back up */
446         if (hw->media_type == e1000_media_type_copper) {
447                 /* according to the manual, the phy will retain its
448                  * settings across a power-down/up cycle */
449                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
450                 mii_reg &= ~MII_CR_POWER_DOWN;
451                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
452         }
453 }
454
455 static void e1000_power_down_phy(struct e1000_adapter *adapter)
456 {
457         struct e1000_hw *hw = &adapter->hw;
458
459         /* Power down the PHY so no link is implied when interface is down *
460          * The PHY cannot be powered down if any of the following is true *
461          * (a) WoL is enabled
462          * (b) AMT is active
463          * (c) SoL/IDER session is active */
464         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
465            hw->media_type == e1000_media_type_copper) {
466                 u16 mii_reg = 0;
467
468                 switch (hw->mac_type) {
469                 case e1000_82540:
470                 case e1000_82545:
471                 case e1000_82545_rev_3:
472                 case e1000_82546:
473                 case e1000_ce4100:
474                 case e1000_82546_rev_3:
475                 case e1000_82541:
476                 case e1000_82541_rev_2:
477                 case e1000_82547:
478                 case e1000_82547_rev_2:
479                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
480                                 goto out;
481                         break;
482                 default:
483                         goto out;
484                 }
485                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
486                 mii_reg |= MII_CR_POWER_DOWN;
487                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
488                 msleep(1);
489         }
490 out:
491         return;
492 }
493
494 static void e1000_down_and_stop(struct e1000_adapter *adapter)
495 {
496         set_bit(__E1000_DOWN, &adapter->flags);
497         cancel_work_sync(&adapter->reset_task);
498         cancel_delayed_work_sync(&adapter->watchdog_task);
499         cancel_delayed_work_sync(&adapter->phy_info_task);
500         cancel_delayed_work_sync(&adapter->fifo_stall_task);
501 }
502
503 void e1000_down(struct e1000_adapter *adapter)
504 {
505         struct e1000_hw *hw = &adapter->hw;
506         struct net_device *netdev = adapter->netdev;
507         u32 rctl, tctl;
508
509
510         /* disable receives in the hardware */
511         rctl = er32(RCTL);
512         ew32(RCTL, rctl & ~E1000_RCTL_EN);
513         /* flush and sleep below */
514
515         netif_tx_disable(netdev);
516
517         /* disable transmits in the hardware */
518         tctl = er32(TCTL);
519         tctl &= ~E1000_TCTL_EN;
520         ew32(TCTL, tctl);
521         /* flush both disables and wait for them to finish */
522         E1000_WRITE_FLUSH();
523         msleep(10);
524
525         napi_disable(&adapter->napi);
526
527         e1000_irq_disable(adapter);
528
529         /*
530          * Setting DOWN must be after irq_disable to prevent
531          * a screaming interrupt.  Setting DOWN also prevents
532          * tasks from rescheduling.
533          */
534         e1000_down_and_stop(adapter);
535
536         adapter->link_speed = 0;
537         adapter->link_duplex = 0;
538         netif_carrier_off(netdev);
539
540         e1000_reset(adapter);
541         e1000_clean_all_tx_rings(adapter);
542         e1000_clean_all_rx_rings(adapter);
543 }
544
545 static void e1000_reinit_safe(struct e1000_adapter *adapter)
546 {
547         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
548                 msleep(1);
549         rtnl_lock();
550         e1000_down(adapter);
551         e1000_up(adapter);
552         rtnl_unlock();
553         clear_bit(__E1000_RESETTING, &adapter->flags);
554 }
555
556 void e1000_reinit_locked(struct e1000_adapter *adapter)
557 {
558         /* if rtnl_lock is not held the call path is bogus */
559         ASSERT_RTNL();
560         WARN_ON(in_interrupt());
561         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
562                 msleep(1);
563         e1000_down(adapter);
564         e1000_up(adapter);
565         clear_bit(__E1000_RESETTING, &adapter->flags);
566 }
567
568 void e1000_reset(struct e1000_adapter *adapter)
569 {
570         struct e1000_hw *hw = &adapter->hw;
571         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
572         bool legacy_pba_adjust = false;
573         u16 hwm;
574
575         /* Repartition Pba for greater than 9k mtu
576          * To take effect CTRL.RST is required.
577          */
578
579         switch (hw->mac_type) {
580         case e1000_82542_rev2_0:
581         case e1000_82542_rev2_1:
582         case e1000_82543:
583         case e1000_82544:
584         case e1000_82540:
585         case e1000_82541:
586         case e1000_82541_rev_2:
587                 legacy_pba_adjust = true;
588                 pba = E1000_PBA_48K;
589                 break;
590         case e1000_82545:
591         case e1000_82545_rev_3:
592         case e1000_82546:
593         case e1000_ce4100:
594         case e1000_82546_rev_3:
595                 pba = E1000_PBA_48K;
596                 break;
597         case e1000_82547:
598         case e1000_82547_rev_2:
599                 legacy_pba_adjust = true;
600                 pba = E1000_PBA_30K;
601                 break;
602         case e1000_undefined:
603         case e1000_num_macs:
604                 break;
605         }
606
607         if (legacy_pba_adjust) {
608                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
609                         pba -= 8; /* allocate more FIFO for Tx */
610
611                 if (hw->mac_type == e1000_82547) {
612                         adapter->tx_fifo_head = 0;
613                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
614                         adapter->tx_fifo_size =
615                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
616                         atomic_set(&adapter->tx_fifo_stall, 0);
617                 }
618         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
619                 /* adjust PBA for jumbo frames */
620                 ew32(PBA, pba);
621
622                 /* To maintain wire speed transmits, the Tx FIFO should be
623                  * large enough to accommodate two full transmit packets,
624                  * rounded up to the next 1KB and expressed in KB.  Likewise,
625                  * the Rx FIFO should be large enough to accommodate at least
626                  * one full receive packet and is similarly rounded up and
627                  * expressed in KB. */
628                 pba = er32(PBA);
629                 /* upper 16 bits has Tx packet buffer allocation size in KB */
630                 tx_space = pba >> 16;
631                 /* lower 16 bits has Rx packet buffer allocation size in KB */
632                 pba &= 0xffff;
633                 /*
634                  * the tx fifo also stores 16 bytes of information about the tx
635                  * but don't include ethernet FCS because hardware appends it
636                  */
637                 min_tx_space = (hw->max_frame_size +
638                                 sizeof(struct e1000_tx_desc) -
639                                 ETH_FCS_LEN) * 2;
640                 min_tx_space = ALIGN(min_tx_space, 1024);
641                 min_tx_space >>= 10;
642                 /* software strips receive CRC, so leave room for it */
643                 min_rx_space = hw->max_frame_size;
644                 min_rx_space = ALIGN(min_rx_space, 1024);
645                 min_rx_space >>= 10;
646
647                 /* If current Tx allocation is less than the min Tx FIFO size,
648                  * and the min Tx FIFO size is less than the current Rx FIFO
649                  * allocation, take space away from current Rx allocation */
650                 if (tx_space < min_tx_space &&
651                     ((min_tx_space - tx_space) < pba)) {
652                         pba = pba - (min_tx_space - tx_space);
653
654                         /* PCI/PCIx hardware has PBA alignment constraints */
655                         switch (hw->mac_type) {
656                         case e1000_82545 ... e1000_82546_rev_3:
657                                 pba &= ~(E1000_PBA_8K - 1);
658                                 break;
659                         default:
660                                 break;
661                         }
662
663                         /* if short on rx space, rx wins and must trump tx
664                          * adjustment or use Early Receive if available */
665                         if (pba < min_rx_space)
666                                 pba = min_rx_space;
667                 }
668         }
669
670         ew32(PBA, pba);
671
672         /*
673          * flow control settings:
674          * The high water mark must be low enough to fit one full frame
675          * (or the size used for early receive) above it in the Rx FIFO.
676          * Set it to the lower of:
677          * - 90% of the Rx FIFO size, and
678          * - the full Rx FIFO size minus the early receive size (for parts
679          *   with ERT support assuming ERT set to E1000_ERT_2048), or
680          * - the full Rx FIFO size minus one full frame
681          */
682         hwm = min(((pba << 10) * 9 / 10),
683                   ((pba << 10) - hw->max_frame_size));
684
685         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
686         hw->fc_low_water = hw->fc_high_water - 8;
687         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
688         hw->fc_send_xon = 1;
689         hw->fc = hw->original_fc;
690
691         /* Allow time for pending master requests to run */
692         e1000_reset_hw(hw);
693         if (hw->mac_type >= e1000_82544)
694                 ew32(WUC, 0);
695
696         if (e1000_init_hw(hw))
697                 e_dev_err("Hardware Error\n");
698         e1000_update_mng_vlan(adapter);
699
700         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
701         if (hw->mac_type >= e1000_82544 &&
702             hw->autoneg == 1 &&
703             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
704                 u32 ctrl = er32(CTRL);
705                 /* clear phy power management bit if we are in gig only mode,
706                  * which if enabled will attempt negotiation to 100Mb, which
707                  * can cause a loss of link at power off or driver unload */
708                 ctrl &= ~E1000_CTRL_SWDPIN3;
709                 ew32(CTRL, ctrl);
710         }
711
712         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
713         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
714
715         e1000_reset_adaptive(hw);
716         e1000_phy_get_info(hw, &adapter->phy_info);
717
718         e1000_release_manageability(adapter);
719 }
720
721 /**
722  *  Dump the eeprom for users having checksum issues
723  **/
724 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
725 {
726         struct net_device *netdev = adapter->netdev;
727         struct ethtool_eeprom eeprom;
728         const struct ethtool_ops *ops = netdev->ethtool_ops;
729         u8 *data;
730         int i;
731         u16 csum_old, csum_new = 0;
732
733         eeprom.len = ops->get_eeprom_len(netdev);
734         eeprom.offset = 0;
735
736         data = kmalloc(eeprom.len, GFP_KERNEL);
737         if (!data) {
738                 pr_err("Unable to allocate memory to dump EEPROM data\n");
739                 return;
740         }
741
742         ops->get_eeprom(netdev, &eeprom, data);
743
744         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
745                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
746         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
747                 csum_new += data[i] + (data[i + 1] << 8);
748         csum_new = EEPROM_SUM - csum_new;
749
750         pr_err("/*********************/\n");
751         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
752         pr_err("Calculated              : 0x%04x\n", csum_new);
753
754         pr_err("Offset    Values\n");
755         pr_err("========  ======\n");
756         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757
758         pr_err("Include this output when contacting your support provider.\n");
759         pr_err("This is not a software error! Something bad happened to\n");
760         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761         pr_err("result in further problems, possibly loss of data,\n");
762         pr_err("corruption or system hangs!\n");
763         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764         pr_err("which is invalid and requires you to set the proper MAC\n");
765         pr_err("address manually before continuing to enable this network\n");
766         pr_err("device. Please inspect the EEPROM dump and report the\n");
767         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768         pr_err("/*********************/\n");
769
770         kfree(data);
771 }
772
773 /**
774  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775  * @pdev: PCI device information struct
776  *
777  * Return true if an adapter needs ioport resources
778  **/
779 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 {
781         switch (pdev->device) {
782         case E1000_DEV_ID_82540EM:
783         case E1000_DEV_ID_82540EM_LOM:
784         case E1000_DEV_ID_82540EP:
785         case E1000_DEV_ID_82540EP_LOM:
786         case E1000_DEV_ID_82540EP_LP:
787         case E1000_DEV_ID_82541EI:
788         case E1000_DEV_ID_82541EI_MOBILE:
789         case E1000_DEV_ID_82541ER:
790         case E1000_DEV_ID_82541ER_LOM:
791         case E1000_DEV_ID_82541GI:
792         case E1000_DEV_ID_82541GI_LF:
793         case E1000_DEV_ID_82541GI_MOBILE:
794         case E1000_DEV_ID_82544EI_COPPER:
795         case E1000_DEV_ID_82544EI_FIBER:
796         case E1000_DEV_ID_82544GC_COPPER:
797         case E1000_DEV_ID_82544GC_LOM:
798         case E1000_DEV_ID_82545EM_COPPER:
799         case E1000_DEV_ID_82545EM_FIBER:
800         case E1000_DEV_ID_82546EB_COPPER:
801         case E1000_DEV_ID_82546EB_FIBER:
802         case E1000_DEV_ID_82546EB_QUAD_COPPER:
803                 return true;
804         default:
805                 return false;
806         }
807 }
808
809 static u32 e1000_fix_features(struct net_device *netdev, u32 features)
810 {
811         /*
812          * Since there is no support for separate rx/tx vlan accel
813          * enable/disable make sure tx flag is always in same state as rx.
814          */
815         if (features & NETIF_F_HW_VLAN_RX)
816                 features |= NETIF_F_HW_VLAN_TX;
817         else
818                 features &= ~NETIF_F_HW_VLAN_TX;
819
820         return features;
821 }
822
823 static int e1000_set_features(struct net_device *netdev, u32 features)
824 {
825         struct e1000_adapter *adapter = netdev_priv(netdev);
826         u32 changed = features ^ netdev->features;
827
828         if (changed & NETIF_F_HW_VLAN_RX)
829                 e1000_vlan_mode(netdev, features);
830
831         if (!(changed & NETIF_F_RXCSUM))
832                 return 0;
833
834         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
835
836         if (netif_running(netdev))
837                 e1000_reinit_locked(adapter);
838         else
839                 e1000_reset(adapter);
840
841         return 0;
842 }
843
844 static const struct net_device_ops e1000_netdev_ops = {
845         .ndo_open               = e1000_open,
846         .ndo_stop               = e1000_close,
847         .ndo_start_xmit         = e1000_xmit_frame,
848         .ndo_get_stats          = e1000_get_stats,
849         .ndo_set_rx_mode        = e1000_set_rx_mode,
850         .ndo_set_mac_address    = e1000_set_mac,
851         .ndo_tx_timeout         = e1000_tx_timeout,
852         .ndo_change_mtu         = e1000_change_mtu,
853         .ndo_do_ioctl           = e1000_ioctl,
854         .ndo_validate_addr      = eth_validate_addr,
855         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
856         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
857 #ifdef CONFIG_NET_POLL_CONTROLLER
858         .ndo_poll_controller    = e1000_netpoll,
859 #endif
860         .ndo_fix_features       = e1000_fix_features,
861         .ndo_set_features       = e1000_set_features,
862 };
863
864 /**
865  * e1000_init_hw_struct - initialize members of hw struct
866  * @adapter: board private struct
867  * @hw: structure used by e1000_hw.c
868  *
869  * Factors out initialization of the e1000_hw struct to its own function
870  * that can be called very early at init (just after struct allocation).
871  * Fields are initialized based on PCI device information and
872  * OS network device settings (MTU size).
873  * Returns negative error codes if MAC type setup fails.
874  */
875 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
876                                 struct e1000_hw *hw)
877 {
878         struct pci_dev *pdev = adapter->pdev;
879
880         /* PCI config space info */
881         hw->vendor_id = pdev->vendor;
882         hw->device_id = pdev->device;
883         hw->subsystem_vendor_id = pdev->subsystem_vendor;
884         hw->subsystem_id = pdev->subsystem_device;
885         hw->revision_id = pdev->revision;
886
887         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
888
889         hw->max_frame_size = adapter->netdev->mtu +
890                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
891         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
892
893         /* identify the MAC */
894         if (e1000_set_mac_type(hw)) {
895                 e_err(probe, "Unknown MAC Type\n");
896                 return -EIO;
897         }
898
899         switch (hw->mac_type) {
900         default:
901                 break;
902         case e1000_82541:
903         case e1000_82547:
904         case e1000_82541_rev_2:
905         case e1000_82547_rev_2:
906                 hw->phy_init_script = 1;
907                 break;
908         }
909
910         e1000_set_media_type(hw);
911         e1000_get_bus_info(hw);
912
913         hw->wait_autoneg_complete = false;
914         hw->tbi_compatibility_en = true;
915         hw->adaptive_ifs = true;
916
917         /* Copper options */
918
919         if (hw->media_type == e1000_media_type_copper) {
920                 hw->mdix = AUTO_ALL_MODES;
921                 hw->disable_polarity_correction = false;
922                 hw->master_slave = E1000_MASTER_SLAVE;
923         }
924
925         return 0;
926 }
927
928 /**
929  * e1000_probe - Device Initialization Routine
930  * @pdev: PCI device information struct
931  * @ent: entry in e1000_pci_tbl
932  *
933  * Returns 0 on success, negative on failure
934  *
935  * e1000_probe initializes an adapter identified by a pci_dev structure.
936  * The OS initialization, configuring of the adapter private structure,
937  * and a hardware reset occur.
938  **/
939 static int __devinit e1000_probe(struct pci_dev *pdev,
940                                  const struct pci_device_id *ent)
941 {
942         struct net_device *netdev;
943         struct e1000_adapter *adapter;
944         struct e1000_hw *hw;
945
946         static int cards_found = 0;
947         static int global_quad_port_a = 0; /* global ksp3 port a indication */
948         int i, err, pci_using_dac;
949         u16 eeprom_data = 0;
950         u16 tmp = 0;
951         u16 eeprom_apme_mask = E1000_EEPROM_APME;
952         int bars, need_ioport;
953
954         /* do not allocate ioport bars when not needed */
955         need_ioport = e1000_is_need_ioport(pdev);
956         if (need_ioport) {
957                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958                 err = pci_enable_device(pdev);
959         } else {
960                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961                 err = pci_enable_device_mem(pdev);
962         }
963         if (err)
964                 return err;
965
966         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967         if (err)
968                 goto err_pci_reg;
969
970         pci_set_master(pdev);
971         err = pci_save_state(pdev);
972         if (err)
973                 goto err_alloc_etherdev;
974
975         err = -ENOMEM;
976         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977         if (!netdev)
978                 goto err_alloc_etherdev;
979
980         SET_NETDEV_DEV(netdev, &pdev->dev);
981
982         pci_set_drvdata(pdev, netdev);
983         adapter = netdev_priv(netdev);
984         adapter->netdev = netdev;
985         adapter->pdev = pdev;
986         adapter->msg_enable = (1 << debug) - 1;
987         adapter->bars = bars;
988         adapter->need_ioport = need_ioport;
989
990         hw = &adapter->hw;
991         hw->back = adapter;
992
993         err = -EIO;
994         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995         if (!hw->hw_addr)
996                 goto err_ioremap;
997
998         if (adapter->need_ioport) {
999                 for (i = BAR_1; i <= BAR_5; i++) {
1000                         if (pci_resource_len(pdev, i) == 0)
1001                                 continue;
1002                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003                                 hw->io_base = pci_resource_start(pdev, i);
1004                                 break;
1005                         }
1006                 }
1007         }
1008
1009         /* make ready for any if (hw->...) below */
1010         err = e1000_init_hw_struct(adapter, hw);
1011         if (err)
1012                 goto err_sw_init;
1013
1014         /*
1015          * there is a workaround being applied below that limits
1016          * 64-bit DMA addresses to 64-bit hardware.  There are some
1017          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018          */
1019         pci_using_dac = 0;
1020         if ((hw->bus_type == e1000_bus_type_pcix) &&
1021             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1022                 /*
1023                  * according to DMA-API-HOWTO, coherent calls will always
1024                  * succeed if the set call did
1025                  */
1026                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1027                 pci_using_dac = 1;
1028         } else {
1029                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1030                 if (err) {
1031                         pr_err("No usable DMA config, aborting\n");
1032                         goto err_dma;
1033                 }
1034                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1035         }
1036
1037         netdev->netdev_ops = &e1000_netdev_ops;
1038         e1000_set_ethtool_ops(netdev);
1039         netdev->watchdog_timeo = 5 * HZ;
1040         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041
1042         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043
1044         adapter->bd_number = cards_found;
1045
1046         /* setup the private structure */
1047
1048         err = e1000_sw_init(adapter);
1049         if (err)
1050                 goto err_sw_init;
1051
1052         err = -EIO;
1053         if (hw->mac_type == e1000_ce4100) {
1054                 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1055                 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1056                                                 pci_resource_len(pdev, BAR_1));
1057
1058                 if (!ce4100_gbe_mdio_base_virt)
1059                         goto err_mdio_ioremap;
1060         }
1061
1062         if (hw->mac_type >= e1000_82543) {
1063                 netdev->hw_features = NETIF_F_SG |
1064                                    NETIF_F_HW_CSUM |
1065                                    NETIF_F_HW_VLAN_RX;
1066                 netdev->features = NETIF_F_HW_VLAN_TX |
1067                                    NETIF_F_HW_VLAN_FILTER;
1068         }
1069
1070         if ((hw->mac_type >= e1000_82544) &&
1071            (hw->mac_type != e1000_82547))
1072                 netdev->hw_features |= NETIF_F_TSO;
1073
1074         netdev->features |= netdev->hw_features;
1075         netdev->hw_features |= NETIF_F_RXCSUM;
1076
1077         if (pci_using_dac) {
1078                 netdev->features |= NETIF_F_HIGHDMA;
1079                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1080         }
1081
1082         netdev->vlan_features |= NETIF_F_TSO;
1083         netdev->vlan_features |= NETIF_F_HW_CSUM;
1084         netdev->vlan_features |= NETIF_F_SG;
1085
1086         netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090         /* initialize eeprom parameters */
1091         if (e1000_init_eeprom_params(hw)) {
1092                 e_err(probe, "EEPROM initialization failed\n");
1093                 goto err_eeprom;
1094         }
1095
1096         /* before reading the EEPROM, reset the controller to
1097          * put the device in a known good starting state */
1098
1099         e1000_reset_hw(hw);
1100
1101         /* make sure the EEPROM is good */
1102         if (e1000_validate_eeprom_checksum(hw) < 0) {
1103                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1104                 e1000_dump_eeprom(adapter);
1105                 /*
1106                  * set MAC address to all zeroes to invalidate and temporary
1107                  * disable this device for the user. This blocks regular
1108                  * traffic while still permitting ethtool ioctls from reaching
1109                  * the hardware as well as allowing the user to run the
1110                  * interface after manually setting a hw addr using
1111                  * `ip set address`
1112                  */
1113                 memset(hw->mac_addr, 0, netdev->addr_len);
1114         } else {
1115                 /* copy the MAC address out of the EEPROM */
1116                 if (e1000_read_mac_addr(hw))
1117                         e_err(probe, "EEPROM Read Error\n");
1118         }
1119         /* don't block initalization here due to bad MAC address */
1120         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1122
1123         if (!is_valid_ether_addr(netdev->perm_addr))
1124                 e_err(probe, "Invalid MAC Address\n");
1125
1126
1127         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1128         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1129                           e1000_82547_tx_fifo_stall_task);
1130         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1131         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1132
1133         e1000_check_options(adapter);
1134
1135         /* Initial Wake on LAN setting
1136          * If APM wake is enabled in the EEPROM,
1137          * enable the ACPI Magic Packet filter
1138          */
1139
1140         switch (hw->mac_type) {
1141         case e1000_82542_rev2_0:
1142         case e1000_82542_rev2_1:
1143         case e1000_82543:
1144                 break;
1145         case e1000_82544:
1146                 e1000_read_eeprom(hw,
1147                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1148                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1149                 break;
1150         case e1000_82546:
1151         case e1000_82546_rev_3:
1152                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1153                         e1000_read_eeprom(hw,
1154                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1155                         break;
1156                 }
1157                 /* Fall Through */
1158         default:
1159                 e1000_read_eeprom(hw,
1160                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1161                 break;
1162         }
1163         if (eeprom_data & eeprom_apme_mask)
1164                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1165
1166         /* now that we have the eeprom settings, apply the special cases
1167          * where the eeprom may be wrong or the board simply won't support
1168          * wake on lan on a particular port */
1169         switch (pdev->device) {
1170         case E1000_DEV_ID_82546GB_PCIE:
1171                 adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546EB_FIBER:
1174         case E1000_DEV_ID_82546GB_FIBER:
1175                 /* Wake events only supported on port A for dual fiber
1176                  * regardless of eeprom setting */
1177                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1178                         adapter->eeprom_wol = 0;
1179                 break;
1180         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1181                 /* if quad port adapter, disable WoL on all but port A */
1182                 if (global_quad_port_a != 0)
1183                         adapter->eeprom_wol = 0;
1184                 else
1185                         adapter->quad_port_a = 1;
1186                 /* Reset for multiple quad port adapters */
1187                 if (++global_quad_port_a == 4)
1188                         global_quad_port_a = 0;
1189                 break;
1190         }
1191
1192         /* initialize the wol settings based on the eeprom settings */
1193         adapter->wol = adapter->eeprom_wol;
1194         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1195
1196         /* Auto detect PHY address */
1197         if (hw->mac_type == e1000_ce4100) {
1198                 for (i = 0; i < 32; i++) {
1199                         hw->phy_addr = i;
1200                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1201                         if (tmp == 0 || tmp == 0xFF) {
1202                                 if (i == 31)
1203                                         goto err_eeprom;
1204                                 continue;
1205                         } else
1206                                 break;
1207                 }
1208         }
1209
1210         /* reset the hardware with the new settings */
1211         e1000_reset(adapter);
1212
1213         strcpy(netdev->name, "eth%d");
1214         err = register_netdev(netdev);
1215         if (err)
1216                 goto err_register;
1217
1218         e1000_vlan_mode(netdev, netdev->features);
1219
1220         /* print bus type/speed/width info */
1221         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1222                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1223                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1224                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1225                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1226                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1227                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1228                netdev->dev_addr);
1229
1230         /* carrier off reporting is important to ethtool even BEFORE open */
1231         netif_carrier_off(netdev);
1232
1233         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1234
1235         cards_found++;
1236         return 0;
1237
1238 err_register:
1239 err_eeprom:
1240         e1000_phy_hw_reset(hw);
1241
1242         if (hw->flash_address)
1243                 iounmap(hw->flash_address);
1244         kfree(adapter->tx_ring);
1245         kfree(adapter->rx_ring);
1246 err_dma:
1247 err_sw_init:
1248 err_mdio_ioremap:
1249         iounmap(ce4100_gbe_mdio_base_virt);
1250         iounmap(hw->hw_addr);
1251 err_ioremap:
1252         free_netdev(netdev);
1253 err_alloc_etherdev:
1254         pci_release_selected_regions(pdev, bars);
1255 err_pci_reg:
1256         pci_disable_device(pdev);
1257         return err;
1258 }
1259
1260 /**
1261  * e1000_remove - Device Removal Routine
1262  * @pdev: PCI device information struct
1263  *
1264  * e1000_remove is called by the PCI subsystem to alert the driver
1265  * that it should release a PCI device.  The could be caused by a
1266  * Hot-Plug event, or because the driver is going to be removed from
1267  * memory.
1268  **/
1269
1270 static void __devexit e1000_remove(struct pci_dev *pdev)
1271 {
1272         struct net_device *netdev = pci_get_drvdata(pdev);
1273         struct e1000_adapter *adapter = netdev_priv(netdev);
1274         struct e1000_hw *hw = &adapter->hw;
1275
1276         e1000_down_and_stop(adapter);
1277         e1000_release_manageability(adapter);
1278
1279         unregister_netdev(netdev);
1280
1281         e1000_phy_hw_reset(hw);
1282
1283         kfree(adapter->tx_ring);
1284         kfree(adapter->rx_ring);
1285
1286         iounmap(hw->hw_addr);
1287         if (hw->flash_address)
1288                 iounmap(hw->flash_address);
1289         pci_release_selected_regions(pdev, adapter->bars);
1290
1291         free_netdev(netdev);
1292
1293         pci_disable_device(pdev);
1294 }
1295
1296 /**
1297  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298  * @adapter: board private structure to initialize
1299  *
1300  * e1000_sw_init initializes the Adapter private data structure.
1301  * e1000_init_hw_struct MUST be called before this function
1302  **/
1303
1304 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1305 {
1306         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307
1308         adapter->num_tx_queues = 1;
1309         adapter->num_rx_queues = 1;
1310
1311         if (e1000_alloc_queues(adapter)) {
1312                 e_err(probe, "Unable to allocate memory for queues\n");
1313                 return -ENOMEM;
1314         }
1315
1316         /* Explicitly disable IRQ since the NIC can be in any state. */
1317         e1000_irq_disable(adapter);
1318
1319         spin_lock_init(&adapter->stats_lock);
1320
1321         set_bit(__E1000_DOWN, &adapter->flags);
1322
1323         return 0;
1324 }
1325
1326 /**
1327  * e1000_alloc_queues - Allocate memory for all rings
1328  * @adapter: board private structure to initialize
1329  *
1330  * We allocate one ring per queue at run-time since we don't know the
1331  * number of queues at compile-time.
1332  **/
1333
1334 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338         if (!adapter->tx_ring)
1339                 return -ENOMEM;
1340
1341         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343         if (!adapter->rx_ring) {
1344                 kfree(adapter->tx_ring);
1345                 return -ENOMEM;
1346         }
1347
1348         return E1000_SUCCESS;
1349 }
1350
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog task is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363
1364 static int e1000_open(struct net_device *netdev)
1365 {
1366         struct e1000_adapter *adapter = netdev_priv(netdev);
1367         struct e1000_hw *hw = &adapter->hw;
1368         int err;
1369
1370         /* disallow open during test */
1371         if (test_bit(__E1000_TESTING, &adapter->flags))
1372                 return -EBUSY;
1373
1374         netif_carrier_off(netdev);
1375
1376         /* allocate transmit descriptors */
1377         err = e1000_setup_all_tx_resources(adapter);
1378         if (err)
1379                 goto err_setup_tx;
1380
1381         /* allocate receive descriptors */
1382         err = e1000_setup_all_rx_resources(adapter);
1383         if (err)
1384                 goto err_setup_rx;
1385
1386         e1000_power_up_phy(adapter);
1387
1388         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1389         if ((hw->mng_cookie.status &
1390                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1391                 e1000_update_mng_vlan(adapter);
1392         }
1393
1394         /* before we allocate an interrupt, we must be ready to handle it.
1395          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1396          * as soon as we call pci_request_irq, so we have to setup our
1397          * clean_rx handler before we do so.  */
1398         e1000_configure(adapter);
1399
1400         err = e1000_request_irq(adapter);
1401         if (err)
1402                 goto err_req_irq;
1403
1404         /* From here on the code is the same as e1000_up() */
1405         clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407         napi_enable(&adapter->napi);
1408
1409         e1000_irq_enable(adapter);
1410
1411         netif_start_queue(netdev);
1412
1413         /* fire a link status change interrupt to start the watchdog */
1414         ew32(ICS, E1000_ICS_LSC);
1415
1416         return E1000_SUCCESS;
1417
1418 err_req_irq:
1419         e1000_power_down_phy(adapter);
1420         e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422         e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424         e1000_reset(adapter);
1425
1426         return err;
1427 }
1428
1429 /**
1430  * e1000_close - Disables a network interface
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0, this is not allowed to fail
1434  *
1435  * The close entry point is called when an interface is de-activated
1436  * by the OS.  The hardware is still under the drivers control, but
1437  * needs to be disabled.  A global MAC reset is issued to stop the
1438  * hardware, and all transmit and receive resources are freed.
1439  **/
1440
1441 static int e1000_close(struct net_device *netdev)
1442 {
1443         struct e1000_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445
1446         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1447         e1000_down(adapter);
1448         e1000_power_down_phy(adapter);
1449         e1000_free_irq(adapter);
1450
1451         e1000_free_all_tx_resources(adapter);
1452         e1000_free_all_rx_resources(adapter);
1453
1454         /* kill manageability vlan ID if supported, but not if a vlan with
1455          * the same ID is registered on the host OS (let 8021q kill it) */
1456         if ((hw->mng_cookie.status &
1457                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1460         }
1461
1462         return 0;
1463 }
1464
1465 /**
1466  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467  * @adapter: address of board private structure
1468  * @start: address of beginning of memory
1469  * @len: length of memory
1470  **/
1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472                                   unsigned long len)
1473 {
1474         struct e1000_hw *hw = &adapter->hw;
1475         unsigned long begin = (unsigned long)start;
1476         unsigned long end = begin + len;
1477
1478         /* First rev 82545 and 82546 need to not allow any memory
1479          * write location to cross 64k boundary due to errata 23 */
1480         if (hw->mac_type == e1000_82545 ||
1481             hw->mac_type == e1000_ce4100 ||
1482             hw->mac_type == e1000_82546) {
1483                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1484         }
1485
1486         return true;
1487 }
1488
1489 /**
1490  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1491  * @adapter: board private structure
1492  * @txdr:    tx descriptor ring (for a specific queue) to setup
1493  *
1494  * Return 0 on success, negative on failure
1495  **/
1496
1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498                                     struct e1000_tx_ring *txdr)
1499 {
1500         struct pci_dev *pdev = adapter->pdev;
1501         int size;
1502
1503         size = sizeof(struct e1000_buffer) * txdr->count;
1504         txdr->buffer_info = vzalloc(size);
1505         if (!txdr->buffer_info) {
1506                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1507                       "ring\n");
1508                 return -ENOMEM;
1509         }
1510
1511         /* round up to nearest 4K */
1512
1513         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514         txdr->size = ALIGN(txdr->size, 4096);
1515
1516         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517                                         GFP_KERNEL);
1518         if (!txdr->desc) {
1519 setup_tx_desc_die:
1520                 vfree(txdr->buffer_info);
1521                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1522                       "ring\n");
1523                 return -ENOMEM;
1524         }
1525
1526         /* Fix for errata 23, can't cross 64kB boundary */
1527         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528                 void *olddesc = txdr->desc;
1529                 dma_addr_t olddma = txdr->dma;
1530                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531                       txdr->size, txdr->desc);
1532                 /* Try again, without freeing the previous */
1533                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534                                                 &txdr->dma, GFP_KERNEL);
1535                 /* Failed allocation, critical failure */
1536                 if (!txdr->desc) {
1537                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538                                           olddma);
1539                         goto setup_tx_desc_die;
1540                 }
1541
1542                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543                         /* give up */
1544                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545                                           txdr->dma);
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                         e_err(probe, "Unable to allocate aligned memory "
1549                               "for the transmit descriptor ring\n");
1550                         vfree(txdr->buffer_info);
1551                         return -ENOMEM;
1552                 } else {
1553                         /* Free old allocation, new allocation was successful */
1554                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555                                           olddma);
1556                 }
1557         }
1558         memset(txdr->desc, 0, txdr->size);
1559
1560         txdr->next_to_use = 0;
1561         txdr->next_to_clean = 0;
1562
1563         return 0;
1564 }
1565
1566 /**
1567  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568  *                                (Descriptors) for all queues
1569  * @adapter: board private structure
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573
1574 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1575 {
1576         int i, err = 0;
1577
1578         for (i = 0; i < adapter->num_tx_queues; i++) {
1579                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1580                 if (err) {
1581                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1582                         for (i-- ; i >= 0; i--)
1583                                 e1000_free_tx_resources(adapter,
1584                                                         &adapter->tx_ring[i]);
1585                         break;
1586                 }
1587         }
1588
1589         return err;
1590 }
1591
1592 /**
1593  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1594  * @adapter: board private structure
1595  *
1596  * Configure the Tx unit of the MAC after a reset.
1597  **/
1598
1599 static void e1000_configure_tx(struct e1000_adapter *adapter)
1600 {
1601         u64 tdba;
1602         struct e1000_hw *hw = &adapter->hw;
1603         u32 tdlen, tctl, tipg;
1604         u32 ipgr1, ipgr2;
1605
1606         /* Setup the HW Tx Head and Tail descriptor pointers */
1607
1608         switch (adapter->num_tx_queues) {
1609         case 1:
1610         default:
1611                 tdba = adapter->tx_ring[0].dma;
1612                 tdlen = adapter->tx_ring[0].count *
1613                         sizeof(struct e1000_tx_desc);
1614                 ew32(TDLEN, tdlen);
1615                 ew32(TDBAH, (tdba >> 32));
1616                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1617                 ew32(TDT, 0);
1618                 ew32(TDH, 0);
1619                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1620                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1621                 break;
1622         }
1623
1624         /* Set the default values for the Tx Inter Packet Gap timer */
1625         if ((hw->media_type == e1000_media_type_fiber ||
1626              hw->media_type == e1000_media_type_internal_serdes))
1627                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628         else
1629                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631         switch (hw->mac_type) {
1632         case e1000_82542_rev2_0:
1633         case e1000_82542_rev2_1:
1634                 tipg = DEFAULT_82542_TIPG_IPGT;
1635                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637                 break;
1638         default:
1639                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641                 break;
1642         }
1643         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645         ew32(TIPG, tipg);
1646
1647         /* Set the Tx Interrupt Delay register */
1648
1649         ew32(TIDV, adapter->tx_int_delay);
1650         if (hw->mac_type >= e1000_82540)
1651                 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653         /* Program the Transmit Control Register */
1654
1655         tctl = er32(TCTL);
1656         tctl &= ~E1000_TCTL_CT;
1657         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660         e1000_config_collision_dist(hw);
1661
1662         /* Setup Transmit Descriptor Settings for eop descriptor */
1663         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665         /* only set IDE if we are delaying interrupts using the timers */
1666         if (adapter->tx_int_delay)
1667                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669         if (hw->mac_type < e1000_82543)
1670                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671         else
1672                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674         /* Cache if we're 82544 running in PCI-X because we'll
1675          * need this to apply a workaround later in the send path. */
1676         if (hw->mac_type == e1000_82544 &&
1677             hw->bus_type == e1000_bus_type_pcix)
1678                 adapter->pcix_82544 = 1;
1679
1680         ew32(TCTL, tctl);
1681
1682 }
1683
1684 /**
1685  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1686  * @adapter: board private structure
1687  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1688  *
1689  * Returns 0 on success, negative on failure
1690  **/
1691
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693                                     struct e1000_rx_ring *rxdr)
1694 {
1695         struct pci_dev *pdev = adapter->pdev;
1696         int size, desc_len;
1697
1698         size = sizeof(struct e1000_buffer) * rxdr->count;
1699         rxdr->buffer_info = vzalloc(size);
1700         if (!rxdr->buffer_info) {
1701                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1702                       "ring\n");
1703                 return -ENOMEM;
1704         }
1705
1706         desc_len = sizeof(struct e1000_rx_desc);
1707
1708         /* Round up to nearest 4K */
1709
1710         rxdr->size = rxdr->count * desc_len;
1711         rxdr->size = ALIGN(rxdr->size, 4096);
1712
1713         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1714                                         GFP_KERNEL);
1715
1716         if (!rxdr->desc) {
1717                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1718                       "ring\n");
1719 setup_rx_desc_die:
1720                 vfree(rxdr->buffer_info);
1721                 return -ENOMEM;
1722         }
1723
1724         /* Fix for errata 23, can't cross 64kB boundary */
1725         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1726                 void *olddesc = rxdr->desc;
1727                 dma_addr_t olddma = rxdr->dma;
1728                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1729                       rxdr->size, rxdr->desc);
1730                 /* Try again, without freeing the previous */
1731                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1732                                                 &rxdr->dma, GFP_KERNEL);
1733                 /* Failed allocation, critical failure */
1734                 if (!rxdr->desc) {
1735                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736                                           olddma);
1737                         e_err(probe, "Unable to allocate memory for the Rx "
1738                               "descriptor ring\n");
1739                         goto setup_rx_desc_die;
1740                 }
1741
1742                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1743                         /* give up */
1744                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1745                                           rxdr->dma);
1746                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747                                           olddma);
1748                         e_err(probe, "Unable to allocate aligned memory for "
1749                               "the Rx descriptor ring\n");
1750                         goto setup_rx_desc_die;
1751                 } else {
1752                         /* Free old allocation, new allocation was successful */
1753                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1754                                           olddma);
1755                 }
1756         }
1757         memset(rxdr->desc, 0, rxdr->size);
1758
1759         rxdr->next_to_clean = 0;
1760         rxdr->next_to_use = 0;
1761         rxdr->rx_skb_top = NULL;
1762
1763         return 0;
1764 }
1765
1766 /**
1767  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1768  *                                (Descriptors) for all queues
1769  * @adapter: board private structure
1770  *
1771  * Return 0 on success, negative on failure
1772  **/
1773
1774 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1775 {
1776         int i, err = 0;
1777
1778         for (i = 0; i < adapter->num_rx_queues; i++) {
1779                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1780                 if (err) {
1781                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1782                         for (i-- ; i >= 0; i--)
1783                                 e1000_free_rx_resources(adapter,
1784                                                         &adapter->rx_ring[i]);
1785                         break;
1786                 }
1787         }
1788
1789         return err;
1790 }
1791
1792 /**
1793  * e1000_setup_rctl - configure the receive control registers
1794  * @adapter: Board private structure
1795  **/
1796 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1797 {
1798         struct e1000_hw *hw = &adapter->hw;
1799         u32 rctl;
1800
1801         rctl = er32(RCTL);
1802
1803         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1804
1805         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1806                 E1000_RCTL_RDMTS_HALF |
1807                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1808
1809         if (hw->tbi_compatibility_on == 1)
1810                 rctl |= E1000_RCTL_SBP;
1811         else
1812                 rctl &= ~E1000_RCTL_SBP;
1813
1814         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1815                 rctl &= ~E1000_RCTL_LPE;
1816         else
1817                 rctl |= E1000_RCTL_LPE;
1818
1819         /* Setup buffer sizes */
1820         rctl &= ~E1000_RCTL_SZ_4096;
1821         rctl |= E1000_RCTL_BSEX;
1822         switch (adapter->rx_buffer_len) {
1823                 case E1000_RXBUFFER_2048:
1824                 default:
1825                         rctl |= E1000_RCTL_SZ_2048;
1826                         rctl &= ~E1000_RCTL_BSEX;
1827                         break;
1828                 case E1000_RXBUFFER_4096:
1829                         rctl |= E1000_RCTL_SZ_4096;
1830                         break;
1831                 case E1000_RXBUFFER_8192:
1832                         rctl |= E1000_RCTL_SZ_8192;
1833                         break;
1834                 case E1000_RXBUFFER_16384:
1835                         rctl |= E1000_RCTL_SZ_16384;
1836                         break;
1837         }
1838
1839         ew32(RCTL, rctl);
1840 }
1841
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848
1849 static void e1000_configure_rx(struct e1000_adapter *adapter)
1850 {
1851         u64 rdba;
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 rdlen, rctl, rxcsum;
1854
1855         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1856                 rdlen = adapter->rx_ring[0].count *
1857                         sizeof(struct e1000_rx_desc);
1858                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1859                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1860         } else {
1861                 rdlen = adapter->rx_ring[0].count *
1862                         sizeof(struct e1000_rx_desc);
1863                 adapter->clean_rx = e1000_clean_rx_irq;
1864                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1865         }
1866
1867         /* disable receives while setting up the descriptors */
1868         rctl = er32(RCTL);
1869         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1870
1871         /* set the Receive Delay Timer Register */
1872         ew32(RDTR, adapter->rx_int_delay);
1873
1874         if (hw->mac_type >= e1000_82540) {
1875                 ew32(RADV, adapter->rx_abs_int_delay);
1876                 if (adapter->itr_setting != 0)
1877                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1878         }
1879
1880         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1881          * the Base and Length of the Rx Descriptor Ring */
1882         switch (adapter->num_rx_queues) {
1883         case 1:
1884         default:
1885                 rdba = adapter->rx_ring[0].dma;
1886                 ew32(RDLEN, rdlen);
1887                 ew32(RDBAH, (rdba >> 32));
1888                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889                 ew32(RDT, 0);
1890                 ew32(RDH, 0);
1891                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1892                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1893                 break;
1894         }
1895
1896         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1897         if (hw->mac_type >= e1000_82543) {
1898                 rxcsum = er32(RXCSUM);
1899                 if (adapter->rx_csum)
1900                         rxcsum |= E1000_RXCSUM_TUOFL;
1901                 else
1902                         /* don't need to clear IPPCSE as it defaults to 0 */
1903                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1904                 ew32(RXCSUM, rxcsum);
1905         }
1906
1907         /* Enable Receives */
1908         ew32(RCTL, rctl | E1000_RCTL_EN);
1909 }
1910
1911 /**
1912  * e1000_free_tx_resources - Free Tx Resources per Queue
1913  * @adapter: board private structure
1914  * @tx_ring: Tx descriptor ring for a specific queue
1915  *
1916  * Free all transmit software resources
1917  **/
1918
1919 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1920                                     struct e1000_tx_ring *tx_ring)
1921 {
1922         struct pci_dev *pdev = adapter->pdev;
1923
1924         e1000_clean_tx_ring(adapter, tx_ring);
1925
1926         vfree(tx_ring->buffer_info);
1927         tx_ring->buffer_info = NULL;
1928
1929         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1930                           tx_ring->dma);
1931
1932         tx_ring->desc = NULL;
1933 }
1934
1935 /**
1936  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1937  * @adapter: board private structure
1938  *
1939  * Free all transmit software resources
1940  **/
1941
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944         int i;
1945
1946         for (i = 0; i < adapter->num_tx_queues; i++)
1947                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951                                              struct e1000_buffer *buffer_info)
1952 {
1953         if (buffer_info->dma) {
1954                 if (buffer_info->mapped_as_page)
1955                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956                                        buffer_info->length, DMA_TO_DEVICE);
1957                 else
1958                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959                                          buffer_info->length,
1960                                          DMA_TO_DEVICE);
1961                 buffer_info->dma = 0;
1962         }
1963         if (buffer_info->skb) {
1964                 dev_kfree_skb_any(buffer_info->skb);
1965                 buffer_info->skb = NULL;
1966         }
1967         buffer_info->time_stamp = 0;
1968         /* buffer_info must be completely set up in the transmit path */
1969 }
1970
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976
1977 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1978                                 struct e1000_tx_ring *tx_ring)
1979 {
1980         struct e1000_hw *hw = &adapter->hw;
1981         struct e1000_buffer *buffer_info;
1982         unsigned long size;
1983         unsigned int i;
1984
1985         /* Free all the Tx ring sk_buffs */
1986
1987         for (i = 0; i < tx_ring->count; i++) {
1988                 buffer_info = &tx_ring->buffer_info[i];
1989                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1990         }
1991
1992         size = sizeof(struct e1000_buffer) * tx_ring->count;
1993         memset(tx_ring->buffer_info, 0, size);
1994
1995         /* Zero out the descriptor ring */
1996
1997         memset(tx_ring->desc, 0, tx_ring->size);
1998
1999         tx_ring->next_to_use = 0;
2000         tx_ring->next_to_clean = 0;
2001         tx_ring->last_tx_tso = 0;
2002
2003         writel(0, hw->hw_addr + tx_ring->tdh);
2004         writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011
2012 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2013 {
2014         int i;
2015
2016         for (i = 0; i < adapter->num_tx_queues; i++)
2017                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2018 }
2019
2020 /**
2021  * e1000_free_rx_resources - Free Rx Resources
2022  * @adapter: board private structure
2023  * @rx_ring: ring to clean the resources from
2024  *
2025  * Free all receive software resources
2026  **/
2027
2028 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2029                                     struct e1000_rx_ring *rx_ring)
2030 {
2031         struct pci_dev *pdev = adapter->pdev;
2032
2033         e1000_clean_rx_ring(adapter, rx_ring);
2034
2035         vfree(rx_ring->buffer_info);
2036         rx_ring->buffer_info = NULL;
2037
2038         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2039                           rx_ring->dma);
2040
2041         rx_ring->desc = NULL;
2042 }
2043
2044 /**
2045  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2046  * @adapter: board private structure
2047  *
2048  * Free all receive software resources
2049  **/
2050
2051 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2052 {
2053         int i;
2054
2055         for (i = 0; i < adapter->num_rx_queues; i++)
2056                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2057 }
2058
2059 /**
2060  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2061  * @adapter: board private structure
2062  * @rx_ring: ring to free buffers from
2063  **/
2064
2065 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2066                                 struct e1000_rx_ring *rx_ring)
2067 {
2068         struct e1000_hw *hw = &adapter->hw;
2069         struct e1000_buffer *buffer_info;
2070         struct pci_dev *pdev = adapter->pdev;
2071         unsigned long size;
2072         unsigned int i;
2073
2074         /* Free all the Rx ring sk_buffs */
2075         for (i = 0; i < rx_ring->count; i++) {
2076                 buffer_info = &rx_ring->buffer_info[i];
2077                 if (buffer_info->dma &&
2078                     adapter->clean_rx == e1000_clean_rx_irq) {
2079                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2080                                          buffer_info->length,
2081                                          DMA_FROM_DEVICE);
2082                 } else if (buffer_info->dma &&
2083                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2084                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2085                                        buffer_info->length,
2086                                        DMA_FROM_DEVICE);
2087                 }
2088
2089                 buffer_info->dma = 0;
2090                 if (buffer_info->page) {
2091                         put_page(buffer_info->page);
2092                         buffer_info->page = NULL;
2093                 }
2094                 if (buffer_info->skb) {
2095                         dev_kfree_skb(buffer_info->skb);
2096                         buffer_info->skb = NULL;
2097                 }
2098         }
2099
2100         /* there also may be some cached data from a chained receive */
2101         if (rx_ring->rx_skb_top) {
2102                 dev_kfree_skb(rx_ring->rx_skb_top);
2103                 rx_ring->rx_skb_top = NULL;
2104         }
2105
2106         size = sizeof(struct e1000_buffer) * rx_ring->count;
2107         memset(rx_ring->buffer_info, 0, size);
2108
2109         /* Zero out the descriptor ring */
2110         memset(rx_ring->desc, 0, rx_ring->size);
2111
2112         rx_ring->next_to_clean = 0;
2113         rx_ring->next_to_use = 0;
2114
2115         writel(0, hw->hw_addr + rx_ring->rdh);
2116         writel(0, hw->hw_addr + rx_ring->rdt);
2117 }
2118
2119 /**
2120  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2121  * @adapter: board private structure
2122  **/
2123
2124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2125 {
2126         int i;
2127
2128         for (i = 0; i < adapter->num_rx_queues; i++)
2129                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2130 }
2131
2132 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2133  * and memory write and invalidate disabled for certain operations
2134  */
2135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2136 {
2137         struct e1000_hw *hw = &adapter->hw;
2138         struct net_device *netdev = adapter->netdev;
2139         u32 rctl;
2140
2141         e1000_pci_clear_mwi(hw);
2142
2143         rctl = er32(RCTL);
2144         rctl |= E1000_RCTL_RST;
2145         ew32(RCTL, rctl);
2146         E1000_WRITE_FLUSH();
2147         mdelay(5);
2148
2149         if (netif_running(netdev))
2150                 e1000_clean_all_rx_rings(adapter);
2151 }
2152
2153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2154 {
2155         struct e1000_hw *hw = &adapter->hw;
2156         struct net_device *netdev = adapter->netdev;
2157         u32 rctl;
2158
2159         rctl = er32(RCTL);
2160         rctl &= ~E1000_RCTL_RST;
2161         ew32(RCTL, rctl);
2162         E1000_WRITE_FLUSH();
2163         mdelay(5);
2164
2165         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2166                 e1000_pci_set_mwi(hw);
2167
2168         if (netif_running(netdev)) {
2169                 /* No need to loop, because 82542 supports only 1 queue */
2170                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2171                 e1000_configure_rx(adapter);
2172                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2173         }
2174 }
2175
2176 /**
2177  * e1000_set_mac - Change the Ethernet Address of the NIC
2178  * @netdev: network interface device structure
2179  * @p: pointer to an address structure
2180  *
2181  * Returns 0 on success, negative on failure
2182  **/
2183
2184 static int e1000_set_mac(struct net_device *netdev, void *p)
2185 {
2186         struct e1000_adapter *adapter = netdev_priv(netdev);
2187         struct e1000_hw *hw = &adapter->hw;
2188         struct sockaddr *addr = p;
2189
2190         if (!is_valid_ether_addr(addr->sa_data))
2191                 return -EADDRNOTAVAIL;
2192
2193         /* 82542 2.0 needs to be in reset to write receive address registers */
2194
2195         if (hw->mac_type == e1000_82542_rev2_0)
2196                 e1000_enter_82542_rst(adapter);
2197
2198         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2199         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2200
2201         e1000_rar_set(hw, hw->mac_addr, 0);
2202
2203         if (hw->mac_type == e1000_82542_rev2_0)
2204                 e1000_leave_82542_rst(adapter);
2205
2206         return 0;
2207 }
2208
2209 /**
2210  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2211  * @netdev: network interface device structure
2212  *
2213  * The set_rx_mode entry point is called whenever the unicast or multicast
2214  * address lists or the network interface flags are updated. This routine is
2215  * responsible for configuring the hardware for proper unicast, multicast,
2216  * promiscuous mode, and all-multi behavior.
2217  **/
2218
2219 static void e1000_set_rx_mode(struct net_device *netdev)
2220 {
2221         struct e1000_adapter *adapter = netdev_priv(netdev);
2222         struct e1000_hw *hw = &adapter->hw;
2223         struct netdev_hw_addr *ha;
2224         bool use_uc = false;
2225         u32 rctl;
2226         u32 hash_value;
2227         int i, rar_entries = E1000_RAR_ENTRIES;
2228         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2229         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2230
2231         if (!mcarray) {
2232                 e_err(probe, "memory allocation failed\n");
2233                 return;
2234         }
2235
2236         /* Check for Promiscuous and All Multicast modes */
2237
2238         rctl = er32(RCTL);
2239
2240         if (netdev->flags & IFF_PROMISC) {
2241                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2242                 rctl &= ~E1000_RCTL_VFE;
2243         } else {
2244                 if (netdev->flags & IFF_ALLMULTI)
2245                         rctl |= E1000_RCTL_MPE;
2246                 else
2247                         rctl &= ~E1000_RCTL_MPE;
2248                 /* Enable VLAN filter if there is a VLAN */
2249                 if (e1000_vlan_used(adapter))
2250                         rctl |= E1000_RCTL_VFE;
2251         }
2252
2253         if (netdev_uc_count(netdev) > rar_entries - 1) {
2254                 rctl |= E1000_RCTL_UPE;
2255         } else if (!(netdev->flags & IFF_PROMISC)) {
2256                 rctl &= ~E1000_RCTL_UPE;
2257                 use_uc = true;
2258         }
2259
2260         ew32(RCTL, rctl);
2261
2262         /* 82542 2.0 needs to be in reset to write receive address registers */
2263
2264         if (hw->mac_type == e1000_82542_rev2_0)
2265                 e1000_enter_82542_rst(adapter);
2266
2267         /* load the first 14 addresses into the exact filters 1-14. Unicast
2268          * addresses take precedence to avoid disabling unicast filtering
2269          * when possible.
2270          *
2271          * RAR 0 is used for the station MAC address
2272          * if there are not 14 addresses, go ahead and clear the filters
2273          */
2274         i = 1;
2275         if (use_uc)
2276                 netdev_for_each_uc_addr(ha, netdev) {
2277                         if (i == rar_entries)
2278                                 break;
2279                         e1000_rar_set(hw, ha->addr, i++);
2280                 }
2281
2282         netdev_for_each_mc_addr(ha, netdev) {
2283                 if (i == rar_entries) {
2284                         /* load any remaining addresses into the hash table */
2285                         u32 hash_reg, hash_bit, mta;
2286                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2287                         hash_reg = (hash_value >> 5) & 0x7F;
2288                         hash_bit = hash_value & 0x1F;
2289                         mta = (1 << hash_bit);
2290                         mcarray[hash_reg] |= mta;
2291                 } else {
2292                         e1000_rar_set(hw, ha->addr, i++);
2293                 }
2294         }
2295
2296         for (; i < rar_entries; i++) {
2297                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2298                 E1000_WRITE_FLUSH();
2299                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2300                 E1000_WRITE_FLUSH();
2301         }
2302
2303         /* write the hash table completely, write from bottom to avoid
2304          * both stupid write combining chipsets, and flushing each write */
2305         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2306                 /*
2307                  * If we are on an 82544 has an errata where writing odd
2308                  * offsets overwrites the previous even offset, but writing
2309                  * backwards over the range solves the issue by always
2310                  * writing the odd offset first
2311                  */
2312                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2313         }
2314         E1000_WRITE_FLUSH();
2315
2316         if (hw->mac_type == e1000_82542_rev2_0)
2317                 e1000_leave_82542_rst(adapter);
2318
2319         kfree(mcarray);
2320 }
2321
2322 /**
2323  * e1000_update_phy_info_task - get phy info
2324  * @work: work struct contained inside adapter struct
2325  *
2326  * Need to wait a few seconds after link up to get diagnostic information from
2327  * the phy
2328  */
2329 static void e1000_update_phy_info_task(struct work_struct *work)
2330 {
2331         struct e1000_adapter *adapter = container_of(work,
2332                                                      struct e1000_adapter,
2333                                                      phy_info_task.work);
2334         rtnl_lock();
2335         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2336         rtnl_unlock();
2337 }
2338
2339 /**
2340  * e1000_82547_tx_fifo_stall_task - task to complete work
2341  * @work: work struct contained inside adapter struct
2342  **/
2343 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2344 {
2345         struct e1000_adapter *adapter = container_of(work,
2346                                                      struct e1000_adapter,
2347                                                      fifo_stall_task.work);
2348         struct e1000_hw *hw = &adapter->hw;
2349         struct net_device *netdev = adapter->netdev;
2350         u32 tctl;
2351
2352         rtnl_lock();
2353         if (atomic_read(&adapter->tx_fifo_stall)) {
2354                 if ((er32(TDT) == er32(TDH)) &&
2355                    (er32(TDFT) == er32(TDFH)) &&
2356                    (er32(TDFTS) == er32(TDFHS))) {
2357                         tctl = er32(TCTL);
2358                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2359                         ew32(TDFT, adapter->tx_head_addr);
2360                         ew32(TDFH, adapter->tx_head_addr);
2361                         ew32(TDFTS, adapter->tx_head_addr);
2362                         ew32(TDFHS, adapter->tx_head_addr);
2363                         ew32(TCTL, tctl);
2364                         E1000_WRITE_FLUSH();
2365
2366                         adapter->tx_fifo_head = 0;
2367                         atomic_set(&adapter->tx_fifo_stall, 0);
2368                         netif_wake_queue(netdev);
2369                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2370                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2371                 }
2372         }
2373         rtnl_unlock();
2374 }
2375
2376 bool e1000_has_link(struct e1000_adapter *adapter)
2377 {
2378         struct e1000_hw *hw = &adapter->hw;
2379         bool link_active = false;
2380
2381         /* get_link_status is set on LSC (link status) interrupt or rx
2382          * sequence error interrupt (except on intel ce4100).
2383          * get_link_status will stay false until the
2384          * e1000_check_for_link establishes link for copper adapters
2385          * ONLY
2386          */
2387         switch (hw->media_type) {
2388         case e1000_media_type_copper:
2389                 if (hw->mac_type == e1000_ce4100)
2390                         hw->get_link_status = 1;
2391                 if (hw->get_link_status) {
2392                         e1000_check_for_link(hw);
2393                         link_active = !hw->get_link_status;
2394                 } else {
2395                         link_active = true;
2396                 }
2397                 break;
2398         case e1000_media_type_fiber:
2399                 e1000_check_for_link(hw);
2400                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2401                 break;
2402         case e1000_media_type_internal_serdes:
2403                 e1000_check_for_link(hw);
2404                 link_active = hw->serdes_has_link;
2405                 break;
2406         default:
2407                 break;
2408         }
2409
2410         return link_active;
2411 }
2412
2413 /**
2414  * e1000_watchdog - work function
2415  * @work: work struct contained inside adapter struct
2416  **/
2417 static void e1000_watchdog(struct work_struct *work)
2418 {
2419         struct e1000_adapter *adapter = container_of(work,
2420                                                      struct e1000_adapter,
2421                                                      watchdog_task.work);
2422         struct e1000_hw *hw = &adapter->hw;
2423         struct net_device *netdev = adapter->netdev;
2424         struct e1000_tx_ring *txdr = adapter->tx_ring;
2425         u32 link, tctl;
2426
2427         link = e1000_has_link(adapter);
2428         if ((netif_carrier_ok(netdev)) && link)
2429                 goto link_up;
2430
2431         if (link) {
2432                 if (!netif_carrier_ok(netdev)) {
2433                         u32 ctrl;
2434                         bool txb2b = true;
2435                         /* update snapshot of PHY registers on LSC */
2436                         e1000_get_speed_and_duplex(hw,
2437                                                    &adapter->link_speed,
2438                                                    &adapter->link_duplex);
2439
2440                         ctrl = er32(CTRL);
2441                         pr_info("%s NIC Link is Up %d Mbps %s, "
2442                                 "Flow Control: %s\n",
2443                                 netdev->name,
2444                                 adapter->link_speed,
2445                                 adapter->link_duplex == FULL_DUPLEX ?
2446                                 "Full Duplex" : "Half Duplex",
2447                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2448                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2449                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2450                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2451
2452                         /* adjust timeout factor according to speed/duplex */
2453                         adapter->tx_timeout_factor = 1;
2454                         switch (adapter->link_speed) {
2455                         case SPEED_10:
2456                                 txb2b = false;
2457                                 adapter->tx_timeout_factor = 16;
2458                                 break;
2459                         case SPEED_100:
2460                                 txb2b = false;
2461                                 /* maybe add some timeout factor ? */
2462                                 break;
2463                         }
2464
2465                         /* enable transmits in the hardware */
2466                         tctl = er32(TCTL);
2467                         tctl |= E1000_TCTL_EN;
2468                         ew32(TCTL, tctl);
2469
2470                         netif_carrier_on(netdev);
2471                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2472                                 schedule_delayed_work(&adapter->phy_info_task,
2473                                                       2 * HZ);
2474                         adapter->smartspeed = 0;
2475                 }
2476         } else {
2477                 if (netif_carrier_ok(netdev)) {
2478                         adapter->link_speed = 0;
2479                         adapter->link_duplex = 0;
2480                         pr_info("%s NIC Link is Down\n",
2481                                 netdev->name);
2482                         netif_carrier_off(netdev);
2483
2484                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2485                                 schedule_delayed_work(&adapter->phy_info_task,
2486                                                       2 * HZ);
2487                 }
2488
2489                 e1000_smartspeed(adapter);
2490         }
2491
2492 link_up:
2493         e1000_update_stats(adapter);
2494
2495         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2496         adapter->tpt_old = adapter->stats.tpt;
2497         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2498         adapter->colc_old = adapter->stats.colc;
2499
2500         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2501         adapter->gorcl_old = adapter->stats.gorcl;
2502         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2503         adapter->gotcl_old = adapter->stats.gotcl;
2504
2505         e1000_update_adaptive(hw);
2506
2507         if (!netif_carrier_ok(netdev)) {
2508                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2509                         /* We've lost link, so the controller stops DMA,
2510                          * but we've got queued Tx work that's never going
2511                          * to get done, so reset controller to flush Tx.
2512                          * (Do the reset outside of interrupt context). */
2513                         adapter->tx_timeout_count++;
2514                         schedule_work(&adapter->reset_task);
2515                         /* return immediately since reset is imminent */
2516                         return;
2517                 }
2518         }
2519
2520         /* Simple mode for Interrupt Throttle Rate (ITR) */
2521         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2522                 /*
2523                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2524                  * Total asymmetrical Tx or Rx gets ITR=8000;
2525                  * everyone else is between 2000-8000.
2526                  */
2527                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2528                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2529                             adapter->gotcl - adapter->gorcl :
2530                             adapter->gorcl - adapter->gotcl) / 10000;
2531                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2532
2533                 ew32(ITR, 1000000000 / (itr * 256));
2534         }
2535
2536         /* Cause software interrupt to ensure rx ring is cleaned */
2537         ew32(ICS, E1000_ICS_RXDMT0);
2538
2539         /* Force detection of hung controller every watchdog period */
2540         adapter->detect_tx_hung = true;
2541
2542         /* Reschedule the task */
2543         if (!test_bit(__E1000_DOWN, &adapter->flags))
2544                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2545 }
2546
2547 enum latency_range {
2548         lowest_latency = 0,
2549         low_latency = 1,
2550         bulk_latency = 2,
2551         latency_invalid = 255
2552 };
2553
2554 /**
2555  * e1000_update_itr - update the dynamic ITR value based on statistics
2556  * @adapter: pointer to adapter
2557  * @itr_setting: current adapter->itr
2558  * @packets: the number of packets during this measurement interval
2559  * @bytes: the number of bytes during this measurement interval
2560  *
2561  *      Stores a new ITR value based on packets and byte
2562  *      counts during the last interrupt.  The advantage of per interrupt
2563  *      computation is faster updates and more accurate ITR for the current
2564  *      traffic pattern.  Constants in this function were computed
2565  *      based on theoretical maximum wire speed and thresholds were set based
2566  *      on testing data as well as attempting to minimize response time
2567  *      while increasing bulk throughput.
2568  *      this functionality is controlled by the InterruptThrottleRate module
2569  *      parameter (see e1000_param.c)
2570  **/
2571 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2572                                      u16 itr_setting, int packets, int bytes)
2573 {
2574         unsigned int retval = itr_setting;
2575         struct e1000_hw *hw = &adapter->hw;
2576
2577         if (unlikely(hw->mac_type < e1000_82540))
2578                 goto update_itr_done;
2579
2580         if (packets == 0)
2581                 goto update_itr_done;
2582
2583         switch (itr_setting) {
2584         case lowest_latency:
2585                 /* jumbo frames get bulk treatment*/
2586                 if (bytes/packets > 8000)
2587                         retval = bulk_latency;
2588                 else if ((packets < 5) && (bytes > 512))
2589                         retval = low_latency;
2590                 break;
2591         case low_latency:  /* 50 usec aka 20000 ints/s */
2592                 if (bytes > 10000) {
2593                         /* jumbo frames need bulk latency setting */
2594                         if (bytes/packets > 8000)
2595                                 retval = bulk_latency;
2596                         else if ((packets < 10) || ((bytes/packets) > 1200))
2597                                 retval = bulk_latency;
2598                         else if ((packets > 35))
2599                                 retval = lowest_latency;
2600                 } else if (bytes/packets > 2000)
2601                         retval = bulk_latency;
2602                 else if (packets <= 2 && bytes < 512)
2603                         retval = lowest_latency;
2604                 break;
2605         case bulk_latency: /* 250 usec aka 4000 ints/s */
2606                 if (bytes > 25000) {
2607                         if (packets > 35)
2608                                 retval = low_latency;
2609                 } else if (bytes < 6000) {
2610                         retval = low_latency;
2611                 }
2612                 break;
2613         }
2614
2615 update_itr_done:
2616         return retval;
2617 }
2618
2619 static void e1000_set_itr(struct e1000_adapter *adapter)
2620 {
2621         struct e1000_hw *hw = &adapter->hw;
2622         u16 current_itr;
2623         u32 new_itr = adapter->itr;
2624
2625         if (unlikely(hw->mac_type < e1000_82540))
2626                 return;
2627
2628         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2629         if (unlikely(adapter->link_speed != SPEED_1000)) {
2630                 current_itr = 0;
2631                 new_itr = 4000;
2632                 goto set_itr_now;
2633         }
2634
2635         adapter->tx_itr = e1000_update_itr(adapter,
2636                                     adapter->tx_itr,
2637                                     adapter->total_tx_packets,
2638                                     adapter->total_tx_bytes);
2639         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2640         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2641                 adapter->tx_itr = low_latency;
2642
2643         adapter->rx_itr = e1000_update_itr(adapter,
2644                                     adapter->rx_itr,
2645                                     adapter->total_rx_packets,
2646                                     adapter->total_rx_bytes);
2647         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2648         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2649                 adapter->rx_itr = low_latency;
2650
2651         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2652
2653         switch (current_itr) {
2654         /* counts and packets in update_itr are dependent on these numbers */
2655         case lowest_latency:
2656                 new_itr = 70000;
2657                 break;
2658         case low_latency:
2659                 new_itr = 20000; /* aka hwitr = ~200 */
2660                 break;
2661         case bulk_latency:
2662                 new_itr = 4000;
2663                 break;
2664         default:
2665                 break;
2666         }
2667
2668 set_itr_now:
2669         if (new_itr != adapter->itr) {
2670                 /* this attempts to bias the interrupt rate towards Bulk
2671                  * by adding intermediate steps when interrupt rate is
2672                  * increasing */
2673                 new_itr = new_itr > adapter->itr ?
2674                              min(adapter->itr + (new_itr >> 2), new_itr) :
2675                              new_itr;
2676                 adapter->itr = new_itr;
2677                 ew32(ITR, 1000000000 / (new_itr * 256));
2678         }
2679 }
2680
2681 #define E1000_TX_FLAGS_CSUM             0x00000001
2682 #define E1000_TX_FLAGS_VLAN             0x00000002
2683 #define E1000_TX_FLAGS_TSO              0x00000004
2684 #define E1000_TX_FLAGS_IPV4             0x00000008
2685 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2686 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2687
2688 static int e1000_tso(struct e1000_adapter *adapter,
2689                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2690 {
2691         struct e1000_context_desc *context_desc;
2692         struct e1000_buffer *buffer_info;
2693         unsigned int i;
2694         u32 cmd_length = 0;
2695         u16 ipcse = 0, tucse, mss;
2696         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2697         int err;
2698
2699         if (skb_is_gso(skb)) {
2700                 if (skb_header_cloned(skb)) {
2701                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2702                         if (err)
2703                                 return err;
2704                 }
2705
2706                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2707                 mss = skb_shinfo(skb)->gso_size;
2708                 if (skb->protocol == htons(ETH_P_IP)) {
2709                         struct iphdr *iph = ip_hdr(skb);
2710                         iph->tot_len = 0;
2711                         iph->check = 0;
2712                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2713                                                                  iph->daddr, 0,
2714                                                                  IPPROTO_TCP,
2715                                                                  0);
2716                         cmd_length = E1000_TXD_CMD_IP;
2717                         ipcse = skb_transport_offset(skb) - 1;
2718                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2719                         ipv6_hdr(skb)->payload_len = 0;
2720                         tcp_hdr(skb)->check =
2721                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2722                                                  &ipv6_hdr(skb)->daddr,
2723                                                  0, IPPROTO_TCP, 0);
2724                         ipcse = 0;
2725                 }
2726                 ipcss = skb_network_offset(skb);
2727                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728                 tucss = skb_transport_offset(skb);
2729                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730                 tucse = 0;
2731
2732                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734
2735                 i = tx_ring->next_to_use;
2736                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737                 buffer_info = &tx_ring->buffer_info[i];
2738
2739                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2740                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2741                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2742                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2743                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2744                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2746                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748
2749                 buffer_info->time_stamp = jiffies;
2750                 buffer_info->next_to_watch = i;
2751
2752                 if (++i == tx_ring->count) i = 0;
2753                 tx_ring->next_to_use = i;
2754
2755                 return true;
2756         }
2757         return false;
2758 }
2759
2760 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2761                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2762 {
2763         struct e1000_context_desc *context_desc;
2764         struct e1000_buffer *buffer_info;
2765         unsigned int i;
2766         u8 css;
2767         u32 cmd_len = E1000_TXD_CMD_DEXT;
2768
2769         if (skb->ip_summed != CHECKSUM_PARTIAL)
2770                 return false;
2771
2772         switch (skb->protocol) {
2773         case cpu_to_be16(ETH_P_IP):
2774                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2775                         cmd_len |= E1000_TXD_CMD_TCP;
2776                 break;
2777         case cpu_to_be16(ETH_P_IPV6):
2778                 /* XXX not handling all IPV6 headers */
2779                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2780                         cmd_len |= E1000_TXD_CMD_TCP;
2781                 break;
2782         default:
2783                 if (unlikely(net_ratelimit()))
2784                         e_warn(drv, "checksum_partial proto=%x!\n",
2785                                skb->protocol);
2786                 break;
2787         }
2788
2789         css = skb_checksum_start_offset(skb);
2790
2791         i = tx_ring->next_to_use;
2792         buffer_info = &tx_ring->buffer_info[i];
2793         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2794
2795         context_desc->lower_setup.ip_config = 0;
2796         context_desc->upper_setup.tcp_fields.tucss = css;
2797         context_desc->upper_setup.tcp_fields.tucso =
2798                 css + skb->csum_offset;
2799         context_desc->upper_setup.tcp_fields.tucse = 0;
2800         context_desc->tcp_seg_setup.data = 0;
2801         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2802
2803         buffer_info->time_stamp = jiffies;
2804         buffer_info->next_to_watch = i;
2805
2806         if (unlikely(++i == tx_ring->count)) i = 0;
2807         tx_ring->next_to_use = i;
2808
2809         return true;
2810 }
2811
2812 #define E1000_MAX_TXD_PWR       12
2813 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2814
2815 static int e1000_tx_map(struct e1000_adapter *adapter,
2816                         struct e1000_tx_ring *tx_ring,
2817                         struct sk_buff *skb, unsigned int first,
2818                         unsigned int max_per_txd, unsigned int nr_frags,
2819                         unsigned int mss)
2820 {
2821         struct e1000_hw *hw = &adapter->hw;
2822         struct pci_dev *pdev = adapter->pdev;
2823         struct e1000_buffer *buffer_info;
2824         unsigned int len = skb_headlen(skb);
2825         unsigned int offset = 0, size, count = 0, i;
2826         unsigned int f, bytecount, segs;
2827
2828         i = tx_ring->next_to_use;
2829
2830         while (len) {
2831                 buffer_info = &tx_ring->buffer_info[i];
2832                 size = min(len, max_per_txd);
2833                 /* Workaround for Controller erratum --
2834                  * descriptor for non-tso packet in a linear SKB that follows a
2835                  * tso gets written back prematurely before the data is fully
2836                  * DMA'd to the controller */
2837                 if (!skb->data_len && tx_ring->last_tx_tso &&
2838                     !skb_is_gso(skb)) {
2839                         tx_ring->last_tx_tso = 0;
2840                         size -= 4;
2841                 }
2842
2843                 /* Workaround for premature desc write-backs
2844                  * in TSO mode.  Append 4-byte sentinel desc */
2845                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2846                         size -= 4;
2847                 /* work-around for errata 10 and it applies
2848                  * to all controllers in PCI-X mode
2849                  * The fix is to make sure that the first descriptor of a
2850                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2851                  */
2852                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2853                                 (size > 2015) && count == 0))
2854                         size = 2015;
2855
2856                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2857                  * terminating buffers within evenly-aligned dwords. */
2858                 if (unlikely(adapter->pcix_82544 &&
2859                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2860                    size > 4))
2861                         size -= 4;
2862
2863                 buffer_info->length = size;
2864                 /* set time_stamp *before* dma to help avoid a possible race */
2865                 buffer_info->time_stamp = jiffies;
2866                 buffer_info->mapped_as_page = false;
2867                 buffer_info->dma = dma_map_single(&pdev->dev,
2868                                                   skb->data + offset,
2869                                                   size, DMA_TO_DEVICE);
2870                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2871                         goto dma_error;
2872                 buffer_info->next_to_watch = i;
2873
2874                 len -= size;
2875                 offset += size;
2876                 count++;
2877                 if (len) {
2878                         i++;
2879                         if (unlikely(i == tx_ring->count))
2880                                 i = 0;
2881                 }
2882         }
2883
2884         for (f = 0; f < nr_frags; f++) {
2885                 struct skb_frag_struct *frag;
2886
2887                 frag = &skb_shinfo(skb)->frags[f];
2888                 len = frag->size;
2889                 offset = 0;
2890
2891                 while (len) {
2892                         unsigned long bufend;
2893                         i++;
2894                         if (unlikely(i == tx_ring->count))
2895                                 i = 0;
2896
2897                         buffer_info = &tx_ring->buffer_info[i];
2898                         size = min(len, max_per_txd);
2899                         /* Workaround for premature desc write-backs
2900                          * in TSO mode.  Append 4-byte sentinel desc */
2901                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2902                                 size -= 4;
2903                         /* Workaround for potential 82544 hang in PCI-X.
2904                          * Avoid terminating buffers within evenly-aligned
2905                          * dwords. */
2906                         bufend = (unsigned long)
2907                                 page_to_phys(skb_frag_page(frag));
2908                         bufend += offset + size - 1;
2909                         if (unlikely(adapter->pcix_82544 &&
2910                                      !(bufend & 4) &&
2911                                      size > 4))
2912                                 size -= 4;
2913
2914                         buffer_info->length = size;
2915                         buffer_info->time_stamp = jiffies;
2916                         buffer_info->mapped_as_page = true;
2917                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2918                                                 offset, size, DMA_TO_DEVICE);
2919                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2920                                 goto dma_error;
2921                         buffer_info->next_to_watch = i;
2922
2923                         len -= size;
2924                         offset += size;
2925                         count++;
2926                 }
2927         }
2928
2929         segs = skb_shinfo(skb)->gso_segs ?: 1;
2930         /* multiply data chunks by size of headers */
2931         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2932
2933         tx_ring->buffer_info[i].skb = skb;
2934         tx_ring->buffer_info[i].segs = segs;
2935         tx_ring->buffer_info[i].bytecount = bytecount;
2936         tx_ring->buffer_info[first].next_to_watch = i;
2937
2938         return count;
2939
2940 dma_error:
2941         dev_err(&pdev->dev, "TX DMA map failed\n");
2942         buffer_info->dma = 0;
2943         if (count)
2944                 count--;
2945
2946         while (count--) {
2947                 if (i==0)
2948                         i += tx_ring->count;
2949                 i--;
2950                 buffer_info = &tx_ring->buffer_info[i];
2951                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2952         }
2953
2954         return 0;
2955 }
2956
2957 static void e1000_tx_queue(struct e1000_adapter *adapter,
2958                            struct e1000_tx_ring *tx_ring, int tx_flags,
2959                            int count)
2960 {
2961         struct e1000_hw *hw = &adapter->hw;
2962         struct e1000_tx_desc *tx_desc = NULL;
2963         struct e1000_buffer *buffer_info;
2964         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2965         unsigned int i;
2966
2967         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2968                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2969                              E1000_TXD_CMD_TSE;
2970                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2971
2972                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2973                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2974         }
2975
2976         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2977                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2978                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2979         }
2980
2981         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2982                 txd_lower |= E1000_TXD_CMD_VLE;
2983                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2984         }
2985
2986         i = tx_ring->next_to_use;
2987
2988         while (count--) {
2989                 buffer_info = &tx_ring->buffer_info[i];
2990                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2991                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2992                 tx_desc->lower.data =
2993                         cpu_to_le32(txd_lower | buffer_info->length);
2994                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2995                 if (unlikely(++i == tx_ring->count)) i = 0;
2996         }
2997
2998         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2999
3000         /* Force memory writes to complete before letting h/w
3001          * know there are new descriptors to fetch.  (Only
3002          * applicable for weak-ordered memory model archs,
3003          * such as IA-64). */
3004         wmb();
3005
3006         tx_ring->next_to_use = i;
3007         writel(i, hw->hw_addr + tx_ring->tdt);
3008         /* we need this if more than one processor can write to our tail
3009          * at a time, it syncronizes IO on IA64/Altix systems */
3010         mmiowb();
3011 }
3012
3013 /**
3014  * 82547 workaround to avoid controller hang in half-duplex environment.
3015  * The workaround is to avoid queuing a large packet that would span
3016  * the internal Tx FIFO ring boundary by notifying the stack to resend
3017  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3018  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3019  * to the beginning of the Tx FIFO.
3020  **/
3021
3022 #define E1000_FIFO_HDR                  0x10
3023 #define E1000_82547_PAD_LEN             0x3E0
3024
3025 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3026                                        struct sk_buff *skb)
3027 {
3028         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3029         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3030
3031         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3032
3033         if (adapter->link_duplex != HALF_DUPLEX)
3034                 goto no_fifo_stall_required;
3035
3036         if (atomic_read(&adapter->tx_fifo_stall))
3037                 return 1;
3038
3039         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3040                 atomic_set(&adapter->tx_fifo_stall, 1);
3041                 return 1;
3042         }
3043
3044 no_fifo_stall_required:
3045         adapter->tx_fifo_head += skb_fifo_len;
3046         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3047                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3048         return 0;
3049 }
3050
3051 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3052 {
3053         struct e1000_adapter *adapter = netdev_priv(netdev);
3054         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3055
3056         netif_stop_queue(netdev);
3057         /* Herbert's original patch had:
3058          *  smp_mb__after_netif_stop_queue();
3059          * but since that doesn't exist yet, just open code it. */
3060         smp_mb();
3061
3062         /* We need to check again in a case another CPU has just
3063          * made room available. */
3064         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3065                 return -EBUSY;
3066
3067         /* A reprieve! */
3068         netif_start_queue(netdev);
3069         ++adapter->restart_queue;
3070         return 0;
3071 }
3072
3073 static int e1000_maybe_stop_tx(struct net_device *netdev,
3074                                struct e1000_tx_ring *tx_ring, int size)
3075 {
3076         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3077                 return 0;
3078         return __e1000_maybe_stop_tx(netdev, size);
3079 }
3080
3081 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3082 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3083                                     struct net_device *netdev)
3084 {
3085         struct e1000_adapter *adapter = netdev_priv(netdev);
3086         struct e1000_hw *hw = &adapter->hw;
3087         struct e1000_tx_ring *tx_ring;
3088         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3089         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3090         unsigned int tx_flags = 0;
3091         unsigned int len = skb_headlen(skb);
3092         unsigned int nr_frags;
3093         unsigned int mss;
3094         int count = 0;
3095         int tso;
3096         unsigned int f;
3097
3098         /* This goes back to the question of how to logically map a tx queue
3099          * to a flow.  Right now, performance is impacted slightly negatively
3100          * if using multiple tx queues.  If the stack breaks away from a
3101          * single qdisc implementation, we can look at this again. */
3102         tx_ring = adapter->tx_ring;
3103
3104         if (unlikely(skb->len <= 0)) {
3105                 dev_kfree_skb_any(skb);
3106                 return NETDEV_TX_OK;
3107         }
3108
3109         mss = skb_shinfo(skb)->gso_size;
3110         /* The controller does a simple calculation to
3111          * make sure there is enough room in the FIFO before
3112          * initiating the DMA for each buffer.  The calc is:
3113          * 4 = ceil(buffer len/mss).  To make sure we don't
3114          * overrun the FIFO, adjust the max buffer len if mss
3115          * drops. */
3116         if (mss) {
3117                 u8 hdr_len;
3118                 max_per_txd = min(mss << 2, max_per_txd);
3119                 max_txd_pwr = fls(max_per_txd) - 1;
3120
3121                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3122                 if (skb->data_len && hdr_len == len) {
3123                         switch (hw->mac_type) {
3124                                 unsigned int pull_size;
3125                         case e1000_82544:
3126                                 /* Make sure we have room to chop off 4 bytes,
3127                                  * and that the end alignment will work out to
3128                                  * this hardware's requirements
3129                                  * NOTE: this is a TSO only workaround
3130                                  * if end byte alignment not correct move us
3131                                  * into the next dword */
3132                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3133                                         break;
3134                                 /* fall through */
3135                                 pull_size = min((unsigned int)4, skb->data_len);
3136                                 if (!__pskb_pull_tail(skb, pull_size)) {
3137                                         e_err(drv, "__pskb_pull_tail "
3138                                               "failed.\n");
3139                                         dev_kfree_skb_any(skb);
3140                                         return NETDEV_TX_OK;
3141                                 }
3142                                 len = skb_headlen(skb);
3143                                 break;
3144                         default:
3145                                 /* do nothing */
3146                                 break;
3147                         }
3148                 }
3149         }
3150
3151         /* reserve a descriptor for the offload context */
3152         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3153                 count++;
3154         count++;
3155
3156         /* Controller Erratum workaround */
3157         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3158                 count++;
3159
3160         count += TXD_USE_COUNT(len, max_txd_pwr);
3161
3162         if (adapter->pcix_82544)
3163                 count++;
3164
3165         /* work-around for errata 10 and it applies to all controllers
3166          * in PCI-X mode, so add one more descriptor to the count
3167          */
3168         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3169                         (len > 2015)))
3170                 count++;
3171
3172         nr_frags = skb_shinfo(skb)->nr_frags;
3173         for (f = 0; f < nr_frags; f++)
3174                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3175                                        max_txd_pwr);
3176         if (adapter->pcix_82544)
3177                 count += nr_frags;
3178
3179         /* need: count + 2 desc gap to keep tail from touching
3180          * head, otherwise try next time */
3181         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3182                 return NETDEV_TX_BUSY;
3183
3184         if (unlikely((hw->mac_type == e1000_82547) &&
3185                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3186                 netif_stop_queue(netdev);
3187                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3188                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3189                 return NETDEV_TX_BUSY;
3190         }
3191
3192         if (vlan_tx_tag_present(skb)) {
3193                 tx_flags |= E1000_TX_FLAGS_VLAN;
3194                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3195         }
3196
3197         first = tx_ring->next_to_use;
3198
3199         tso = e1000_tso(adapter, tx_ring, skb);
3200         if (tso < 0) {
3201                 dev_kfree_skb_any(skb);
3202                 return NETDEV_TX_OK;
3203         }
3204
3205         if (likely(tso)) {
3206                 if (likely(hw->mac_type != e1000_82544))
3207                         tx_ring->last_tx_tso = 1;
3208                 tx_flags |= E1000_TX_FLAGS_TSO;
3209         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3210                 tx_flags |= E1000_TX_FLAGS_CSUM;
3211
3212         if (likely(skb->protocol == htons(ETH_P_IP)))
3213                 tx_flags |= E1000_TX_FLAGS_IPV4;
3214
3215         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3216                              nr_frags, mss);
3217
3218         if (count) {
3219                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3220                 /* Make sure there is space in the ring for the next send. */
3221                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3222
3223         } else {
3224                 dev_kfree_skb_any(skb);
3225                 tx_ring->buffer_info[first].time_stamp = 0;
3226                 tx_ring->next_to_use = first;
3227         }
3228
3229         return NETDEV_TX_OK;
3230 }
3231
3232 /**
3233  * e1000_tx_timeout - Respond to a Tx Hang
3234  * @netdev: network interface device structure
3235  **/
3236
3237 static void e1000_tx_timeout(struct net_device *netdev)
3238 {
3239         struct e1000_adapter *adapter = netdev_priv(netdev);
3240
3241         /* Do the reset outside of interrupt context */
3242         adapter->tx_timeout_count++;
3243         schedule_work(&adapter->reset_task);
3244 }
3245
3246 static void e1000_reset_task(struct work_struct *work)
3247 {
3248         struct e1000_adapter *adapter =
3249                 container_of(work, struct e1000_adapter, reset_task);
3250
3251         e1000_reinit_safe(adapter);
3252 }
3253
3254 /**
3255  * e1000_get_stats - Get System Network Statistics
3256  * @netdev: network interface device structure
3257  *
3258  * Returns the address of the device statistics structure.
3259  * The statistics are actually updated from the watchdog.
3260  **/
3261
3262 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3263 {
3264         /* only return the current stats */
3265         return &netdev->stats;
3266 }
3267
3268 /**
3269  * e1000_change_mtu - Change the Maximum Transfer Unit
3270  * @netdev: network interface device structure
3271  * @new_mtu: new value for maximum frame size
3272  *
3273  * Returns 0 on success, negative on failure
3274  **/
3275
3276 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3277 {
3278         struct e1000_adapter *adapter = netdev_priv(netdev);
3279         struct e1000_hw *hw = &adapter->hw;
3280         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3281
3282         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3283             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3284                 e_err(probe, "Invalid MTU setting\n");
3285                 return -EINVAL;
3286         }
3287
3288         /* Adapter-specific max frame size limits. */
3289         switch (hw->mac_type) {
3290         case e1000_undefined ... e1000_82542_rev2_1:
3291                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3292                         e_err(probe, "Jumbo Frames not supported.\n");
3293                         return -EINVAL;
3294                 }
3295                 break;
3296         default:
3297                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3298                 break;
3299         }
3300
3301         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3302                 msleep(1);
3303         /* e1000_down has a dependency on max_frame_size */
3304         hw->max_frame_size = max_frame;
3305         if (netif_running(netdev))
3306                 e1000_down(adapter);
3307
3308         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3309          * means we reserve 2 more, this pushes us to allocate from the next
3310          * larger slab size.
3311          * i.e. RXBUFFER_2048 --> size-4096 slab
3312          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3313          *  fragmented skbs */
3314
3315         if (max_frame <= E1000_RXBUFFER_2048)
3316                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3317         else
3318 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3319                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3320 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3321                 adapter->rx_buffer_len = PAGE_SIZE;
3322 #endif
3323
3324         /* adjust allocation if LPE protects us, and we aren't using SBP */
3325         if (!hw->tbi_compatibility_on &&
3326             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3327              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3328                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3329
3330         pr_info("%s changing MTU from %d to %d\n",
3331                 netdev->name, netdev->mtu, new_mtu);
3332         netdev->mtu = new_mtu;
3333
3334         if (netif_running(netdev))
3335                 e1000_up(adapter);
3336         else
3337                 e1000_reset(adapter);
3338
3339         clear_bit(__E1000_RESETTING, &adapter->flags);
3340
3341         return 0;
3342 }
3343
3344 /**
3345  * e1000_update_stats - Update the board statistics counters
3346  * @adapter: board private structure
3347  **/
3348
3349 void e1000_update_stats(struct e1000_adapter *adapter)
3350 {
3351         struct net_device *netdev = adapter->netdev;
3352         struct e1000_hw *hw = &adapter->hw;
3353         struct pci_dev *pdev = adapter->pdev;
3354         unsigned long flags;
3355         u16 phy_tmp;
3356
3357 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3358
3359         /*
3360          * Prevent stats update while adapter is being reset, or if the pci
3361          * connection is down.
3362          */
3363         if (adapter->link_speed == 0)
3364                 return;
3365         if (pci_channel_offline(pdev))
3366                 return;
3367
3368         spin_lock_irqsave(&adapter->stats_lock, flags);
3369
3370         /* these counters are modified from e1000_tbi_adjust_stats,
3371          * called from the interrupt context, so they must only
3372          * be written while holding adapter->stats_lock
3373          */
3374
3375         adapter->stats.crcerrs += er32(CRCERRS);
3376         adapter->stats.gprc += er32(GPRC);
3377         adapter->stats.gorcl += er32(GORCL);
3378         adapter->stats.gorch += er32(GORCH);
3379         adapter->stats.bprc += er32(BPRC);
3380         adapter->stats.mprc += er32(MPRC);
3381         adapter->stats.roc += er32(ROC);
3382
3383         adapter->stats.prc64 += er32(PRC64);
3384         adapter->stats.prc127 += er32(PRC127);
3385         adapter->stats.prc255 += er32(PRC255);
3386         adapter->stats.prc511 += er32(PRC511);
3387         adapter->stats.prc1023 += er32(PRC1023);
3388         adapter->stats.prc1522 += er32(PRC1522);
3389
3390         adapter->stats.symerrs += er32(SYMERRS);
3391         adapter->stats.mpc += er32(MPC);
3392         adapter->stats.scc += er32(SCC);
3393         adapter->stats.ecol += er32(ECOL);
3394         adapter->stats.mcc += er32(MCC);
3395         adapter->stats.latecol += er32(LATECOL);
3396         adapter->stats.dc += er32(DC);
3397         adapter->stats.sec += er32(SEC);
3398         adapter->stats.rlec += er32(RLEC);
3399         adapter->stats.xonrxc += er32(XONRXC);
3400         adapter->stats.xontxc += er32(XONTXC);
3401         adapter->stats.xoffrxc += er32(XOFFRXC);
3402         adapter->stats.xofftxc += er32(XOFFTXC);
3403         adapter->stats.fcruc += er32(FCRUC);
3404         adapter->stats.gptc += er32(GPTC);
3405         adapter->stats.gotcl += er32(GOTCL);
3406         adapter->stats.gotch += er32(GOTCH);
3407         adapter->stats.rnbc += er32(RNBC);
3408         adapter->stats.ruc += er32(RUC);
3409         adapter->stats.rfc += er32(RFC);
3410         adapter->stats.rjc += er32(RJC);
3411         adapter->stats.torl += er32(TORL);
3412         adapter->stats.torh += er32(TORH);
3413         adapter->stats.totl += er32(TOTL);
3414         adapter->stats.toth += er32(TOTH);
3415         adapter->stats.tpr += er32(TPR);
3416
3417         adapter->stats.ptc64 += er32(PTC64);
3418         adapter->stats.ptc127 += er32(PTC127);
3419         adapter->stats.ptc255 += er32(PTC255);
3420         adapter->stats.ptc511 += er32(PTC511);
3421         adapter->stats.ptc1023 += er32(PTC1023);
3422         adapter->stats.ptc1522 += er32(PTC1522);
3423
3424         adapter->stats.mptc += er32(MPTC);
3425         adapter->stats.bptc += er32(BPTC);
3426
3427         /* used for adaptive IFS */
3428
3429         hw->tx_packet_delta = er32(TPT);
3430         adapter->stats.tpt += hw->tx_packet_delta;
3431         hw->collision_delta = er32(COLC);
3432         adapter->stats.colc += hw->collision_delta;
3433
3434         if (hw->mac_type >= e1000_82543) {
3435                 adapter->stats.algnerrc += er32(ALGNERRC);
3436                 adapter->stats.rxerrc += er32(RXERRC);
3437                 adapter->stats.tncrs += er32(TNCRS);
3438                 adapter->stats.cexterr += er32(CEXTERR);
3439                 adapter->stats.tsctc += er32(TSCTC);
3440                 adapter->stats.tsctfc += er32(TSCTFC);
3441         }
3442
3443         /* Fill out the OS statistics structure */
3444         netdev->stats.multicast = adapter->stats.mprc;
3445         netdev->stats.collisions = adapter->stats.colc;
3446
3447         /* Rx Errors */
3448
3449         /* RLEC on some newer hardware can be incorrect so build
3450         * our own version based on RUC and ROC */
3451         netdev->stats.rx_errors = adapter->stats.rxerrc +
3452                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3453                 adapter->stats.ruc + adapter->stats.roc +
3454                 adapter->stats.cexterr;
3455         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3456         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3457         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3458         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3459         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3460
3461         /* Tx Errors */
3462         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3463         netdev->stats.tx_errors = adapter->stats.txerrc;
3464         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3465         netdev->stats.tx_window_errors = adapter->stats.latecol;
3466         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3467         if (hw->bad_tx_carr_stats_fd &&
3468             adapter->link_duplex == FULL_DUPLEX) {
3469                 netdev->stats.tx_carrier_errors = 0;
3470                 adapter->stats.tncrs = 0;
3471         }
3472
3473         /* Tx Dropped needs to be maintained elsewhere */
3474
3475         /* Phy Stats */
3476         if (hw->media_type == e1000_media_type_copper) {
3477                 if ((adapter->link_speed == SPEED_1000) &&
3478                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3479                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3480                         adapter->phy_stats.idle_errors += phy_tmp;
3481                 }
3482
3483                 if ((hw->mac_type <= e1000_82546) &&
3484                    (hw->phy_type == e1000_phy_m88) &&
3485                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3486                         adapter->phy_stats.receive_errors += phy_tmp;
3487         }
3488
3489         /* Management Stats */
3490         if (hw->has_smbus) {
3491                 adapter->stats.mgptc += er32(MGTPTC);
3492                 adapter->stats.mgprc += er32(MGTPRC);
3493                 adapter->stats.mgpdc += er32(MGTPDC);
3494         }
3495
3496         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3497 }
3498
3499 /**
3500  * e1000_intr - Interrupt Handler
3501  * @irq: interrupt number
3502  * @data: pointer to a network interface device structure
3503  **/
3504
3505 static irqreturn_t e1000_intr(int irq, void *data)
3506 {
3507         struct net_device *netdev = data;
3508         struct e1000_adapter *adapter = netdev_priv(netdev);
3509         struct e1000_hw *hw = &adapter->hw;
3510         u32 icr = er32(ICR);
3511
3512         if (unlikely((!icr)))
3513                 return IRQ_NONE;  /* Not our interrupt */
3514
3515         /*
3516          * we might have caused the interrupt, but the above
3517          * read cleared it, and just in case the driver is
3518          * down there is nothing to do so return handled
3519          */
3520         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3521                 return IRQ_HANDLED;
3522
3523         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3524                 hw->get_link_status = 1;
3525                 /* guard against interrupt when we're going down */
3526                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3527                         schedule_delayed_work(&adapter->watchdog_task, 1);
3528         }
3529
3530         /* disable interrupts, without the synchronize_irq bit */
3531         ew32(IMC, ~0);
3532         E1000_WRITE_FLUSH();
3533
3534         if (likely(napi_schedule_prep(&adapter->napi))) {
3535                 adapter->total_tx_bytes = 0;
3536                 adapter->total_tx_packets = 0;
3537                 adapter->total_rx_bytes = 0;
3538                 adapter->total_rx_packets = 0;
3539                 __napi_schedule(&adapter->napi);
3540         } else {
3541                 /* this really should not happen! if it does it is basically a
3542                  * bug, but not a hard error, so enable ints and continue */
3543                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3544                         e1000_irq_enable(adapter);
3545         }
3546
3547         return IRQ_HANDLED;
3548 }
3549
3550 /**
3551  * e1000_clean - NAPI Rx polling callback
3552  * @adapter: board private structure
3553  **/
3554 static int e1000_clean(struct napi_struct *napi, int budget)
3555 {
3556         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3557         int tx_clean_complete = 0, work_done = 0;
3558
3559         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3560
3561         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3562
3563         if (!tx_clean_complete)
3564                 work_done = budget;
3565
3566         /* If budget not fully consumed, exit the polling mode */
3567         if (work_done < budget) {
3568                 if (likely(adapter->itr_setting & 3))
3569                         e1000_set_itr(adapter);
3570                 napi_complete(napi);
3571                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3572                         e1000_irq_enable(adapter);
3573         }
3574
3575         return work_done;
3576 }
3577
3578 /**
3579  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3580  * @adapter: board private structure
3581  **/
3582 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3583                                struct e1000_tx_ring *tx_ring)
3584 {
3585         struct e1000_hw *hw = &adapter->hw;
3586         struct net_device *netdev = adapter->netdev;
3587         struct e1000_tx_desc *tx_desc, *eop_desc;
3588         struct e1000_buffer *buffer_info;
3589         unsigned int i, eop;
3590         unsigned int count = 0;
3591         unsigned int total_tx_bytes=0, total_tx_packets=0;
3592
3593         i = tx_ring->next_to_clean;
3594         eop = tx_ring->buffer_info[i].next_to_watch;
3595         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3596
3597         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3598                (count < tx_ring->count)) {
3599                 bool cleaned = false;
3600                 rmb();  /* read buffer_info after eop_desc */
3601                 for ( ; !cleaned; count++) {
3602                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3603                         buffer_info = &tx_ring->buffer_info[i];
3604                         cleaned = (i == eop);
3605
3606                         if (cleaned) {
3607                                 total_tx_packets += buffer_info->segs;
3608                                 total_tx_bytes += buffer_info->bytecount;
3609                         }
3610                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3611                         tx_desc->upper.data = 0;
3612
3613                         if (unlikely(++i == tx_ring->count)) i = 0;
3614                 }
3615
3616                 eop = tx_ring->buffer_info[i].next_to_watch;
3617                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3618         }
3619
3620         tx_ring->next_to_clean = i;
3621
3622 #define TX_WAKE_THRESHOLD 32
3623         if (unlikely(count && netif_carrier_ok(netdev) &&
3624                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3625                 /* Make sure that anybody stopping the queue after this
3626                  * sees the new next_to_clean.
3627                  */
3628                 smp_mb();
3629
3630                 if (netif_queue_stopped(netdev) &&
3631                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3632                         netif_wake_queue(netdev);
3633                         ++adapter->restart_queue;
3634                 }
3635         }
3636
3637         if (adapter->detect_tx_hung) {
3638                 /* Detect a transmit hang in hardware, this serializes the
3639                  * check with the clearing of time_stamp and movement of i */
3640                 adapter->detect_tx_hung = false;
3641                 if (tx_ring->buffer_info[eop].time_stamp &&
3642                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3643                                (adapter->tx_timeout_factor * HZ)) &&
3644                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3645
3646                         /* detected Tx unit hang */
3647                         e_err(drv, "Detected Tx Unit Hang\n"
3648                               "  Tx Queue             <%lu>\n"
3649                               "  TDH                  <%x>\n"
3650                               "  TDT                  <%x>\n"
3651                               "  next_to_use          <%x>\n"
3652                               "  next_to_clean        <%x>\n"
3653                               "buffer_info[next_to_clean]\n"
3654                               "  time_stamp           <%lx>\n"
3655                               "  next_to_watch        <%x>\n"
3656                               "  jiffies              <%lx>\n"
3657                               "  next_to_watch.status <%x>\n",
3658                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3659                                         sizeof(struct e1000_tx_ring)),
3660                                 readl(hw->hw_addr + tx_ring->tdh),
3661                                 readl(hw->hw_addr + tx_ring->tdt),
3662                                 tx_ring->next_to_use,
3663                                 tx_ring->next_to_clean,
3664                                 tx_ring->buffer_info[eop].time_stamp,
3665                                 eop,
3666                                 jiffies,
3667                                 eop_desc->upper.fields.status);
3668                         netif_stop_queue(netdev);
3669                 }
3670         }
3671         adapter->total_tx_bytes += total_tx_bytes;
3672         adapter->total_tx_packets += total_tx_packets;
3673         netdev->stats.tx_bytes += total_tx_bytes;
3674         netdev->stats.tx_packets += total_tx_packets;
3675         return count < tx_ring->count;
3676 }
3677
3678 /**
3679  * e1000_rx_checksum - Receive Checksum Offload for 82543
3680  * @adapter:     board private structure
3681  * @status_err:  receive descriptor status and error fields
3682  * @csum:        receive descriptor csum field
3683  * @sk_buff:     socket buffer with received data
3684  **/
3685
3686 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3687                               u32 csum, struct sk_buff *skb)
3688 {
3689         struct e1000_hw *hw = &adapter->hw;
3690         u16 status = (u16)status_err;
3691         u8 errors = (u8)(status_err >> 24);
3692
3693         skb_checksum_none_assert(skb);
3694
3695         /* 82543 or newer only */
3696         if (unlikely(hw->mac_type < e1000_82543)) return;
3697         /* Ignore Checksum bit is set */
3698         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3699         /* TCP/UDP checksum error bit is set */
3700         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3701                 /* let the stack verify checksum errors */
3702                 adapter->hw_csum_err++;
3703                 return;
3704         }
3705         /* TCP/UDP Checksum has not been calculated */
3706         if (!(status & E1000_RXD_STAT_TCPCS))
3707                 return;
3708
3709         /* It must be a TCP or UDP packet with a valid checksum */
3710         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3711                 /* TCP checksum is good */
3712                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3713         }
3714         adapter->hw_csum_good++;
3715 }
3716
3717 /**
3718  * e1000_consume_page - helper function
3719  **/
3720 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3721                                u16 length)
3722 {
3723         bi->page = NULL;
3724         skb->len += length;
3725         skb->data_len += length;
3726         skb->truesize += length;
3727 }
3728
3729 /**
3730  * e1000_receive_skb - helper function to handle rx indications
3731  * @adapter: board private structure
3732  * @status: descriptor status field as written by hardware
3733  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3734  * @skb: pointer to sk_buff to be indicated to stack
3735  */
3736 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3737                               __le16 vlan, struct sk_buff *skb)
3738 {
3739         skb->protocol = eth_type_trans(skb, adapter->netdev);
3740
3741         if (status & E1000_RXD_STAT_VP) {
3742                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3743
3744                 __vlan_hwaccel_put_tag(skb, vid);
3745         }
3746         napi_gro_receive(&adapter->napi, skb);
3747 }
3748
3749 /**
3750  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3751  * @adapter: board private structure
3752  * @rx_ring: ring to clean
3753  * @work_done: amount of napi work completed this call
3754  * @work_to_do: max amount of work allowed for this call to do
3755  *
3756  * the return value indicates whether actual cleaning was done, there
3757  * is no guarantee that everything was cleaned
3758  */
3759 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3760                                      struct e1000_rx_ring *rx_ring,
3761                                      int *work_done, int work_to_do)
3762 {
3763         struct e1000_hw *hw = &adapter->hw;
3764         struct net_device *netdev = adapter->netdev;
3765         struct pci_dev *pdev = adapter->pdev;
3766         struct e1000_rx_desc *rx_desc, *next_rxd;
3767         struct e1000_buffer *buffer_info, *next_buffer;
3768         unsigned long irq_flags;
3769         u32 length;
3770         unsigned int i;
3771         int cleaned_count = 0;
3772         bool cleaned = false;
3773         unsigned int total_rx_bytes=0, total_rx_packets=0;
3774
3775         i = rx_ring->next_to_clean;
3776         rx_desc = E1000_RX_DESC(*rx_ring, i);
3777         buffer_info = &rx_ring->buffer_info[i];
3778
3779         while (rx_desc->status & E1000_RXD_STAT_DD) {
3780                 struct sk_buff *skb;
3781                 u8 status;
3782
3783                 if (*work_done >= work_to_do)
3784                         break;
3785                 (*work_done)++;
3786                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3787
3788                 status = rx_desc->status;
3789                 skb = buffer_info->skb;
3790                 buffer_info->skb = NULL;
3791
3792                 if (++i == rx_ring->count) i = 0;
3793                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3794                 prefetch(next_rxd);
3795
3796                 next_buffer = &rx_ring->buffer_info[i];
3797
3798                 cleaned = true;
3799                 cleaned_count++;
3800                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3801                                buffer_info->length, DMA_FROM_DEVICE);
3802                 buffer_info->dma = 0;
3803
3804                 length = le16_to_cpu(rx_desc->length);
3805
3806                 /* errors is only valid for DD + EOP descriptors */
3807                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3808                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3809                         u8 last_byte = *(skb->data + length - 1);
3810                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3811                                        last_byte)) {
3812                                 spin_lock_irqsave(&adapter->stats_lock,
3813                                                   irq_flags);
3814                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3815                                                        length, skb->data);
3816                                 spin_unlock_irqrestore(&adapter->stats_lock,
3817                                                        irq_flags);
3818                                 length--;
3819                         } else {
3820                                 /* recycle both page and skb */
3821                                 buffer_info->skb = skb;
3822                                 /* an error means any chain goes out the window
3823                                  * too */
3824                                 if (rx_ring->rx_skb_top)
3825                                         dev_kfree_skb(rx_ring->rx_skb_top);
3826                                 rx_ring->rx_skb_top = NULL;
3827                                 goto next_desc;
3828                         }
3829                 }
3830
3831 #define rxtop rx_ring->rx_skb_top
3832                 if (!(status & E1000_RXD_STAT_EOP)) {
3833                         /* this descriptor is only the beginning (or middle) */
3834                         if (!rxtop) {
3835                                 /* this is the beginning of a chain */
3836                                 rxtop = skb;
3837                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3838                                                    0, length);
3839                         } else {
3840                                 /* this is the middle of a chain */
3841                                 skb_fill_page_desc(rxtop,
3842                                     skb_shinfo(rxtop)->nr_frags,
3843                                     buffer_info->page, 0, length);
3844                                 /* re-use the skb, only consumed the page */
3845                                 buffer_info->skb = skb;
3846                         }
3847                         e1000_consume_page(buffer_info, rxtop, length);
3848                         goto next_desc;
3849                 } else {
3850                         if (rxtop) {
3851                                 /* end of the chain */
3852                                 skb_fill_page_desc(rxtop,
3853                                     skb_shinfo(rxtop)->nr_frags,
3854                                     buffer_info->page, 0, length);
3855                                 /* re-use the current skb, we only consumed the
3856                                  * page */
3857                                 buffer_info->skb = skb;
3858                                 skb = rxtop;
3859                                 rxtop = NULL;
3860                                 e1000_consume_page(buffer_info, skb, length);
3861                         } else {
3862                                 /* no chain, got EOP, this buf is the packet
3863                                  * copybreak to save the put_page/alloc_page */
3864                                 if (length <= copybreak &&
3865                                     skb_tailroom(skb) >= length) {
3866                                         u8 *vaddr;
3867                                         vaddr = kmap_atomic(buffer_info->page,
3868                                                             KM_SKB_DATA_SOFTIRQ);
3869                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3870                                         kunmap_atomic(vaddr,
3871                                                       KM_SKB_DATA_SOFTIRQ);
3872                                         /* re-use the page, so don't erase
3873                                          * buffer_info->page */
3874                                         skb_put(skb, length);
3875                                 } else {
3876                                         skb_fill_page_desc(skb, 0,
3877                                                            buffer_info->page, 0,
3878                                                            length);
3879                                         e1000_consume_page(buffer_info, skb,
3880                                                            length);
3881                                 }
3882                         }
3883                 }
3884
3885                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3886                 e1000_rx_checksum(adapter,
3887                                   (u32)(status) |
3888                                   ((u32)(rx_desc->errors) << 24),
3889                                   le16_to_cpu(rx_desc->csum), skb);
3890
3891                 pskb_trim(skb, skb->len - 4);
3892
3893                 /* probably a little skewed due to removing CRC */
3894                 total_rx_bytes += skb->len;
3895                 total_rx_packets++;
3896
3897                 /* eth type trans needs skb->data to point to something */
3898                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3899                         e_err(drv, "pskb_may_pull failed.\n");
3900                         dev_kfree_skb(skb);
3901                         goto next_desc;
3902                 }
3903
3904                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3905
3906 next_desc:
3907                 rx_desc->status = 0;
3908
3909                 /* return some buffers to hardware, one at a time is too slow */
3910                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3911                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3912                         cleaned_count = 0;
3913                 }
3914
3915                 /* use prefetched values */
3916                 rx_desc = next_rxd;
3917                 buffer_info = next_buffer;
3918         }
3919         rx_ring->next_to_clean = i;
3920
3921         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3922         if (cleaned_count)
3923                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3924
3925         adapter->total_rx_packets += total_rx_packets;
3926         adapter->total_rx_bytes += total_rx_bytes;
3927         netdev->stats.rx_bytes += total_rx_bytes;
3928         netdev->stats.rx_packets += total_rx_packets;
3929         return cleaned;
3930 }
3931
3932 /*
3933  * this should improve performance for small packets with large amounts
3934  * of reassembly being done in the stack
3935  */
3936 static void e1000_check_copybreak(struct net_device *netdev,
3937                                  struct e1000_buffer *buffer_info,
3938                                  u32 length, struct sk_buff **skb)
3939 {
3940         struct sk_buff *new_skb;
3941
3942         if (length > copybreak)
3943                 return;
3944
3945         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3946         if (!new_skb)
3947                 return;
3948
3949         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3950                                        (*skb)->data - NET_IP_ALIGN,
3951                                        length + NET_IP_ALIGN);
3952         /* save the skb in buffer_info as good */
3953         buffer_info->skb = *skb;
3954         *skb = new_skb;
3955 }
3956
3957 /**
3958  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3959  * @adapter: board private structure
3960  * @rx_ring: ring to clean
3961  * @work_done: amount of napi work completed this call
3962  * @work_to_do: max amount of work allowed for this call to do
3963  */
3964 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3965                                struct e1000_rx_ring *rx_ring,
3966                                int *work_done, int work_to_do)
3967 {
3968         struct e1000_hw *hw = &adapter->hw;
3969         struct net_device *netdev = adapter->netdev;
3970         struct pci_dev *pdev = adapter->pdev;
3971         struct e1000_rx_desc *rx_desc, *next_rxd;
3972         struct e1000_buffer *buffer_info, *next_buffer;
3973         unsigned long flags;
3974         u32 length;
3975         unsigned int i;
3976         int cleaned_count = 0;
3977         bool cleaned = false;
3978         unsigned int total_rx_bytes=0, total_rx_packets=0;
3979
3980         i = rx_ring->next_to_clean;
3981         rx_desc = E1000_RX_DESC(*rx_ring, i);
3982         buffer_info = &rx_ring->buffer_info[i];
3983
3984         while (rx_desc->status & E1000_RXD_STAT_DD) {
3985                 struct sk_buff *skb;
3986                 u8 status;
3987
3988                 if (*work_done >= work_to_do)
3989                         break;
3990                 (*work_done)++;
3991                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3992
3993                 status = rx_desc->status;
3994                 skb = buffer_info->skb;
3995                 buffer_info->skb = NULL;
3996
3997                 prefetch(skb->data - NET_IP_ALIGN);
3998
3999                 if (++i == rx_ring->count) i = 0;
4000                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4001                 prefetch(next_rxd);
4002
4003                 next_buffer = &rx_ring->buffer_info[i];
4004
4005                 cleaned = true;
4006                 cleaned_count++;
4007                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4008                                  buffer_info->length, DMA_FROM_DEVICE);
4009                 buffer_info->dma = 0;
4010
4011                 length = le16_to_cpu(rx_desc->length);
4012                 /* !EOP means multiple descriptors were used to store a single
4013                  * packet, if thats the case we need to toss it.  In fact, we
4014                  * to toss every packet with the EOP bit clear and the next
4015                  * frame that _does_ have the EOP bit set, as it is by
4016                  * definition only a frame fragment
4017                  */
4018                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4019                         adapter->discarding = true;
4020
4021                 if (adapter->discarding) {
4022                         /* All receives must fit into a single buffer */
4023                         e_dbg("Receive packet consumed multiple buffers\n");
4024                         /* recycle */
4025                         buffer_info->skb = skb;
4026                         if (status & E1000_RXD_STAT_EOP)
4027                                 adapter->discarding = false;
4028                         goto next_desc;
4029                 }
4030
4031                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4032                         u8 last_byte = *(skb->data + length - 1);
4033                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4034                                        last_byte)) {
4035                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4036                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4037                                                        length, skb->data);
4038                                 spin_unlock_irqrestore(&adapter->stats_lock,
4039                                                        flags);
4040                                 length--;
4041                         } else {
4042                                 /* recycle */
4043                                 buffer_info->skb = skb;
4044                                 goto next_desc;
4045                         }
4046                 }
4047
4048                 /* adjust length to remove Ethernet CRC, this must be
4049                  * done after the TBI_ACCEPT workaround above */
4050                 length -= 4;
4051
4052                 /* probably a little skewed due to removing CRC */
4053                 total_rx_bytes += length;
4054                 total_rx_packets++;
4055
4056                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4057
4058                 skb_put(skb, length);
4059
4060                 /* Receive Checksum Offload */
4061                 e1000_rx_checksum(adapter,
4062                                   (u32)(status) |
4063                                   ((u32)(rx_desc->errors) << 24),
4064                                   le16_to_cpu(rx_desc->csum), skb);
4065
4066                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4067
4068 next_desc:
4069                 rx_desc->status = 0;
4070
4071                 /* return some buffers to hardware, one at a time is too slow */
4072                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4073                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4074                         cleaned_count = 0;
4075                 }
4076
4077                 /* use prefetched values */
4078                 rx_desc = next_rxd;
4079                 buffer_info = next_buffer;
4080         }
4081         rx_ring->next_to_clean = i;
4082
4083         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4084         if (cleaned_count)
4085                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4086
4087         adapter->total_rx_packets += total_rx_packets;
4088         adapter->total_rx_bytes += total_rx_bytes;
4089         netdev->stats.rx_bytes += total_rx_bytes;
4090         netdev->stats.rx_packets += total_rx_packets;
4091         return cleaned;
4092 }
4093
4094 /**
4095  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4096  * @adapter: address of board private structure
4097  * @rx_ring: pointer to receive ring structure
4098  * @cleaned_count: number of buffers to allocate this pass
4099  **/
4100
4101 static void
4102 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4103                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4104 {
4105         struct net_device *netdev = adapter->netdev;
4106         struct pci_dev *pdev = adapter->pdev;
4107         struct e1000_rx_desc *rx_desc;
4108         struct e1000_buffer *buffer_info;
4109         struct sk_buff *skb;
4110         unsigned int i;
4111         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4112
4113         i = rx_ring->next_to_use;
4114         buffer_info = &rx_ring->buffer_info[i];
4115
4116         while (cleaned_count--) {
4117                 skb = buffer_info->skb;
4118                 if (skb) {
4119                         skb_trim(skb, 0);
4120                         goto check_page;
4121                 }
4122
4123                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4124                 if (unlikely(!skb)) {
4125                         /* Better luck next round */
4126                         adapter->alloc_rx_buff_failed++;
4127                         break;
4128                 }
4129
4130                 /* Fix for errata 23, can't cross 64kB boundary */
4131                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4132                         struct sk_buff *oldskb = skb;
4133                         e_err(rx_err, "skb align check failed: %u bytes at "
4134                               "%p\n", bufsz, skb->data);
4135                         /* Try again, without freeing the previous */
4136                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4137                         /* Failed allocation, critical failure */
4138                         if (!skb) {
4139                                 dev_kfree_skb(oldskb);
4140                                 adapter->alloc_rx_buff_failed++;
4141                                 break;
4142                         }
4143
4144                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4145                                 /* give up */
4146                                 dev_kfree_skb(skb);
4147                                 dev_kfree_skb(oldskb);
4148                                 break; /* while (cleaned_count--) */
4149                         }
4150
4151                         /* Use new allocation */
4152                         dev_kfree_skb(oldskb);
4153                 }
4154                 buffer_info->skb = skb;
4155                 buffer_info->length = adapter->rx_buffer_len;
4156 check_page:
4157                 /* allocate a new page if necessary */
4158                 if (!buffer_info->page) {
4159                         buffer_info->page = alloc_page(GFP_ATOMIC);
4160                         if (unlikely(!buffer_info->page)) {
4161                                 adapter->alloc_rx_buff_failed++;
4162                                 break;
4163                         }
4164                 }
4165
4166                 if (!buffer_info->dma) {
4167                         buffer_info->dma = dma_map_page(&pdev->dev,
4168                                                         buffer_info->page, 0,
4169                                                         buffer_info->length,
4170                                                         DMA_FROM_DEVICE);
4171                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4172                                 put_page(buffer_info->page);
4173                                 dev_kfree_skb(skb);
4174                                 buffer_info->page = NULL;
4175                                 buffer_info->skb = NULL;
4176                                 buffer_info->dma = 0;
4177                                 adapter->alloc_rx_buff_failed++;
4178                                 break; /* while !buffer_info->skb */
4179                         }
4180                 }
4181
4182                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4183                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4184
4185                 if (unlikely(++i == rx_ring->count))
4186                         i = 0;
4187                 buffer_info = &rx_ring->buffer_info[i];
4188         }
4189
4190         if (likely(rx_ring->next_to_use != i)) {
4191                 rx_ring->next_to_use = i;
4192                 if (unlikely(i-- == 0))
4193                         i = (rx_ring->count - 1);
4194
4195                 /* Force memory writes to complete before letting h/w
4196                  * know there are new descriptors to fetch.  (Only
4197                  * applicable for weak-ordered memory model archs,
4198                  * such as IA-64). */
4199                 wmb();
4200                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4201         }
4202 }
4203
4204 /**
4205  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4206  * @adapter: address of board private structure
4207  **/
4208
4209 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4210                                    struct e1000_rx_ring *rx_ring,
4211                                    int cleaned_count)
4212 {
4213         struct e1000_hw *hw = &adapter->hw;
4214         struct net_device *netdev = adapter->netdev;
4215         struct pci_dev *pdev = adapter->pdev;
4216         struct e1000_rx_desc *rx_desc;
4217         struct e1000_buffer *buffer_info;
4218         struct sk_buff *skb;
4219         unsigned int i;
4220         unsigned int bufsz = adapter->rx_buffer_len;
4221
4222         i = rx_ring->next_to_use;
4223         buffer_info = &rx_ring->buffer_info[i];
4224
4225         while (cleaned_count--) {
4226                 skb = buffer_info->skb;
4227                 if (skb) {
4228                         skb_trim(skb, 0);
4229                         goto map_skb;
4230                 }
4231
4232                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4233                 if (unlikely(!skb)) {
4234                         /* Better luck next round */
4235                         adapter->alloc_rx_buff_failed++;
4236                         break;
4237                 }
4238
4239                 /* Fix for errata 23, can't cross 64kB boundary */
4240                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4241                         struct sk_buff *oldskb = skb;
4242                         e_err(rx_err, "skb align check failed: %u bytes at "
4243                               "%p\n", bufsz, skb->data);
4244                         /* Try again, without freeing the previous */
4245                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4246                         /* Failed allocation, critical failure */
4247                         if (!skb) {
4248                                 dev_kfree_skb(oldskb);
4249                                 adapter->alloc_rx_buff_failed++;
4250                                 break;
4251                         }
4252
4253                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4254                                 /* give up */
4255                                 dev_kfree_skb(skb);
4256                                 dev_kfree_skb(oldskb);
4257                                 adapter->alloc_rx_buff_failed++;
4258                                 break; /* while !buffer_info->skb */
4259                         }
4260
4261                         /* Use new allocation */
4262                         dev_kfree_skb(oldskb);
4263                 }
4264                 buffer_info->skb = skb;
4265                 buffer_info->length = adapter->rx_buffer_len;
4266 map_skb:
4267                 buffer_info->dma = dma_map_single(&pdev->dev,
4268                                                   skb->data,
4269                                                   buffer_info->length,
4270                                                   DMA_FROM_DEVICE);
4271                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4272                         dev_kfree_skb(skb);
4273                         buffer_info->skb = NULL;
4274                         buffer_info->dma = 0;
4275                         adapter->alloc_rx_buff_failed++;
4276                         break; /* while !buffer_info->skb */
4277                 }
4278
4279                 /*
4280                  * XXX if it was allocated cleanly it will never map to a
4281                  * boundary crossing
4282                  */
4283
4284                 /* Fix for errata 23, can't cross 64kB boundary */
4285                 if (!e1000_check_64k_bound(adapter,
4286                                         (void *)(unsigned long)buffer_info->dma,
4287                                         adapter->rx_buffer_len)) {
4288                         e_err(rx_err, "dma align check failed: %u bytes at "
4289                               "%p\n", adapter->rx_buffer_len,
4290                               (void *)(unsigned long)buffer_info->dma);
4291                         dev_kfree_skb(skb);
4292                         buffer_info->skb = NULL;
4293
4294                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4295                                          adapter->rx_buffer_len,
4296                                          DMA_FROM_DEVICE);
4297                         buffer_info->dma = 0;
4298
4299                         adapter->alloc_rx_buff_failed++;
4300                         break; /* while !buffer_info->skb */
4301                 }
4302                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4303                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4304
4305                 if (unlikely(++i == rx_ring->count))
4306                         i = 0;
4307                 buffer_info = &rx_ring->buffer_info[i];
4308         }
4309
4310         if (likely(rx_ring->next_to_use != i)) {
4311                 rx_ring->next_to_use = i;
4312                 if (unlikely(i-- == 0))
4313                         i = (rx_ring->count - 1);
4314
4315                 /* Force memory writes to complete before letting h/w
4316                  * know there are new descriptors to fetch.  (Only
4317                  * applicable for weak-ordered memory model archs,
4318                  * such as IA-64). */
4319                 wmb();
4320                 writel(i, hw->hw_addr + rx_ring->rdt);
4321         }
4322 }
4323
4324 /**
4325  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4326  * @adapter:
4327  **/
4328
4329 static void e1000_smartspeed(struct e1000_adapter *adapter)
4330 {
4331         struct e1000_hw *hw = &adapter->hw;
4332         u16 phy_status;
4333         u16 phy_ctrl;
4334
4335         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4336            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4337                 return;
4338
4339         if (adapter->smartspeed == 0) {
4340                 /* If Master/Slave config fault is asserted twice,
4341                  * we assume back-to-back */
4342                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4343                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4344                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4345                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4346                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4347                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4348                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4349                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4350                                             phy_ctrl);
4351                         adapter->smartspeed++;
4352                         if (!e1000_phy_setup_autoneg(hw) &&
4353                            !e1000_read_phy_reg(hw, PHY_CTRL,
4354                                                &phy_ctrl)) {
4355                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4356                                              MII_CR_RESTART_AUTO_NEG);
4357                                 e1000_write_phy_reg(hw, PHY_CTRL,
4358                                                     phy_ctrl);
4359                         }
4360                 }
4361                 return;
4362         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4363                 /* If still no link, perhaps using 2/3 pair cable */
4364                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4365                 phy_ctrl |= CR_1000T_MS_ENABLE;
4366                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4367                 if (!e1000_phy_setup_autoneg(hw) &&
4368                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4369                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4370                                      MII_CR_RESTART_AUTO_NEG);
4371                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4372                 }
4373         }
4374         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4375         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4376                 adapter->smartspeed = 0;
4377 }
4378
4379 /**
4380  * e1000_ioctl -
4381  * @netdev:
4382  * @ifreq:
4383  * @cmd:
4384  **/
4385
4386 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4387 {
4388         switch (cmd) {
4389         case SIOCGMIIPHY:
4390         case SIOCGMIIREG:
4391         case SIOCSMIIREG:
4392                 return e1000_mii_ioctl(netdev, ifr, cmd);
4393         default:
4394                 return -EOPNOTSUPP;
4395         }
4396 }
4397
4398 /**
4399  * e1000_mii_ioctl -
4400  * @netdev:
4401  * @ifreq:
4402  * @cmd:
4403  **/
4404
4405 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4406                            int cmd)
4407 {
4408         struct e1000_adapter *adapter = netdev_priv(netdev);
4409         struct e1000_hw *hw = &adapter->hw;
4410         struct mii_ioctl_data *data = if_mii(ifr);
4411         int retval;
4412         u16 mii_reg;
4413         unsigned long flags;
4414
4415         if (hw->media_type != e1000_media_type_copper)
4416                 return -EOPNOTSUPP;
4417
4418         switch (cmd) {
4419         case SIOCGMIIPHY:
4420                 data->phy_id = hw->phy_addr;
4421                 break;
4422         case SIOCGMIIREG:
4423                 spin_lock_irqsave(&adapter->stats_lock, flags);
4424                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4425                                    &data->val_out)) {
4426                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4427                         return -EIO;
4428                 }
4429                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4430                 break;
4431         case SIOCSMIIREG:
4432                 if (data->reg_num & ~(0x1F))
4433                         return -EFAULT;
4434                 mii_reg = data->val_in;
4435                 spin_lock_irqsave(&adapter->stats_lock, flags);
4436                 if (e1000_write_phy_reg(hw, data->reg_num,
4437                                         mii_reg)) {
4438                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4439                         return -EIO;
4440                 }
4441                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4442                 if (hw->media_type == e1000_media_type_copper) {
4443                         switch (data->reg_num) {
4444                         case PHY_CTRL:
4445                                 if (mii_reg & MII_CR_POWER_DOWN)
4446                                         break;
4447                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4448                                         hw->autoneg = 1;
4449                                         hw->autoneg_advertised = 0x2F;
4450                                 } else {
4451                                         u32 speed;
4452                                         if (mii_reg & 0x40)
4453                                                 speed = SPEED_1000;
4454                                         else if (mii_reg & 0x2000)
4455                                                 speed = SPEED_100;
4456                                         else
4457                                                 speed = SPEED_10;
4458                                         retval = e1000_set_spd_dplx(
4459                                                 adapter, speed,
4460                                                 ((mii_reg & 0x100)
4461                                                  ? DUPLEX_FULL :
4462                                                  DUPLEX_HALF));
4463                                         if (retval)
4464                                                 return retval;
4465                                 }
4466                                 if (netif_running(adapter->netdev))
4467                                         e1000_reinit_locked(adapter);
4468                                 else
4469                                         e1000_reset(adapter);
4470                                 break;
4471                         case M88E1000_PHY_SPEC_CTRL:
4472                         case M88E1000_EXT_PHY_SPEC_CTRL:
4473                                 if (e1000_phy_reset(hw))
4474                                         return -EIO;
4475                                 break;
4476                         }
4477                 } else {
4478                         switch (data->reg_num) {
4479                         case PHY_CTRL:
4480                                 if (mii_reg & MII_CR_POWER_DOWN)
4481                                         break;
4482                                 if (netif_running(adapter->netdev))
4483                                         e1000_reinit_locked(adapter);
4484                                 else
4485                                         e1000_reset(adapter);
4486                                 break;
4487                         }
4488                 }
4489                 break;
4490         default:
4491                 return -EOPNOTSUPP;
4492         }
4493         return E1000_SUCCESS;
4494 }
4495
4496 void e1000_pci_set_mwi(struct e1000_hw *hw)
4497 {
4498         struct e1000_adapter *adapter = hw->back;
4499         int ret_val = pci_set_mwi(adapter->pdev);
4500
4501         if (ret_val)
4502                 e_err(probe, "Error in setting MWI\n");
4503 }
4504
4505 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4506 {
4507         struct e1000_adapter *adapter = hw->back;
4508
4509         pci_clear_mwi(adapter->pdev);
4510 }
4511
4512 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4513 {
4514         struct e1000_adapter *adapter = hw->back;
4515         return pcix_get_mmrbc(adapter->pdev);
4516 }
4517
4518 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4519 {
4520         struct e1000_adapter *adapter = hw->back;
4521         pcix_set_mmrbc(adapter->pdev, mmrbc);
4522 }
4523
4524 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4525 {
4526         outl(value, port);
4527 }
4528
4529 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4530 {
4531         u16 vid;
4532
4533         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4534                 return true;
4535         return false;
4536 }
4537
4538 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4539                                      bool filter_on)
4540 {
4541         struct e1000_hw *hw = &adapter->hw;
4542         u32 rctl;
4543
4544         if (!test_bit(__E1000_DOWN, &adapter->flags))
4545                 e1000_irq_disable(adapter);
4546
4547         if (filter_on) {
4548                 /* enable VLAN receive filtering */
4549                 rctl = er32(RCTL);
4550                 rctl &= ~E1000_RCTL_CFIEN;
4551                 if (!(adapter->netdev->flags & IFF_PROMISC))
4552                         rctl |= E1000_RCTL_VFE;
4553                 ew32(RCTL, rctl);
4554                 e1000_update_mng_vlan(adapter);
4555         } else {
4556                 /* disable VLAN receive filtering */
4557                 rctl = er32(RCTL);
4558                 rctl &= ~E1000_RCTL_VFE;
4559                 ew32(RCTL, rctl);
4560         }
4561
4562         if (!test_bit(__E1000_DOWN, &adapter->flags))
4563                 e1000_irq_enable(adapter);
4564 }
4565
4566 static void e1000_vlan_mode(struct net_device *netdev, u32 features)
4567 {
4568         struct e1000_adapter *adapter = netdev_priv(netdev);
4569         struct e1000_hw *hw = &adapter->hw;
4570         u32 ctrl;
4571
4572         if (!test_bit(__E1000_DOWN, &adapter->flags))
4573                 e1000_irq_disable(adapter);
4574
4575         ctrl = er32(CTRL);
4576         if (features & NETIF_F_HW_VLAN_RX) {
4577                 /* enable VLAN tag insert/strip */
4578                 ctrl |= E1000_CTRL_VME;
4579         } else {
4580                 /* disable VLAN tag insert/strip */
4581                 ctrl &= ~E1000_CTRL_VME;
4582         }
4583         ew32(CTRL, ctrl);
4584
4585         if (!test_bit(__E1000_DOWN, &adapter->flags))
4586                 e1000_irq_enable(adapter);
4587 }
4588
4589 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4590 {
4591         struct e1000_adapter *adapter = netdev_priv(netdev);
4592         struct e1000_hw *hw = &adapter->hw;
4593         u32 vfta, index;
4594
4595         if ((hw->mng_cookie.status &
4596              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4597             (vid == adapter->mng_vlan_id))
4598                 return;
4599
4600         if (!e1000_vlan_used(adapter))
4601                 e1000_vlan_filter_on_off(adapter, true);
4602
4603         /* add VID to filter table */
4604         index = (vid >> 5) & 0x7F;
4605         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4606         vfta |= (1 << (vid & 0x1F));
4607         e1000_write_vfta(hw, index, vfta);
4608
4609         set_bit(vid, adapter->active_vlans);
4610 }
4611
4612 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4613 {
4614         struct e1000_adapter *adapter = netdev_priv(netdev);
4615         struct e1000_hw *hw = &adapter->hw;
4616         u32 vfta, index;
4617
4618         if (!test_bit(__E1000_DOWN, &adapter->flags))
4619                 e1000_irq_disable(adapter);
4620         if (!test_bit(__E1000_DOWN, &adapter->flags))
4621                 e1000_irq_enable(adapter);
4622
4623         /* remove VID from filter table */
4624         index = (vid >> 5) & 0x7F;
4625         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4626         vfta &= ~(1 << (vid & 0x1F));
4627         e1000_write_vfta(hw, index, vfta);
4628
4629         clear_bit(vid, adapter->active_vlans);
4630
4631         if (!e1000_vlan_used(adapter))
4632                 e1000_vlan_filter_on_off(adapter, false);
4633 }
4634
4635 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4636 {
4637         u16 vid;
4638
4639         if (!e1000_vlan_used(adapter))
4640                 return;
4641
4642         e1000_vlan_filter_on_off(adapter, true);
4643         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4644                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4645 }
4646
4647 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4648 {
4649         struct e1000_hw *hw = &adapter->hw;
4650
4651         hw->autoneg = 0;
4652
4653         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4654          * for the switch() below to work */
4655         if ((spd & 1) || (dplx & ~1))
4656                 goto err_inval;
4657
4658         /* Fiber NICs only allow 1000 gbps Full duplex */
4659         if ((hw->media_type == e1000_media_type_fiber) &&
4660             spd != SPEED_1000 &&
4661             dplx != DUPLEX_FULL)
4662                 goto err_inval;
4663
4664         switch (spd + dplx) {
4665         case SPEED_10 + DUPLEX_HALF:
4666                 hw->forced_speed_duplex = e1000_10_half;
4667                 break;
4668         case SPEED_10 + DUPLEX_FULL:
4669                 hw->forced_speed_duplex = e1000_10_full;
4670                 break;
4671         case SPEED_100 + DUPLEX_HALF:
4672                 hw->forced_speed_duplex = e1000_100_half;
4673                 break;
4674         case SPEED_100 + DUPLEX_FULL:
4675                 hw->forced_speed_duplex = e1000_100_full;
4676                 break;
4677         case SPEED_1000 + DUPLEX_FULL:
4678                 hw->autoneg = 1;
4679                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4680                 break;
4681         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4682         default:
4683                 goto err_inval;
4684         }
4685         return 0;
4686
4687 err_inval:
4688         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4689         return -EINVAL;
4690 }
4691
4692 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4693 {
4694         struct net_device *netdev = pci_get_drvdata(pdev);
4695         struct e1000_adapter *adapter = netdev_priv(netdev);
4696         struct e1000_hw *hw = &adapter->hw;
4697         u32 ctrl, ctrl_ext, rctl, status;
4698         u32 wufc = adapter->wol;
4699 #ifdef CONFIG_PM
4700         int retval = 0;
4701 #endif
4702
4703         netif_device_detach(netdev);
4704
4705         if (netif_running(netdev)) {
4706                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4707                 e1000_down(adapter);
4708         }
4709
4710 #ifdef CONFIG_PM
4711         retval = pci_save_state(pdev);
4712         if (retval)
4713                 return retval;
4714 #endif
4715
4716         status = er32(STATUS);
4717         if (status & E1000_STATUS_LU)
4718                 wufc &= ~E1000_WUFC_LNKC;
4719
4720         if (wufc) {
4721                 e1000_setup_rctl(adapter);
4722                 e1000_set_rx_mode(netdev);
4723
4724                 /* turn on all-multi mode if wake on multicast is enabled */
4725                 if (wufc & E1000_WUFC_MC) {
4726                         rctl = er32(RCTL);
4727                         rctl |= E1000_RCTL_MPE;
4728                         ew32(RCTL, rctl);
4729                 }
4730
4731                 if (hw->mac_type >= e1000_82540) {
4732                         ctrl = er32(CTRL);
4733                         /* advertise wake from D3Cold */
4734                         #define E1000_CTRL_ADVD3WUC 0x00100000
4735                         /* phy power management enable */
4736                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4737                         ctrl |= E1000_CTRL_ADVD3WUC |
4738                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4739                         ew32(CTRL, ctrl);
4740                 }
4741
4742                 if (hw->media_type == e1000_media_type_fiber ||
4743                     hw->media_type == e1000_media_type_internal_serdes) {
4744                         /* keep the laser running in D3 */
4745                         ctrl_ext = er32(CTRL_EXT);
4746                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4747                         ew32(CTRL_EXT, ctrl_ext);
4748                 }
4749
4750                 ew32(WUC, E1000_WUC_PME_EN);
4751                 ew32(WUFC, wufc);
4752         } else {
4753                 ew32(WUC, 0);
4754                 ew32(WUFC, 0);
4755         }
4756
4757         e1000_release_manageability(adapter);
4758
4759         *enable_wake = !!wufc;
4760
4761         /* make sure adapter isn't asleep if manageability is enabled */
4762         if (adapter->en_mng_pt)
4763                 *enable_wake = true;
4764
4765         if (netif_running(netdev))
4766                 e1000_free_irq(adapter);
4767
4768         pci_disable_device(pdev);
4769
4770         return 0;
4771 }
4772
4773 #ifdef CONFIG_PM
4774 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4775 {
4776         int retval;
4777         bool wake;
4778
4779         retval = __e1000_shutdown(pdev, &wake);
4780         if (retval)
4781                 return retval;
4782
4783         if (wake) {
4784                 pci_prepare_to_sleep(pdev);
4785         } else {
4786                 pci_wake_from_d3(pdev, false);
4787                 pci_set_power_state(pdev, PCI_D3hot);
4788         }
4789
4790         return 0;
4791 }
4792
4793 static int e1000_resume(struct pci_dev *pdev)
4794 {
4795         struct net_device *netdev = pci_get_drvdata(pdev);
4796         struct e1000_adapter *adapter = netdev_priv(netdev);
4797         struct e1000_hw *hw = &adapter->hw;
4798         u32 err;
4799
4800         pci_set_power_state(pdev, PCI_D0);
4801         pci_restore_state(pdev);
4802         pci_save_state(pdev);
4803
4804         if (adapter->need_ioport)
4805                 err = pci_enable_device(pdev);
4806         else
4807                 err = pci_enable_device_mem(pdev);
4808         if (err) {
4809                 pr_err("Cannot enable PCI device from suspend\n");
4810                 return err;
4811         }
4812         pci_set_master(pdev);
4813
4814         pci_enable_wake(pdev, PCI_D3hot, 0);
4815         pci_enable_wake(pdev, PCI_D3cold, 0);
4816
4817         if (netif_running(netdev)) {
4818                 err = e1000_request_irq(adapter);
4819                 if (err)
4820                         return err;
4821         }
4822
4823         e1000_power_up_phy(adapter);
4824         e1000_reset(adapter);
4825         ew32(WUS, ~0);
4826
4827         e1000_init_manageability(adapter);
4828
4829         if (netif_running(netdev))
4830                 e1000_up(adapter);
4831
4832         netif_device_attach(netdev);
4833
4834         return 0;
4835 }
4836 #endif
4837
4838 static void e1000_shutdown(struct pci_dev *pdev)
4839 {
4840         bool wake;
4841
4842         __e1000_shutdown(pdev, &wake);
4843
4844         if (system_state == SYSTEM_POWER_OFF) {
4845                 pci_wake_from_d3(pdev, wake);
4846                 pci_set_power_state(pdev, PCI_D3hot);
4847         }
4848 }
4849
4850 #ifdef CONFIG_NET_POLL_CONTROLLER
4851 /*
4852  * Polling 'interrupt' - used by things like netconsole to send skbs
4853  * without having to re-enable interrupts. It's not called while
4854  * the interrupt routine is executing.
4855  */
4856 static void e1000_netpoll(struct net_device *netdev)
4857 {
4858         struct e1000_adapter *adapter = netdev_priv(netdev);
4859
4860         disable_irq(adapter->pdev->irq);
4861         e1000_intr(adapter->pdev->irq, netdev);
4862         enable_irq(adapter->pdev->irq);
4863 }
4864 #endif
4865
4866 /**
4867  * e1000_io_error_detected - called when PCI error is detected
4868  * @pdev: Pointer to PCI device
4869  * @state: The current pci connection state
4870  *
4871  * This function is called after a PCI bus error affecting
4872  * this device has been detected.
4873  */
4874 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4875                                                 pci_channel_state_t state)
4876 {
4877         struct net_device *netdev = pci_get_drvdata(pdev);
4878         struct e1000_adapter *adapter = netdev_priv(netdev);
4879
4880         netif_device_detach(netdev);
4881
4882         if (state == pci_channel_io_perm_failure)
4883                 return PCI_ERS_RESULT_DISCONNECT;
4884
4885         if (netif_running(netdev))
4886                 e1000_down(adapter);
4887         pci_disable_device(pdev);
4888
4889         /* Request a slot slot reset. */
4890         return PCI_ERS_RESULT_NEED_RESET;
4891 }
4892
4893 /**
4894  * e1000_io_slot_reset - called after the pci bus has been reset.
4895  * @pdev: Pointer to PCI device
4896  *
4897  * Restart the card from scratch, as if from a cold-boot. Implementation
4898  * resembles the first-half of the e1000_resume routine.
4899  */
4900 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4901 {
4902         struct net_device *netdev = pci_get_drvdata(pdev);
4903         struct e1000_adapter *adapter = netdev_priv(netdev);
4904         struct e1000_hw *hw = &adapter->hw;
4905         int err;
4906
4907         if (adapter->need_ioport)
4908                 err = pci_enable_device(pdev);
4909         else
4910                 err = pci_enable_device_mem(pdev);
4911         if (err) {
4912                 pr_err("Cannot re-enable PCI device after reset.\n");
4913                 return PCI_ERS_RESULT_DISCONNECT;
4914         }
4915         pci_set_master(pdev);
4916
4917         pci_enable_wake(pdev, PCI_D3hot, 0);
4918         pci_enable_wake(pdev, PCI_D3cold, 0);
4919
4920         e1000_reset(adapter);
4921         ew32(WUS, ~0);
4922
4923         return PCI_ERS_RESULT_RECOVERED;
4924 }
4925
4926 /**
4927  * e1000_io_resume - called when traffic can start flowing again.
4928  * @pdev: Pointer to PCI device
4929  *
4930  * This callback is called when the error recovery driver tells us that
4931  * its OK to resume normal operation. Implementation resembles the
4932  * second-half of the e1000_resume routine.
4933  */
4934 static void e1000_io_resume(struct pci_dev *pdev)
4935 {
4936         struct net_device *netdev = pci_get_drvdata(pdev);
4937         struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939         e1000_init_manageability(adapter);
4940
4941         if (netif_running(netdev)) {
4942                 if (e1000_up(adapter)) {
4943                         pr_info("can't bring device back up after reset\n");
4944                         return;
4945                 }
4946         }
4947
4948         netif_device_attach(netdev);
4949 }
4950
4951 /* e1000_main.c */