Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[linux-flexiantxendom0-3.2.10.git] / drivers / hwmon / hwmon-vid.c
1 /*
2  * hwmon-vid.c - VID/VRM/VRD voltage conversions
3  *
4  * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz>
5  *
6  * Partly imported from i2c-vid.h of the lm_sensors project
7  * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
8  * With assistance from Trent Piepho <xyzzy@speakeasy.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/hwmon-vid.h>
30
31 /*
32  * Common code for decoding VID pins.
33  *
34  * References:
35  *
36  * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines",
37  * available at http://developer.intel.com/.
38  *
39  * For VRD 10.0 and up, "VRD x.y Design Guide",
40  * available at http://developer.intel.com/.
41  *
42  * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094,
43  * http://support.amd.com/us/Processor_TechDocs/26094.PDF
44  * Table 74. VID Code Voltages
45  * This corresponds to an arbitrary VRM code of 24 in the functions below.
46  * These CPU models (K8 revision <= E) have 5 VID pins. See also:
47  * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759,
48  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
49  *
50  * AMD NPT Family 0Fh Processors, AMD Publication 32559,
51  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
52  * Table 71. VID Code Voltages
53  * This corresponds to an arbitrary VRM code of 25 in the functions below.
54  * These CPU models (K8 revision >= F) have 6 VID pins. See also:
55  * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610,
56  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
57  *
58  * The 17 specification is in fact Intel Mobile Voltage Positioning -
59  * (IMVP-II). You can find more information in the datasheet of Max1718
60  * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452
61  *
62  * The 13 specification corresponds to the Intel Pentium M series. There
63  * doesn't seem to be any named specification for these. The conversion
64  * tables are detailed directly in the various Pentium M datasheets:
65  * http://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm
66  *
67  * The 14 specification corresponds to Intel Core series. There
68  * doesn't seem to be any named specification for these. The conversion
69  * tables are detailed directly in the various Pentium Core datasheets:
70  * http://www.intel.com/design/mobile/datashts/309221.htm
71  *
72  * The 110 (VRM 11) specification corresponds to Intel Conroe based series.
73  * http://www.intel.com/design/processor/applnots/313214.htm
74  */
75
76 /*
77  * vrm is the VRM/VRD document version multiplied by 10.
78  * val is the 4-bit or more VID code.
79  * Returned value is in mV to avoid floating point in the kernel.
80  * Some VID have some bits in uV scale, this is rounded to mV.
81  */
82 int vid_from_reg(int val, u8 vrm)
83 {
84         int vid;
85
86         switch (vrm) {
87
88         case 100:               /* VRD 10.0 */
89                 /* compute in uV, round to mV */
90                 val &= 0x3f;
91                 if ((val & 0x1f) == 0x1f)
92                         return 0;
93                 if ((val & 0x1f) <= 0x09 || val == 0x0a)
94                         vid = 1087500 - (val & 0x1f) * 25000;
95                 else
96                         vid = 1862500 - (val & 0x1f) * 25000;
97                 if (val & 0x20)
98                         vid -= 12500;
99                 return (vid + 500) / 1000;
100
101         case 110:               /* Intel Conroe */
102                                 /* compute in uV, round to mV */
103                 val &= 0xff;
104                 if (val < 0x02 || val > 0xb2)
105                         return 0;
106                 return (1600000 - (val - 2) * 6250 + 500) / 1000;
107
108         case 24:                /* Athlon64 & Opteron */
109                 val &= 0x1f;
110                 if (val == 0x1f)
111                         return 0;
112                                 /* fall through */
113         case 25:                /* AMD NPT 0Fh */
114                 val &= 0x3f;
115                 return (val < 32) ? 1550 - 25 * val
116                         : 775 - (25 * (val - 31)) / 2;
117
118         case 91:                /* VRM 9.1 */
119         case 90:                /* VRM 9.0 */
120                 val &= 0x1f;
121                 return val == 0x1f ? 0 :
122                                      1850 - val * 25;
123
124         case 85:                /* VRM 8.5 */
125                 val &= 0x1f;
126                 return (val & 0x10  ? 25 : 0) +
127                        ((val & 0x0f) > 0x04 ? 2050 : 1250) -
128                        ((val & 0x0f) * 50);
129
130         case 84:                /* VRM 8.4 */
131                 val &= 0x0f;
132                                 /* fall through */
133         case 82:                /* VRM 8.2 */
134                 val &= 0x1f;
135                 return val == 0x1f ? 0 :
136                        val & 0x10  ? 5100 - (val) * 100 :
137                                      2050 - (val) * 50;
138         case 17:                /* Intel IMVP-II */
139                 val &= 0x1f;
140                 return val & 0x10 ? 975 - (val & 0xF) * 25 :
141                                     1750 - val * 50;
142         case 13:
143         case 131:
144                 val &= 0x3f;
145                 /* Exception for Eden ULV 500 MHz */
146                 if (vrm == 131 && val == 0x3f)
147                         val++;
148                 return 1708 - val * 16;
149         case 14:                /* Intel Core */
150                                 /* compute in uV, round to mV */
151                 val &= 0x7f;
152                 return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000;
153         default:                /* report 0 for unknown */
154                 if (vrm)
155                         pr_warn("Requested unsupported VRM version (%u)\n",
156                                 (unsigned int)vrm);
157                 return 0;
158         }
159 }
160 EXPORT_SYMBOL(vid_from_reg);
161
162 /*
163  * After this point is the code to automatically determine which
164  * VRM/VRD specification should be used depending on the CPU.
165  */
166
167 struct vrm_model {
168         u8 vendor;
169         u8 family;
170         u8 model_from;
171         u8 model_to;
172         u8 stepping_to;
173         u8 vrm_type;
174 };
175
176 #define ANY 0xFF
177
178 #ifdef CONFIG_X86
179
180 /*
181  * The stepping_to parameter is highest acceptable stepping for current line.
182  * The model match must be exact for 4-bit values. For model values 0x10
183  * and above (extended model), all models below the parameter will match.
184  */
185
186 static struct vrm_model vrm_models[] = {
187         {X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90},       /* Athlon Duron etc */
188         {X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24},      /* Athlon 64, Opteron */
189         /*
190          * In theory, all NPT family 0Fh processors have 6 VID pins and should
191          * thus use vrm 25, however in practice not all mainboards route the
192          * 6th VID pin because it is never needed. So we use the 5 VID pin
193          * variant (vrm 24) for the models which exist today.
194          */
195         {X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24},     /* NPT family 0Fh */
196         {X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25},      /* future fam. 0Fh */
197         {X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25},      /* NPT family 10h */
198
199         {X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82},     /* Pentium Pro,
200                                                          * Pentium II, Xeon,
201                                                          * Mobile Pentium,
202                                                          * Celeron */
203         {X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84},     /* Pentium III, Xeon */
204         {X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82},     /* Pentium III, Xeon */
205         {X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13},     /* Pentium M (130 nm) */
206         {X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82},     /* Pentium III Xeon */
207         {X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85},     /* Tualatin */
208         {X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13},     /* Pentium M (90 nm) */
209         {X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14},     /* Intel Core (65 nm) */
210         {X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110},    /* Intel Conroe and
211                                                          * later */
212         {X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90},     /* P4 */
213         {X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90},     /* P4 Willamette */
214         {X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90},     /* P4 Northwood */
215         {X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100},    /* Prescott and above
216                                                          * assume VRD 10 */
217
218         {X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85},   /* Eden ESP/Ezra */
219         {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85},   /* Ezra T */
220         {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85},   /* Nehemiah */
221         {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17},   /* C3-M, Eden-N */
222         {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0},    /* No information */
223         {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13},   /* C7-M, C7,
224                                                          * Eden (Esther) */
225         {X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134},  /* C7-D, C7-M, C7,
226                                                          * Eden (Esther) */
227 };
228
229 /*
230  * Special case for VIA model D: there are two different possible
231  * VID tables, so we have to figure out first, which one must be
232  * used. This resolves temporary drm value 134 to 14 (Intel Core
233  * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID
234  * + quirk for Eden ULV 500 MHz).
235  * Note: something similar might be needed for model A, I'm not sure.
236  */
237 static u8 get_via_model_d_vrm(void)
238 {
239         unsigned int vid, brand, dummy;
240         static const char *brands[4] = {
241                 "C7-M", "C7", "Eden", "C7-D"
242         };
243
244         rdmsr(0x198, dummy, vid);
245         vid &= 0xff;
246
247         rdmsr(0x1154, brand, dummy);
248         brand = ((brand >> 4) ^ (brand >> 2)) & 0x03;
249
250         if (vid > 0x3f) {
251                 pr_info("Using %d-bit VID table for VIA %s CPU\n",
252                         7, brands[brand]);
253                 return 14;
254         } else {
255                 pr_info("Using %d-bit VID table for VIA %s CPU\n",
256                         6, brands[brand]);
257                 /* Enable quirk for Eden */
258                 return brand == 2 ? 131 : 13;
259         }
260 }
261
262 static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor)
263 {
264         int i;
265
266         for (i = 0; i < ARRAY_SIZE(vrm_models); i++) {
267                 if (vendor == vrm_models[i].vendor &&
268                     family == vrm_models[i].family &&
269                     model >= vrm_models[i].model_from &&
270                     model <= vrm_models[i].model_to &&
271                     stepping <= vrm_models[i].stepping_to)
272                         return vrm_models[i].vrm_type;
273         }
274
275         return 0;
276 }
277
278 u8 vid_which_vrm(void)
279 {
280         struct cpuinfo_x86 *c = &cpu_data(0);
281         u8 vrm_ret;
282
283         if (c->x86 < 6)         /* Any CPU with family lower than 6 */
284                 return 0;       /* doesn't have VID */
285
286         vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_mask, c->x86_vendor);
287         if (vrm_ret == 134)
288                 vrm_ret = get_via_model_d_vrm();
289         if (vrm_ret == 0)
290                 pr_info("Unknown VRM version of your x86 CPU\n");
291         return vrm_ret;
292 }
293
294 /* and now for something completely different for the non-x86 world */
295 #else
296 u8 vid_which_vrm(void)
297 {
298         pr_info("Unknown VRM version of your CPU\n");
299         return 0;
300 }
301 #endif
302 EXPORT_SYMBOL(vid_which_vrm);
303
304 MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
305
306 MODULE_DESCRIPTION("hwmon-vid driver");
307 MODULE_LICENSE("GPL");