KVM: Leave TSC synchronization window open with each new sync
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
100 static u32 tsc_tolerance_ppm = 250;
101 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106         int nr;
107         u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111         struct user_return_notifier urn;
112         bool registered;
113         struct kvm_shared_msr_values {
114                 u64 host;
115                 u64 curr;
116         } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123         { "pf_fixed", VCPU_STAT(pf_fixed) },
124         { "pf_guest", VCPU_STAT(pf_guest) },
125         { "tlb_flush", VCPU_STAT(tlb_flush) },
126         { "invlpg", VCPU_STAT(invlpg) },
127         { "exits", VCPU_STAT(exits) },
128         { "io_exits", VCPU_STAT(io_exits) },
129         { "mmio_exits", VCPU_STAT(mmio_exits) },
130         { "signal_exits", VCPU_STAT(signal_exits) },
131         { "irq_window", VCPU_STAT(irq_window_exits) },
132         { "nmi_window", VCPU_STAT(nmi_window_exits) },
133         { "halt_exits", VCPU_STAT(halt_exits) },
134         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135         { "hypercalls", VCPU_STAT(hypercalls) },
136         { "request_irq", VCPU_STAT(request_irq_exits) },
137         { "irq_exits", VCPU_STAT(irq_exits) },
138         { "host_state_reload", VCPU_STAT(host_state_reload) },
139         { "efer_reload", VCPU_STAT(efer_reload) },
140         { "fpu_reload", VCPU_STAT(fpu_reload) },
141         { "insn_emulation", VCPU_STAT(insn_emulation) },
142         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143         { "irq_injections", VCPU_STAT(irq_injections) },
144         { "nmi_injections", VCPU_STAT(nmi_injections) },
145         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149         { "mmu_flooded", VM_STAT(mmu_flooded) },
150         { "mmu_recycled", VM_STAT(mmu_recycled) },
151         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152         { "mmu_unsync", VM_STAT(mmu_unsync) },
153         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154         { "largepages", VM_STAT(lpages) },
155         { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
161
162 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
163 {
164         int i;
165         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
166                 vcpu->arch.apf.gfns[i] = ~0;
167 }
168
169 static void kvm_on_user_return(struct user_return_notifier *urn)
170 {
171         unsigned slot;
172         struct kvm_shared_msrs *locals
173                 = container_of(urn, struct kvm_shared_msrs, urn);
174         struct kvm_shared_msr_values *values;
175
176         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
177                 values = &locals->values[slot];
178                 if (values->host != values->curr) {
179                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
180                         values->curr = values->host;
181                 }
182         }
183         locals->registered = false;
184         user_return_notifier_unregister(urn);
185 }
186
187 static void shared_msr_update(unsigned slot, u32 msr)
188 {
189         struct kvm_shared_msrs *smsr;
190         u64 value;
191
192         smsr = &__get_cpu_var(shared_msrs);
193         /* only read, and nobody should modify it at this time,
194          * so don't need lock */
195         if (slot >= shared_msrs_global.nr) {
196                 printk(KERN_ERR "kvm: invalid MSR slot!");
197                 return;
198         }
199         rdmsrl_safe(msr, &value);
200         smsr->values[slot].host = value;
201         smsr->values[slot].curr = value;
202 }
203
204 void kvm_define_shared_msr(unsigned slot, u32 msr)
205 {
206         if (slot >= shared_msrs_global.nr)
207                 shared_msrs_global.nr = slot + 1;
208         shared_msrs_global.msrs[slot] = msr;
209         /* we need ensured the shared_msr_global have been updated */
210         smp_wmb();
211 }
212 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
213
214 static void kvm_shared_msr_cpu_online(void)
215 {
216         unsigned i;
217
218         for (i = 0; i < shared_msrs_global.nr; ++i)
219                 shared_msr_update(i, shared_msrs_global.msrs[i]);
220 }
221
222 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
223 {
224         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
225
226         if (((value ^ smsr->values[slot].curr) & mask) == 0)
227                 return;
228         smsr->values[slot].curr = value;
229         wrmsrl(shared_msrs_global.msrs[slot], value);
230         if (!smsr->registered) {
231                 smsr->urn.on_user_return = kvm_on_user_return;
232                 user_return_notifier_register(&smsr->urn);
233                 smsr->registered = true;
234         }
235 }
236 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
237
238 static void drop_user_return_notifiers(void *ignore)
239 {
240         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
241
242         if (smsr->registered)
243                 kvm_on_user_return(&smsr->urn);
244 }
245
246 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
247 {
248         if (irqchip_in_kernel(vcpu->kvm))
249                 return vcpu->arch.apic_base;
250         else
251                 return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257         /* TODO: reserve bits check */
258         if (irqchip_in_kernel(vcpu->kvm))
259                 kvm_lapic_set_base(vcpu, data);
260         else
261                 vcpu->arch.apic_base = data;
262 }
263 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
264
265 #define EXCPT_BENIGN            0
266 #define EXCPT_CONTRIBUTORY      1
267 #define EXCPT_PF                2
268
269 static int exception_class(int vector)
270 {
271         switch (vector) {
272         case PF_VECTOR:
273                 return EXCPT_PF;
274         case DE_VECTOR:
275         case TS_VECTOR:
276         case NP_VECTOR:
277         case SS_VECTOR:
278         case GP_VECTOR:
279                 return EXCPT_CONTRIBUTORY;
280         default:
281                 break;
282         }
283         return EXCPT_BENIGN;
284 }
285
286 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
287                 unsigned nr, bool has_error, u32 error_code,
288                 bool reinject)
289 {
290         u32 prev_nr;
291         int class1, class2;
292
293         kvm_make_request(KVM_REQ_EVENT, vcpu);
294
295         if (!vcpu->arch.exception.pending) {
296         queue:
297                 vcpu->arch.exception.pending = true;
298                 vcpu->arch.exception.has_error_code = has_error;
299                 vcpu->arch.exception.nr = nr;
300                 vcpu->arch.exception.error_code = error_code;
301                 vcpu->arch.exception.reinject = reinject;
302                 return;
303         }
304
305         /* to check exception */
306         prev_nr = vcpu->arch.exception.nr;
307         if (prev_nr == DF_VECTOR) {
308                 /* triple fault -> shutdown */
309                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
310                 return;
311         }
312         class1 = exception_class(prev_nr);
313         class2 = exception_class(nr);
314         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
315                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
316                 /* generate double fault per SDM Table 5-5 */
317                 vcpu->arch.exception.pending = true;
318                 vcpu->arch.exception.has_error_code = true;
319                 vcpu->arch.exception.nr = DF_VECTOR;
320                 vcpu->arch.exception.error_code = 0;
321         } else
322                 /* replace previous exception with a new one in a hope
323                    that instruction re-execution will regenerate lost
324                    exception */
325                 goto queue;
326 }
327
328 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, false);
331 }
332 EXPORT_SYMBOL_GPL(kvm_queue_exception);
333
334 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, true);
337 }
338 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
339
340 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
341 {
342         if (err)
343                 kvm_inject_gp(vcpu, 0);
344         else
345                 kvm_x86_ops->skip_emulated_instruction(vcpu);
346 }
347 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
348
349 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 {
351         ++vcpu->stat.pf_guest;
352         vcpu->arch.cr2 = fault->address;
353         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
356
357 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
358 {
359         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
360                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
361         else
362                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
363 }
364
365 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
366 {
367         atomic_inc(&vcpu->arch.nmi_queued);
368         kvm_make_request(KVM_REQ_NMI, vcpu);
369 }
370 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
371
372 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373 {
374         kvm_multiple_exception(vcpu, nr, true, error_code, false);
375 }
376 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
377
378 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, true);
381 }
382 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
383
384 /*
385  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
386  * a #GP and return false.
387  */
388 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
389 {
390         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
391                 return true;
392         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
393         return false;
394 }
395 EXPORT_SYMBOL_GPL(kvm_require_cpl);
396
397 /*
398  * This function will be used to read from the physical memory of the currently
399  * running guest. The difference to kvm_read_guest_page is that this function
400  * can read from guest physical or from the guest's guest physical memory.
401  */
402 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
403                             gfn_t ngfn, void *data, int offset, int len,
404                             u32 access)
405 {
406         gfn_t real_gfn;
407         gpa_t ngpa;
408
409         ngpa     = gfn_to_gpa(ngfn);
410         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
411         if (real_gfn == UNMAPPED_GVA)
412                 return -EFAULT;
413
414         real_gfn = gpa_to_gfn(real_gfn);
415
416         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
417 }
418 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
419
420 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
421                                void *data, int offset, int len, u32 access)
422 {
423         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
424                                        data, offset, len, access);
425 }
426
427 /*
428  * Load the pae pdptrs.  Return true is they are all valid.
429  */
430 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
431 {
432         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
433         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
434         int i;
435         int ret;
436         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
437
438         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
439                                       offset * sizeof(u64), sizeof(pdpte),
440                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
441         if (ret < 0) {
442                 ret = 0;
443                 goto out;
444         }
445         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
446                 if (is_present_gpte(pdpte[i]) &&
447                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
448                         ret = 0;
449                         goto out;
450                 }
451         }
452         ret = 1;
453
454         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
455         __set_bit(VCPU_EXREG_PDPTR,
456                   (unsigned long *)&vcpu->arch.regs_avail);
457         __set_bit(VCPU_EXREG_PDPTR,
458                   (unsigned long *)&vcpu->arch.regs_dirty);
459 out:
460
461         return ret;
462 }
463 EXPORT_SYMBOL_GPL(load_pdptrs);
464
465 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
466 {
467         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468         bool changed = true;
469         int offset;
470         gfn_t gfn;
471         int r;
472
473         if (is_long_mode(vcpu) || !is_pae(vcpu))
474                 return false;
475
476         if (!test_bit(VCPU_EXREG_PDPTR,
477                       (unsigned long *)&vcpu->arch.regs_avail))
478                 return true;
479
480         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
481         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
482         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
483                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
484         if (r < 0)
485                 goto out;
486         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 out:
488
489         return changed;
490 }
491
492 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493 {
494         unsigned long old_cr0 = kvm_read_cr0(vcpu);
495         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
496                                     X86_CR0_CD | X86_CR0_NW;
497
498         cr0 |= X86_CR0_ET;
499
500 #ifdef CONFIG_X86_64
501         if (cr0 & 0xffffffff00000000UL)
502                 return 1;
503 #endif
504
505         cr0 &= ~CR0_RESERVED_BITS;
506
507         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
508                 return 1;
509
510         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
511                 return 1;
512
513         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
514 #ifdef CONFIG_X86_64
515                 if ((vcpu->arch.efer & EFER_LME)) {
516                         int cs_db, cs_l;
517
518                         if (!is_pae(vcpu))
519                                 return 1;
520                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521                         if (cs_l)
522                                 return 1;
523                 } else
524 #endif
525                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526                                                  kvm_read_cr3(vcpu)))
527                         return 1;
528         }
529
530         kvm_x86_ops->set_cr0(vcpu, cr0);
531
532         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533                 kvm_clear_async_pf_completion_queue(vcpu);
534                 kvm_async_pf_hash_reset(vcpu);
535         }
536
537         if ((cr0 ^ old_cr0) & update_bits)
538                 kvm_mmu_reset_context(vcpu);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551         u64 xcr0;
552
553         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
554         if (index != XCR_XFEATURE_ENABLED_MASK)
555                 return 1;
556         xcr0 = xcr;
557         if (kvm_x86_ops->get_cpl(vcpu) != 0)
558                 return 1;
559         if (!(xcr0 & XSTATE_FP))
560                 return 1;
561         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562                 return 1;
563         if (xcr0 & ~host_xcr0)
564                 return 1;
565         vcpu->arch.xcr0 = xcr0;
566         vcpu->guest_xcr0_loaded = 0;
567         return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572         if (__kvm_set_xcr(vcpu, index, xcr)) {
573                 kvm_inject_gp(vcpu, 0);
574                 return 1;
575         }
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582         unsigned long old_cr4 = kvm_read_cr4(vcpu);
583         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584                                    X86_CR4_PAE | X86_CR4_SMEP;
585         if (cr4 & CR4_RESERVED_BITS)
586                 return 1;
587
588         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589                 return 1;
590
591         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592                 return 1;
593
594         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595                 return 1;
596
597         if (is_long_mode(vcpu)) {
598                 if (!(cr4 & X86_CR4_PAE))
599                         return 1;
600         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601                    && ((cr4 ^ old_cr4) & pdptr_bits)
602                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603                                    kvm_read_cr3(vcpu)))
604                 return 1;
605
606         if (kvm_x86_ops->set_cr4(vcpu, cr4))
607                 return 1;
608
609         if ((cr4 ^ old_cr4) & pdptr_bits)
610                 kvm_mmu_reset_context(vcpu);
611
612         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
613                 kvm_update_cpuid(vcpu);
614
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_cr4);
618
619 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
620 {
621         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
622                 kvm_mmu_sync_roots(vcpu);
623                 kvm_mmu_flush_tlb(vcpu);
624                 return 0;
625         }
626
627         if (is_long_mode(vcpu)) {
628                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
629                         return 1;
630         } else {
631                 if (is_pae(vcpu)) {
632                         if (cr3 & CR3_PAE_RESERVED_BITS)
633                                 return 1;
634                         if (is_paging(vcpu) &&
635                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
636                                 return 1;
637                 }
638                 /*
639                  * We don't check reserved bits in nonpae mode, because
640                  * this isn't enforced, and VMware depends on this.
641                  */
642         }
643
644         /*
645          * Does the new cr3 value map to physical memory? (Note, we
646          * catch an invalid cr3 even in real-mode, because it would
647          * cause trouble later on when we turn on paging anyway.)
648          *
649          * A real CPU would silently accept an invalid cr3 and would
650          * attempt to use it - with largely undefined (and often hard
651          * to debug) behavior on the guest side.
652          */
653         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
654                 return 1;
655         vcpu->arch.cr3 = cr3;
656         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
657         vcpu->arch.mmu.new_cr3(vcpu);
658         return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr3);
661
662 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663 {
664         if (cr8 & CR8_RESERVED_BITS)
665                 return 1;
666         if (irqchip_in_kernel(vcpu->kvm))
667                 kvm_lapic_set_tpr(vcpu, cr8);
668         else
669                 vcpu->arch.cr8 = cr8;
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr8);
673
674 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
675 {
676         if (irqchip_in_kernel(vcpu->kvm))
677                 return kvm_lapic_get_cr8(vcpu);
678         else
679                 return vcpu->arch.cr8;
680 }
681 EXPORT_SYMBOL_GPL(kvm_get_cr8);
682
683 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
684 {
685         switch (dr) {
686         case 0 ... 3:
687                 vcpu->arch.db[dr] = val;
688                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
689                         vcpu->arch.eff_db[dr] = val;
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1; /* #UD */
694                 /* fall through */
695         case 6:
696                 if (val & 0xffffffff00000000ULL)
697                         return -1; /* #GP */
698                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
699                 break;
700         case 5:
701                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702                         return 1; /* #UD */
703                 /* fall through */
704         default: /* 7 */
705                 if (val & 0xffffffff00000000ULL)
706                         return -1; /* #GP */
707                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
708                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
709                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
710                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
711                 }
712                 break;
713         }
714
715         return 0;
716 }
717
718 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         int res;
721
722         res = __kvm_set_dr(vcpu, dr, val);
723         if (res > 0)
724                 kvm_queue_exception(vcpu, UD_VECTOR);
725         else if (res < 0)
726                 kvm_inject_gp(vcpu, 0);
727
728         return res;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_dr);
731
732 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
733 {
734         switch (dr) {
735         case 0 ... 3:
736                 *val = vcpu->arch.db[dr];
737                 break;
738         case 4:
739                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
740                         return 1;
741                 /* fall through */
742         case 6:
743                 *val = vcpu->arch.dr6;
744                 break;
745         case 5:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         default: /* 7 */
750                 *val = vcpu->arch.dr7;
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         if (_kvm_get_dr(vcpu, dr, val)) {
760                 kvm_queue_exception(vcpu, UD_VECTOR);
761                 return 1;
762         }
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_dr);
766
767 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
768 {
769         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
770         u64 data;
771         int err;
772
773         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
774         if (err)
775                 return err;
776         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
777         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
778         return err;
779 }
780 EXPORT_SYMBOL_GPL(kvm_rdpmc);
781
782 /*
783  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
784  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
785  *
786  * This list is modified at module load time to reflect the
787  * capabilities of the host cpu. This capabilities test skips MSRs that are
788  * kvm-specific. Those are put in the beginning of the list.
789  */
790
791 #define KVM_SAVE_MSRS_BEGIN     9
792 static u32 msrs_to_save[] = {
793         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
794         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
795         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
796         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
797         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
798         MSR_STAR,
799 #ifdef CONFIG_X86_64
800         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
801 #endif
802         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 };
804
805 static unsigned num_msrs_to_save;
806
807 static u32 emulated_msrs[] = {
808         MSR_IA32_TSCDEADLINE,
809         MSR_IA32_MISC_ENABLE,
810         MSR_IA32_MCG_STATUS,
811         MSR_IA32_MCG_CTL,
812 };
813
814 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
815 {
816         u64 old_efer = vcpu->arch.efer;
817
818         if (efer & efer_reserved_bits)
819                 return 1;
820
821         if (is_paging(vcpu)
822             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
823                 return 1;
824
825         if (efer & EFER_FFXSR) {
826                 struct kvm_cpuid_entry2 *feat;
827
828                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
829                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
830                         return 1;
831         }
832
833         if (efer & EFER_SVME) {
834                 struct kvm_cpuid_entry2 *feat;
835
836                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
837                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
838                         return 1;
839         }
840
841         efer &= ~EFER_LMA;
842         efer |= vcpu->arch.efer & EFER_LMA;
843
844         kvm_x86_ops->set_efer(vcpu, efer);
845
846         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
847
848         /* Update reserved bits */
849         if ((efer ^ old_efer) & EFER_NX)
850                 kvm_mmu_reset_context(vcpu);
851
852         return 0;
853 }
854
855 void kvm_enable_efer_bits(u64 mask)
856 {
857        efer_reserved_bits &= ~mask;
858 }
859 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860
861
862 /*
863  * Writes msr value into into the appropriate "register".
864  * Returns 0 on success, non-0 otherwise.
865  * Assumes vcpu_load() was already called.
866  */
867 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
868 {
869         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 }
871
872 /*
873  * Adapt set_msr() to msr_io()'s calling convention
874  */
875 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
876 {
877         return kvm_set_msr(vcpu, index, *data);
878 }
879
880 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
881 {
882         int version;
883         int r;
884         struct pvclock_wall_clock wc;
885         struct timespec boot;
886
887         if (!wall_clock)
888                 return;
889
890         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
891         if (r)
892                 return;
893
894         if (version & 1)
895                 ++version;  /* first time write, random junk */
896
897         ++version;
898
899         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
900
901         /*
902          * The guest calculates current wall clock time by adding
903          * system time (updated by kvm_guest_time_update below) to the
904          * wall clock specified here.  guest system time equals host
905          * system time for us, thus we must fill in host boot time here.
906          */
907         getboottime(&boot);
908
909         wc.sec = boot.tv_sec;
910         wc.nsec = boot.tv_nsec;
911         wc.version = version;
912
913         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
914
915         version++;
916         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
917 }
918
919 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
920 {
921         uint32_t quotient, remainder;
922
923         /* Don't try to replace with do_div(), this one calculates
924          * "(dividend << 32) / divisor" */
925         __asm__ ( "divl %4"
926                   : "=a" (quotient), "=d" (remainder)
927                   : "0" (0), "1" (dividend), "r" (divisor) );
928         return quotient;
929 }
930
931 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
932                                s8 *pshift, u32 *pmultiplier)
933 {
934         uint64_t scaled64;
935         int32_t  shift = 0;
936         uint64_t tps64;
937         uint32_t tps32;
938
939         tps64 = base_khz * 1000LL;
940         scaled64 = scaled_khz * 1000LL;
941         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
942                 tps64 >>= 1;
943                 shift--;
944         }
945
946         tps32 = (uint32_t)tps64;
947         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
948                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
949                         scaled64 >>= 1;
950                 else
951                         tps32 <<= 1;
952                 shift++;
953         }
954
955         *pshift = shift;
956         *pmultiplier = div_frac(scaled64, tps32);
957
958         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
959                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 }
961
962 static inline u64 get_kernel_ns(void)
963 {
964         struct timespec ts;
965
966         WARN_ON(preemptible());
967         ktime_get_ts(&ts);
968         monotonic_to_bootbased(&ts);
969         return timespec_to_ns(&ts);
970 }
971
972 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
973 unsigned long max_tsc_khz;
974
975 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
976 {
977         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
978                                    vcpu->arch.virtual_tsc_shift);
979 }
980
981 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
982 {
983         u64 v = (u64)khz * (1000000 + ppm);
984         do_div(v, 1000000);
985         return v;
986 }
987
988 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
989 {
990         u32 thresh_lo, thresh_hi;
991         int use_scaling = 0;
992
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &vcpu->arch.virtual_tsc_shift,
996                            &vcpu->arch.virtual_tsc_mult);
997         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
998
999         /*
1000          * Compute the variation in TSC rate which is acceptable
1001          * within the range of tolerance and decide if the
1002          * rate being applied is within that bounds of the hardware
1003          * rate.  If so, no scaling or compensation need be done.
1004          */
1005         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1006         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1007         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1008                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1009                 use_scaling = 1;
1010         }
1011         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1012 }
1013
1014 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1015 {
1016         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1017                                       vcpu->arch.virtual_tsc_mult,
1018                                       vcpu->arch.virtual_tsc_shift);
1019         tsc += vcpu->arch.last_tsc_write;
1020         return tsc;
1021 }
1022
1023 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         u64 offset, ns, elapsed;
1027         unsigned long flags;
1028         s64 nsdiff;
1029
1030         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1031         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1032         ns = get_kernel_ns();
1033         elapsed = ns - kvm->arch.last_tsc_nsec;
1034
1035         /* n.b - signed multiplication and division required */
1036         nsdiff = data - kvm->arch.last_tsc_write;
1037 #ifdef CONFIG_X86_64
1038         nsdiff = (nsdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1039 #else
1040         /* do_div() only does unsigned */
1041         asm("idivl %2; xor %%edx, %%edx"
1042             : "=A"(nsdiff)
1043             : "A"(nsdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1044 #endif
1045         nsdiff -= elapsed;
1046         if (nsdiff < 0)
1047                 nsdiff = -nsdiff;
1048
1049         /*
1050          * Special case: TSC write with a small delta (1 second) of virtual
1051          * cycle time against real time is interpreted as an attempt to
1052          * synchronize the CPU.
1053          *
1054          * For a reliable TSC, we can match TSC offsets, and for an unstable
1055          * TSC, we add elapsed time in this computation.  We could let the
1056          * compensation code attempt to catch up if we fall behind, but
1057          * it's better to try to match offsets from the beginning.
1058          */
1059         if (nsdiff < NSEC_PER_SEC &&
1060             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1061                 if (!check_tsc_unstable()) {
1062                         offset = kvm->arch.last_tsc_offset;
1063                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1064                 } else {
1065                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1066                         data += delta;
1067                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1068                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1069                 }
1070         }
1071         kvm->arch.last_tsc_nsec = ns;
1072         kvm->arch.last_tsc_write = data;
1073         kvm->arch.last_tsc_offset = offset;
1074         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1075         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1076         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1077
1078         /* Reset of TSC must disable overshoot protection below */
1079         vcpu->arch.hv_clock.tsc_timestamp = 0;
1080         vcpu->arch.last_tsc_write = data;
1081         vcpu->arch.last_tsc_nsec = ns;
1082 }
1083 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1084
1085 static int kvm_guest_time_update(struct kvm_vcpu *v)
1086 {
1087         unsigned long flags;
1088         struct kvm_vcpu_arch *vcpu = &v->arch;
1089         void *shared_kaddr;
1090         unsigned long this_tsc_khz;
1091         s64 kernel_ns, max_kernel_ns;
1092         u64 tsc_timestamp;
1093
1094         /* Keep irq disabled to prevent changes to the clock */
1095         local_irq_save(flags);
1096         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1097         kernel_ns = get_kernel_ns();
1098         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1099         if (unlikely(this_tsc_khz == 0)) {
1100                 local_irq_restore(flags);
1101                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1102                 return 1;
1103         }
1104
1105         /*
1106          * We may have to catch up the TSC to match elapsed wall clock
1107          * time for two reasons, even if kvmclock is used.
1108          *   1) CPU could have been running below the maximum TSC rate
1109          *   2) Broken TSC compensation resets the base at each VCPU
1110          *      entry to avoid unknown leaps of TSC even when running
1111          *      again on the same CPU.  This may cause apparent elapsed
1112          *      time to disappear, and the guest to stand still or run
1113          *      very slowly.
1114          */
1115         if (vcpu->tsc_catchup) {
1116                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1117                 if (tsc > tsc_timestamp) {
1118                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1119                         tsc_timestamp = tsc;
1120                 }
1121         }
1122
1123         local_irq_restore(flags);
1124
1125         if (!vcpu->time_page)
1126                 return 0;
1127
1128         /*
1129          * Time as measured by the TSC may go backwards when resetting the base
1130          * tsc_timestamp.  The reason for this is that the TSC resolution is
1131          * higher than the resolution of the other clock scales.  Thus, many
1132          * possible measurments of the TSC correspond to one measurement of any
1133          * other clock, and so a spread of values is possible.  This is not a
1134          * problem for the computation of the nanosecond clock; with TSC rates
1135          * around 1GHZ, there can only be a few cycles which correspond to one
1136          * nanosecond value, and any path through this code will inevitably
1137          * take longer than that.  However, with the kernel_ns value itself,
1138          * the precision may be much lower, down to HZ granularity.  If the
1139          * first sampling of TSC against kernel_ns ends in the low part of the
1140          * range, and the second in the high end of the range, we can get:
1141          *
1142          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1143          *
1144          * As the sampling errors potentially range in the thousands of cycles,
1145          * it is possible such a time value has already been observed by the
1146          * guest.  To protect against this, we must compute the system time as
1147          * observed by the guest and ensure the new system time is greater.
1148          */
1149         max_kernel_ns = 0;
1150         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1151                 max_kernel_ns = vcpu->last_guest_tsc -
1152                                 vcpu->hv_clock.tsc_timestamp;
1153                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1154                                     vcpu->hv_clock.tsc_to_system_mul,
1155                                     vcpu->hv_clock.tsc_shift);
1156                 max_kernel_ns += vcpu->last_kernel_ns;
1157         }
1158
1159         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1160                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1161                                    &vcpu->hv_clock.tsc_shift,
1162                                    &vcpu->hv_clock.tsc_to_system_mul);
1163                 vcpu->hw_tsc_khz = this_tsc_khz;
1164         }
1165
1166         if (max_kernel_ns > kernel_ns)
1167                 kernel_ns = max_kernel_ns;
1168
1169         /* With all the info we got, fill in the values */
1170         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1171         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1172         vcpu->last_kernel_ns = kernel_ns;
1173         vcpu->last_guest_tsc = tsc_timestamp;
1174         vcpu->hv_clock.flags = 0;
1175
1176         /*
1177          * The interface expects us to write an even number signaling that the
1178          * update is finished. Since the guest won't see the intermediate
1179          * state, we just increase by 2 at the end.
1180          */
1181         vcpu->hv_clock.version += 2;
1182
1183         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1184
1185         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1186                sizeof(vcpu->hv_clock));
1187
1188         kunmap_atomic(shared_kaddr, KM_USER0);
1189
1190         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1191         return 0;
1192 }
1193
1194 static bool msr_mtrr_valid(unsigned msr)
1195 {
1196         switch (msr) {
1197         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1198         case MSR_MTRRfix64K_00000:
1199         case MSR_MTRRfix16K_80000:
1200         case MSR_MTRRfix16K_A0000:
1201         case MSR_MTRRfix4K_C0000:
1202         case MSR_MTRRfix4K_C8000:
1203         case MSR_MTRRfix4K_D0000:
1204         case MSR_MTRRfix4K_D8000:
1205         case MSR_MTRRfix4K_E0000:
1206         case MSR_MTRRfix4K_E8000:
1207         case MSR_MTRRfix4K_F0000:
1208         case MSR_MTRRfix4K_F8000:
1209         case MSR_MTRRdefType:
1210         case MSR_IA32_CR_PAT:
1211                 return true;
1212         case 0x2f8:
1213                 return true;
1214         }
1215         return false;
1216 }
1217
1218 static bool valid_pat_type(unsigned t)
1219 {
1220         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1221 }
1222
1223 static bool valid_mtrr_type(unsigned t)
1224 {
1225         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1226 }
1227
1228 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1229 {
1230         int i;
1231
1232         if (!msr_mtrr_valid(msr))
1233                 return false;
1234
1235         if (msr == MSR_IA32_CR_PAT) {
1236                 for (i = 0; i < 8; i++)
1237                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1238                                 return false;
1239                 return true;
1240         } else if (msr == MSR_MTRRdefType) {
1241                 if (data & ~0xcff)
1242                         return false;
1243                 return valid_mtrr_type(data & 0xff);
1244         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1245                 for (i = 0; i < 8 ; i++)
1246                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1247                                 return false;
1248                 return true;
1249         }
1250
1251         /* variable MTRRs */
1252         return valid_mtrr_type(data & 0xff);
1253 }
1254
1255 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1256 {
1257         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1258
1259         if (!mtrr_valid(vcpu, msr, data))
1260                 return 1;
1261
1262         if (msr == MSR_MTRRdefType) {
1263                 vcpu->arch.mtrr_state.def_type = data;
1264                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1265         } else if (msr == MSR_MTRRfix64K_00000)
1266                 p[0] = data;
1267         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1268                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1269         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1270                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1271         else if (msr == MSR_IA32_CR_PAT)
1272                 vcpu->arch.pat = data;
1273         else {  /* Variable MTRRs */
1274                 int idx, is_mtrr_mask;
1275                 u64 *pt;
1276
1277                 idx = (msr - 0x200) / 2;
1278                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1279                 if (!is_mtrr_mask)
1280                         pt =
1281                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1282                 else
1283                         pt =
1284                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1285                 *pt = data;
1286         }
1287
1288         kvm_mmu_reset_context(vcpu);
1289         return 0;
1290 }
1291
1292 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1293 {
1294         u64 mcg_cap = vcpu->arch.mcg_cap;
1295         unsigned bank_num = mcg_cap & 0xff;
1296
1297         switch (msr) {
1298         case MSR_IA32_MCG_STATUS:
1299                 vcpu->arch.mcg_status = data;
1300                 break;
1301         case MSR_IA32_MCG_CTL:
1302                 if (!(mcg_cap & MCG_CTL_P))
1303                         return 1;
1304                 if (data != 0 && data != ~(u64)0)
1305                         return -1;
1306                 vcpu->arch.mcg_ctl = data;
1307                 break;
1308         default:
1309                 if (msr >= MSR_IA32_MC0_CTL &&
1310                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1311                         u32 offset = msr - MSR_IA32_MC0_CTL;
1312                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1313                          * some Linux kernels though clear bit 10 in bank 4 to
1314                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1315                          * this to avoid an uncatched #GP in the guest
1316                          */
1317                         if ((offset & 0x3) == 0 &&
1318                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1319                                 return -1;
1320                         vcpu->arch.mce_banks[offset] = data;
1321                         break;
1322                 }
1323                 return 1;
1324         }
1325         return 0;
1326 }
1327
1328 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1329 {
1330         struct kvm *kvm = vcpu->kvm;
1331         int lm = is_long_mode(vcpu);
1332         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1333                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1334         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1335                 : kvm->arch.xen_hvm_config.blob_size_32;
1336         u32 page_num = data & ~PAGE_MASK;
1337         u64 page_addr = data & PAGE_MASK;
1338         u8 *page;
1339         int r;
1340
1341         r = -E2BIG;
1342         if (page_num >= blob_size)
1343                 goto out;
1344         r = -ENOMEM;
1345         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1346         if (IS_ERR(page)) {
1347                 r = PTR_ERR(page);
1348                 goto out;
1349         }
1350         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1351                 goto out_free;
1352         r = 0;
1353 out_free:
1354         kfree(page);
1355 out:
1356         return r;
1357 }
1358
1359 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1360 {
1361         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1362 }
1363
1364 static bool kvm_hv_msr_partition_wide(u32 msr)
1365 {
1366         bool r = false;
1367         switch (msr) {
1368         case HV_X64_MSR_GUEST_OS_ID:
1369         case HV_X64_MSR_HYPERCALL:
1370                 r = true;
1371                 break;
1372         }
1373
1374         return r;
1375 }
1376
1377 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1378 {
1379         struct kvm *kvm = vcpu->kvm;
1380
1381         switch (msr) {
1382         case HV_X64_MSR_GUEST_OS_ID:
1383                 kvm->arch.hv_guest_os_id = data;
1384                 /* setting guest os id to zero disables hypercall page */
1385                 if (!kvm->arch.hv_guest_os_id)
1386                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1387                 break;
1388         case HV_X64_MSR_HYPERCALL: {
1389                 u64 gfn;
1390                 unsigned long addr;
1391                 u8 instructions[4];
1392
1393                 /* if guest os id is not set hypercall should remain disabled */
1394                 if (!kvm->arch.hv_guest_os_id)
1395                         break;
1396                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1397                         kvm->arch.hv_hypercall = data;
1398                         break;
1399                 }
1400                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1401                 addr = gfn_to_hva(kvm, gfn);
1402                 if (kvm_is_error_hva(addr))
1403                         return 1;
1404                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1405                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1406                 if (__copy_to_user((void __user *)addr, instructions, 4))
1407                         return 1;
1408                 kvm->arch.hv_hypercall = data;
1409                 break;
1410         }
1411         default:
1412                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1413                           "data 0x%llx\n", msr, data);
1414                 return 1;
1415         }
1416         return 0;
1417 }
1418
1419 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1420 {
1421         switch (msr) {
1422         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1423                 unsigned long addr;
1424
1425                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1426                         vcpu->arch.hv_vapic = data;
1427                         break;
1428                 }
1429                 addr = gfn_to_hva(vcpu->kvm, data >>
1430                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1431                 if (kvm_is_error_hva(addr))
1432                         return 1;
1433                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1434                         return 1;
1435                 vcpu->arch.hv_vapic = data;
1436                 break;
1437         }
1438         case HV_X64_MSR_EOI:
1439                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1440         case HV_X64_MSR_ICR:
1441                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1442         case HV_X64_MSR_TPR:
1443                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1444         default:
1445                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1446                           "data 0x%llx\n", msr, data);
1447                 return 1;
1448         }
1449
1450         return 0;
1451 }
1452
1453 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1454 {
1455         gpa_t gpa = data & ~0x3f;
1456
1457         /* Bits 2:5 are resrved, Should be zero */
1458         if (data & 0x3c)
1459                 return 1;
1460
1461         vcpu->arch.apf.msr_val = data;
1462
1463         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1464                 kvm_clear_async_pf_completion_queue(vcpu);
1465                 kvm_async_pf_hash_reset(vcpu);
1466                 return 0;
1467         }
1468
1469         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1470                 return 1;
1471
1472         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1473         kvm_async_pf_wakeup_all(vcpu);
1474         return 0;
1475 }
1476
1477 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1478 {
1479         if (vcpu->arch.time_page) {
1480                 kvm_release_page_dirty(vcpu->arch.time_page);
1481                 vcpu->arch.time_page = NULL;
1482         }
1483 }
1484
1485 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1486 {
1487         u64 delta;
1488
1489         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1490                 return;
1491
1492         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1493         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1494         vcpu->arch.st.accum_steal = delta;
1495 }
1496
1497 static void record_steal_time(struct kvm_vcpu *vcpu)
1498 {
1499         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1500                 return;
1501
1502         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1503                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1504                 return;
1505
1506         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1507         vcpu->arch.st.steal.version += 2;
1508         vcpu->arch.st.accum_steal = 0;
1509
1510         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1511                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1512 }
1513
1514 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1515 {
1516         bool pr = false;
1517
1518         switch (msr) {
1519         case MSR_EFER:
1520                 return set_efer(vcpu, data);
1521         case MSR_K7_HWCR:
1522                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1523                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1524                 if (data != 0) {
1525                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1526                                 data);
1527                         return 1;
1528                 }
1529                 break;
1530         case MSR_FAM10H_MMIO_CONF_BASE:
1531                 if (data != 0) {
1532                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1533                                 "0x%llx\n", data);
1534                         return 1;
1535                 }
1536                 break;
1537         case MSR_AMD64_NB_CFG:
1538                 break;
1539         case MSR_IA32_DEBUGCTLMSR:
1540                 if (!data) {
1541                         /* We support the non-activated case already */
1542                         break;
1543                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1544                         /* Values other than LBR and BTF are vendor-specific,
1545                            thus reserved and should throw a #GP */
1546                         return 1;
1547                 }
1548                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1549                         __func__, data);
1550                 break;
1551         case MSR_IA32_UCODE_REV:
1552         case MSR_IA32_UCODE_WRITE:
1553         case MSR_VM_HSAVE_PA:
1554         case MSR_AMD64_PATCH_LOADER:
1555                 break;
1556         case 0x200 ... 0x2ff:
1557                 return set_msr_mtrr(vcpu, msr, data);
1558         case MSR_IA32_APICBASE:
1559                 kvm_set_apic_base(vcpu, data);
1560                 break;
1561         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1562                 return kvm_x2apic_msr_write(vcpu, msr, data);
1563         case MSR_IA32_TSCDEADLINE:
1564                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1565                 break;
1566         case MSR_IA32_MISC_ENABLE:
1567                 vcpu->arch.ia32_misc_enable_msr = data;
1568                 break;
1569         case MSR_KVM_WALL_CLOCK_NEW:
1570         case MSR_KVM_WALL_CLOCK:
1571                 vcpu->kvm->arch.wall_clock = data;
1572                 kvm_write_wall_clock(vcpu->kvm, data);
1573                 break;
1574         case MSR_KVM_SYSTEM_TIME_NEW:
1575         case MSR_KVM_SYSTEM_TIME: {
1576                 kvmclock_reset(vcpu);
1577
1578                 vcpu->arch.time = data;
1579                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1580
1581                 /* we verify if the enable bit is set... */
1582                 if (!(data & 1))
1583                         break;
1584
1585                 /* ...but clean it before doing the actual write */
1586                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1587
1588                 vcpu->arch.time_page =
1589                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1590
1591                 if (is_error_page(vcpu->arch.time_page)) {
1592                         kvm_release_page_clean(vcpu->arch.time_page);
1593                         vcpu->arch.time_page = NULL;
1594                 }
1595                 break;
1596         }
1597         case MSR_KVM_ASYNC_PF_EN:
1598                 if (kvm_pv_enable_async_pf(vcpu, data))
1599                         return 1;
1600                 break;
1601         case MSR_KVM_STEAL_TIME:
1602
1603                 if (unlikely(!sched_info_on()))
1604                         return 1;
1605
1606                 if (data & KVM_STEAL_RESERVED_MASK)
1607                         return 1;
1608
1609                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1610                                                         data & KVM_STEAL_VALID_BITS))
1611                         return 1;
1612
1613                 vcpu->arch.st.msr_val = data;
1614
1615                 if (!(data & KVM_MSR_ENABLED))
1616                         break;
1617
1618                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1619
1620                 preempt_disable();
1621                 accumulate_steal_time(vcpu);
1622                 preempt_enable();
1623
1624                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1625
1626                 break;
1627
1628         case MSR_IA32_MCG_CTL:
1629         case MSR_IA32_MCG_STATUS:
1630         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1631                 return set_msr_mce(vcpu, msr, data);
1632
1633         /* Performance counters are not protected by a CPUID bit,
1634          * so we should check all of them in the generic path for the sake of
1635          * cross vendor migration.
1636          * Writing a zero into the event select MSRs disables them,
1637          * which we perfectly emulate ;-). Any other value should be at least
1638          * reported, some guests depend on them.
1639          */
1640         case MSR_K7_EVNTSEL0:
1641         case MSR_K7_EVNTSEL1:
1642         case MSR_K7_EVNTSEL2:
1643         case MSR_K7_EVNTSEL3:
1644                 if (data != 0)
1645                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1646                                 "0x%x data 0x%llx\n", msr, data);
1647                 break;
1648         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1649          * so we ignore writes to make it happy.
1650          */
1651         case MSR_K7_PERFCTR0:
1652         case MSR_K7_PERFCTR1:
1653         case MSR_K7_PERFCTR2:
1654         case MSR_K7_PERFCTR3:
1655                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1656                         "0x%x data 0x%llx\n", msr, data);
1657                 break;
1658         case MSR_P6_PERFCTR0:
1659         case MSR_P6_PERFCTR1:
1660                 pr = true;
1661         case MSR_P6_EVNTSEL0:
1662         case MSR_P6_EVNTSEL1:
1663                 if (kvm_pmu_msr(vcpu, msr))
1664                         return kvm_pmu_set_msr(vcpu, msr, data);
1665
1666                 if (pr || data != 0)
1667                         pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1668                                 "0x%x data 0x%llx\n", msr, data);
1669                 break;
1670         case MSR_K7_CLK_CTL:
1671                 /*
1672                  * Ignore all writes to this no longer documented MSR.
1673                  * Writes are only relevant for old K7 processors,
1674                  * all pre-dating SVM, but a recommended workaround from
1675                  * AMD for these chips. It is possible to speicify the
1676                  * affected processor models on the command line, hence
1677                  * the need to ignore the workaround.
1678                  */
1679                 break;
1680         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1681                 if (kvm_hv_msr_partition_wide(msr)) {
1682                         int r;
1683                         mutex_lock(&vcpu->kvm->lock);
1684                         r = set_msr_hyperv_pw(vcpu, msr, data);
1685                         mutex_unlock(&vcpu->kvm->lock);
1686                         return r;
1687                 } else
1688                         return set_msr_hyperv(vcpu, msr, data);
1689                 break;
1690         case MSR_IA32_BBL_CR_CTL3:
1691                 /* Drop writes to this legacy MSR -- see rdmsr
1692                  * counterpart for further detail.
1693                  */
1694                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1695                 break;
1696         case MSR_AMD64_OSVW_ID_LENGTH:
1697                 if (!guest_cpuid_has_osvw(vcpu))
1698                         return 1;
1699                 vcpu->arch.osvw.length = data;
1700                 break;
1701         case MSR_AMD64_OSVW_STATUS:
1702                 if (!guest_cpuid_has_osvw(vcpu))
1703                         return 1;
1704                 vcpu->arch.osvw.status = data;
1705                 break;
1706         default:
1707                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1708                         return xen_hvm_config(vcpu, data);
1709                 if (kvm_pmu_msr(vcpu, msr))
1710                         return kvm_pmu_set_msr(vcpu, msr, data);
1711                 if (!ignore_msrs) {
1712                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1713                                 msr, data);
1714                         return 1;
1715                 } else {
1716                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1717                                 msr, data);
1718                         break;
1719                 }
1720         }
1721         return 0;
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1724
1725
1726 /*
1727  * Reads an msr value (of 'msr_index') into 'pdata'.
1728  * Returns 0 on success, non-0 otherwise.
1729  * Assumes vcpu_load() was already called.
1730  */
1731 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1732 {
1733         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1734 }
1735
1736 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1737 {
1738         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1739
1740         if (!msr_mtrr_valid(msr))
1741                 return 1;
1742
1743         if (msr == MSR_MTRRdefType)
1744                 *pdata = vcpu->arch.mtrr_state.def_type +
1745                          (vcpu->arch.mtrr_state.enabled << 10);
1746         else if (msr == MSR_MTRRfix64K_00000)
1747                 *pdata = p[0];
1748         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1749                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1750         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1751                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1752         else if (msr == MSR_IA32_CR_PAT)
1753                 *pdata = vcpu->arch.pat;
1754         else {  /* Variable MTRRs */
1755                 int idx, is_mtrr_mask;
1756                 u64 *pt;
1757
1758                 idx = (msr - 0x200) / 2;
1759                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1760                 if (!is_mtrr_mask)
1761                         pt =
1762                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1763                 else
1764                         pt =
1765                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1766                 *pdata = *pt;
1767         }
1768
1769         return 0;
1770 }
1771
1772 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1773 {
1774         u64 data;
1775         u64 mcg_cap = vcpu->arch.mcg_cap;
1776         unsigned bank_num = mcg_cap & 0xff;
1777
1778         switch (msr) {
1779         case MSR_IA32_P5_MC_ADDR:
1780         case MSR_IA32_P5_MC_TYPE:
1781                 data = 0;
1782                 break;
1783         case MSR_IA32_MCG_CAP:
1784                 data = vcpu->arch.mcg_cap;
1785                 break;
1786         case MSR_IA32_MCG_CTL:
1787                 if (!(mcg_cap & MCG_CTL_P))
1788                         return 1;
1789                 data = vcpu->arch.mcg_ctl;
1790                 break;
1791         case MSR_IA32_MCG_STATUS:
1792                 data = vcpu->arch.mcg_status;
1793                 break;
1794         default:
1795                 if (msr >= MSR_IA32_MC0_CTL &&
1796                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1797                         u32 offset = msr - MSR_IA32_MC0_CTL;
1798                         data = vcpu->arch.mce_banks[offset];
1799                         break;
1800                 }
1801                 return 1;
1802         }
1803         *pdata = data;
1804         return 0;
1805 }
1806
1807 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1808 {
1809         u64 data = 0;
1810         struct kvm *kvm = vcpu->kvm;
1811
1812         switch (msr) {
1813         case HV_X64_MSR_GUEST_OS_ID:
1814                 data = kvm->arch.hv_guest_os_id;
1815                 break;
1816         case HV_X64_MSR_HYPERCALL:
1817                 data = kvm->arch.hv_hypercall;
1818                 break;
1819         default:
1820                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1821                 return 1;
1822         }
1823
1824         *pdata = data;
1825         return 0;
1826 }
1827
1828 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1829 {
1830         u64 data = 0;
1831
1832         switch (msr) {
1833         case HV_X64_MSR_VP_INDEX: {
1834                 int r;
1835                 struct kvm_vcpu *v;
1836                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1837                         if (v == vcpu)
1838                                 data = r;
1839                 break;
1840         }
1841         case HV_X64_MSR_EOI:
1842                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1843         case HV_X64_MSR_ICR:
1844                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1845         case HV_X64_MSR_TPR:
1846                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1847         case HV_X64_MSR_APIC_ASSIST_PAGE:
1848                 data = vcpu->arch.hv_vapic;
1849                 break;
1850         default:
1851                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1852                 return 1;
1853         }
1854         *pdata = data;
1855         return 0;
1856 }
1857
1858 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1859 {
1860         u64 data;
1861
1862         switch (msr) {
1863         case MSR_IA32_PLATFORM_ID:
1864         case MSR_IA32_EBL_CR_POWERON:
1865         case MSR_IA32_DEBUGCTLMSR:
1866         case MSR_IA32_LASTBRANCHFROMIP:
1867         case MSR_IA32_LASTBRANCHTOIP:
1868         case MSR_IA32_LASTINTFROMIP:
1869         case MSR_IA32_LASTINTTOIP:
1870         case MSR_K8_SYSCFG:
1871         case MSR_K7_HWCR:
1872         case MSR_VM_HSAVE_PA:
1873         case MSR_K7_EVNTSEL0:
1874         case MSR_K7_PERFCTR0:
1875         case MSR_K8_INT_PENDING_MSG:
1876         case MSR_AMD64_NB_CFG:
1877         case MSR_FAM10H_MMIO_CONF_BASE:
1878                 data = 0;
1879                 break;
1880         case MSR_P6_PERFCTR0:
1881         case MSR_P6_PERFCTR1:
1882         case MSR_P6_EVNTSEL0:
1883         case MSR_P6_EVNTSEL1:
1884                 if (kvm_pmu_msr(vcpu, msr))
1885                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1886                 data = 0;
1887                 break;
1888         case MSR_IA32_UCODE_REV:
1889                 data = 0x100000000ULL;
1890                 break;
1891         case MSR_MTRRcap:
1892                 data = 0x500 | KVM_NR_VAR_MTRR;
1893                 break;
1894         case 0x200 ... 0x2ff:
1895                 return get_msr_mtrr(vcpu, msr, pdata);
1896         case 0xcd: /* fsb frequency */
1897                 data = 3;
1898                 break;
1899                 /*
1900                  * MSR_EBC_FREQUENCY_ID
1901                  * Conservative value valid for even the basic CPU models.
1902                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1903                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1904                  * and 266MHz for model 3, or 4. Set Core Clock
1905                  * Frequency to System Bus Frequency Ratio to 1 (bits
1906                  * 31:24) even though these are only valid for CPU
1907                  * models > 2, however guests may end up dividing or
1908                  * multiplying by zero otherwise.
1909                  */
1910         case MSR_EBC_FREQUENCY_ID:
1911                 data = 1 << 24;
1912                 break;
1913         case MSR_IA32_APICBASE:
1914                 data = kvm_get_apic_base(vcpu);
1915                 break;
1916         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1917                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1918                 break;
1919         case MSR_IA32_TSCDEADLINE:
1920                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1921                 break;
1922         case MSR_IA32_MISC_ENABLE:
1923                 data = vcpu->arch.ia32_misc_enable_msr;
1924                 break;
1925         case MSR_IA32_PERF_STATUS:
1926                 /* TSC increment by tick */
1927                 data = 1000ULL;
1928                 /* CPU multiplier */
1929                 data |= (((uint64_t)4ULL) << 40);
1930                 break;
1931         case MSR_EFER:
1932                 data = vcpu->arch.efer;
1933                 break;
1934         case MSR_KVM_WALL_CLOCK:
1935         case MSR_KVM_WALL_CLOCK_NEW:
1936                 data = vcpu->kvm->arch.wall_clock;
1937                 break;
1938         case MSR_KVM_SYSTEM_TIME:
1939         case MSR_KVM_SYSTEM_TIME_NEW:
1940                 data = vcpu->arch.time;
1941                 break;
1942         case MSR_KVM_ASYNC_PF_EN:
1943                 data = vcpu->arch.apf.msr_val;
1944                 break;
1945         case MSR_KVM_STEAL_TIME:
1946                 data = vcpu->arch.st.msr_val;
1947                 break;
1948         case MSR_IA32_P5_MC_ADDR:
1949         case MSR_IA32_P5_MC_TYPE:
1950         case MSR_IA32_MCG_CAP:
1951         case MSR_IA32_MCG_CTL:
1952         case MSR_IA32_MCG_STATUS:
1953         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1954                 return get_msr_mce(vcpu, msr, pdata);
1955         case MSR_K7_CLK_CTL:
1956                 /*
1957                  * Provide expected ramp-up count for K7. All other
1958                  * are set to zero, indicating minimum divisors for
1959                  * every field.
1960                  *
1961                  * This prevents guest kernels on AMD host with CPU
1962                  * type 6, model 8 and higher from exploding due to
1963                  * the rdmsr failing.
1964                  */
1965                 data = 0x20000000;
1966                 break;
1967         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1968                 if (kvm_hv_msr_partition_wide(msr)) {
1969                         int r;
1970                         mutex_lock(&vcpu->kvm->lock);
1971                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1972                         mutex_unlock(&vcpu->kvm->lock);
1973                         return r;
1974                 } else
1975                         return get_msr_hyperv(vcpu, msr, pdata);
1976                 break;
1977         case MSR_IA32_BBL_CR_CTL3:
1978                 /* This legacy MSR exists but isn't fully documented in current
1979                  * silicon.  It is however accessed by winxp in very narrow
1980                  * scenarios where it sets bit #19, itself documented as
1981                  * a "reserved" bit.  Best effort attempt to source coherent
1982                  * read data here should the balance of the register be
1983                  * interpreted by the guest:
1984                  *
1985                  * L2 cache control register 3: 64GB range, 256KB size,
1986                  * enabled, latency 0x1, configured
1987                  */
1988                 data = 0xbe702111;
1989                 break;
1990         case MSR_AMD64_OSVW_ID_LENGTH:
1991                 if (!guest_cpuid_has_osvw(vcpu))
1992                         return 1;
1993                 data = vcpu->arch.osvw.length;
1994                 break;
1995         case MSR_AMD64_OSVW_STATUS:
1996                 if (!guest_cpuid_has_osvw(vcpu))
1997                         return 1;
1998                 data = vcpu->arch.osvw.status;
1999                 break;
2000         default:
2001                 if (kvm_pmu_msr(vcpu, msr))
2002                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2003                 if (!ignore_msrs) {
2004                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2005                         return 1;
2006                 } else {
2007                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2008                         data = 0;
2009                 }
2010                 break;
2011         }
2012         *pdata = data;
2013         return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2016
2017 /*
2018  * Read or write a bunch of msrs. All parameters are kernel addresses.
2019  *
2020  * @return number of msrs set successfully.
2021  */
2022 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2023                     struct kvm_msr_entry *entries,
2024                     int (*do_msr)(struct kvm_vcpu *vcpu,
2025                                   unsigned index, u64 *data))
2026 {
2027         int i, idx;
2028
2029         idx = srcu_read_lock(&vcpu->kvm->srcu);
2030         for (i = 0; i < msrs->nmsrs; ++i)
2031                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2032                         break;
2033         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2034
2035         return i;
2036 }
2037
2038 /*
2039  * Read or write a bunch of msrs. Parameters are user addresses.
2040  *
2041  * @return number of msrs set successfully.
2042  */
2043 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2044                   int (*do_msr)(struct kvm_vcpu *vcpu,
2045                                 unsigned index, u64 *data),
2046                   int writeback)
2047 {
2048         struct kvm_msrs msrs;
2049         struct kvm_msr_entry *entries;
2050         int r, n;
2051         unsigned size;
2052
2053         r = -EFAULT;
2054         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2055                 goto out;
2056
2057         r = -E2BIG;
2058         if (msrs.nmsrs >= MAX_IO_MSRS)
2059                 goto out;
2060
2061         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2062         entries = memdup_user(user_msrs->entries, size);
2063         if (IS_ERR(entries)) {
2064                 r = PTR_ERR(entries);
2065                 goto out;
2066         }
2067
2068         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2069         if (r < 0)
2070                 goto out_free;
2071
2072         r = -EFAULT;
2073         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2074                 goto out_free;
2075
2076         r = n;
2077
2078 out_free:
2079         kfree(entries);
2080 out:
2081         return r;
2082 }
2083
2084 int kvm_dev_ioctl_check_extension(long ext)
2085 {
2086         int r;
2087
2088         switch (ext) {
2089         case KVM_CAP_IRQCHIP:
2090         case KVM_CAP_HLT:
2091         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2092         case KVM_CAP_SET_TSS_ADDR:
2093         case KVM_CAP_EXT_CPUID:
2094         case KVM_CAP_CLOCKSOURCE:
2095         case KVM_CAP_PIT:
2096         case KVM_CAP_NOP_IO_DELAY:
2097         case KVM_CAP_MP_STATE:
2098         case KVM_CAP_SYNC_MMU:
2099         case KVM_CAP_USER_NMI:
2100         case KVM_CAP_REINJECT_CONTROL:
2101         case KVM_CAP_IRQ_INJECT_STATUS:
2102         case KVM_CAP_ASSIGN_DEV_IRQ:
2103         case KVM_CAP_IRQFD:
2104         case KVM_CAP_IOEVENTFD:
2105         case KVM_CAP_PIT2:
2106         case KVM_CAP_PIT_STATE2:
2107         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2108         case KVM_CAP_XEN_HVM:
2109         case KVM_CAP_ADJUST_CLOCK:
2110         case KVM_CAP_VCPU_EVENTS:
2111         case KVM_CAP_HYPERV:
2112         case KVM_CAP_HYPERV_VAPIC:
2113         case KVM_CAP_HYPERV_SPIN:
2114         case KVM_CAP_PCI_SEGMENT:
2115         case KVM_CAP_DEBUGREGS:
2116         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2117         case KVM_CAP_XSAVE:
2118         case KVM_CAP_ASYNC_PF:
2119         case KVM_CAP_GET_TSC_KHZ:
2120                 r = 1;
2121                 break;
2122         case KVM_CAP_COALESCED_MMIO:
2123                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2124                 break;
2125         case KVM_CAP_VAPIC:
2126                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2127                 break;
2128         case KVM_CAP_NR_VCPUS:
2129                 r = KVM_SOFT_MAX_VCPUS;
2130                 break;
2131         case KVM_CAP_MAX_VCPUS:
2132                 r = KVM_MAX_VCPUS;
2133                 break;
2134         case KVM_CAP_NR_MEMSLOTS:
2135                 r = KVM_MEMORY_SLOTS;
2136                 break;
2137         case KVM_CAP_PV_MMU:    /* obsolete */
2138                 r = 0;
2139                 break;
2140         case KVM_CAP_IOMMU:
2141                 r = iommu_present(&pci_bus_type);
2142                 break;
2143         case KVM_CAP_MCE:
2144                 r = KVM_MAX_MCE_BANKS;
2145                 break;
2146         case KVM_CAP_XCRS:
2147                 r = cpu_has_xsave;
2148                 break;
2149         case KVM_CAP_TSC_CONTROL:
2150                 r = kvm_has_tsc_control;
2151                 break;
2152         case KVM_CAP_TSC_DEADLINE_TIMER:
2153                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2154                 break;
2155         default:
2156                 r = 0;
2157                 break;
2158         }
2159         return r;
2160
2161 }
2162
2163 long kvm_arch_dev_ioctl(struct file *filp,
2164                         unsigned int ioctl, unsigned long arg)
2165 {
2166         void __user *argp = (void __user *)arg;
2167         long r;
2168
2169         switch (ioctl) {
2170         case KVM_GET_MSR_INDEX_LIST: {
2171                 struct kvm_msr_list __user *user_msr_list = argp;
2172                 struct kvm_msr_list msr_list;
2173                 unsigned n;
2174
2175                 r = -EFAULT;
2176                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2177                         goto out;
2178                 n = msr_list.nmsrs;
2179                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2180                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2181                         goto out;
2182                 r = -E2BIG;
2183                 if (n < msr_list.nmsrs)
2184                         goto out;
2185                 r = -EFAULT;
2186                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2187                                  num_msrs_to_save * sizeof(u32)))
2188                         goto out;
2189                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2190                                  &emulated_msrs,
2191                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2192                         goto out;
2193                 r = 0;
2194                 break;
2195         }
2196         case KVM_GET_SUPPORTED_CPUID: {
2197                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2198                 struct kvm_cpuid2 cpuid;
2199
2200                 r = -EFAULT;
2201                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2202                         goto out;
2203                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2204                                                       cpuid_arg->entries);
2205                 if (r)
2206                         goto out;
2207
2208                 r = -EFAULT;
2209                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2210                         goto out;
2211                 r = 0;
2212                 break;
2213         }
2214         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2215                 u64 mce_cap;
2216
2217                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2218                 r = -EFAULT;
2219                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2220                         goto out;
2221                 r = 0;
2222                 break;
2223         }
2224         default:
2225                 r = -EINVAL;
2226         }
2227 out:
2228         return r;
2229 }
2230
2231 static void wbinvd_ipi(void *garbage)
2232 {
2233         wbinvd();
2234 }
2235
2236 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2237 {
2238         return vcpu->kvm->arch.iommu_domain &&
2239                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2240 }
2241
2242 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2243 {
2244         /* Address WBINVD may be executed by guest */
2245         if (need_emulate_wbinvd(vcpu)) {
2246                 if (kvm_x86_ops->has_wbinvd_exit())
2247                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2248                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2249                         smp_call_function_single(vcpu->cpu,
2250                                         wbinvd_ipi, NULL, 1);
2251         }
2252
2253         kvm_x86_ops->vcpu_load(vcpu, cpu);
2254         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2255                 /* Make sure TSC doesn't go backwards */
2256                 s64 tsc_delta;
2257                 u64 tsc;
2258
2259                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2260                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2261                              tsc - vcpu->arch.last_guest_tsc;
2262
2263                 if (tsc_delta < 0)
2264                         mark_tsc_unstable("KVM discovered backwards TSC");
2265                 if (check_tsc_unstable()) {
2266                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2267                         vcpu->arch.tsc_catchup = 1;
2268                 }
2269                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2270                 if (vcpu->cpu != cpu)
2271                         kvm_migrate_timers(vcpu);
2272                 vcpu->cpu = cpu;
2273         }
2274
2275         accumulate_steal_time(vcpu);
2276         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2277 }
2278
2279 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2280 {
2281         kvm_x86_ops->vcpu_put(vcpu);
2282         kvm_put_guest_fpu(vcpu);
2283         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2284 }
2285
2286 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2287                                     struct kvm_lapic_state *s)
2288 {
2289         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2290
2291         return 0;
2292 }
2293
2294 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2295                                     struct kvm_lapic_state *s)
2296 {
2297         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2298         kvm_apic_post_state_restore(vcpu);
2299         update_cr8_intercept(vcpu);
2300
2301         return 0;
2302 }
2303
2304 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2305                                     struct kvm_interrupt *irq)
2306 {
2307         if (irq->irq < 0 || irq->irq >= 256)
2308                 return -EINVAL;
2309         if (irqchip_in_kernel(vcpu->kvm))
2310                 return -ENXIO;
2311
2312         kvm_queue_interrupt(vcpu, irq->irq, false);
2313         kvm_make_request(KVM_REQ_EVENT, vcpu);
2314
2315         return 0;
2316 }
2317
2318 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2319 {
2320         kvm_inject_nmi(vcpu);
2321
2322         return 0;
2323 }
2324
2325 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2326                                            struct kvm_tpr_access_ctl *tac)
2327 {
2328         if (tac->flags)
2329                 return -EINVAL;
2330         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2331         return 0;
2332 }
2333
2334 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2335                                         u64 mcg_cap)
2336 {
2337         int r;
2338         unsigned bank_num = mcg_cap & 0xff, bank;
2339
2340         r = -EINVAL;
2341         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2342                 goto out;
2343         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2344                 goto out;
2345         r = 0;
2346         vcpu->arch.mcg_cap = mcg_cap;
2347         /* Init IA32_MCG_CTL to all 1s */
2348         if (mcg_cap & MCG_CTL_P)
2349                 vcpu->arch.mcg_ctl = ~(u64)0;
2350         /* Init IA32_MCi_CTL to all 1s */
2351         for (bank = 0; bank < bank_num; bank++)
2352                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2353 out:
2354         return r;
2355 }
2356
2357 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2358                                       struct kvm_x86_mce *mce)
2359 {
2360         u64 mcg_cap = vcpu->arch.mcg_cap;
2361         unsigned bank_num = mcg_cap & 0xff;
2362         u64 *banks = vcpu->arch.mce_banks;
2363
2364         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2365                 return -EINVAL;
2366         /*
2367          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2368          * reporting is disabled
2369          */
2370         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2371             vcpu->arch.mcg_ctl != ~(u64)0)
2372                 return 0;
2373         banks += 4 * mce->bank;
2374         /*
2375          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2376          * reporting is disabled for the bank
2377          */
2378         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2379                 return 0;
2380         if (mce->status & MCI_STATUS_UC) {
2381                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2382                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2383                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2384                         return 0;
2385                 }
2386                 if (banks[1] & MCI_STATUS_VAL)
2387                         mce->status |= MCI_STATUS_OVER;
2388                 banks[2] = mce->addr;
2389                 banks[3] = mce->misc;
2390                 vcpu->arch.mcg_status = mce->mcg_status;
2391                 banks[1] = mce->status;
2392                 kvm_queue_exception(vcpu, MC_VECTOR);
2393         } else if (!(banks[1] & MCI_STATUS_VAL)
2394                    || !(banks[1] & MCI_STATUS_UC)) {
2395                 if (banks[1] & MCI_STATUS_VAL)
2396                         mce->status |= MCI_STATUS_OVER;
2397                 banks[2] = mce->addr;
2398                 banks[3] = mce->misc;
2399                 banks[1] = mce->status;
2400         } else
2401                 banks[1] |= MCI_STATUS_OVER;
2402         return 0;
2403 }
2404
2405 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2406                                                struct kvm_vcpu_events *events)
2407 {
2408         process_nmi(vcpu);
2409         events->exception.injected =
2410                 vcpu->arch.exception.pending &&
2411                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2412         events->exception.nr = vcpu->arch.exception.nr;
2413         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2414         events->exception.pad = 0;
2415         events->exception.error_code = vcpu->arch.exception.error_code;
2416
2417         events->interrupt.injected =
2418                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2419         events->interrupt.nr = vcpu->arch.interrupt.nr;
2420         events->interrupt.soft = 0;
2421         events->interrupt.shadow =
2422                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2423                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2424
2425         events->nmi.injected = vcpu->arch.nmi_injected;
2426         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2427         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2428         events->nmi.pad = 0;
2429
2430         events->sipi_vector = vcpu->arch.sipi_vector;
2431
2432         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2433                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2434                          | KVM_VCPUEVENT_VALID_SHADOW);
2435         memset(&events->reserved, 0, sizeof(events->reserved));
2436 }
2437
2438 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2439                                               struct kvm_vcpu_events *events)
2440 {
2441         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2442                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2443                               | KVM_VCPUEVENT_VALID_SHADOW))
2444                 return -EINVAL;
2445
2446         process_nmi(vcpu);
2447         vcpu->arch.exception.pending = events->exception.injected;
2448         vcpu->arch.exception.nr = events->exception.nr;
2449         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2450         vcpu->arch.exception.error_code = events->exception.error_code;
2451
2452         vcpu->arch.interrupt.pending = events->interrupt.injected;
2453         vcpu->arch.interrupt.nr = events->interrupt.nr;
2454         vcpu->arch.interrupt.soft = events->interrupt.soft;
2455         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2456                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2457                                                   events->interrupt.shadow);
2458
2459         vcpu->arch.nmi_injected = events->nmi.injected;
2460         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2461                 vcpu->arch.nmi_pending = events->nmi.pending;
2462         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2463
2464         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2465                 vcpu->arch.sipi_vector = events->sipi_vector;
2466
2467         kvm_make_request(KVM_REQ_EVENT, vcpu);
2468
2469         return 0;
2470 }
2471
2472 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2473                                              struct kvm_debugregs *dbgregs)
2474 {
2475         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2476         dbgregs->dr6 = vcpu->arch.dr6;
2477         dbgregs->dr7 = vcpu->arch.dr7;
2478         dbgregs->flags = 0;
2479         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2480 }
2481
2482 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2483                                             struct kvm_debugregs *dbgregs)
2484 {
2485         if (dbgregs->flags)
2486                 return -EINVAL;
2487
2488         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2489         vcpu->arch.dr6 = dbgregs->dr6;
2490         vcpu->arch.dr7 = dbgregs->dr7;
2491
2492         return 0;
2493 }
2494
2495 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2496                                          struct kvm_xsave *guest_xsave)
2497 {
2498         if (cpu_has_xsave)
2499                 memcpy(guest_xsave->region,
2500                         &vcpu->arch.guest_fpu.state->xsave,
2501                         xstate_size);
2502         else {
2503                 memcpy(guest_xsave->region,
2504                         &vcpu->arch.guest_fpu.state->fxsave,
2505                         sizeof(struct i387_fxsave_struct));
2506                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2507                         XSTATE_FPSSE;
2508         }
2509 }
2510
2511 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2512                                         struct kvm_xsave *guest_xsave)
2513 {
2514         u64 xstate_bv =
2515                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2516
2517         if (cpu_has_xsave)
2518                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2519                         guest_xsave->region, xstate_size);
2520         else {
2521                 if (xstate_bv & ~XSTATE_FPSSE)
2522                         return -EINVAL;
2523                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2524                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2525         }
2526         return 0;
2527 }
2528
2529 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2530                                         struct kvm_xcrs *guest_xcrs)
2531 {
2532         if (!cpu_has_xsave) {
2533                 guest_xcrs->nr_xcrs = 0;
2534                 return;
2535         }
2536
2537         guest_xcrs->nr_xcrs = 1;
2538         guest_xcrs->flags = 0;
2539         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2540         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2541 }
2542
2543 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2544                                        struct kvm_xcrs *guest_xcrs)
2545 {
2546         int i, r = 0;
2547
2548         if (!cpu_has_xsave)
2549                 return -EINVAL;
2550
2551         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2552                 return -EINVAL;
2553
2554         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2555                 /* Only support XCR0 currently */
2556                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2557                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2558                                 guest_xcrs->xcrs[0].value);
2559                         break;
2560                 }
2561         if (r)
2562                 r = -EINVAL;
2563         return r;
2564 }
2565
2566 long kvm_arch_vcpu_ioctl(struct file *filp,
2567                          unsigned int ioctl, unsigned long arg)
2568 {
2569         struct kvm_vcpu *vcpu = filp->private_data;
2570         void __user *argp = (void __user *)arg;
2571         int r;
2572         union {
2573                 struct kvm_lapic_state *lapic;
2574                 struct kvm_xsave *xsave;
2575                 struct kvm_xcrs *xcrs;
2576                 void *buffer;
2577         } u;
2578
2579         u.buffer = NULL;
2580         switch (ioctl) {
2581         case KVM_GET_LAPIC: {
2582                 r = -EINVAL;
2583                 if (!vcpu->arch.apic)
2584                         goto out;
2585                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2586
2587                 r = -ENOMEM;
2588                 if (!u.lapic)
2589                         goto out;
2590                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2591                 if (r)
2592                         goto out;
2593                 r = -EFAULT;
2594                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2595                         goto out;
2596                 r = 0;
2597                 break;
2598         }
2599         case KVM_SET_LAPIC: {
2600                 r = -EINVAL;
2601                 if (!vcpu->arch.apic)
2602                         goto out;
2603                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2604                 if (IS_ERR(u.lapic)) {
2605                         r = PTR_ERR(u.lapic);
2606                         goto out;
2607                 }
2608
2609                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2610                 if (r)
2611                         goto out;
2612                 r = 0;
2613                 break;
2614         }
2615         case KVM_INTERRUPT: {
2616                 struct kvm_interrupt irq;
2617
2618                 r = -EFAULT;
2619                 if (copy_from_user(&irq, argp, sizeof irq))
2620                         goto out;
2621                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2622                 if (r)
2623                         goto out;
2624                 r = 0;
2625                 break;
2626         }
2627         case KVM_NMI: {
2628                 r = kvm_vcpu_ioctl_nmi(vcpu);
2629                 if (r)
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_CPUID: {
2635                 struct kvm_cpuid __user *cpuid_arg = argp;
2636                 struct kvm_cpuid cpuid;
2637
2638                 r = -EFAULT;
2639                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2640                         goto out;
2641                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2642                 if (r)
2643                         goto out;
2644                 break;
2645         }
2646         case KVM_SET_CPUID2: {
2647                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2648                 struct kvm_cpuid2 cpuid;
2649
2650                 r = -EFAULT;
2651                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2652                         goto out;
2653                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2654                                               cpuid_arg->entries);
2655                 if (r)
2656                         goto out;
2657                 break;
2658         }
2659         case KVM_GET_CPUID2: {
2660                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2661                 struct kvm_cpuid2 cpuid;
2662
2663                 r = -EFAULT;
2664                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2665                         goto out;
2666                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2667                                               cpuid_arg->entries);
2668                 if (r)
2669                         goto out;
2670                 r = -EFAULT;
2671                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_GET_MSRS:
2677                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2678                 break;
2679         case KVM_SET_MSRS:
2680                 r = msr_io(vcpu, argp, do_set_msr, 0);
2681                 break;
2682         case KVM_TPR_ACCESS_REPORTING: {
2683                 struct kvm_tpr_access_ctl tac;
2684
2685                 r = -EFAULT;
2686                 if (copy_from_user(&tac, argp, sizeof tac))
2687                         goto out;
2688                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2689                 if (r)
2690                         goto out;
2691                 r = -EFAULT;
2692                 if (copy_to_user(argp, &tac, sizeof tac))
2693                         goto out;
2694                 r = 0;
2695                 break;
2696         };
2697         case KVM_SET_VAPIC_ADDR: {
2698                 struct kvm_vapic_addr va;
2699
2700                 r = -EINVAL;
2701                 if (!irqchip_in_kernel(vcpu->kvm))
2702                         goto out;
2703                 r = -EFAULT;
2704                 if (copy_from_user(&va, argp, sizeof va))
2705                         goto out;
2706                 r = 0;
2707                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2708                 break;
2709         }
2710         case KVM_X86_SETUP_MCE: {
2711                 u64 mcg_cap;
2712
2713                 r = -EFAULT;
2714                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2715                         goto out;
2716                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2717                 break;
2718         }
2719         case KVM_X86_SET_MCE: {
2720                 struct kvm_x86_mce mce;
2721
2722                 r = -EFAULT;
2723                 if (copy_from_user(&mce, argp, sizeof mce))
2724                         goto out;
2725                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2726                 break;
2727         }
2728         case KVM_GET_VCPU_EVENTS: {
2729                 struct kvm_vcpu_events events;
2730
2731                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2732
2733                 r = -EFAULT;
2734                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2735                         break;
2736                 r = 0;
2737                 break;
2738         }
2739         case KVM_SET_VCPU_EVENTS: {
2740                 struct kvm_vcpu_events events;
2741
2742                 r = -EFAULT;
2743                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2744                         break;
2745
2746                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2747                 break;
2748         }
2749         case KVM_GET_DEBUGREGS: {
2750                 struct kvm_debugregs dbgregs;
2751
2752                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2753
2754                 r = -EFAULT;
2755                 if (copy_to_user(argp, &dbgregs,
2756                                  sizeof(struct kvm_debugregs)))
2757                         break;
2758                 r = 0;
2759                 break;
2760         }
2761         case KVM_SET_DEBUGREGS: {
2762                 struct kvm_debugregs dbgregs;
2763
2764                 r = -EFAULT;
2765                 if (copy_from_user(&dbgregs, argp,
2766                                    sizeof(struct kvm_debugregs)))
2767                         break;
2768
2769                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2770                 break;
2771         }
2772         case KVM_GET_XSAVE: {
2773                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2774                 r = -ENOMEM;
2775                 if (!u.xsave)
2776                         break;
2777
2778                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2779
2780                 r = -EFAULT;
2781                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2782                         break;
2783                 r = 0;
2784                 break;
2785         }
2786         case KVM_SET_XSAVE: {
2787                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2788                 if (IS_ERR(u.xsave)) {
2789                         r = PTR_ERR(u.xsave);
2790                         goto out;
2791                 }
2792
2793                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2794                 break;
2795         }
2796         case KVM_GET_XCRS: {
2797                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2798                 r = -ENOMEM;
2799                 if (!u.xcrs)
2800                         break;
2801
2802                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2803
2804                 r = -EFAULT;
2805                 if (copy_to_user(argp, u.xcrs,
2806                                  sizeof(struct kvm_xcrs)))
2807                         break;
2808                 r = 0;
2809                 break;
2810         }
2811         case KVM_SET_XCRS: {
2812                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2813                 if (IS_ERR(u.xcrs)) {
2814                         r = PTR_ERR(u.xcrs);
2815                         goto out;
2816                 }
2817
2818                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2819                 break;
2820         }
2821         case KVM_SET_TSC_KHZ: {
2822                 u32 user_tsc_khz;
2823
2824                 r = -EINVAL;
2825                 user_tsc_khz = (u32)arg;
2826
2827                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2828                         goto out;
2829
2830                 if (user_tsc_khz == 0)
2831                         user_tsc_khz = tsc_khz;
2832
2833                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2834
2835                 r = 0;
2836                 goto out;
2837         }
2838         case KVM_GET_TSC_KHZ: {
2839                 r = vcpu->arch.virtual_tsc_khz;
2840                 goto out;
2841         }
2842         default:
2843                 r = -EINVAL;
2844         }
2845 out:
2846         kfree(u.buffer);
2847         return r;
2848 }
2849
2850 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2851 {
2852         return VM_FAULT_SIGBUS;
2853 }
2854
2855 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2856 {
2857         int ret;
2858
2859         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2860                 return -1;
2861         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2862         return ret;
2863 }
2864
2865 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2866                                               u64 ident_addr)
2867 {
2868         kvm->arch.ept_identity_map_addr = ident_addr;
2869         return 0;
2870 }
2871
2872 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2873                                           u32 kvm_nr_mmu_pages)
2874 {
2875         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2876                 return -EINVAL;
2877
2878         mutex_lock(&kvm->slots_lock);
2879         spin_lock(&kvm->mmu_lock);
2880
2881         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2882         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2883
2884         spin_unlock(&kvm->mmu_lock);
2885         mutex_unlock(&kvm->slots_lock);
2886         return 0;
2887 }
2888
2889 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2890 {
2891         return kvm->arch.n_max_mmu_pages;
2892 }
2893
2894 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2895 {
2896         int r;
2897
2898         r = 0;
2899         switch (chip->chip_id) {
2900         case KVM_IRQCHIP_PIC_MASTER:
2901                 memcpy(&chip->chip.pic,
2902                         &pic_irqchip(kvm)->pics[0],
2903                         sizeof(struct kvm_pic_state));
2904                 break;
2905         case KVM_IRQCHIP_PIC_SLAVE:
2906                 memcpy(&chip->chip.pic,
2907                         &pic_irqchip(kvm)->pics[1],
2908                         sizeof(struct kvm_pic_state));
2909                 break;
2910         case KVM_IRQCHIP_IOAPIC:
2911                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2912                 break;
2913         default:
2914                 r = -EINVAL;
2915                 break;
2916         }
2917         return r;
2918 }
2919
2920 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2921 {
2922         int r;
2923
2924         r = 0;
2925         switch (chip->chip_id) {
2926         case KVM_IRQCHIP_PIC_MASTER:
2927                 spin_lock(&pic_irqchip(kvm)->lock);
2928                 memcpy(&pic_irqchip(kvm)->pics[0],
2929                         &chip->chip.pic,
2930                         sizeof(struct kvm_pic_state));
2931                 spin_unlock(&pic_irqchip(kvm)->lock);
2932                 break;
2933         case KVM_IRQCHIP_PIC_SLAVE:
2934                 spin_lock(&pic_irqchip(kvm)->lock);
2935                 memcpy(&pic_irqchip(kvm)->pics[1],
2936                         &chip->chip.pic,
2937                         sizeof(struct kvm_pic_state));
2938                 spin_unlock(&pic_irqchip(kvm)->lock);
2939                 break;
2940         case KVM_IRQCHIP_IOAPIC:
2941                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2942                 break;
2943         default:
2944                 r = -EINVAL;
2945                 break;
2946         }
2947         kvm_pic_update_irq(pic_irqchip(kvm));
2948         return r;
2949 }
2950
2951 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2952 {
2953         int r = 0;
2954
2955         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2956         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2957         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2958         return r;
2959 }
2960
2961 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2962 {
2963         int r = 0;
2964
2965         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2966         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2967         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2968         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2969         return r;
2970 }
2971
2972 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2973 {
2974         int r = 0;
2975
2976         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2977         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2978                 sizeof(ps->channels));
2979         ps->flags = kvm->arch.vpit->pit_state.flags;
2980         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2981         memset(&ps->reserved, 0, sizeof(ps->reserved));
2982         return r;
2983 }
2984
2985 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2986 {
2987         int r = 0, start = 0;
2988         u32 prev_legacy, cur_legacy;
2989         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2990         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2991         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2992         if (!prev_legacy && cur_legacy)
2993                 start = 1;
2994         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2995                sizeof(kvm->arch.vpit->pit_state.channels));
2996         kvm->arch.vpit->pit_state.flags = ps->flags;
2997         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2998         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2999         return r;
3000 }
3001
3002 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3003                                  struct kvm_reinject_control *control)
3004 {
3005         if (!kvm->arch.vpit)
3006                 return -ENXIO;
3007         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3008         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3009         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3010         return 0;
3011 }
3012
3013 /**
3014  * write_protect_slot - write protect a slot for dirty logging
3015  * @kvm: the kvm instance
3016  * @memslot: the slot we protect
3017  * @dirty_bitmap: the bitmap indicating which pages are dirty
3018  * @nr_dirty_pages: the number of dirty pages
3019  *
3020  * We have two ways to find all sptes to protect:
3021  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3022  *    checks ones that have a spte mapping a page in the slot.
3023  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3024  *
3025  * Generally speaking, if there are not so many dirty pages compared to the
3026  * number of shadow pages, we should use the latter.
3027  *
3028  * Note that letting others write into a page marked dirty in the old bitmap
3029  * by using the remaining tlb entry is not a problem.  That page will become
3030  * write protected again when we flush the tlb and then be reported dirty to
3031  * the user space by copying the old bitmap.
3032  */
3033 static void write_protect_slot(struct kvm *kvm,
3034                                struct kvm_memory_slot *memslot,
3035                                unsigned long *dirty_bitmap,
3036                                unsigned long nr_dirty_pages)
3037 {
3038         /* Not many dirty pages compared to # of shadow pages. */
3039         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3040                 unsigned long gfn_offset;
3041
3042                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3043                         unsigned long gfn = memslot->base_gfn + gfn_offset;
3044
3045                         spin_lock(&kvm->mmu_lock);
3046                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3047                         spin_unlock(&kvm->mmu_lock);
3048                 }
3049                 kvm_flush_remote_tlbs(kvm);
3050         } else {
3051                 spin_lock(&kvm->mmu_lock);
3052                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3053                 spin_unlock(&kvm->mmu_lock);
3054         }
3055 }
3056
3057 /*
3058  * Get (and clear) the dirty memory log for a memory slot.
3059  */
3060 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3061                                       struct kvm_dirty_log *log)
3062 {
3063         int r;
3064         struct kvm_memory_slot *memslot;
3065         unsigned long n, nr_dirty_pages;
3066
3067         mutex_lock(&kvm->slots_lock);
3068
3069         r = -EINVAL;
3070         if (log->slot >= KVM_MEMORY_SLOTS)
3071                 goto out;
3072
3073         memslot = id_to_memslot(kvm->memslots, log->slot);
3074         r = -ENOENT;
3075         if (!memslot->dirty_bitmap)
3076                 goto out;
3077
3078         n = kvm_dirty_bitmap_bytes(memslot);
3079         nr_dirty_pages = memslot->nr_dirty_pages;
3080
3081         /* If nothing is dirty, don't bother messing with page tables. */
3082         if (nr_dirty_pages) {
3083                 struct kvm_memslots *slots, *old_slots;
3084                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3085
3086                 dirty_bitmap = memslot->dirty_bitmap;
3087                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3088                 if (dirty_bitmap == dirty_bitmap_head)
3089                         dirty_bitmap_head += n / sizeof(long);
3090                 memset(dirty_bitmap_head, 0, n);
3091
3092                 r = -ENOMEM;
3093                 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3094                 if (!slots)
3095                         goto out;
3096
3097                 memslot = id_to_memslot(slots, log->slot);
3098                 memslot->nr_dirty_pages = 0;
3099                 memslot->dirty_bitmap = dirty_bitmap_head;
3100                 update_memslots(slots, NULL);
3101
3102                 old_slots = kvm->memslots;
3103                 rcu_assign_pointer(kvm->memslots, slots);
3104                 synchronize_srcu_expedited(&kvm->srcu);
3105                 kfree(old_slots);
3106
3107                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3108
3109                 r = -EFAULT;
3110                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3111                         goto out;
3112         } else {
3113                 r = -EFAULT;
3114                 if (clear_user(log->dirty_bitmap, n))
3115                         goto out;
3116         }
3117
3118         r = 0;
3119 out:
3120         mutex_unlock(&kvm->slots_lock);
3121         return r;
3122 }
3123
3124 long kvm_arch_vm_ioctl(struct file *filp,
3125                        unsigned int ioctl, unsigned long arg)
3126 {
3127         struct kvm *kvm = filp->private_data;
3128         void __user *argp = (void __user *)arg;
3129         int r = -ENOTTY;
3130         /*
3131          * This union makes it completely explicit to gcc-3.x
3132          * that these two variables' stack usage should be
3133          * combined, not added together.
3134          */
3135         union {
3136                 struct kvm_pit_state ps;
3137                 struct kvm_pit_state2 ps2;
3138                 struct kvm_pit_config pit_config;
3139         } u;
3140
3141         switch (ioctl) {
3142         case KVM_SET_TSS_ADDR:
3143                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3144                 if (r < 0)
3145                         goto out;
3146                 break;
3147         case KVM_SET_IDENTITY_MAP_ADDR: {
3148                 u64 ident_addr;
3149
3150                 r = -EFAULT;
3151                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3152                         goto out;
3153                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3154                 if (r < 0)
3155                         goto out;
3156                 break;
3157         }
3158         case KVM_SET_NR_MMU_PAGES:
3159                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3160                 if (r)
3161                         goto out;
3162                 break;
3163         case KVM_GET_NR_MMU_PAGES:
3164                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3165                 break;
3166         case KVM_CREATE_IRQCHIP: {
3167                 struct kvm_pic *vpic;
3168
3169                 mutex_lock(&kvm->lock);
3170                 r = -EEXIST;
3171                 if (kvm->arch.vpic)
3172                         goto create_irqchip_unlock;
3173                 r = -ENOMEM;
3174                 vpic = kvm_create_pic(kvm);
3175                 if (vpic) {
3176                         r = kvm_ioapic_init(kvm);
3177                         if (r) {
3178                                 mutex_lock(&kvm->slots_lock);
3179                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3180                                                           &vpic->dev_master);
3181                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3182                                                           &vpic->dev_slave);
3183                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3184                                                           &vpic->dev_eclr);
3185                                 mutex_unlock(&kvm->slots_lock);
3186                                 kfree(vpic);
3187                                 goto create_irqchip_unlock;
3188                         }
3189                 } else
3190                         goto create_irqchip_unlock;
3191                 smp_wmb();
3192                 kvm->arch.vpic = vpic;
3193                 smp_wmb();
3194                 r = kvm_setup_default_irq_routing(kvm);
3195                 if (r) {
3196                         mutex_lock(&kvm->slots_lock);
3197                         mutex_lock(&kvm->irq_lock);
3198                         kvm_ioapic_destroy(kvm);
3199                         kvm_destroy_pic(kvm);
3200                         mutex_unlock(&kvm->irq_lock);
3201                         mutex_unlock(&kvm->slots_lock);
3202                 }
3203         create_irqchip_unlock:
3204                 mutex_unlock(&kvm->lock);
3205                 break;
3206         }
3207         case KVM_CREATE_PIT:
3208                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3209                 goto create_pit;
3210         case KVM_CREATE_PIT2:
3211                 r = -EFAULT;
3212                 if (copy_from_user(&u.pit_config, argp,
3213                                    sizeof(struct kvm_pit_config)))
3214                         goto out;
3215         create_pit:
3216                 mutex_lock(&kvm->slots_lock);
3217                 r = -EEXIST;
3218                 if (kvm->arch.vpit)
3219                         goto create_pit_unlock;
3220                 r = -ENOMEM;
3221                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3222                 if (kvm->arch.vpit)
3223                         r = 0;
3224         create_pit_unlock:
3225                 mutex_unlock(&kvm->slots_lock);
3226                 break;
3227         case KVM_IRQ_LINE_STATUS:
3228         case KVM_IRQ_LINE: {
3229                 struct kvm_irq_level irq_event;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3233                         goto out;
3234                 r = -ENXIO;
3235                 if (irqchip_in_kernel(kvm)) {
3236                         __s32 status;
3237                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3238                                         irq_event.irq, irq_event.level);
3239                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3240                                 r = -EFAULT;
3241                                 irq_event.status = status;
3242                                 if (copy_to_user(argp, &irq_event,
3243                                                         sizeof irq_event))
3244                                         goto out;
3245                         }
3246                         r = 0;
3247                 }
3248                 break;
3249         }
3250         case KVM_GET_IRQCHIP: {
3251                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3252                 struct kvm_irqchip *chip;
3253
3254                 chip = memdup_user(argp, sizeof(*chip));
3255                 if (IS_ERR(chip)) {
3256                         r = PTR_ERR(chip);
3257                         goto out;
3258                 }
3259
3260                 r = -ENXIO;
3261                 if (!irqchip_in_kernel(kvm))
3262                         goto get_irqchip_out;
3263                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3264                 if (r)
3265                         goto get_irqchip_out;
3266                 r = -EFAULT;
3267                 if (copy_to_user(argp, chip, sizeof *chip))
3268                         goto get_irqchip_out;
3269                 r = 0;
3270         get_irqchip_out:
3271                 kfree(chip);
3272                 if (r)
3273                         goto out;
3274                 break;
3275         }
3276         case KVM_SET_IRQCHIP: {
3277                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3278                 struct kvm_irqchip *chip;
3279
3280                 chip = memdup_user(argp, sizeof(*chip));
3281                 if (IS_ERR(chip)) {
3282                         r = PTR_ERR(chip);
3283                         goto out;
3284                 }
3285
3286                 r = -ENXIO;
3287                 if (!irqchip_in_kernel(kvm))
3288                         goto set_irqchip_out;
3289                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3290                 if (r)
3291                         goto set_irqchip_out;
3292                 r = 0;
3293         set_irqchip_out:
3294                 kfree(chip);
3295                 if (r)
3296                         goto out;
3297                 break;
3298         }
3299         case KVM_GET_PIT: {
3300                 r = -EFAULT;
3301                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3302                         goto out;
3303                 r = -ENXIO;
3304                 if (!kvm->arch.vpit)
3305                         goto out;
3306                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3307                 if (r)
3308                         goto out;
3309                 r = -EFAULT;
3310                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3311                         goto out;
3312                 r = 0;
3313                 break;
3314         }
3315         case KVM_SET_PIT: {
3316                 r = -EFAULT;
3317                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3318                         goto out;
3319                 r = -ENXIO;
3320                 if (!kvm->arch.vpit)
3321                         goto out;
3322                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3323                 if (r)
3324                         goto out;
3325                 r = 0;
3326                 break;
3327         }
3328         case KVM_GET_PIT2: {
3329                 r = -ENXIO;
3330                 if (!kvm->arch.vpit)
3331                         goto out;
3332                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3333                 if (r)
3334                         goto out;
3335                 r = -EFAULT;
3336                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3337                         goto out;
3338                 r = 0;
3339                 break;
3340         }
3341         case KVM_SET_PIT2: {
3342                 r = -EFAULT;
3343                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3344                         goto out;
3345                 r = -ENXIO;
3346                 if (!kvm->arch.vpit)
3347                         goto out;
3348                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3349                 if (r)
3350                         goto out;
3351                 r = 0;
3352                 break;
3353         }
3354         case KVM_REINJECT_CONTROL: {
3355                 struct kvm_reinject_control control;
3356                 r =  -EFAULT;
3357                 if (copy_from_user(&control, argp, sizeof(control)))
3358                         goto out;
3359                 r = kvm_vm_ioctl_reinject(kvm, &control);
3360                 if (r)
3361                         goto out;
3362                 r = 0;
3363                 break;
3364         }
3365         case KVM_XEN_HVM_CONFIG: {
3366                 r = -EFAULT;
3367                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3368                                    sizeof(struct kvm_xen_hvm_config)))
3369                         goto out;
3370                 r = -EINVAL;
3371                 if (kvm->arch.xen_hvm_config.flags)
3372                         goto out;
3373                 r = 0;
3374                 break;
3375         }
3376         case KVM_SET_CLOCK: {
3377                 struct kvm_clock_data user_ns;
3378                 u64 now_ns;
3379                 s64 delta;
3380
3381                 r = -EFAULT;
3382                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3383                         goto out;
3384
3385                 r = -EINVAL;
3386                 if (user_ns.flags)
3387                         goto out;
3388
3389                 r = 0;
3390                 local_irq_disable();
3391                 now_ns = get_kernel_ns();
3392                 delta = user_ns.clock - now_ns;
3393                 local_irq_enable();
3394                 kvm->arch.kvmclock_offset = delta;
3395                 break;
3396         }
3397         case KVM_GET_CLOCK: {
3398                 struct kvm_clock_data user_ns;
3399                 u64 now_ns;
3400
3401                 local_irq_disable();
3402                 now_ns = get_kernel_ns();
3403                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3404                 local_irq_enable();
3405                 user_ns.flags = 0;
3406                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3407
3408                 r = -EFAULT;
3409                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3410                         goto out;
3411                 r = 0;
3412                 break;
3413         }
3414
3415         default:
3416                 ;
3417         }
3418 out:
3419         return r;
3420 }
3421
3422 static void kvm_init_msr_list(void)
3423 {
3424         u32 dummy[2];
3425         unsigned i, j;
3426
3427         /* skip the first msrs in the list. KVM-specific */
3428         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3429                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3430                         continue;
3431                 if (j < i)
3432                         msrs_to_save[j] = msrs_to_save[i];
3433                 j++;
3434         }
3435         num_msrs_to_save = j;
3436 }
3437
3438 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3439                            const void *v)
3440 {
3441         int handled = 0;
3442         int n;
3443
3444         do {
3445                 n = min(len, 8);
3446                 if (!(vcpu->arch.apic &&
3447                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3448                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3449                         break;
3450                 handled += n;
3451                 addr += n;
3452                 len -= n;
3453                 v += n;
3454         } while (len);
3455
3456         return handled;
3457 }
3458
3459 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3460 {
3461         int handled = 0;
3462         int n;
3463
3464         do {
3465                 n = min(len, 8);
3466                 if (!(vcpu->arch.apic &&
3467                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3468                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3469                         break;
3470                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3471                 handled += n;
3472                 addr += n;
3473                 len -= n;
3474                 v += n;
3475         } while (len);
3476
3477         return handled;
3478 }
3479
3480 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3481                         struct kvm_segment *var, int seg)
3482 {
3483         kvm_x86_ops->set_segment(vcpu, var, seg);
3484 }
3485
3486 void kvm_get_segment(struct kvm_vcpu *vcpu,
3487                      struct kvm_segment *var, int seg)
3488 {
3489         kvm_x86_ops->get_segment(vcpu, var, seg);
3490 }
3491
3492 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3493 {
3494         gpa_t t_gpa;
3495         struct x86_exception exception;
3496
3497         BUG_ON(!mmu_is_nested(vcpu));
3498
3499         /* NPT walks are always user-walks */
3500         access |= PFERR_USER_MASK;
3501         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3502
3503         return t_gpa;
3504 }
3505
3506 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3507                               struct x86_exception *exception)
3508 {
3509         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3510         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3511 }
3512
3513  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3514                                 struct x86_exception *exception)
3515 {
3516         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3517         access |= PFERR_FETCH_MASK;
3518         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3519 }
3520
3521 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3522                                struct x86_exception *exception)
3523 {
3524         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3525         access |= PFERR_WRITE_MASK;
3526         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3527 }
3528
3529 /* uses this to access any guest's mapped memory without checking CPL */
3530 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3531                                 struct x86_exception *exception)
3532 {
3533         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3534 }
3535
3536 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3537                                       struct kvm_vcpu *vcpu, u32 access,
3538                                       struct x86_exception *exception)
3539 {
3540         void *data = val;
3541         int r = X86EMUL_CONTINUE;
3542
3543         while (bytes) {
3544                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3545                                                             exception);
3546                 unsigned offset = addr & (PAGE_SIZE-1);
3547                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3548                 int ret;
3549
3550                 if (gpa == UNMAPPED_GVA)
3551                         return X86EMUL_PROPAGATE_FAULT;
3552                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3553                 if (ret < 0) {
3554                         r = X86EMUL_IO_NEEDED;
3555                         goto out;
3556                 }
3557
3558                 bytes -= toread;
3559                 data += toread;
3560                 addr += toread;
3561         }
3562 out:
3563         return r;
3564 }
3565
3566 /* used for instruction fetching */
3567 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3568                                 gva_t addr, void *val, unsigned int bytes,
3569                                 struct x86_exception *exception)
3570 {
3571         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3572         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3573
3574         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3575                                           access | PFERR_FETCH_MASK,
3576                                           exception);
3577 }
3578
3579 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3580                                gva_t addr, void *val, unsigned int bytes,
3581                                struct x86_exception *exception)
3582 {
3583         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3584         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3585
3586         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3587                                           exception);
3588 }
3589 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3590
3591 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3592                                       gva_t addr, void *val, unsigned int bytes,
3593                                       struct x86_exception *exception)
3594 {
3595         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3596         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3597 }
3598
3599 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3600                                        gva_t addr, void *val,
3601                                        unsigned int bytes,
3602                                        struct x86_exception *exception)
3603 {
3604         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3605         void *data = val;
3606         int r = X86EMUL_CONTINUE;
3607
3608         while (bytes) {
3609                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3610                                                              PFERR_WRITE_MASK,
3611                                                              exception);
3612                 unsigned offset = addr & (PAGE_SIZE-1);
3613                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3614                 int ret;
3615
3616                 if (gpa == UNMAPPED_GVA)
3617                         return X86EMUL_PROPAGATE_FAULT;
3618                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3619                 if (ret < 0) {
3620                         r = X86EMUL_IO_NEEDED;
3621                         goto out;
3622                 }
3623
3624                 bytes -= towrite;
3625                 data += towrite;
3626                 addr += towrite;
3627         }
3628 out:
3629         return r;
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3632
3633 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3634                                 gpa_t *gpa, struct x86_exception *exception,
3635                                 bool write)
3636 {
3637         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3638
3639         if (vcpu_match_mmio_gva(vcpu, gva) &&
3640                   check_write_user_access(vcpu, write, access,
3641                   vcpu->arch.access)) {
3642                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3643                                         (gva & (PAGE_SIZE - 1));
3644                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3645                 return 1;
3646         }
3647
3648         if (write)
3649                 access |= PFERR_WRITE_MASK;
3650
3651         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3652
3653         if (*gpa == UNMAPPED_GVA)
3654                 return -1;
3655
3656         /* For APIC access vmexit */
3657         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3658                 return 1;
3659
3660         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3661                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3662                 return 1;
3663         }
3664
3665         return 0;
3666 }
3667
3668 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3669                         const void *val, int bytes)
3670 {
3671         int ret;
3672
3673         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3674         if (ret < 0)
3675                 return 0;
3676         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3677         return 1;
3678 }
3679
3680 struct read_write_emulator_ops {
3681         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3682                                   int bytes);
3683         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3684                                   void *val, int bytes);
3685         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3686                                int bytes, void *val);
3687         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3688                                     void *val, int bytes);
3689         bool write;
3690 };
3691
3692 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3693 {
3694         if (vcpu->mmio_read_completed) {
3695                 memcpy(val, vcpu->mmio_data, bytes);
3696                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3697                                vcpu->mmio_phys_addr, *(u64 *)val);
3698                 vcpu->mmio_read_completed = 0;
3699                 return 1;
3700         }
3701
3702         return 0;
3703 }
3704
3705 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3706                         void *val, int bytes)
3707 {
3708         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3709 }
3710
3711 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3712                          void *val, int bytes)
3713 {
3714         return emulator_write_phys(vcpu, gpa, val, bytes);
3715 }
3716
3717 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3718 {
3719         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3720         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3721 }
3722
3723 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3724                           void *val, int bytes)
3725 {
3726         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3727         return X86EMUL_IO_NEEDED;
3728 }
3729
3730 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3731                            void *val, int bytes)
3732 {
3733         memcpy(vcpu->mmio_data, val, bytes);
3734         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3735         return X86EMUL_CONTINUE;
3736 }
3737
3738 static struct read_write_emulator_ops read_emultor = {
3739         .read_write_prepare = read_prepare,
3740         .read_write_emulate = read_emulate,
3741         .read_write_mmio = vcpu_mmio_read,
3742         .read_write_exit_mmio = read_exit_mmio,
3743 };
3744
3745 static struct read_write_emulator_ops write_emultor = {
3746         .read_write_emulate = write_emulate,
3747         .read_write_mmio = write_mmio,
3748         .read_write_exit_mmio = write_exit_mmio,
3749         .write = true,
3750 };
3751
3752 static int emulator_read_write_onepage(unsigned long addr, void *val,
3753                                        unsigned int bytes,
3754                                        struct x86_exception *exception,
3755                                        struct kvm_vcpu *vcpu,
3756                                        struct read_write_emulator_ops *ops)
3757 {
3758         gpa_t gpa;
3759         int handled, ret;
3760         bool write = ops->write;
3761
3762         if (ops->read_write_prepare &&
3763                   ops->read_write_prepare(vcpu, val, bytes))
3764                 return X86EMUL_CONTINUE;
3765
3766         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3767
3768         if (ret < 0)
3769                 return X86EMUL_PROPAGATE_FAULT;
3770
3771         /* For APIC access vmexit */
3772         if (ret)
3773                 goto mmio;
3774
3775         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3776                 return X86EMUL_CONTINUE;
3777
3778 mmio:
3779         /*
3780          * Is this MMIO handled locally?
3781          */
3782         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3783         if (handled == bytes)
3784                 return X86EMUL_CONTINUE;
3785
3786         gpa += handled;
3787         bytes -= handled;
3788         val += handled;
3789
3790         vcpu->mmio_needed = 1;
3791         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3792         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3793         vcpu->mmio_size = bytes;
3794         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3795         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3796         vcpu->mmio_index = 0;
3797
3798         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3799 }
3800
3801 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3802                         void *val, unsigned int bytes,
3803                         struct x86_exception *exception,
3804                         struct read_write_emulator_ops *ops)
3805 {
3806         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3807
3808         /* Crossing a page boundary? */
3809         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3810                 int rc, now;
3811
3812                 now = -addr & ~PAGE_MASK;
3813                 rc = emulator_read_write_onepage(addr, val, now, exception,
3814                                                  vcpu, ops);
3815
3816                 if (rc != X86EMUL_CONTINUE)
3817                         return rc;
3818                 addr += now;
3819                 val += now;
3820                 bytes -= now;
3821         }
3822
3823         return emulator_read_write_onepage(addr, val, bytes, exception,
3824                                            vcpu, ops);
3825 }
3826
3827 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3828                                   unsigned long addr,
3829                                   void *val,
3830                                   unsigned int bytes,
3831                                   struct x86_exception *exception)
3832 {
3833         return emulator_read_write(ctxt, addr, val, bytes,
3834                                    exception, &read_emultor);
3835 }
3836
3837 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3838                             unsigned long addr,
3839                             const void *val,
3840                             unsigned int bytes,
3841                             struct x86_exception *exception)
3842 {
3843         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3844                                    exception, &write_emultor);
3845 }
3846
3847 #define CMPXCHG_TYPE(t, ptr, old, new) \
3848         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3849
3850 #ifdef CONFIG_X86_64
3851 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3852 #else
3853 #  define CMPXCHG64(ptr, old, new) \
3854         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3855 #endif
3856
3857 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3858                                      unsigned long addr,
3859                                      const void *old,
3860                                      const void *new,
3861                                      unsigned int bytes,
3862                                      struct x86_exception *exception)
3863 {
3864         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3865         gpa_t gpa;
3866         struct page *page;
3867         char *kaddr;
3868         bool exchanged;
3869
3870         /* guests cmpxchg8b have to be emulated atomically */
3871         if (bytes > 8 || (bytes & (bytes - 1)))
3872                 goto emul_write;
3873
3874         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3875
3876         if (gpa == UNMAPPED_GVA ||
3877             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3878                 goto emul_write;
3879
3880         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3881                 goto emul_write;
3882
3883         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3884         if (is_error_page(page)) {
3885                 kvm_release_page_clean(page);
3886                 goto emul_write;
3887         }
3888
3889         kaddr = kmap_atomic(page, KM_USER0);
3890         kaddr += offset_in_page(gpa);
3891         switch (bytes) {
3892         case 1:
3893                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3894                 break;
3895         case 2:
3896                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3897                 break;
3898         case 4:
3899                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3900                 break;
3901         case 8:
3902                 exchanged = CMPXCHG64(kaddr, old, new);
3903                 break;
3904         default:
3905                 BUG();
3906         }
3907         kunmap_atomic(kaddr, KM_USER0);
3908         kvm_release_page_dirty(page);
3909
3910         if (!exchanged)
3911                 return X86EMUL_CMPXCHG_FAILED;
3912
3913         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3914
3915         return X86EMUL_CONTINUE;
3916
3917 emul_write:
3918         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3919
3920         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3921 }
3922
3923 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3924 {
3925         /* TODO: String I/O for in kernel device */
3926         int r;
3927
3928         if (vcpu->arch.pio.in)
3929                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3930                                     vcpu->arch.pio.size, pd);
3931         else
3932                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3933                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3934                                      pd);
3935         return r;
3936 }
3937
3938 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3939                                unsigned short port, void *val,
3940                                unsigned int count, bool in)
3941 {
3942         trace_kvm_pio(!in, port, size, count);
3943
3944         vcpu->arch.pio.port = port;
3945         vcpu->arch.pio.in = in;
3946         vcpu->arch.pio.count  = count;
3947         vcpu->arch.pio.size = size;
3948
3949         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3950                 vcpu->arch.pio.count = 0;
3951                 return 1;
3952         }
3953
3954         vcpu->run->exit_reason = KVM_EXIT_IO;
3955         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3956         vcpu->run->io.size = size;
3957         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3958         vcpu->run->io.count = count;
3959         vcpu->run->io.port = port;
3960
3961         return 0;
3962 }
3963
3964 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3965                                     int size, unsigned short port, void *val,
3966                                     unsigned int count)
3967 {
3968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3969         int ret;
3970
3971         if (vcpu->arch.pio.count)
3972                 goto data_avail;
3973
3974         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3975         if (ret) {
3976 data_avail:
3977                 memcpy(val, vcpu->arch.pio_data, size * count);
3978                 vcpu->arch.pio.count = 0;
3979                 return 1;
3980         }
3981
3982         return 0;
3983 }
3984
3985 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3986                                      int size, unsigned short port,
3987                                      const void *val, unsigned int count)
3988 {
3989         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3990
3991         memcpy(vcpu->arch.pio_data, val, size * count);
3992         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3993 }
3994
3995 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3996 {
3997         return kvm_x86_ops->get_segment_base(vcpu, seg);
3998 }
3999
4000 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4001 {
4002         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4003 }
4004
4005 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4006 {
4007         if (!need_emulate_wbinvd(vcpu))
4008                 return X86EMUL_CONTINUE;
4009
4010         if (kvm_x86_ops->has_wbinvd_exit()) {
4011                 int cpu = get_cpu();
4012
4013                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4014                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4015                                 wbinvd_ipi, NULL, 1);
4016                 put_cpu();
4017                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4018         } else
4019                 wbinvd();
4020         return X86EMUL_CONTINUE;
4021 }
4022 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4023
4024 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4025 {
4026         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4027 }
4028
4029 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4030 {
4031         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4032 }
4033
4034 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4035 {
4036
4037         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4038 }
4039
4040 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4041 {
4042         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4043 }
4044
4045 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4046 {
4047         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4048         unsigned long value;
4049
4050         switch (cr) {
4051         case 0:
4052                 value = kvm_read_cr0(vcpu);
4053                 break;
4054         case 2:
4055                 value = vcpu->arch.cr2;
4056                 break;
4057         case 3:
4058                 value = kvm_read_cr3(vcpu);
4059                 break;
4060         case 4:
4061                 value = kvm_read_cr4(vcpu);
4062                 break;
4063         case 8:
4064                 value = kvm_get_cr8(vcpu);
4065                 break;
4066         default:
4067                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4068                 return 0;
4069         }
4070
4071         return value;
4072 }
4073
4074 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4075 {
4076         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4077         int res = 0;
4078
4079         switch (cr) {
4080         case 0:
4081                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4082                 break;
4083         case 2:
4084                 vcpu->arch.cr2 = val;
4085                 break;
4086         case 3:
4087                 res = kvm_set_cr3(vcpu, val);
4088                 break;
4089         case 4:
4090                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4091                 break;
4092         case 8:
4093                 res = kvm_set_cr8(vcpu, val);
4094                 break;
4095         default:
4096                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4097                 res = -1;
4098         }
4099
4100         return res;
4101 }
4102
4103 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4104 {
4105         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4106 }
4107
4108 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4109 {
4110         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4111 }
4112
4113 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4114 {
4115         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4116 }
4117
4118 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4119 {
4120         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4121 }
4122
4123 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4124 {
4125         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4126 }
4127
4128 static unsigned long emulator_get_cached_segment_base(
4129         struct x86_emulate_ctxt *ctxt, int seg)
4130 {
4131         return get_segment_base(emul_to_vcpu(ctxt), seg);
4132 }
4133
4134 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4135                                  struct desc_struct *desc, u32 *base3,
4136                                  int seg)
4137 {
4138         struct kvm_segment var;
4139
4140         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4141         *selector = var.selector;
4142
4143         if (var.unusable)
4144                 return false;
4145
4146         if (var.g)
4147                 var.limit >>= 12;
4148         set_desc_limit(desc, var.limit);
4149         set_desc_base(desc, (unsigned long)var.base);
4150 #ifdef CONFIG_X86_64
4151         if (base3)
4152                 *base3 = var.base >> 32;
4153 #endif
4154         desc->type = var.type;
4155         desc->s = var.s;
4156         desc->dpl = var.dpl;
4157         desc->p = var.present;
4158         desc->avl = var.avl;
4159         desc->l = var.l;
4160         desc->d = var.db;
4161         desc->g = var.g;
4162
4163         return true;
4164 }
4165
4166 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4167                                  struct desc_struct *desc, u32 base3,
4168                                  int seg)
4169 {
4170         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4171         struct kvm_segment var;
4172
4173         var.selector = selector;
4174         var.base = get_desc_base(desc);
4175 #ifdef CONFIG_X86_64
4176         var.base |= ((u64)base3) << 32;
4177 #endif
4178         var.limit = get_desc_limit(desc);
4179         if (desc->g)
4180                 var.limit = (var.limit << 12) | 0xfff;
4181         var.type = desc->type;
4182         var.present = desc->p;
4183         var.dpl = desc->dpl;
4184         var.db = desc->d;
4185         var.s = desc->s;
4186         var.l = desc->l;
4187         var.g = desc->g;
4188         var.avl = desc->avl;
4189         var.present = desc->p;
4190         var.unusable = !var.present;
4191         var.padding = 0;
4192
4193         kvm_set_segment(vcpu, &var, seg);
4194         return;
4195 }
4196
4197 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4198                             u32 msr_index, u64 *pdata)
4199 {
4200         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4201 }
4202
4203 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4204                             u32 msr_index, u64 data)
4205 {
4206         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4207 }
4208
4209 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4210                              u32 pmc, u64 *pdata)
4211 {
4212         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4213 }
4214
4215 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4216 {
4217         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4218 }
4219
4220 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4221 {
4222         preempt_disable();
4223         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4224         /*
4225          * CR0.TS may reference the host fpu state, not the guest fpu state,
4226          * so it may be clear at this point.
4227          */
4228         clts();
4229 }
4230
4231 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4232 {
4233         preempt_enable();
4234 }
4235
4236 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4237                               struct x86_instruction_info *info,
4238                               enum x86_intercept_stage stage)
4239 {
4240         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4241 }
4242
4243 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4244                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4245 {
4246         struct kvm_cpuid_entry2 *cpuid = NULL;
4247
4248         if (eax && ecx)
4249                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4250                                             *eax, *ecx);
4251
4252         if (cpuid) {
4253                 *eax = cpuid->eax;
4254                 *ecx = cpuid->ecx;
4255                 if (ebx)
4256                         *ebx = cpuid->ebx;
4257                 if (edx)
4258                         *edx = cpuid->edx;
4259                 return true;
4260         }
4261
4262         return false;
4263 }
4264
4265 static struct x86_emulate_ops emulate_ops = {
4266         .read_std            = kvm_read_guest_virt_system,
4267         .write_std           = kvm_write_guest_virt_system,
4268         .fetch               = kvm_fetch_guest_virt,
4269         .read_emulated       = emulator_read_emulated,
4270         .write_emulated      = emulator_write_emulated,
4271         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4272         .invlpg              = emulator_invlpg,
4273         .pio_in_emulated     = emulator_pio_in_emulated,
4274         .pio_out_emulated    = emulator_pio_out_emulated,
4275         .get_segment         = emulator_get_segment,
4276         .set_segment         = emulator_set_segment,
4277         .get_cached_segment_base = emulator_get_cached_segment_base,
4278         .get_gdt             = emulator_get_gdt,
4279         .get_idt             = emulator_get_idt,
4280         .set_gdt             = emulator_set_gdt,
4281         .set_idt             = emulator_set_idt,
4282         .get_cr              = emulator_get_cr,
4283         .set_cr              = emulator_set_cr,
4284         .cpl                 = emulator_get_cpl,
4285         .get_dr              = emulator_get_dr,
4286         .set_dr              = emulator_set_dr,
4287         .set_msr             = emulator_set_msr,
4288         .get_msr             = emulator_get_msr,
4289         .read_pmc            = emulator_read_pmc,
4290         .halt                = emulator_halt,
4291         .wbinvd              = emulator_wbinvd,
4292         .fix_hypercall       = emulator_fix_hypercall,
4293         .get_fpu             = emulator_get_fpu,
4294         .put_fpu             = emulator_put_fpu,
4295         .intercept           = emulator_intercept,
4296         .get_cpuid           = emulator_get_cpuid,
4297 };
4298
4299 static void cache_all_regs(struct kvm_vcpu *vcpu)
4300 {
4301         kvm_register_read(vcpu, VCPU_REGS_RAX);
4302         kvm_register_read(vcpu, VCPU_REGS_RSP);
4303         kvm_register_read(vcpu, VCPU_REGS_RIP);
4304         vcpu->arch.regs_dirty = ~0;
4305 }
4306
4307 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4308 {
4309         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4310         /*
4311          * an sti; sti; sequence only disable interrupts for the first
4312          * instruction. So, if the last instruction, be it emulated or
4313          * not, left the system with the INT_STI flag enabled, it
4314          * means that the last instruction is an sti. We should not
4315          * leave the flag on in this case. The same goes for mov ss
4316          */
4317         if (!(int_shadow & mask))
4318                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4319 }
4320
4321 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4322 {
4323         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4324         if (ctxt->exception.vector == PF_VECTOR)
4325                 kvm_propagate_fault(vcpu, &ctxt->exception);
4326         else if (ctxt->exception.error_code_valid)
4327                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4328                                       ctxt->exception.error_code);
4329         else
4330                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4331 }
4332
4333 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4334                               const unsigned long *regs)
4335 {
4336         memset(&ctxt->twobyte, 0,
4337                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4338         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4339
4340         ctxt->fetch.start = 0;
4341         ctxt->fetch.end = 0;
4342         ctxt->io_read.pos = 0;
4343         ctxt->io_read.end = 0;
4344         ctxt->mem_read.pos = 0;
4345         ctxt->mem_read.end = 0;
4346 }
4347
4348 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4349 {
4350         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4351         int cs_db, cs_l;
4352
4353         /*
4354          * TODO: fix emulate.c to use guest_read/write_register
4355          * instead of direct ->regs accesses, can save hundred cycles
4356          * on Intel for instructions that don't read/change RSP, for
4357          * for example.
4358          */
4359         cache_all_regs(vcpu);
4360
4361         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4362
4363         ctxt->eflags = kvm_get_rflags(vcpu);
4364         ctxt->eip = kvm_rip_read(vcpu);
4365         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4366                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4367                      cs_l                               ? X86EMUL_MODE_PROT64 :
4368                      cs_db                              ? X86EMUL_MODE_PROT32 :
4369                                                           X86EMUL_MODE_PROT16;
4370         ctxt->guest_mode = is_guest_mode(vcpu);
4371
4372         init_decode_cache(ctxt, vcpu->arch.regs);
4373         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4374 }
4375
4376 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4377 {
4378         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4379         int ret;
4380
4381         init_emulate_ctxt(vcpu);
4382
4383         ctxt->op_bytes = 2;
4384         ctxt->ad_bytes = 2;
4385         ctxt->_eip = ctxt->eip + inc_eip;
4386         ret = emulate_int_real(ctxt, irq);
4387
4388         if (ret != X86EMUL_CONTINUE)
4389                 return EMULATE_FAIL;
4390
4391         ctxt->eip = ctxt->_eip;
4392         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4393         kvm_rip_write(vcpu, ctxt->eip);
4394         kvm_set_rflags(vcpu, ctxt->eflags);
4395
4396         if (irq == NMI_VECTOR)
4397                 vcpu->arch.nmi_pending = 0;
4398         else
4399                 vcpu->arch.interrupt.pending = false;
4400
4401         return EMULATE_DONE;
4402 }
4403 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4404
4405 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4406 {
4407         int r = EMULATE_DONE;
4408
4409         ++vcpu->stat.insn_emulation_fail;
4410         trace_kvm_emulate_insn_failed(vcpu);
4411         if (!is_guest_mode(vcpu)) {
4412                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4413                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4414                 vcpu->run->internal.ndata = 0;
4415                 r = EMULATE_FAIL;
4416         }
4417         kvm_queue_exception(vcpu, UD_VECTOR);
4418
4419         return r;
4420 }
4421
4422 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4423 {
4424         gpa_t gpa;
4425
4426         if (tdp_enabled)
4427                 return false;
4428
4429         /*
4430          * if emulation was due to access to shadowed page table
4431          * and it failed try to unshadow page and re-entetr the
4432          * guest to let CPU execute the instruction.
4433          */
4434         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4435                 return true;
4436
4437         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4438
4439         if (gpa == UNMAPPED_GVA)
4440                 return true; /* let cpu generate fault */
4441
4442         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4443                 return true;
4444
4445         return false;
4446 }
4447
4448 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4449                               unsigned long cr2,  int emulation_type)
4450 {
4451         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4452         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4453
4454         last_retry_eip = vcpu->arch.last_retry_eip;
4455         last_retry_addr = vcpu->arch.last_retry_addr;
4456
4457         /*
4458          * If the emulation is caused by #PF and it is non-page_table
4459          * writing instruction, it means the VM-EXIT is caused by shadow
4460          * page protected, we can zap the shadow page and retry this
4461          * instruction directly.
4462          *
4463          * Note: if the guest uses a non-page-table modifying instruction
4464          * on the PDE that points to the instruction, then we will unmap
4465          * the instruction and go to an infinite loop. So, we cache the
4466          * last retried eip and the last fault address, if we meet the eip
4467          * and the address again, we can break out of the potential infinite
4468          * loop.
4469          */
4470         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4471
4472         if (!(emulation_type & EMULTYPE_RETRY))
4473                 return false;
4474
4475         if (x86_page_table_writing_insn(ctxt))
4476                 return false;
4477
4478         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4479                 return false;
4480
4481         vcpu->arch.last_retry_eip = ctxt->eip;
4482         vcpu->arch.last_retry_addr = cr2;
4483
4484         if (!vcpu->arch.mmu.direct_map)
4485                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4486
4487         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4488
4489         return true;
4490 }
4491
4492 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4493                             unsigned long cr2,
4494                             int emulation_type,
4495                             void *insn,
4496                             int insn_len)
4497 {
4498         int r;
4499         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4500         bool writeback = true;
4501
4502         kvm_clear_exception_queue(vcpu);
4503
4504         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4505                 init_emulate_ctxt(vcpu);
4506                 ctxt->interruptibility = 0;
4507                 ctxt->have_exception = false;
4508                 ctxt->perm_ok = false;
4509
4510                 ctxt->only_vendor_specific_insn
4511                         = emulation_type & EMULTYPE_TRAP_UD;
4512
4513                 r = x86_decode_insn(ctxt, insn, insn_len);
4514
4515                 trace_kvm_emulate_insn_start(vcpu);
4516                 ++vcpu->stat.insn_emulation;
4517                 if (r != EMULATION_OK)  {
4518                         if (emulation_type & EMULTYPE_TRAP_UD)
4519                                 return EMULATE_FAIL;
4520                         if (reexecute_instruction(vcpu, cr2))
4521                                 return EMULATE_DONE;
4522                         if (emulation_type & EMULTYPE_SKIP)
4523                                 return EMULATE_FAIL;
4524                         return handle_emulation_failure(vcpu);
4525                 }
4526         }
4527
4528         if (emulation_type & EMULTYPE_SKIP) {
4529                 kvm_rip_write(vcpu, ctxt->_eip);
4530                 return EMULATE_DONE;
4531         }
4532
4533         if (retry_instruction(ctxt, cr2, emulation_type))
4534                 return EMULATE_DONE;
4535
4536         /* this is needed for vmware backdoor interface to work since it
4537            changes registers values  during IO operation */
4538         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4539                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4540                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4541         }
4542
4543 restart:
4544         r = x86_emulate_insn(ctxt);
4545
4546         if (r == EMULATION_INTERCEPTED)
4547                 return EMULATE_DONE;
4548
4549         if (r == EMULATION_FAILED) {
4550                 if (reexecute_instruction(vcpu, cr2))
4551                         return EMULATE_DONE;
4552
4553                 return handle_emulation_failure(vcpu);
4554         }
4555
4556         if (ctxt->have_exception) {
4557                 inject_emulated_exception(vcpu);
4558                 r = EMULATE_DONE;
4559         } else if (vcpu->arch.pio.count) {
4560                 if (!vcpu->arch.pio.in)
4561                         vcpu->arch.pio.count = 0;
4562                 else
4563                         writeback = false;
4564                 r = EMULATE_DO_MMIO;
4565         } else if (vcpu->mmio_needed) {
4566                 if (!vcpu->mmio_is_write)
4567                         writeback = false;
4568                 r = EMULATE_DO_MMIO;
4569         } else if (r == EMULATION_RESTART)
4570                 goto restart;
4571         else
4572                 r = EMULATE_DONE;
4573
4574         if (writeback) {
4575                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4576                 kvm_set_rflags(vcpu, ctxt->eflags);
4577                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4578                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4579                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4580                 kvm_rip_write(vcpu, ctxt->eip);
4581         } else
4582                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4583
4584         return r;
4585 }
4586 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4587
4588 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4589 {
4590         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4591         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4592                                             size, port, &val, 1);
4593         /* do not return to emulator after return from userspace */
4594         vcpu->arch.pio.count = 0;
4595         return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4598
4599 static void tsc_bad(void *info)
4600 {
4601         __this_cpu_write(cpu_tsc_khz, 0);
4602 }
4603
4604 static void tsc_khz_changed(void *data)
4605 {
4606         struct cpufreq_freqs *freq = data;
4607         unsigned long khz = 0;
4608
4609         if (data)
4610                 khz = freq->new;
4611         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4612                 khz = cpufreq_quick_get(raw_smp_processor_id());
4613         if (!khz)
4614                 khz = tsc_khz;
4615         __this_cpu_write(cpu_tsc_khz, khz);
4616 }
4617
4618 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4619                                      void *data)
4620 {
4621         struct cpufreq_freqs *freq = data;
4622         struct kvm *kvm;
4623         struct kvm_vcpu *vcpu;
4624         int i, send_ipi = 0;
4625
4626         /*
4627          * We allow guests to temporarily run on slowing clocks,
4628          * provided we notify them after, or to run on accelerating
4629          * clocks, provided we notify them before.  Thus time never
4630          * goes backwards.
4631          *
4632          * However, we have a problem.  We can't atomically update
4633          * the frequency of a given CPU from this function; it is
4634          * merely a notifier, which can be called from any CPU.
4635          * Changing the TSC frequency at arbitrary points in time
4636          * requires a recomputation of local variables related to
4637          * the TSC for each VCPU.  We must flag these local variables
4638          * to be updated and be sure the update takes place with the
4639          * new frequency before any guests proceed.
4640          *
4641          * Unfortunately, the combination of hotplug CPU and frequency
4642          * change creates an intractable locking scenario; the order
4643          * of when these callouts happen is undefined with respect to
4644          * CPU hotplug, and they can race with each other.  As such,
4645          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4646          * undefined; you can actually have a CPU frequency change take
4647          * place in between the computation of X and the setting of the
4648          * variable.  To protect against this problem, all updates of
4649          * the per_cpu tsc_khz variable are done in an interrupt
4650          * protected IPI, and all callers wishing to update the value
4651          * must wait for a synchronous IPI to complete (which is trivial
4652          * if the caller is on the CPU already).  This establishes the
4653          * necessary total order on variable updates.
4654          *
4655          * Note that because a guest time update may take place
4656          * anytime after the setting of the VCPU's request bit, the
4657          * correct TSC value must be set before the request.  However,
4658          * to ensure the update actually makes it to any guest which
4659          * starts running in hardware virtualization between the set
4660          * and the acquisition of the spinlock, we must also ping the
4661          * CPU after setting the request bit.
4662          *
4663          */
4664
4665         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4666                 return 0;
4667         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4668                 return 0;
4669
4670         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4671
4672         raw_spin_lock(&kvm_lock);
4673         list_for_each_entry(kvm, &vm_list, vm_list) {
4674                 kvm_for_each_vcpu(i, vcpu, kvm) {
4675                         if (vcpu->cpu != freq->cpu)
4676                                 continue;
4677                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4678                         if (vcpu->cpu != smp_processor_id())
4679                                 send_ipi = 1;
4680                 }
4681         }
4682         raw_spin_unlock(&kvm_lock);
4683
4684         if (freq->old < freq->new && send_ipi) {
4685                 /*
4686                  * We upscale the frequency.  Must make the guest
4687                  * doesn't see old kvmclock values while running with
4688                  * the new frequency, otherwise we risk the guest sees
4689                  * time go backwards.
4690                  *
4691                  * In case we update the frequency for another cpu
4692                  * (which might be in guest context) send an interrupt
4693                  * to kick the cpu out of guest context.  Next time
4694                  * guest context is entered kvmclock will be updated,
4695                  * so the guest will not see stale values.
4696                  */
4697                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4698         }
4699         return 0;
4700 }
4701
4702 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4703         .notifier_call  = kvmclock_cpufreq_notifier
4704 };
4705
4706 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4707                                         unsigned long action, void *hcpu)
4708 {
4709         unsigned int cpu = (unsigned long)hcpu;
4710
4711         switch (action) {
4712                 case CPU_ONLINE:
4713                 case CPU_DOWN_FAILED:
4714                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4715                         break;
4716                 case CPU_DOWN_PREPARE:
4717                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4718                         break;
4719         }
4720         return NOTIFY_OK;
4721 }
4722
4723 static struct notifier_block kvmclock_cpu_notifier_block = {
4724         .notifier_call  = kvmclock_cpu_notifier,
4725         .priority = -INT_MAX
4726 };
4727
4728 static void kvm_timer_init(void)
4729 {
4730         int cpu;
4731
4732         max_tsc_khz = tsc_khz;
4733         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4734         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4735 #ifdef CONFIG_CPU_FREQ
4736                 struct cpufreq_policy policy;
4737                 memset(&policy, 0, sizeof(policy));
4738                 cpu = get_cpu();
4739                 cpufreq_get_policy(&policy, cpu);
4740                 if (policy.cpuinfo.max_freq)
4741                         max_tsc_khz = policy.cpuinfo.max_freq;
4742                 put_cpu();
4743 #endif
4744                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4745                                           CPUFREQ_TRANSITION_NOTIFIER);
4746         }
4747         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4748         for_each_online_cpu(cpu)
4749                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4750 }
4751
4752 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4753
4754 int kvm_is_in_guest(void)
4755 {
4756         return __this_cpu_read(current_vcpu) != NULL;
4757 }
4758
4759 static int kvm_is_user_mode(void)
4760 {
4761         int user_mode = 3;
4762
4763         if (__this_cpu_read(current_vcpu))
4764                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4765
4766         return user_mode != 0;
4767 }
4768
4769 static unsigned long kvm_get_guest_ip(void)
4770 {
4771         unsigned long ip = 0;
4772
4773         if (__this_cpu_read(current_vcpu))
4774                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4775
4776         return ip;
4777 }
4778
4779 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4780         .is_in_guest            = kvm_is_in_guest,
4781         .is_user_mode           = kvm_is_user_mode,
4782         .get_guest_ip           = kvm_get_guest_ip,
4783 };
4784
4785 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4786 {
4787         __this_cpu_write(current_vcpu, vcpu);
4788 }
4789 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4790
4791 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4792 {
4793         __this_cpu_write(current_vcpu, NULL);
4794 }
4795 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4796
4797 static void kvm_set_mmio_spte_mask(void)
4798 {
4799         u64 mask;
4800         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4801
4802         /*
4803          * Set the reserved bits and the present bit of an paging-structure
4804          * entry to generate page fault with PFER.RSV = 1.
4805          */
4806         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4807         mask |= 1ull;
4808
4809 #ifdef CONFIG_X86_64
4810         /*
4811          * If reserved bit is not supported, clear the present bit to disable
4812          * mmio page fault.
4813          */
4814         if (maxphyaddr == 52)
4815                 mask &= ~1ull;
4816 #endif
4817
4818         kvm_mmu_set_mmio_spte_mask(mask);
4819 }
4820
4821 int kvm_arch_init(void *opaque)
4822 {
4823         int r;
4824         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4825
4826         if (kvm_x86_ops) {
4827                 printk(KERN_ERR "kvm: already loaded the other module\n");
4828                 r = -EEXIST;
4829                 goto out;
4830         }
4831
4832         if (!ops->cpu_has_kvm_support()) {
4833                 printk(KERN_ERR "kvm: no hardware support\n");
4834                 r = -EOPNOTSUPP;
4835                 goto out;
4836         }
4837         if (ops->disabled_by_bios()) {
4838                 printk(KERN_ERR "kvm: disabled by bios\n");
4839                 r = -EOPNOTSUPP;
4840                 goto out;
4841         }
4842
4843         r = kvm_mmu_module_init();
4844         if (r)
4845                 goto out;
4846
4847         kvm_set_mmio_spte_mask();
4848         kvm_init_msr_list();
4849
4850         kvm_x86_ops = ops;
4851         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4852                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4853
4854         kvm_timer_init();
4855
4856         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4857
4858         if (cpu_has_xsave)
4859                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4860
4861         return 0;
4862
4863 out:
4864         return r;
4865 }
4866
4867 void kvm_arch_exit(void)
4868 {
4869         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4870
4871         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4872                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4873                                             CPUFREQ_TRANSITION_NOTIFIER);
4874         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4875         kvm_x86_ops = NULL;
4876         kvm_mmu_module_exit();
4877 }
4878
4879 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4880 {
4881         ++vcpu->stat.halt_exits;
4882         if (irqchip_in_kernel(vcpu->kvm)) {
4883                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4884                 return 1;
4885         } else {
4886                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4887                 return 0;
4888         }
4889 }
4890 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4891
4892 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4893 {
4894         u64 param, ingpa, outgpa, ret;
4895         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4896         bool fast, longmode;
4897         int cs_db, cs_l;
4898
4899         /*
4900          * hypercall generates UD from non zero cpl and real mode
4901          * per HYPER-V spec
4902          */
4903         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4904                 kvm_queue_exception(vcpu, UD_VECTOR);
4905                 return 0;
4906         }
4907
4908         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4909         longmode = is_long_mode(vcpu) && cs_l == 1;
4910
4911         if (!longmode) {
4912                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4913                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4914                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4915                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4916                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4917                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4918         }
4919 #ifdef CONFIG_X86_64
4920         else {
4921                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4922                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4923                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4924         }
4925 #endif
4926
4927         code = param & 0xffff;
4928         fast = (param >> 16) & 0x1;
4929         rep_cnt = (param >> 32) & 0xfff;
4930         rep_idx = (param >> 48) & 0xfff;
4931
4932         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4933
4934         switch (code) {
4935         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4936                 kvm_vcpu_on_spin(vcpu);
4937                 break;
4938         default:
4939                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4940                 break;
4941         }
4942
4943         ret = res | (((u64)rep_done & 0xfff) << 32);
4944         if (longmode) {
4945                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4946         } else {
4947                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4948                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4949         }
4950
4951         return 1;
4952 }
4953
4954 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4955 {
4956         unsigned long nr, a0, a1, a2, a3, ret;
4957         int r = 1;
4958
4959         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4960                 return kvm_hv_hypercall(vcpu);
4961
4962         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4963         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4964         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4965         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4966         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4967
4968         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4969
4970         if (!is_long_mode(vcpu)) {
4971                 nr &= 0xFFFFFFFF;
4972                 a0 &= 0xFFFFFFFF;
4973                 a1 &= 0xFFFFFFFF;
4974                 a2 &= 0xFFFFFFFF;
4975                 a3 &= 0xFFFFFFFF;
4976         }
4977
4978         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4979                 ret = -KVM_EPERM;
4980                 goto out;
4981         }
4982
4983         switch (nr) {
4984         case KVM_HC_VAPIC_POLL_IRQ:
4985                 ret = 0;
4986                 break;
4987         default:
4988                 ret = -KVM_ENOSYS;
4989                 break;
4990         }
4991 out:
4992         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4993         ++vcpu->stat.hypercalls;
4994         return r;
4995 }
4996 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4997
4998 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4999 {
5000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5001         char instruction[3];
5002         unsigned long rip = kvm_rip_read(vcpu);
5003
5004         /*
5005          * Blow out the MMU to ensure that no other VCPU has an active mapping
5006          * to ensure that the updated hypercall appears atomically across all
5007          * VCPUs.
5008          */
5009         kvm_mmu_zap_all(vcpu->kvm);
5010
5011         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5012
5013         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5014 }
5015
5016 /*
5017  * Check if userspace requested an interrupt window, and that the
5018  * interrupt window is open.
5019  *
5020  * No need to exit to userspace if we already have an interrupt queued.
5021  */
5022 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5023 {
5024         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5025                 vcpu->run->request_interrupt_window &&
5026                 kvm_arch_interrupt_allowed(vcpu));
5027 }
5028
5029 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5030 {
5031         struct kvm_run *kvm_run = vcpu->run;
5032
5033         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5034         kvm_run->cr8 = kvm_get_cr8(vcpu);
5035         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5036         if (irqchip_in_kernel(vcpu->kvm))
5037                 kvm_run->ready_for_interrupt_injection = 1;
5038         else
5039                 kvm_run->ready_for_interrupt_injection =
5040                         kvm_arch_interrupt_allowed(vcpu) &&
5041                         !kvm_cpu_has_interrupt(vcpu) &&
5042                         !kvm_event_needs_reinjection(vcpu);
5043 }
5044
5045 static void vapic_enter(struct kvm_vcpu *vcpu)
5046 {
5047         struct kvm_lapic *apic = vcpu->arch.apic;
5048         struct page *page;
5049
5050         if (!apic || !apic->vapic_addr)
5051                 return;
5052
5053         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5054
5055         vcpu->arch.apic->vapic_page = page;
5056 }
5057
5058 static void vapic_exit(struct kvm_vcpu *vcpu)
5059 {
5060         struct kvm_lapic *apic = vcpu->arch.apic;
5061         int idx;
5062
5063         if (!apic || !apic->vapic_addr)
5064                 return;
5065
5066         idx = srcu_read_lock(&vcpu->kvm->srcu);
5067         kvm_release_page_dirty(apic->vapic_page);
5068         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5069         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5070 }
5071
5072 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5073 {
5074         int max_irr, tpr;
5075
5076         if (!kvm_x86_ops->update_cr8_intercept)
5077                 return;
5078
5079         if (!vcpu->arch.apic)
5080                 return;
5081
5082         if (!vcpu->arch.apic->vapic_addr)
5083                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5084         else
5085                 max_irr = -1;
5086
5087         if (max_irr != -1)
5088                 max_irr >>= 4;
5089
5090         tpr = kvm_lapic_get_cr8(vcpu);
5091
5092         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5093 }
5094
5095 static void inject_pending_event(struct kvm_vcpu *vcpu)
5096 {
5097         /* try to reinject previous events if any */
5098         if (vcpu->arch.exception.pending) {
5099                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5100                                         vcpu->arch.exception.has_error_code,
5101                                         vcpu->arch.exception.error_code);
5102                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5103                                           vcpu->arch.exception.has_error_code,
5104                                           vcpu->arch.exception.error_code,
5105                                           vcpu->arch.exception.reinject);
5106                 return;
5107         }
5108
5109         if (vcpu->arch.nmi_injected) {
5110                 kvm_x86_ops->set_nmi(vcpu);
5111                 return;
5112         }
5113
5114         if (vcpu->arch.interrupt.pending) {
5115                 kvm_x86_ops->set_irq(vcpu);
5116                 return;
5117         }
5118
5119         /* try to inject new event if pending */
5120         if (vcpu->arch.nmi_pending) {
5121                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5122                         --vcpu->arch.nmi_pending;
5123                         vcpu->arch.nmi_injected = true;
5124                         kvm_x86_ops->set_nmi(vcpu);
5125                 }
5126         } else if (kvm_cpu_has_interrupt(vcpu)) {
5127                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5128                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5129                                             false);
5130                         kvm_x86_ops->set_irq(vcpu);
5131                 }
5132         }
5133 }
5134
5135 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5136 {
5137         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5138                         !vcpu->guest_xcr0_loaded) {
5139                 /* kvm_set_xcr() also depends on this */
5140                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5141                 vcpu->guest_xcr0_loaded = 1;
5142         }
5143 }
5144
5145 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5146 {
5147         if (vcpu->guest_xcr0_loaded) {
5148                 if (vcpu->arch.xcr0 != host_xcr0)
5149                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5150                 vcpu->guest_xcr0_loaded = 0;
5151         }
5152 }
5153
5154 static void process_nmi(struct kvm_vcpu *vcpu)
5155 {
5156         unsigned limit = 2;
5157
5158         /*
5159          * x86 is limited to one NMI running, and one NMI pending after it.
5160          * If an NMI is already in progress, limit further NMIs to just one.
5161          * Otherwise, allow two (and we'll inject the first one immediately).
5162          */
5163         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5164                 limit = 1;
5165
5166         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5167         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5168         kvm_make_request(KVM_REQ_EVENT, vcpu);
5169 }
5170
5171 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5172 {
5173         int r;
5174         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5175                 vcpu->run->request_interrupt_window;
5176         bool req_immediate_exit = 0;
5177
5178         if (vcpu->requests) {
5179                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5180                         kvm_mmu_unload(vcpu);
5181                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5182                         __kvm_migrate_timers(vcpu);
5183                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5184                         r = kvm_guest_time_update(vcpu);
5185                         if (unlikely(r))
5186                                 goto out;
5187                 }
5188                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5189                         kvm_mmu_sync_roots(vcpu);
5190                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5191                         kvm_x86_ops->tlb_flush(vcpu);
5192                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5193                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5194                         r = 0;
5195                         goto out;
5196                 }
5197                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5198                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5199                         r = 0;
5200                         goto out;
5201                 }
5202                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5203                         vcpu->fpu_active = 0;
5204                         kvm_x86_ops->fpu_deactivate(vcpu);
5205                 }
5206                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5207                         /* Page is swapped out. Do synthetic halt */
5208                         vcpu->arch.apf.halted = true;
5209                         r = 1;
5210                         goto out;
5211                 }
5212                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5213                         record_steal_time(vcpu);
5214                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5215                         process_nmi(vcpu);
5216                 req_immediate_exit =
5217                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5218                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5219                         kvm_handle_pmu_event(vcpu);
5220                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5221                         kvm_deliver_pmi(vcpu);
5222         }
5223
5224         r = kvm_mmu_reload(vcpu);
5225         if (unlikely(r))
5226                 goto out;
5227
5228         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5229                 inject_pending_event(vcpu);
5230
5231                 /* enable NMI/IRQ window open exits if needed */
5232                 if (vcpu->arch.nmi_pending)
5233                         kvm_x86_ops->enable_nmi_window(vcpu);
5234                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5235                         kvm_x86_ops->enable_irq_window(vcpu);
5236
5237                 if (kvm_lapic_enabled(vcpu)) {
5238                         update_cr8_intercept(vcpu);
5239                         kvm_lapic_sync_to_vapic(vcpu);
5240                 }
5241         }
5242
5243         preempt_disable();
5244
5245         kvm_x86_ops->prepare_guest_switch(vcpu);
5246         if (vcpu->fpu_active)
5247                 kvm_load_guest_fpu(vcpu);
5248         kvm_load_guest_xcr0(vcpu);
5249
5250         vcpu->mode = IN_GUEST_MODE;
5251
5252         /* We should set ->mode before check ->requests,
5253          * see the comment in make_all_cpus_request.
5254          */
5255         smp_mb();
5256
5257         local_irq_disable();
5258
5259         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5260             || need_resched() || signal_pending(current)) {
5261                 vcpu->mode = OUTSIDE_GUEST_MODE;
5262                 smp_wmb();
5263                 local_irq_enable();
5264                 preempt_enable();
5265                 kvm_x86_ops->cancel_injection(vcpu);
5266                 r = 1;
5267                 goto out;
5268         }
5269
5270         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5271
5272         if (req_immediate_exit)
5273                 smp_send_reschedule(vcpu->cpu);
5274
5275         kvm_guest_enter();
5276
5277         if (unlikely(vcpu->arch.switch_db_regs)) {
5278                 set_debugreg(0, 7);
5279                 set_debugreg(vcpu->arch.eff_db[0], 0);
5280                 set_debugreg(vcpu->arch.eff_db[1], 1);
5281                 set_debugreg(vcpu->arch.eff_db[2], 2);
5282                 set_debugreg(vcpu->arch.eff_db[3], 3);
5283         }
5284
5285         trace_kvm_entry(vcpu->vcpu_id);
5286         kvm_x86_ops->run(vcpu);
5287
5288         /*
5289          * If the guest has used debug registers, at least dr7
5290          * will be disabled while returning to the host.
5291          * If we don't have active breakpoints in the host, we don't
5292          * care about the messed up debug address registers. But if
5293          * we have some of them active, restore the old state.
5294          */
5295         if (hw_breakpoint_active())
5296                 hw_breakpoint_restore();
5297
5298         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5299
5300         vcpu->mode = OUTSIDE_GUEST_MODE;
5301         smp_wmb();
5302         local_irq_enable();
5303
5304         ++vcpu->stat.exits;
5305
5306         /*
5307          * We must have an instruction between local_irq_enable() and
5308          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5309          * the interrupt shadow.  The stat.exits increment will do nicely.
5310          * But we need to prevent reordering, hence this barrier():
5311          */
5312         barrier();
5313
5314         kvm_guest_exit();
5315
5316         preempt_enable();
5317
5318         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5319
5320         /*
5321          * Profile KVM exit RIPs:
5322          */
5323         if (unlikely(prof_on == KVM_PROFILING)) {
5324                 unsigned long rip = kvm_rip_read(vcpu);
5325                 profile_hit(KVM_PROFILING, (void *)rip);
5326         }
5327
5328         if (unlikely(vcpu->arch.tsc_always_catchup))
5329                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5330
5331         kvm_lapic_sync_from_vapic(vcpu);
5332
5333         r = kvm_x86_ops->handle_exit(vcpu);
5334 out:
5335         return r;
5336 }
5337
5338
5339 static int __vcpu_run(struct kvm_vcpu *vcpu)
5340 {
5341         int r;
5342         struct kvm *kvm = vcpu->kvm;
5343
5344         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5345                 pr_debug("vcpu %d received sipi with vector # %x\n",
5346                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5347                 kvm_lapic_reset(vcpu);
5348                 r = kvm_arch_vcpu_reset(vcpu);
5349                 if (r)
5350                         return r;
5351                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5352         }
5353
5354         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5355         vapic_enter(vcpu);
5356
5357         r = 1;
5358         while (r > 0) {
5359                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5360                     !vcpu->arch.apf.halted)
5361                         r = vcpu_enter_guest(vcpu);
5362                 else {
5363                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5364                         kvm_vcpu_block(vcpu);
5365                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5366                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5367                         {
5368                                 switch(vcpu->arch.mp_state) {
5369                                 case KVM_MP_STATE_HALTED:
5370                                         vcpu->arch.mp_state =
5371                                                 KVM_MP_STATE_RUNNABLE;
5372                                 case KVM_MP_STATE_RUNNABLE:
5373                                         vcpu->arch.apf.halted = false;
5374                                         break;
5375                                 case KVM_MP_STATE_SIPI_RECEIVED:
5376                                 default:
5377                                         r = -EINTR;
5378                                         break;
5379                                 }
5380                         }
5381                 }
5382
5383                 if (r <= 0)
5384                         break;
5385
5386                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5387                 if (kvm_cpu_has_pending_timer(vcpu))
5388                         kvm_inject_pending_timer_irqs(vcpu);
5389
5390                 if (dm_request_for_irq_injection(vcpu)) {
5391                         r = -EINTR;
5392                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5393                         ++vcpu->stat.request_irq_exits;
5394                 }
5395
5396                 kvm_check_async_pf_completion(vcpu);
5397
5398                 if (signal_pending(current)) {
5399                         r = -EINTR;
5400                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5401                         ++vcpu->stat.signal_exits;
5402                 }
5403                 if (need_resched()) {
5404                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5405                         kvm_resched(vcpu);
5406                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5407                 }
5408         }
5409
5410         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5411
5412         vapic_exit(vcpu);
5413
5414         return r;
5415 }
5416
5417 static int complete_mmio(struct kvm_vcpu *vcpu)
5418 {
5419         struct kvm_run *run = vcpu->run;
5420         int r;
5421
5422         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5423                 return 1;
5424
5425         if (vcpu->mmio_needed) {
5426                 vcpu->mmio_needed = 0;
5427                 if (!vcpu->mmio_is_write)
5428                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5429                                run->mmio.data, 8);
5430                 vcpu->mmio_index += 8;
5431                 if (vcpu->mmio_index < vcpu->mmio_size) {
5432                         run->exit_reason = KVM_EXIT_MMIO;
5433                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5434                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5435                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5436                         run->mmio.is_write = vcpu->mmio_is_write;
5437                         vcpu->mmio_needed = 1;
5438                         return 0;
5439                 }
5440                 if (vcpu->mmio_is_write)
5441                         return 1;
5442                 vcpu->mmio_read_completed = 1;
5443         }
5444         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5445         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5446         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5447         if (r != EMULATE_DONE)
5448                 return 0;
5449         return 1;
5450 }
5451
5452 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5453 {
5454         int r;
5455         sigset_t sigsaved;
5456
5457         if (!tsk_used_math(current) && init_fpu(current))
5458                 return -ENOMEM;
5459
5460         if (vcpu->sigset_active)
5461                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5462
5463         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5464                 kvm_vcpu_block(vcpu);
5465                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5466                 r = -EAGAIN;
5467                 goto out;
5468         }
5469
5470         /* re-sync apic's tpr */
5471         if (!irqchip_in_kernel(vcpu->kvm)) {
5472                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5473                         r = -EINVAL;
5474                         goto out;
5475                 }
5476         }
5477
5478         r = complete_mmio(vcpu);
5479         if (r <= 0)
5480                 goto out;
5481
5482         r = __vcpu_run(vcpu);
5483
5484 out:
5485         post_kvm_run_save(vcpu);
5486         if (vcpu->sigset_active)
5487                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5488
5489         return r;
5490 }
5491
5492 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5493 {
5494         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5495                 /*
5496                  * We are here if userspace calls get_regs() in the middle of
5497                  * instruction emulation. Registers state needs to be copied
5498                  * back from emulation context to vcpu. Usrapace shouldn't do
5499                  * that usually, but some bad designed PV devices (vmware
5500                  * backdoor interface) need this to work
5501                  */
5502                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5503                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5504                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5505         }
5506         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5508         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5509         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5510         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5511         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5512         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5513         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5514 #ifdef CONFIG_X86_64
5515         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5516         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5517         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5518         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5519         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5520         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5521         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5522         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5523 #endif
5524
5525         regs->rip = kvm_rip_read(vcpu);
5526         regs->rflags = kvm_get_rflags(vcpu);
5527
5528         return 0;
5529 }
5530
5531 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5532 {
5533         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5534         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5535
5536         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5537         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5538         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5539         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5540         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5541         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5542         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5543         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5544 #ifdef CONFIG_X86_64
5545         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5546         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5547         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5548         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5549         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5550         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5551         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5552         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5553 #endif
5554
5555         kvm_rip_write(vcpu, regs->rip);
5556         kvm_set_rflags(vcpu, regs->rflags);
5557
5558         vcpu->arch.exception.pending = false;
5559
5560         kvm_make_request(KVM_REQ_EVENT, vcpu);
5561
5562         return 0;
5563 }
5564
5565 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5566 {
5567         struct kvm_segment cs;
5568
5569         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5570         *db = cs.db;
5571         *l = cs.l;
5572 }
5573 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5574
5575 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5576                                   struct kvm_sregs *sregs)
5577 {
5578         struct desc_ptr dt;
5579
5580         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5581         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5582         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5583         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5584         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5585         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5586
5587         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5588         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5589
5590         kvm_x86_ops->get_idt(vcpu, &dt);
5591         sregs->idt.limit = dt.size;
5592         sregs->idt.base = dt.address;
5593         kvm_x86_ops->get_gdt(vcpu, &dt);
5594         sregs->gdt.limit = dt.size;
5595         sregs->gdt.base = dt.address;
5596
5597         sregs->cr0 = kvm_read_cr0(vcpu);
5598         sregs->cr2 = vcpu->arch.cr2;
5599         sregs->cr3 = kvm_read_cr3(vcpu);
5600         sregs->cr4 = kvm_read_cr4(vcpu);
5601         sregs->cr8 = kvm_get_cr8(vcpu);
5602         sregs->efer = vcpu->arch.efer;
5603         sregs->apic_base = kvm_get_apic_base(vcpu);
5604
5605         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5606
5607         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5608                 set_bit(vcpu->arch.interrupt.nr,
5609                         (unsigned long *)sregs->interrupt_bitmap);
5610
5611         return 0;
5612 }
5613
5614 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5615                                     struct kvm_mp_state *mp_state)
5616 {
5617         mp_state->mp_state = vcpu->arch.mp_state;
5618         return 0;
5619 }
5620
5621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5622                                     struct kvm_mp_state *mp_state)
5623 {
5624         vcpu->arch.mp_state = mp_state->mp_state;
5625         kvm_make_request(KVM_REQ_EVENT, vcpu);
5626         return 0;
5627 }
5628
5629 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5630                     bool has_error_code, u32 error_code)
5631 {
5632         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5633         int ret;
5634
5635         init_emulate_ctxt(vcpu);
5636
5637         ret = emulator_task_switch(ctxt, tss_selector, reason,
5638                                    has_error_code, error_code);
5639
5640         if (ret)
5641                 return EMULATE_FAIL;
5642
5643         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5644         kvm_rip_write(vcpu, ctxt->eip);
5645         kvm_set_rflags(vcpu, ctxt->eflags);
5646         kvm_make_request(KVM_REQ_EVENT, vcpu);
5647         return EMULATE_DONE;
5648 }
5649 EXPORT_SYMBOL_GPL(kvm_task_switch);
5650
5651 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5652                                   struct kvm_sregs *sregs)
5653 {
5654         int mmu_reset_needed = 0;
5655         int pending_vec, max_bits, idx;
5656         struct desc_ptr dt;
5657
5658         dt.size = sregs->idt.limit;
5659         dt.address = sregs->idt.base;
5660         kvm_x86_ops->set_idt(vcpu, &dt);
5661         dt.size = sregs->gdt.limit;
5662         dt.address = sregs->gdt.base;
5663         kvm_x86_ops->set_gdt(vcpu, &dt);
5664
5665         vcpu->arch.cr2 = sregs->cr2;
5666         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5667         vcpu->arch.cr3 = sregs->cr3;
5668         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5669
5670         kvm_set_cr8(vcpu, sregs->cr8);
5671
5672         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5673         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5674         kvm_set_apic_base(vcpu, sregs->apic_base);
5675
5676         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5677         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5678         vcpu->arch.cr0 = sregs->cr0;
5679
5680         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5681         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5682         if (sregs->cr4 & X86_CR4_OSXSAVE)
5683                 kvm_update_cpuid(vcpu);
5684
5685         idx = srcu_read_lock(&vcpu->kvm->srcu);
5686         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5687                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5688                 mmu_reset_needed = 1;
5689         }
5690         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5691
5692         if (mmu_reset_needed)
5693                 kvm_mmu_reset_context(vcpu);
5694
5695         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5696         pending_vec = find_first_bit(
5697                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5698         if (pending_vec < max_bits) {
5699                 kvm_queue_interrupt(vcpu, pending_vec, false);
5700                 pr_debug("Set back pending irq %d\n", pending_vec);
5701         }
5702
5703         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5704         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5705         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5706         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5707         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5708         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5709
5710         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5711         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5712
5713         update_cr8_intercept(vcpu);
5714
5715         /* Older userspace won't unhalt the vcpu on reset. */
5716         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5717             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5718             !is_protmode(vcpu))
5719                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5720
5721         kvm_make_request(KVM_REQ_EVENT, vcpu);
5722
5723         return 0;
5724 }
5725
5726 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5727                                         struct kvm_guest_debug *dbg)
5728 {
5729         unsigned long rflags;
5730         int i, r;
5731
5732         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5733                 r = -EBUSY;
5734                 if (vcpu->arch.exception.pending)
5735                         goto out;
5736                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5737                         kvm_queue_exception(vcpu, DB_VECTOR);
5738                 else
5739                         kvm_queue_exception(vcpu, BP_VECTOR);
5740         }
5741
5742         /*
5743          * Read rflags as long as potentially injected trace flags are still
5744          * filtered out.
5745          */
5746         rflags = kvm_get_rflags(vcpu);
5747
5748         vcpu->guest_debug = dbg->control;
5749         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5750                 vcpu->guest_debug = 0;
5751
5752         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5753                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5754                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5755                 vcpu->arch.switch_db_regs =
5756                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5757         } else {
5758                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5759                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5760                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5761         }
5762
5763         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5764                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5765                         get_segment_base(vcpu, VCPU_SREG_CS);
5766
5767         /*
5768          * Trigger an rflags update that will inject or remove the trace
5769          * flags.
5770          */
5771         kvm_set_rflags(vcpu, rflags);
5772
5773         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5774
5775         r = 0;
5776
5777 out:
5778
5779         return r;
5780 }
5781
5782 /*
5783  * Translate a guest virtual address to a guest physical address.
5784  */
5785 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5786                                     struct kvm_translation *tr)
5787 {
5788         unsigned long vaddr = tr->linear_address;
5789         gpa_t gpa;
5790         int idx;
5791
5792         idx = srcu_read_lock(&vcpu->kvm->srcu);
5793         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5794         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5795         tr->physical_address = gpa;
5796         tr->valid = gpa != UNMAPPED_GVA;
5797         tr->writeable = 1;
5798         tr->usermode = 0;
5799
5800         return 0;
5801 }
5802
5803 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5804 {
5805         struct i387_fxsave_struct *fxsave =
5806                         &vcpu->arch.guest_fpu.state->fxsave;
5807
5808         memcpy(fpu->fpr, fxsave->st_space, 128);
5809         fpu->fcw = fxsave->cwd;
5810         fpu->fsw = fxsave->swd;
5811         fpu->ftwx = fxsave->twd;
5812         fpu->last_opcode = fxsave->fop;
5813         fpu->last_ip = fxsave->rip;
5814         fpu->last_dp = fxsave->rdp;
5815         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5816
5817         return 0;
5818 }
5819
5820 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5821 {
5822         struct i387_fxsave_struct *fxsave =
5823                         &vcpu->arch.guest_fpu.state->fxsave;
5824
5825         memcpy(fxsave->st_space, fpu->fpr, 128);
5826         fxsave->cwd = fpu->fcw;
5827         fxsave->swd = fpu->fsw;
5828         fxsave->twd = fpu->ftwx;
5829         fxsave->fop = fpu->last_opcode;
5830         fxsave->rip = fpu->last_ip;
5831         fxsave->rdp = fpu->last_dp;
5832         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5833
5834         return 0;
5835 }
5836
5837 int fx_init(struct kvm_vcpu *vcpu)
5838 {
5839         int err;
5840
5841         err = fpu_alloc(&vcpu->arch.guest_fpu);
5842         if (err)
5843                 return err;
5844
5845         fpu_finit(&vcpu->arch.guest_fpu);
5846
5847         /*
5848          * Ensure guest xcr0 is valid for loading
5849          */
5850         vcpu->arch.xcr0 = XSTATE_FP;
5851
5852         vcpu->arch.cr0 |= X86_CR0_ET;
5853
5854         return 0;
5855 }
5856 EXPORT_SYMBOL_GPL(fx_init);
5857
5858 static void fx_free(struct kvm_vcpu *vcpu)
5859 {
5860         fpu_free(&vcpu->arch.guest_fpu);
5861 }
5862
5863 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5864 {
5865         if (vcpu->guest_fpu_loaded)
5866                 return;
5867
5868         /*
5869          * Restore all possible states in the guest,
5870          * and assume host would use all available bits.
5871          * Guest xcr0 would be loaded later.
5872          */
5873         kvm_put_guest_xcr0(vcpu);
5874         vcpu->guest_fpu_loaded = 1;
5875         unlazy_fpu(current);
5876         fpu_restore_checking(&vcpu->arch.guest_fpu);
5877         trace_kvm_fpu(1);
5878 }
5879
5880 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5881 {
5882         kvm_put_guest_xcr0(vcpu);
5883
5884         if (!vcpu->guest_fpu_loaded)
5885                 return;
5886
5887         vcpu->guest_fpu_loaded = 0;
5888         fpu_save_init(&vcpu->arch.guest_fpu);
5889         ++vcpu->stat.fpu_reload;
5890         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5891         trace_kvm_fpu(0);
5892 }
5893
5894 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5895 {
5896         kvmclock_reset(vcpu);
5897
5898         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5899         fx_free(vcpu);
5900         kvm_x86_ops->vcpu_free(vcpu);
5901 }
5902
5903 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5904                                                 unsigned int id)
5905 {
5906         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5907                 printk_once(KERN_WARNING
5908                 "kvm: SMP vm created on host with unstable TSC; "
5909                 "guest TSC will not be reliable\n");
5910         return kvm_x86_ops->vcpu_create(kvm, id);
5911 }
5912
5913 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5914 {
5915         int r;
5916
5917         vcpu->arch.mtrr_state.have_fixed = 1;
5918         vcpu_load(vcpu);
5919         r = kvm_arch_vcpu_reset(vcpu);
5920         if (r == 0)
5921                 r = kvm_mmu_setup(vcpu);
5922         vcpu_put(vcpu);
5923
5924         return r;
5925 }
5926
5927 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5928 {
5929         vcpu->arch.apf.msr_val = 0;
5930
5931         vcpu_load(vcpu);
5932         kvm_mmu_unload(vcpu);
5933         vcpu_put(vcpu);
5934
5935         fx_free(vcpu);
5936         kvm_x86_ops->vcpu_free(vcpu);
5937 }
5938
5939 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5940 {
5941         atomic_set(&vcpu->arch.nmi_queued, 0);
5942         vcpu->arch.nmi_pending = 0;
5943         vcpu->arch.nmi_injected = false;
5944
5945         vcpu->arch.switch_db_regs = 0;
5946         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5947         vcpu->arch.dr6 = DR6_FIXED_1;
5948         vcpu->arch.dr7 = DR7_FIXED_1;
5949
5950         kvm_make_request(KVM_REQ_EVENT, vcpu);
5951         vcpu->arch.apf.msr_val = 0;
5952         vcpu->arch.st.msr_val = 0;
5953
5954         kvmclock_reset(vcpu);
5955
5956         kvm_clear_async_pf_completion_queue(vcpu);
5957         kvm_async_pf_hash_reset(vcpu);
5958         vcpu->arch.apf.halted = false;
5959
5960         kvm_pmu_reset(vcpu);
5961
5962         return kvm_x86_ops->vcpu_reset(vcpu);
5963 }
5964
5965 int kvm_arch_hardware_enable(void *garbage)
5966 {
5967         struct kvm *kvm;
5968         struct kvm_vcpu *vcpu;
5969         int i;
5970
5971         kvm_shared_msr_cpu_online();
5972         list_for_each_entry(kvm, &vm_list, vm_list)
5973                 kvm_for_each_vcpu(i, vcpu, kvm)
5974                         if (vcpu->cpu == smp_processor_id())
5975                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5976         return kvm_x86_ops->hardware_enable(garbage);
5977 }
5978
5979 void kvm_arch_hardware_disable(void *garbage)
5980 {
5981         kvm_x86_ops->hardware_disable(garbage);
5982         drop_user_return_notifiers(garbage);
5983 }
5984
5985 int kvm_arch_hardware_setup(void)
5986 {
5987         return kvm_x86_ops->hardware_setup();
5988 }
5989
5990 void kvm_arch_hardware_unsetup(void)
5991 {
5992         kvm_x86_ops->hardware_unsetup();
5993 }
5994
5995 void kvm_arch_check_processor_compat(void *rtn)
5996 {
5997         kvm_x86_ops->check_processor_compatibility(rtn);
5998 }
5999
6000 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6001 {
6002         struct page *page;
6003         struct kvm *kvm;
6004         int r;
6005
6006         BUG_ON(vcpu->kvm == NULL);
6007         kvm = vcpu->kvm;
6008
6009         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6010         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6011                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6012         else
6013                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6014
6015         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6016         if (!page) {
6017                 r = -ENOMEM;
6018                 goto fail;
6019         }
6020         vcpu->arch.pio_data = page_address(page);
6021
6022         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6023
6024         r = kvm_mmu_create(vcpu);
6025         if (r < 0)
6026                 goto fail_free_pio_data;
6027
6028         if (irqchip_in_kernel(kvm)) {
6029                 r = kvm_create_lapic(vcpu);
6030                 if (r < 0)
6031                         goto fail_mmu_destroy;
6032         }
6033
6034         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6035                                        GFP_KERNEL);
6036         if (!vcpu->arch.mce_banks) {
6037                 r = -ENOMEM;
6038                 goto fail_free_lapic;
6039         }
6040         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6041
6042         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6043                 goto fail_free_mce_banks;
6044
6045         kvm_async_pf_hash_reset(vcpu);
6046         kvm_pmu_init(vcpu);
6047
6048         return 0;
6049 fail_free_mce_banks:
6050         kfree(vcpu->arch.mce_banks);
6051 fail_free_lapic:
6052         kvm_free_lapic(vcpu);
6053 fail_mmu_destroy:
6054         kvm_mmu_destroy(vcpu);
6055 fail_free_pio_data:
6056         free_page((unsigned long)vcpu->arch.pio_data);
6057 fail:
6058         return r;
6059 }
6060
6061 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6062 {
6063         int idx;
6064
6065         kvm_pmu_destroy(vcpu);
6066         kfree(vcpu->arch.mce_banks);
6067         kvm_free_lapic(vcpu);
6068         idx = srcu_read_lock(&vcpu->kvm->srcu);
6069         kvm_mmu_destroy(vcpu);
6070         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6071         free_page((unsigned long)vcpu->arch.pio_data);
6072 }
6073
6074 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6075 {
6076         if (type)
6077                 return -EINVAL;
6078
6079         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6080         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6081
6082         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6083         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6084
6085         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6086
6087         return 0;
6088 }
6089
6090 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6091 {
6092         vcpu_load(vcpu);
6093         kvm_mmu_unload(vcpu);
6094         vcpu_put(vcpu);
6095 }
6096
6097 static void kvm_free_vcpus(struct kvm *kvm)
6098 {
6099         unsigned int i;
6100         struct kvm_vcpu *vcpu;
6101
6102         /*
6103          * Unpin any mmu pages first.
6104          */
6105         kvm_for_each_vcpu(i, vcpu, kvm) {
6106                 kvm_clear_async_pf_completion_queue(vcpu);
6107                 kvm_unload_vcpu_mmu(vcpu);
6108         }
6109         kvm_for_each_vcpu(i, vcpu, kvm)
6110                 kvm_arch_vcpu_free(vcpu);
6111
6112         mutex_lock(&kvm->lock);
6113         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6114                 kvm->vcpus[i] = NULL;
6115
6116         atomic_set(&kvm->online_vcpus, 0);
6117         mutex_unlock(&kvm->lock);
6118 }
6119
6120 void kvm_arch_sync_events(struct kvm *kvm)
6121 {
6122         kvm_free_all_assigned_devices(kvm);
6123         kvm_free_pit(kvm);
6124 }
6125
6126 void kvm_arch_destroy_vm(struct kvm *kvm)
6127 {
6128         kvm_iommu_unmap_guest(kvm);
6129         kfree(kvm->arch.vpic);
6130         kfree(kvm->arch.vioapic);
6131         kvm_free_vcpus(kvm);
6132         if (kvm->arch.apic_access_page)
6133                 put_page(kvm->arch.apic_access_page);
6134         if (kvm->arch.ept_identity_pagetable)
6135                 put_page(kvm->arch.ept_identity_pagetable);
6136 }
6137
6138 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6139                                 struct kvm_memory_slot *memslot,
6140                                 struct kvm_memory_slot old,
6141                                 struct kvm_userspace_memory_region *mem,
6142                                 int user_alloc)
6143 {
6144         int npages = memslot->npages;
6145         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6146
6147         /* Prevent internal slot pages from being moved by fork()/COW. */
6148         if (memslot->id >= KVM_MEMORY_SLOTS)
6149                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6150
6151         /*To keep backward compatibility with older userspace,
6152          *x86 needs to hanlde !user_alloc case.
6153          */
6154         if (!user_alloc) {
6155                 if (npages && !old.rmap) {
6156                         unsigned long userspace_addr;
6157
6158                         down_write(&current->mm->mmap_sem);
6159                         userspace_addr = do_mmap(NULL, 0,
6160                                                  npages * PAGE_SIZE,
6161                                                  PROT_READ | PROT_WRITE,
6162                                                  map_flags,
6163                                                  0);
6164                         up_write(&current->mm->mmap_sem);
6165
6166                         if (IS_ERR((void *)userspace_addr))
6167                                 return PTR_ERR((void *)userspace_addr);
6168
6169                         memslot->userspace_addr = userspace_addr;
6170                 }
6171         }
6172
6173
6174         return 0;
6175 }
6176
6177 void kvm_arch_commit_memory_region(struct kvm *kvm,
6178                                 struct kvm_userspace_memory_region *mem,
6179                                 struct kvm_memory_slot old,
6180                                 int user_alloc)
6181 {
6182
6183         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6184
6185         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6186                 int ret;
6187
6188                 down_write(&current->mm->mmap_sem);
6189                 ret = do_munmap(current->mm, old.userspace_addr,
6190                                 old.npages * PAGE_SIZE);
6191                 up_write(&current->mm->mmap_sem);
6192                 if (ret < 0)
6193                         printk(KERN_WARNING
6194                                "kvm_vm_ioctl_set_memory_region: "
6195                                "failed to munmap memory\n");
6196         }
6197
6198         if (!kvm->arch.n_requested_mmu_pages)
6199                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6200
6201         spin_lock(&kvm->mmu_lock);
6202         if (nr_mmu_pages)
6203                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6204         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6205         spin_unlock(&kvm->mmu_lock);
6206 }
6207
6208 void kvm_arch_flush_shadow(struct kvm *kvm)
6209 {
6210         kvm_mmu_zap_all(kvm);
6211         kvm_reload_remote_mmus(kvm);
6212 }
6213
6214 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6215 {
6216         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6217                 !vcpu->arch.apf.halted)
6218                 || !list_empty_careful(&vcpu->async_pf.done)
6219                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6220                 || atomic_read(&vcpu->arch.nmi_queued) ||
6221                 (kvm_arch_interrupt_allowed(vcpu) &&
6222                  kvm_cpu_has_interrupt(vcpu));
6223 }
6224
6225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6226 {
6227         int me;
6228         int cpu = vcpu->cpu;
6229
6230         if (waitqueue_active(&vcpu->wq)) {
6231                 wake_up_interruptible(&vcpu->wq);
6232                 ++vcpu->stat.halt_wakeup;
6233         }
6234
6235         me = get_cpu();
6236         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6237                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6238                         smp_send_reschedule(cpu);
6239         put_cpu();
6240 }
6241
6242 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6243 {
6244         return kvm_x86_ops->interrupt_allowed(vcpu);
6245 }
6246
6247 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6248 {
6249         unsigned long current_rip = kvm_rip_read(vcpu) +
6250                 get_segment_base(vcpu, VCPU_SREG_CS);
6251
6252         return current_rip == linear_rip;
6253 }
6254 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6255
6256 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6257 {
6258         unsigned long rflags;
6259
6260         rflags = kvm_x86_ops->get_rflags(vcpu);
6261         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6262                 rflags &= ~X86_EFLAGS_TF;
6263         return rflags;
6264 }
6265 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6266
6267 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6268 {
6269         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6270             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6271                 rflags |= X86_EFLAGS_TF;
6272         kvm_x86_ops->set_rflags(vcpu, rflags);
6273         kvm_make_request(KVM_REQ_EVENT, vcpu);
6274 }
6275 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6276
6277 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6278 {
6279         int r;
6280
6281         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6282               is_error_page(work->page))
6283                 return;
6284
6285         r = kvm_mmu_reload(vcpu);
6286         if (unlikely(r))
6287                 return;
6288
6289         if (!vcpu->arch.mmu.direct_map &&
6290               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6291                 return;
6292
6293         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6294 }
6295
6296 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6297 {
6298         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6299 }
6300
6301 static inline u32 kvm_async_pf_next_probe(u32 key)
6302 {
6303         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6304 }
6305
6306 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6307 {
6308         u32 key = kvm_async_pf_hash_fn(gfn);
6309
6310         while (vcpu->arch.apf.gfns[key] != ~0)
6311                 key = kvm_async_pf_next_probe(key);
6312
6313         vcpu->arch.apf.gfns[key] = gfn;
6314 }
6315
6316 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6317 {
6318         int i;
6319         u32 key = kvm_async_pf_hash_fn(gfn);
6320
6321         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6322                      (vcpu->arch.apf.gfns[key] != gfn &&
6323                       vcpu->arch.apf.gfns[key] != ~0); i++)
6324                 key = kvm_async_pf_next_probe(key);
6325
6326         return key;
6327 }
6328
6329 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6330 {
6331         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6332 }
6333
6334 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6335 {
6336         u32 i, j, k;
6337
6338         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6339         while (true) {
6340                 vcpu->arch.apf.gfns[i] = ~0;
6341                 do {
6342                         j = kvm_async_pf_next_probe(j);
6343                         if (vcpu->arch.apf.gfns[j] == ~0)
6344                                 return;
6345                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6346                         /*
6347                          * k lies cyclically in ]i,j]
6348                          * |    i.k.j |
6349                          * |....j i.k.| or  |.k..j i...|
6350                          */
6351                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6352                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6353                 i = j;
6354         }
6355 }
6356
6357 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6358 {
6359
6360         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6361                                       sizeof(val));
6362 }
6363
6364 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6365                                      struct kvm_async_pf *work)
6366 {
6367         struct x86_exception fault;
6368
6369         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6370         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6371
6372         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6373             (vcpu->arch.apf.send_user_only &&
6374              kvm_x86_ops->get_cpl(vcpu) == 0))
6375                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6376         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6377                 fault.vector = PF_VECTOR;
6378                 fault.error_code_valid = true;
6379                 fault.error_code = 0;
6380                 fault.nested_page_fault = false;
6381                 fault.address = work->arch.token;
6382                 kvm_inject_page_fault(vcpu, &fault);
6383         }
6384 }
6385
6386 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6387                                  struct kvm_async_pf *work)
6388 {
6389         struct x86_exception fault;
6390
6391         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6392         if (is_error_page(work->page))
6393                 work->arch.token = ~0; /* broadcast wakeup */
6394         else
6395                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6396
6397         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6398             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6399                 fault.vector = PF_VECTOR;
6400                 fault.error_code_valid = true;
6401                 fault.error_code = 0;
6402                 fault.nested_page_fault = false;
6403                 fault.address = work->arch.token;
6404                 kvm_inject_page_fault(vcpu, &fault);
6405         }
6406         vcpu->arch.apf.halted = false;
6407 }
6408
6409 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6410 {
6411         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6412                 return true;
6413         else
6414                 return !kvm_event_needs_reinjection(vcpu) &&
6415                         kvm_x86_ops->interrupt_allowed(vcpu);
6416 }
6417
6418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);