KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
100 static u32 tsc_tolerance_ppm = 250;
101 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106         int nr;
107         u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111         struct user_return_notifier urn;
112         bool registered;
113         struct kvm_shared_msr_values {
114                 u64 host;
115                 u64 curr;
116         } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123         { "pf_fixed", VCPU_STAT(pf_fixed) },
124         { "pf_guest", VCPU_STAT(pf_guest) },
125         { "tlb_flush", VCPU_STAT(tlb_flush) },
126         { "invlpg", VCPU_STAT(invlpg) },
127         { "exits", VCPU_STAT(exits) },
128         { "io_exits", VCPU_STAT(io_exits) },
129         { "mmio_exits", VCPU_STAT(mmio_exits) },
130         { "signal_exits", VCPU_STAT(signal_exits) },
131         { "irq_window", VCPU_STAT(irq_window_exits) },
132         { "nmi_window", VCPU_STAT(nmi_window_exits) },
133         { "halt_exits", VCPU_STAT(halt_exits) },
134         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135         { "hypercalls", VCPU_STAT(hypercalls) },
136         { "request_irq", VCPU_STAT(request_irq_exits) },
137         { "irq_exits", VCPU_STAT(irq_exits) },
138         { "host_state_reload", VCPU_STAT(host_state_reload) },
139         { "efer_reload", VCPU_STAT(efer_reload) },
140         { "fpu_reload", VCPU_STAT(fpu_reload) },
141         { "insn_emulation", VCPU_STAT(insn_emulation) },
142         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143         { "irq_injections", VCPU_STAT(irq_injections) },
144         { "nmi_injections", VCPU_STAT(nmi_injections) },
145         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149         { "mmu_flooded", VM_STAT(mmu_flooded) },
150         { "mmu_recycled", VM_STAT(mmu_recycled) },
151         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152         { "mmu_unsync", VM_STAT(mmu_unsync) },
153         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154         { "largepages", VM_STAT(lpages) },
155         { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
161
162 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
163 {
164         int i;
165         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
166                 vcpu->arch.apf.gfns[i] = ~0;
167 }
168
169 static void kvm_on_user_return(struct user_return_notifier *urn)
170 {
171         unsigned slot;
172         struct kvm_shared_msrs *locals
173                 = container_of(urn, struct kvm_shared_msrs, urn);
174         struct kvm_shared_msr_values *values;
175
176         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
177                 values = &locals->values[slot];
178                 if (values->host != values->curr) {
179                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
180                         values->curr = values->host;
181                 }
182         }
183         locals->registered = false;
184         user_return_notifier_unregister(urn);
185 }
186
187 static void shared_msr_update(unsigned slot, u32 msr)
188 {
189         struct kvm_shared_msrs *smsr;
190         u64 value;
191
192         smsr = &__get_cpu_var(shared_msrs);
193         /* only read, and nobody should modify it at this time,
194          * so don't need lock */
195         if (slot >= shared_msrs_global.nr) {
196                 printk(KERN_ERR "kvm: invalid MSR slot!");
197                 return;
198         }
199         rdmsrl_safe(msr, &value);
200         smsr->values[slot].host = value;
201         smsr->values[slot].curr = value;
202 }
203
204 void kvm_define_shared_msr(unsigned slot, u32 msr)
205 {
206         if (slot >= shared_msrs_global.nr)
207                 shared_msrs_global.nr = slot + 1;
208         shared_msrs_global.msrs[slot] = msr;
209         /* we need ensured the shared_msr_global have been updated */
210         smp_wmb();
211 }
212 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
213
214 static void kvm_shared_msr_cpu_online(void)
215 {
216         unsigned i;
217
218         for (i = 0; i < shared_msrs_global.nr; ++i)
219                 shared_msr_update(i, shared_msrs_global.msrs[i]);
220 }
221
222 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
223 {
224         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
225
226         if (((value ^ smsr->values[slot].curr) & mask) == 0)
227                 return;
228         smsr->values[slot].curr = value;
229         wrmsrl(shared_msrs_global.msrs[slot], value);
230         if (!smsr->registered) {
231                 smsr->urn.on_user_return = kvm_on_user_return;
232                 user_return_notifier_register(&smsr->urn);
233                 smsr->registered = true;
234         }
235 }
236 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
237
238 static void drop_user_return_notifiers(void *ignore)
239 {
240         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
241
242         if (smsr->registered)
243                 kvm_on_user_return(&smsr->urn);
244 }
245
246 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
247 {
248         if (irqchip_in_kernel(vcpu->kvm))
249                 return vcpu->arch.apic_base;
250         else
251                 return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257         /* TODO: reserve bits check */
258         if (irqchip_in_kernel(vcpu->kvm))
259                 kvm_lapic_set_base(vcpu, data);
260         else
261                 vcpu->arch.apic_base = data;
262 }
263 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
264
265 #define EXCPT_BENIGN            0
266 #define EXCPT_CONTRIBUTORY      1
267 #define EXCPT_PF                2
268
269 static int exception_class(int vector)
270 {
271         switch (vector) {
272         case PF_VECTOR:
273                 return EXCPT_PF;
274         case DE_VECTOR:
275         case TS_VECTOR:
276         case NP_VECTOR:
277         case SS_VECTOR:
278         case GP_VECTOR:
279                 return EXCPT_CONTRIBUTORY;
280         default:
281                 break;
282         }
283         return EXCPT_BENIGN;
284 }
285
286 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
287                 unsigned nr, bool has_error, u32 error_code,
288                 bool reinject)
289 {
290         u32 prev_nr;
291         int class1, class2;
292
293         kvm_make_request(KVM_REQ_EVENT, vcpu);
294
295         if (!vcpu->arch.exception.pending) {
296         queue:
297                 vcpu->arch.exception.pending = true;
298                 vcpu->arch.exception.has_error_code = has_error;
299                 vcpu->arch.exception.nr = nr;
300                 vcpu->arch.exception.error_code = error_code;
301                 vcpu->arch.exception.reinject = reinject;
302                 return;
303         }
304
305         /* to check exception */
306         prev_nr = vcpu->arch.exception.nr;
307         if (prev_nr == DF_VECTOR) {
308                 /* triple fault -> shutdown */
309                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
310                 return;
311         }
312         class1 = exception_class(prev_nr);
313         class2 = exception_class(nr);
314         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
315                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
316                 /* generate double fault per SDM Table 5-5 */
317                 vcpu->arch.exception.pending = true;
318                 vcpu->arch.exception.has_error_code = true;
319                 vcpu->arch.exception.nr = DF_VECTOR;
320                 vcpu->arch.exception.error_code = 0;
321         } else
322                 /* replace previous exception with a new one in a hope
323                    that instruction re-execution will regenerate lost
324                    exception */
325                 goto queue;
326 }
327
328 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, false);
331 }
332 EXPORT_SYMBOL_GPL(kvm_queue_exception);
333
334 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, true);
337 }
338 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
339
340 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
341 {
342         if (err)
343                 kvm_inject_gp(vcpu, 0);
344         else
345                 kvm_x86_ops->skip_emulated_instruction(vcpu);
346 }
347 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
348
349 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 {
351         ++vcpu->stat.pf_guest;
352         vcpu->arch.cr2 = fault->address;
353         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
356
357 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
358 {
359         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
360                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
361         else
362                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
363 }
364
365 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
366 {
367         atomic_inc(&vcpu->arch.nmi_queued);
368         kvm_make_request(KVM_REQ_NMI, vcpu);
369 }
370 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
371
372 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373 {
374         kvm_multiple_exception(vcpu, nr, true, error_code, false);
375 }
376 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
377
378 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, true);
381 }
382 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
383
384 /*
385  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
386  * a #GP and return false.
387  */
388 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
389 {
390         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
391                 return true;
392         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
393         return false;
394 }
395 EXPORT_SYMBOL_GPL(kvm_require_cpl);
396
397 /*
398  * This function will be used to read from the physical memory of the currently
399  * running guest. The difference to kvm_read_guest_page is that this function
400  * can read from guest physical or from the guest's guest physical memory.
401  */
402 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
403                             gfn_t ngfn, void *data, int offset, int len,
404                             u32 access)
405 {
406         gfn_t real_gfn;
407         gpa_t ngpa;
408
409         ngpa     = gfn_to_gpa(ngfn);
410         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
411         if (real_gfn == UNMAPPED_GVA)
412                 return -EFAULT;
413
414         real_gfn = gpa_to_gfn(real_gfn);
415
416         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
417 }
418 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
419
420 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
421                                void *data, int offset, int len, u32 access)
422 {
423         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
424                                        data, offset, len, access);
425 }
426
427 /*
428  * Load the pae pdptrs.  Return true is they are all valid.
429  */
430 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
431 {
432         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
433         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
434         int i;
435         int ret;
436         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
437
438         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
439                                       offset * sizeof(u64), sizeof(pdpte),
440                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
441         if (ret < 0) {
442                 ret = 0;
443                 goto out;
444         }
445         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
446                 if (is_present_gpte(pdpte[i]) &&
447                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
448                         ret = 0;
449                         goto out;
450                 }
451         }
452         ret = 1;
453
454         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
455         __set_bit(VCPU_EXREG_PDPTR,
456                   (unsigned long *)&vcpu->arch.regs_avail);
457         __set_bit(VCPU_EXREG_PDPTR,
458                   (unsigned long *)&vcpu->arch.regs_dirty);
459 out:
460
461         return ret;
462 }
463 EXPORT_SYMBOL_GPL(load_pdptrs);
464
465 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
466 {
467         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468         bool changed = true;
469         int offset;
470         gfn_t gfn;
471         int r;
472
473         if (is_long_mode(vcpu) || !is_pae(vcpu))
474                 return false;
475
476         if (!test_bit(VCPU_EXREG_PDPTR,
477                       (unsigned long *)&vcpu->arch.regs_avail))
478                 return true;
479
480         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
481         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
482         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
483                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
484         if (r < 0)
485                 goto out;
486         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 out:
488
489         return changed;
490 }
491
492 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493 {
494         unsigned long old_cr0 = kvm_read_cr0(vcpu);
495         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
496                                     X86_CR0_CD | X86_CR0_NW;
497
498         cr0 |= X86_CR0_ET;
499
500 #ifdef CONFIG_X86_64
501         if (cr0 & 0xffffffff00000000UL)
502                 return 1;
503 #endif
504
505         cr0 &= ~CR0_RESERVED_BITS;
506
507         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
508                 return 1;
509
510         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
511                 return 1;
512
513         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
514 #ifdef CONFIG_X86_64
515                 if ((vcpu->arch.efer & EFER_LME)) {
516                         int cs_db, cs_l;
517
518                         if (!is_pae(vcpu))
519                                 return 1;
520                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521                         if (cs_l)
522                                 return 1;
523                 } else
524 #endif
525                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526                                                  kvm_read_cr3(vcpu)))
527                         return 1;
528         }
529
530         kvm_x86_ops->set_cr0(vcpu, cr0);
531
532         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533                 kvm_clear_async_pf_completion_queue(vcpu);
534                 kvm_async_pf_hash_reset(vcpu);
535         }
536
537         if ((cr0 ^ old_cr0) & update_bits)
538                 kvm_mmu_reset_context(vcpu);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551         u64 xcr0;
552
553         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
554         if (index != XCR_XFEATURE_ENABLED_MASK)
555                 return 1;
556         xcr0 = xcr;
557         if (kvm_x86_ops->get_cpl(vcpu) != 0)
558                 return 1;
559         if (!(xcr0 & XSTATE_FP))
560                 return 1;
561         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562                 return 1;
563         if (xcr0 & ~host_xcr0)
564                 return 1;
565         vcpu->arch.xcr0 = xcr0;
566         vcpu->guest_xcr0_loaded = 0;
567         return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572         if (__kvm_set_xcr(vcpu, index, xcr)) {
573                 kvm_inject_gp(vcpu, 0);
574                 return 1;
575         }
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582         unsigned long old_cr4 = kvm_read_cr4(vcpu);
583         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584                                    X86_CR4_PAE | X86_CR4_SMEP;
585         if (cr4 & CR4_RESERVED_BITS)
586                 return 1;
587
588         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589                 return 1;
590
591         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592                 return 1;
593
594         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595                 return 1;
596
597         if (is_long_mode(vcpu)) {
598                 if (!(cr4 & X86_CR4_PAE))
599                         return 1;
600         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601                    && ((cr4 ^ old_cr4) & pdptr_bits)
602                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603                                    kvm_read_cr3(vcpu)))
604                 return 1;
605
606         if (kvm_x86_ops->set_cr4(vcpu, cr4))
607                 return 1;
608
609         if ((cr4 ^ old_cr4) & pdptr_bits)
610                 kvm_mmu_reset_context(vcpu);
611
612         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
613                 kvm_update_cpuid(vcpu);
614
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_cr4);
618
619 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
620 {
621         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
622                 kvm_mmu_sync_roots(vcpu);
623                 kvm_mmu_flush_tlb(vcpu);
624                 return 0;
625         }
626
627         if (is_long_mode(vcpu)) {
628                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
629                         return 1;
630         } else {
631                 if (is_pae(vcpu)) {
632                         if (cr3 & CR3_PAE_RESERVED_BITS)
633                                 return 1;
634                         if (is_paging(vcpu) &&
635                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
636                                 return 1;
637                 }
638                 /*
639                  * We don't check reserved bits in nonpae mode, because
640                  * this isn't enforced, and VMware depends on this.
641                  */
642         }
643
644         /*
645          * Does the new cr3 value map to physical memory? (Note, we
646          * catch an invalid cr3 even in real-mode, because it would
647          * cause trouble later on when we turn on paging anyway.)
648          *
649          * A real CPU would silently accept an invalid cr3 and would
650          * attempt to use it - with largely undefined (and often hard
651          * to debug) behavior on the guest side.
652          */
653         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
654                 return 1;
655         vcpu->arch.cr3 = cr3;
656         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
657         vcpu->arch.mmu.new_cr3(vcpu);
658         return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr3);
661
662 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663 {
664         if (cr8 & CR8_RESERVED_BITS)
665                 return 1;
666         if (irqchip_in_kernel(vcpu->kvm))
667                 kvm_lapic_set_tpr(vcpu, cr8);
668         else
669                 vcpu->arch.cr8 = cr8;
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr8);
673
674 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
675 {
676         if (irqchip_in_kernel(vcpu->kvm))
677                 return kvm_lapic_get_cr8(vcpu);
678         else
679                 return vcpu->arch.cr8;
680 }
681 EXPORT_SYMBOL_GPL(kvm_get_cr8);
682
683 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
684 {
685         switch (dr) {
686         case 0 ... 3:
687                 vcpu->arch.db[dr] = val;
688                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
689                         vcpu->arch.eff_db[dr] = val;
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1; /* #UD */
694                 /* fall through */
695         case 6:
696                 if (val & 0xffffffff00000000ULL)
697                         return -1; /* #GP */
698                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
699                 break;
700         case 5:
701                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702                         return 1; /* #UD */
703                 /* fall through */
704         default: /* 7 */
705                 if (val & 0xffffffff00000000ULL)
706                         return -1; /* #GP */
707                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
708                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
709                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
710                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
711                 }
712                 break;
713         }
714
715         return 0;
716 }
717
718 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         int res;
721
722         res = __kvm_set_dr(vcpu, dr, val);
723         if (res > 0)
724                 kvm_queue_exception(vcpu, UD_VECTOR);
725         else if (res < 0)
726                 kvm_inject_gp(vcpu, 0);
727
728         return res;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_dr);
731
732 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
733 {
734         switch (dr) {
735         case 0 ... 3:
736                 *val = vcpu->arch.db[dr];
737                 break;
738         case 4:
739                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
740                         return 1;
741                 /* fall through */
742         case 6:
743                 *val = vcpu->arch.dr6;
744                 break;
745         case 5:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         default: /* 7 */
750                 *val = vcpu->arch.dr7;
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         if (_kvm_get_dr(vcpu, dr, val)) {
760                 kvm_queue_exception(vcpu, UD_VECTOR);
761                 return 1;
762         }
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_dr);
766
767 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
768 {
769         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
770         u64 data;
771         int err;
772
773         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
774         if (err)
775                 return err;
776         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
777         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
778         return err;
779 }
780 EXPORT_SYMBOL_GPL(kvm_rdpmc);
781
782 /*
783  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
784  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
785  *
786  * This list is modified at module load time to reflect the
787  * capabilities of the host cpu. This capabilities test skips MSRs that are
788  * kvm-specific. Those are put in the beginning of the list.
789  */
790
791 #define KVM_SAVE_MSRS_BEGIN     9
792 static u32 msrs_to_save[] = {
793         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
794         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
795         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
796         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
797         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
798         MSR_STAR,
799 #ifdef CONFIG_X86_64
800         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
801 #endif
802         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 };
804
805 static unsigned num_msrs_to_save;
806
807 static u32 emulated_msrs[] = {
808         MSR_IA32_TSCDEADLINE,
809         MSR_IA32_MISC_ENABLE,
810         MSR_IA32_MCG_STATUS,
811         MSR_IA32_MCG_CTL,
812 };
813
814 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
815 {
816         u64 old_efer = vcpu->arch.efer;
817
818         if (efer & efer_reserved_bits)
819                 return 1;
820
821         if (is_paging(vcpu)
822             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
823                 return 1;
824
825         if (efer & EFER_FFXSR) {
826                 struct kvm_cpuid_entry2 *feat;
827
828                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
829                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
830                         return 1;
831         }
832
833         if (efer & EFER_SVME) {
834                 struct kvm_cpuid_entry2 *feat;
835
836                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
837                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
838                         return 1;
839         }
840
841         efer &= ~EFER_LMA;
842         efer |= vcpu->arch.efer & EFER_LMA;
843
844         kvm_x86_ops->set_efer(vcpu, efer);
845
846         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
847
848         /* Update reserved bits */
849         if ((efer ^ old_efer) & EFER_NX)
850                 kvm_mmu_reset_context(vcpu);
851
852         return 0;
853 }
854
855 void kvm_enable_efer_bits(u64 mask)
856 {
857        efer_reserved_bits &= ~mask;
858 }
859 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860
861
862 /*
863  * Writes msr value into into the appropriate "register".
864  * Returns 0 on success, non-0 otherwise.
865  * Assumes vcpu_load() was already called.
866  */
867 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
868 {
869         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 }
871
872 /*
873  * Adapt set_msr() to msr_io()'s calling convention
874  */
875 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
876 {
877         return kvm_set_msr(vcpu, index, *data);
878 }
879
880 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
881 {
882         int version;
883         int r;
884         struct pvclock_wall_clock wc;
885         struct timespec boot;
886
887         if (!wall_clock)
888                 return;
889
890         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
891         if (r)
892                 return;
893
894         if (version & 1)
895                 ++version;  /* first time write, random junk */
896
897         ++version;
898
899         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
900
901         /*
902          * The guest calculates current wall clock time by adding
903          * system time (updated by kvm_guest_time_update below) to the
904          * wall clock specified here.  guest system time equals host
905          * system time for us, thus we must fill in host boot time here.
906          */
907         getboottime(&boot);
908
909         wc.sec = boot.tv_sec;
910         wc.nsec = boot.tv_nsec;
911         wc.version = version;
912
913         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
914
915         version++;
916         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
917 }
918
919 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
920 {
921         uint32_t quotient, remainder;
922
923         /* Don't try to replace with do_div(), this one calculates
924          * "(dividend << 32) / divisor" */
925         __asm__ ( "divl %4"
926                   : "=a" (quotient), "=d" (remainder)
927                   : "0" (0), "1" (dividend), "r" (divisor) );
928         return quotient;
929 }
930
931 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
932                                s8 *pshift, u32 *pmultiplier)
933 {
934         uint64_t scaled64;
935         int32_t  shift = 0;
936         uint64_t tps64;
937         uint32_t tps32;
938
939         tps64 = base_khz * 1000LL;
940         scaled64 = scaled_khz * 1000LL;
941         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
942                 tps64 >>= 1;
943                 shift--;
944         }
945
946         tps32 = (uint32_t)tps64;
947         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
948                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
949                         scaled64 >>= 1;
950                 else
951                         tps32 <<= 1;
952                 shift++;
953         }
954
955         *pshift = shift;
956         *pmultiplier = div_frac(scaled64, tps32);
957
958         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
959                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 }
961
962 static inline u64 get_kernel_ns(void)
963 {
964         struct timespec ts;
965
966         WARN_ON(preemptible());
967         ktime_get_ts(&ts);
968         monotonic_to_bootbased(&ts);
969         return timespec_to_ns(&ts);
970 }
971
972 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
973 unsigned long max_tsc_khz;
974
975 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
976 {
977         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
978                                    vcpu->arch.virtual_tsc_shift);
979 }
980
981 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
982 {
983         u64 v = (u64)khz * (1000000 + ppm);
984         do_div(v, 1000000);
985         return v;
986 }
987
988 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
989 {
990         u32 thresh_lo, thresh_hi;
991         int use_scaling = 0;
992
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &vcpu->arch.virtual_tsc_shift,
996                            &vcpu->arch.virtual_tsc_mult);
997         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
998
999         /*
1000          * Compute the variation in TSC rate which is acceptable
1001          * within the range of tolerance and decide if the
1002          * rate being applied is within that bounds of the hardware
1003          * rate.  If so, no scaling or compensation need be done.
1004          */
1005         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1006         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1007         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1008                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1009                 use_scaling = 1;
1010         }
1011         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1012 }
1013
1014 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1015 {
1016         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1017                                       vcpu->arch.virtual_tsc_mult,
1018                                       vcpu->arch.virtual_tsc_shift);
1019         tsc += vcpu->arch.this_tsc_write;
1020         return tsc;
1021 }
1022
1023 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         u64 offset, ns, elapsed;
1027         unsigned long flags;
1028         s64 nsdiff;
1029
1030         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1031         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1032         ns = get_kernel_ns();
1033         elapsed = ns - kvm->arch.last_tsc_nsec;
1034
1035         /* n.b - signed multiplication and division required */
1036         nsdiff = data - kvm->arch.last_tsc_write;
1037 #ifdef CONFIG_X86_64
1038         nsdiff = (nsdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1039 #else
1040         /* do_div() only does unsigned */
1041         asm("idivl %2; xor %%edx, %%edx"
1042             : "=A"(nsdiff)
1043             : "A"(nsdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1044 #endif
1045         nsdiff -= elapsed;
1046         if (nsdiff < 0)
1047                 nsdiff = -nsdiff;
1048
1049         /*
1050          * Special case: TSC write with a small delta (1 second) of virtual
1051          * cycle time against real time is interpreted as an attempt to
1052          * synchronize the CPU.
1053          *
1054          * For a reliable TSC, we can match TSC offsets, and for an unstable
1055          * TSC, we add elapsed time in this computation.  We could let the
1056          * compensation code attempt to catch up if we fall behind, but
1057          * it's better to try to match offsets from the beginning.
1058          */
1059         if (nsdiff < NSEC_PER_SEC &&
1060             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1061                 if (!check_tsc_unstable()) {
1062                         offset = kvm->arch.cur_tsc_offset;
1063                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1064                 } else {
1065                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1066                         data += delta;
1067                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1068                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1069                 }
1070         } else {
1071                 /*
1072                  * We split periods of matched TSC writes into generations.
1073                  * For each generation, we track the original measured
1074                  * nanosecond time, offset, and write, so if TSCs are in
1075                  * sync, we can match exact offset, and if not, we can match
1076                  * exact software computaion in compute_guest_tsc()
1077                  *
1078                  * These values are tracked in kvm->arch.cur_xxx variables.
1079                  */
1080                 kvm->arch.cur_tsc_generation++;
1081                 kvm->arch.cur_tsc_nsec = ns;
1082                 kvm->arch.cur_tsc_write = data;
1083                 kvm->arch.cur_tsc_offset = offset;
1084                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1085                          kvm->arch.cur_tsc_generation, data);
1086         }
1087
1088         /*
1089          * We also track th most recent recorded KHZ, write and time to
1090          * allow the matching interval to be extended at each write.
1091          */
1092         kvm->arch.last_tsc_nsec = ns;
1093         kvm->arch.last_tsc_write = data;
1094         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1095
1096         /* Reset of TSC must disable overshoot protection below */
1097         vcpu->arch.hv_clock.tsc_timestamp = 0;
1098         vcpu->arch.last_guest_tsc = data;
1099
1100         /* Keep track of which generation this VCPU has synchronized to */
1101         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1102         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1103         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1104
1105         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1106         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1107 }
1108
1109 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1110
1111 static int kvm_guest_time_update(struct kvm_vcpu *v)
1112 {
1113         unsigned long flags;
1114         struct kvm_vcpu_arch *vcpu = &v->arch;
1115         void *shared_kaddr;
1116         unsigned long this_tsc_khz;
1117         s64 kernel_ns, max_kernel_ns;
1118         u64 tsc_timestamp;
1119
1120         /* Keep irq disabled to prevent changes to the clock */
1121         local_irq_save(flags);
1122         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1123         kernel_ns = get_kernel_ns();
1124         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1125         if (unlikely(this_tsc_khz == 0)) {
1126                 local_irq_restore(flags);
1127                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1128                 return 1;
1129         }
1130
1131         /*
1132          * We may have to catch up the TSC to match elapsed wall clock
1133          * time for two reasons, even if kvmclock is used.
1134          *   1) CPU could have been running below the maximum TSC rate
1135          *   2) Broken TSC compensation resets the base at each VCPU
1136          *      entry to avoid unknown leaps of TSC even when running
1137          *      again on the same CPU.  This may cause apparent elapsed
1138          *      time to disappear, and the guest to stand still or run
1139          *      very slowly.
1140          */
1141         if (vcpu->tsc_catchup) {
1142                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1143                 if (tsc > tsc_timestamp) {
1144                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1145                         tsc_timestamp = tsc;
1146                 }
1147         }
1148
1149         local_irq_restore(flags);
1150
1151         if (!vcpu->time_page)
1152                 return 0;
1153
1154         /*
1155          * Time as measured by the TSC may go backwards when resetting the base
1156          * tsc_timestamp.  The reason for this is that the TSC resolution is
1157          * higher than the resolution of the other clock scales.  Thus, many
1158          * possible measurments of the TSC correspond to one measurement of any
1159          * other clock, and so a spread of values is possible.  This is not a
1160          * problem for the computation of the nanosecond clock; with TSC rates
1161          * around 1GHZ, there can only be a few cycles which correspond to one
1162          * nanosecond value, and any path through this code will inevitably
1163          * take longer than that.  However, with the kernel_ns value itself,
1164          * the precision may be much lower, down to HZ granularity.  If the
1165          * first sampling of TSC against kernel_ns ends in the low part of the
1166          * range, and the second in the high end of the range, we can get:
1167          *
1168          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1169          *
1170          * As the sampling errors potentially range in the thousands of cycles,
1171          * it is possible such a time value has already been observed by the
1172          * guest.  To protect against this, we must compute the system time as
1173          * observed by the guest and ensure the new system time is greater.
1174          */
1175         max_kernel_ns = 0;
1176         if (vcpu->hv_clock.tsc_timestamp) {
1177                 max_kernel_ns = vcpu->last_guest_tsc -
1178                                 vcpu->hv_clock.tsc_timestamp;
1179                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1180                                     vcpu->hv_clock.tsc_to_system_mul,
1181                                     vcpu->hv_clock.tsc_shift);
1182                 max_kernel_ns += vcpu->last_kernel_ns;
1183         }
1184
1185         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1186                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1187                                    &vcpu->hv_clock.tsc_shift,
1188                                    &vcpu->hv_clock.tsc_to_system_mul);
1189                 vcpu->hw_tsc_khz = this_tsc_khz;
1190         }
1191
1192         if (max_kernel_ns > kernel_ns)
1193                 kernel_ns = max_kernel_ns;
1194
1195         /* With all the info we got, fill in the values */
1196         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1197         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1198         vcpu->last_kernel_ns = kernel_ns;
1199         vcpu->last_guest_tsc = tsc_timestamp;
1200         vcpu->hv_clock.flags = 0;
1201
1202         /*
1203          * The interface expects us to write an even number signaling that the
1204          * update is finished. Since the guest won't see the intermediate
1205          * state, we just increase by 2 at the end.
1206          */
1207         vcpu->hv_clock.version += 2;
1208
1209         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1210
1211         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1212                sizeof(vcpu->hv_clock));
1213
1214         kunmap_atomic(shared_kaddr, KM_USER0);
1215
1216         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1217         return 0;
1218 }
1219
1220 static bool msr_mtrr_valid(unsigned msr)
1221 {
1222         switch (msr) {
1223         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1224         case MSR_MTRRfix64K_00000:
1225         case MSR_MTRRfix16K_80000:
1226         case MSR_MTRRfix16K_A0000:
1227         case MSR_MTRRfix4K_C0000:
1228         case MSR_MTRRfix4K_C8000:
1229         case MSR_MTRRfix4K_D0000:
1230         case MSR_MTRRfix4K_D8000:
1231         case MSR_MTRRfix4K_E0000:
1232         case MSR_MTRRfix4K_E8000:
1233         case MSR_MTRRfix4K_F0000:
1234         case MSR_MTRRfix4K_F8000:
1235         case MSR_MTRRdefType:
1236         case MSR_IA32_CR_PAT:
1237                 return true;
1238         case 0x2f8:
1239                 return true;
1240         }
1241         return false;
1242 }
1243
1244 static bool valid_pat_type(unsigned t)
1245 {
1246         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1247 }
1248
1249 static bool valid_mtrr_type(unsigned t)
1250 {
1251         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1252 }
1253
1254 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1255 {
1256         int i;
1257
1258         if (!msr_mtrr_valid(msr))
1259                 return false;
1260
1261         if (msr == MSR_IA32_CR_PAT) {
1262                 for (i = 0; i < 8; i++)
1263                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1264                                 return false;
1265                 return true;
1266         } else if (msr == MSR_MTRRdefType) {
1267                 if (data & ~0xcff)
1268                         return false;
1269                 return valid_mtrr_type(data & 0xff);
1270         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1271                 for (i = 0; i < 8 ; i++)
1272                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1273                                 return false;
1274                 return true;
1275         }
1276
1277         /* variable MTRRs */
1278         return valid_mtrr_type(data & 0xff);
1279 }
1280
1281 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1282 {
1283         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1284
1285         if (!mtrr_valid(vcpu, msr, data))
1286                 return 1;
1287
1288         if (msr == MSR_MTRRdefType) {
1289                 vcpu->arch.mtrr_state.def_type = data;
1290                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1291         } else if (msr == MSR_MTRRfix64K_00000)
1292                 p[0] = data;
1293         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1294                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1295         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1296                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1297         else if (msr == MSR_IA32_CR_PAT)
1298                 vcpu->arch.pat = data;
1299         else {  /* Variable MTRRs */
1300                 int idx, is_mtrr_mask;
1301                 u64 *pt;
1302
1303                 idx = (msr - 0x200) / 2;
1304                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1305                 if (!is_mtrr_mask)
1306                         pt =
1307                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1308                 else
1309                         pt =
1310                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1311                 *pt = data;
1312         }
1313
1314         kvm_mmu_reset_context(vcpu);
1315         return 0;
1316 }
1317
1318 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1319 {
1320         u64 mcg_cap = vcpu->arch.mcg_cap;
1321         unsigned bank_num = mcg_cap & 0xff;
1322
1323         switch (msr) {
1324         case MSR_IA32_MCG_STATUS:
1325                 vcpu->arch.mcg_status = data;
1326                 break;
1327         case MSR_IA32_MCG_CTL:
1328                 if (!(mcg_cap & MCG_CTL_P))
1329                         return 1;
1330                 if (data != 0 && data != ~(u64)0)
1331                         return -1;
1332                 vcpu->arch.mcg_ctl = data;
1333                 break;
1334         default:
1335                 if (msr >= MSR_IA32_MC0_CTL &&
1336                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1337                         u32 offset = msr - MSR_IA32_MC0_CTL;
1338                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1339                          * some Linux kernels though clear bit 10 in bank 4 to
1340                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1341                          * this to avoid an uncatched #GP in the guest
1342                          */
1343                         if ((offset & 0x3) == 0 &&
1344                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1345                                 return -1;
1346                         vcpu->arch.mce_banks[offset] = data;
1347                         break;
1348                 }
1349                 return 1;
1350         }
1351         return 0;
1352 }
1353
1354 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1355 {
1356         struct kvm *kvm = vcpu->kvm;
1357         int lm = is_long_mode(vcpu);
1358         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1359                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1360         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1361                 : kvm->arch.xen_hvm_config.blob_size_32;
1362         u32 page_num = data & ~PAGE_MASK;
1363         u64 page_addr = data & PAGE_MASK;
1364         u8 *page;
1365         int r;
1366
1367         r = -E2BIG;
1368         if (page_num >= blob_size)
1369                 goto out;
1370         r = -ENOMEM;
1371         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1372         if (IS_ERR(page)) {
1373                 r = PTR_ERR(page);
1374                 goto out;
1375         }
1376         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1377                 goto out_free;
1378         r = 0;
1379 out_free:
1380         kfree(page);
1381 out:
1382         return r;
1383 }
1384
1385 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1386 {
1387         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1388 }
1389
1390 static bool kvm_hv_msr_partition_wide(u32 msr)
1391 {
1392         bool r = false;
1393         switch (msr) {
1394         case HV_X64_MSR_GUEST_OS_ID:
1395         case HV_X64_MSR_HYPERCALL:
1396                 r = true;
1397                 break;
1398         }
1399
1400         return r;
1401 }
1402
1403 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1404 {
1405         struct kvm *kvm = vcpu->kvm;
1406
1407         switch (msr) {
1408         case HV_X64_MSR_GUEST_OS_ID:
1409                 kvm->arch.hv_guest_os_id = data;
1410                 /* setting guest os id to zero disables hypercall page */
1411                 if (!kvm->arch.hv_guest_os_id)
1412                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1413                 break;
1414         case HV_X64_MSR_HYPERCALL: {
1415                 u64 gfn;
1416                 unsigned long addr;
1417                 u8 instructions[4];
1418
1419                 /* if guest os id is not set hypercall should remain disabled */
1420                 if (!kvm->arch.hv_guest_os_id)
1421                         break;
1422                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1423                         kvm->arch.hv_hypercall = data;
1424                         break;
1425                 }
1426                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1427                 addr = gfn_to_hva(kvm, gfn);
1428                 if (kvm_is_error_hva(addr))
1429                         return 1;
1430                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1431                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1432                 if (__copy_to_user((void __user *)addr, instructions, 4))
1433                         return 1;
1434                 kvm->arch.hv_hypercall = data;
1435                 break;
1436         }
1437         default:
1438                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1439                           "data 0x%llx\n", msr, data);
1440                 return 1;
1441         }
1442         return 0;
1443 }
1444
1445 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1446 {
1447         switch (msr) {
1448         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1449                 unsigned long addr;
1450
1451                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1452                         vcpu->arch.hv_vapic = data;
1453                         break;
1454                 }
1455                 addr = gfn_to_hva(vcpu->kvm, data >>
1456                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1457                 if (kvm_is_error_hva(addr))
1458                         return 1;
1459                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1460                         return 1;
1461                 vcpu->arch.hv_vapic = data;
1462                 break;
1463         }
1464         case HV_X64_MSR_EOI:
1465                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1466         case HV_X64_MSR_ICR:
1467                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1468         case HV_X64_MSR_TPR:
1469                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1470         default:
1471                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1472                           "data 0x%llx\n", msr, data);
1473                 return 1;
1474         }
1475
1476         return 0;
1477 }
1478
1479 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1480 {
1481         gpa_t gpa = data & ~0x3f;
1482
1483         /* Bits 2:5 are resrved, Should be zero */
1484         if (data & 0x3c)
1485                 return 1;
1486
1487         vcpu->arch.apf.msr_val = data;
1488
1489         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1490                 kvm_clear_async_pf_completion_queue(vcpu);
1491                 kvm_async_pf_hash_reset(vcpu);
1492                 return 0;
1493         }
1494
1495         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1496                 return 1;
1497
1498         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1499         kvm_async_pf_wakeup_all(vcpu);
1500         return 0;
1501 }
1502
1503 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1504 {
1505         if (vcpu->arch.time_page) {
1506                 kvm_release_page_dirty(vcpu->arch.time_page);
1507                 vcpu->arch.time_page = NULL;
1508         }
1509 }
1510
1511 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1512 {
1513         u64 delta;
1514
1515         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1516                 return;
1517
1518         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1519         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1520         vcpu->arch.st.accum_steal = delta;
1521 }
1522
1523 static void record_steal_time(struct kvm_vcpu *vcpu)
1524 {
1525         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1526                 return;
1527
1528         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1529                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1530                 return;
1531
1532         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1533         vcpu->arch.st.steal.version += 2;
1534         vcpu->arch.st.accum_steal = 0;
1535
1536         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1537                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1538 }
1539
1540 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1541 {
1542         bool pr = false;
1543
1544         switch (msr) {
1545         case MSR_EFER:
1546                 return set_efer(vcpu, data);
1547         case MSR_K7_HWCR:
1548                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1549                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1550                 if (data != 0) {
1551                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1552                                 data);
1553                         return 1;
1554                 }
1555                 break;
1556         case MSR_FAM10H_MMIO_CONF_BASE:
1557                 if (data != 0) {
1558                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1559                                 "0x%llx\n", data);
1560                         return 1;
1561                 }
1562                 break;
1563         case MSR_AMD64_NB_CFG:
1564                 break;
1565         case MSR_IA32_DEBUGCTLMSR:
1566                 if (!data) {
1567                         /* We support the non-activated case already */
1568                         break;
1569                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1570                         /* Values other than LBR and BTF are vendor-specific,
1571                            thus reserved and should throw a #GP */
1572                         return 1;
1573                 }
1574                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1575                         __func__, data);
1576                 break;
1577         case MSR_IA32_UCODE_REV:
1578         case MSR_IA32_UCODE_WRITE:
1579         case MSR_VM_HSAVE_PA:
1580         case MSR_AMD64_PATCH_LOADER:
1581                 break;
1582         case 0x200 ... 0x2ff:
1583                 return set_msr_mtrr(vcpu, msr, data);
1584         case MSR_IA32_APICBASE:
1585                 kvm_set_apic_base(vcpu, data);
1586                 break;
1587         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1588                 return kvm_x2apic_msr_write(vcpu, msr, data);
1589         case MSR_IA32_TSCDEADLINE:
1590                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1591                 break;
1592         case MSR_IA32_MISC_ENABLE:
1593                 vcpu->arch.ia32_misc_enable_msr = data;
1594                 break;
1595         case MSR_KVM_WALL_CLOCK_NEW:
1596         case MSR_KVM_WALL_CLOCK:
1597                 vcpu->kvm->arch.wall_clock = data;
1598                 kvm_write_wall_clock(vcpu->kvm, data);
1599                 break;
1600         case MSR_KVM_SYSTEM_TIME_NEW:
1601         case MSR_KVM_SYSTEM_TIME: {
1602                 kvmclock_reset(vcpu);
1603
1604                 vcpu->arch.time = data;
1605                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1606
1607                 /* we verify if the enable bit is set... */
1608                 if (!(data & 1))
1609                         break;
1610
1611                 /* ...but clean it before doing the actual write */
1612                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1613
1614                 vcpu->arch.time_page =
1615                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1616
1617                 if (is_error_page(vcpu->arch.time_page)) {
1618                         kvm_release_page_clean(vcpu->arch.time_page);
1619                         vcpu->arch.time_page = NULL;
1620                 }
1621                 break;
1622         }
1623         case MSR_KVM_ASYNC_PF_EN:
1624                 if (kvm_pv_enable_async_pf(vcpu, data))
1625                         return 1;
1626                 break;
1627         case MSR_KVM_STEAL_TIME:
1628
1629                 if (unlikely(!sched_info_on()))
1630                         return 1;
1631
1632                 if (data & KVM_STEAL_RESERVED_MASK)
1633                         return 1;
1634
1635                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1636                                                         data & KVM_STEAL_VALID_BITS))
1637                         return 1;
1638
1639                 vcpu->arch.st.msr_val = data;
1640
1641                 if (!(data & KVM_MSR_ENABLED))
1642                         break;
1643
1644                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1645
1646                 preempt_disable();
1647                 accumulate_steal_time(vcpu);
1648                 preempt_enable();
1649
1650                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1651
1652                 break;
1653
1654         case MSR_IA32_MCG_CTL:
1655         case MSR_IA32_MCG_STATUS:
1656         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1657                 return set_msr_mce(vcpu, msr, data);
1658
1659         /* Performance counters are not protected by a CPUID bit,
1660          * so we should check all of them in the generic path for the sake of
1661          * cross vendor migration.
1662          * Writing a zero into the event select MSRs disables them,
1663          * which we perfectly emulate ;-). Any other value should be at least
1664          * reported, some guests depend on them.
1665          */
1666         case MSR_K7_EVNTSEL0:
1667         case MSR_K7_EVNTSEL1:
1668         case MSR_K7_EVNTSEL2:
1669         case MSR_K7_EVNTSEL3:
1670                 if (data != 0)
1671                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1672                                 "0x%x data 0x%llx\n", msr, data);
1673                 break;
1674         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1675          * so we ignore writes to make it happy.
1676          */
1677         case MSR_K7_PERFCTR0:
1678         case MSR_K7_PERFCTR1:
1679         case MSR_K7_PERFCTR2:
1680         case MSR_K7_PERFCTR3:
1681                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1682                         "0x%x data 0x%llx\n", msr, data);
1683                 break;
1684         case MSR_P6_PERFCTR0:
1685         case MSR_P6_PERFCTR1:
1686                 pr = true;
1687         case MSR_P6_EVNTSEL0:
1688         case MSR_P6_EVNTSEL1:
1689                 if (kvm_pmu_msr(vcpu, msr))
1690                         return kvm_pmu_set_msr(vcpu, msr, data);
1691
1692                 if (pr || data != 0)
1693                         pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1694                                 "0x%x data 0x%llx\n", msr, data);
1695                 break;
1696         case MSR_K7_CLK_CTL:
1697                 /*
1698                  * Ignore all writes to this no longer documented MSR.
1699                  * Writes are only relevant for old K7 processors,
1700                  * all pre-dating SVM, but a recommended workaround from
1701                  * AMD for these chips. It is possible to speicify the
1702                  * affected processor models on the command line, hence
1703                  * the need to ignore the workaround.
1704                  */
1705                 break;
1706         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1707                 if (kvm_hv_msr_partition_wide(msr)) {
1708                         int r;
1709                         mutex_lock(&vcpu->kvm->lock);
1710                         r = set_msr_hyperv_pw(vcpu, msr, data);
1711                         mutex_unlock(&vcpu->kvm->lock);
1712                         return r;
1713                 } else
1714                         return set_msr_hyperv(vcpu, msr, data);
1715                 break;
1716         case MSR_IA32_BBL_CR_CTL3:
1717                 /* Drop writes to this legacy MSR -- see rdmsr
1718                  * counterpart for further detail.
1719                  */
1720                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1721                 break;
1722         case MSR_AMD64_OSVW_ID_LENGTH:
1723                 if (!guest_cpuid_has_osvw(vcpu))
1724                         return 1;
1725                 vcpu->arch.osvw.length = data;
1726                 break;
1727         case MSR_AMD64_OSVW_STATUS:
1728                 if (!guest_cpuid_has_osvw(vcpu))
1729                         return 1;
1730                 vcpu->arch.osvw.status = data;
1731                 break;
1732         default:
1733                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1734                         return xen_hvm_config(vcpu, data);
1735                 if (kvm_pmu_msr(vcpu, msr))
1736                         return kvm_pmu_set_msr(vcpu, msr, data);
1737                 if (!ignore_msrs) {
1738                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1739                                 msr, data);
1740                         return 1;
1741                 } else {
1742                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1743                                 msr, data);
1744                         break;
1745                 }
1746         }
1747         return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1750
1751
1752 /*
1753  * Reads an msr value (of 'msr_index') into 'pdata'.
1754  * Returns 0 on success, non-0 otherwise.
1755  * Assumes vcpu_load() was already called.
1756  */
1757 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1758 {
1759         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1760 }
1761
1762 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1763 {
1764         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1765
1766         if (!msr_mtrr_valid(msr))
1767                 return 1;
1768
1769         if (msr == MSR_MTRRdefType)
1770                 *pdata = vcpu->arch.mtrr_state.def_type +
1771                          (vcpu->arch.mtrr_state.enabled << 10);
1772         else if (msr == MSR_MTRRfix64K_00000)
1773                 *pdata = p[0];
1774         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1775                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1776         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1777                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1778         else if (msr == MSR_IA32_CR_PAT)
1779                 *pdata = vcpu->arch.pat;
1780         else {  /* Variable MTRRs */
1781                 int idx, is_mtrr_mask;
1782                 u64 *pt;
1783
1784                 idx = (msr - 0x200) / 2;
1785                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1786                 if (!is_mtrr_mask)
1787                         pt =
1788                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1789                 else
1790                         pt =
1791                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1792                 *pdata = *pt;
1793         }
1794
1795         return 0;
1796 }
1797
1798 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1799 {
1800         u64 data;
1801         u64 mcg_cap = vcpu->arch.mcg_cap;
1802         unsigned bank_num = mcg_cap & 0xff;
1803
1804         switch (msr) {
1805         case MSR_IA32_P5_MC_ADDR:
1806         case MSR_IA32_P5_MC_TYPE:
1807                 data = 0;
1808                 break;
1809         case MSR_IA32_MCG_CAP:
1810                 data = vcpu->arch.mcg_cap;
1811                 break;
1812         case MSR_IA32_MCG_CTL:
1813                 if (!(mcg_cap & MCG_CTL_P))
1814                         return 1;
1815                 data = vcpu->arch.mcg_ctl;
1816                 break;
1817         case MSR_IA32_MCG_STATUS:
1818                 data = vcpu->arch.mcg_status;
1819                 break;
1820         default:
1821                 if (msr >= MSR_IA32_MC0_CTL &&
1822                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1823                         u32 offset = msr - MSR_IA32_MC0_CTL;
1824                         data = vcpu->arch.mce_banks[offset];
1825                         break;
1826                 }
1827                 return 1;
1828         }
1829         *pdata = data;
1830         return 0;
1831 }
1832
1833 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1834 {
1835         u64 data = 0;
1836         struct kvm *kvm = vcpu->kvm;
1837
1838         switch (msr) {
1839         case HV_X64_MSR_GUEST_OS_ID:
1840                 data = kvm->arch.hv_guest_os_id;
1841                 break;
1842         case HV_X64_MSR_HYPERCALL:
1843                 data = kvm->arch.hv_hypercall;
1844                 break;
1845         default:
1846                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1847                 return 1;
1848         }
1849
1850         *pdata = data;
1851         return 0;
1852 }
1853
1854 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1855 {
1856         u64 data = 0;
1857
1858         switch (msr) {
1859         case HV_X64_MSR_VP_INDEX: {
1860                 int r;
1861                 struct kvm_vcpu *v;
1862                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1863                         if (v == vcpu)
1864                                 data = r;
1865                 break;
1866         }
1867         case HV_X64_MSR_EOI:
1868                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1869         case HV_X64_MSR_ICR:
1870                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1871         case HV_X64_MSR_TPR:
1872                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1873         case HV_X64_MSR_APIC_ASSIST_PAGE:
1874                 data = vcpu->arch.hv_vapic;
1875                 break;
1876         default:
1877                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1878                 return 1;
1879         }
1880         *pdata = data;
1881         return 0;
1882 }
1883
1884 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1885 {
1886         u64 data;
1887
1888         switch (msr) {
1889         case MSR_IA32_PLATFORM_ID:
1890         case MSR_IA32_EBL_CR_POWERON:
1891         case MSR_IA32_DEBUGCTLMSR:
1892         case MSR_IA32_LASTBRANCHFROMIP:
1893         case MSR_IA32_LASTBRANCHTOIP:
1894         case MSR_IA32_LASTINTFROMIP:
1895         case MSR_IA32_LASTINTTOIP:
1896         case MSR_K8_SYSCFG:
1897         case MSR_K7_HWCR:
1898         case MSR_VM_HSAVE_PA:
1899         case MSR_K7_EVNTSEL0:
1900         case MSR_K7_PERFCTR0:
1901         case MSR_K8_INT_PENDING_MSG:
1902         case MSR_AMD64_NB_CFG:
1903         case MSR_FAM10H_MMIO_CONF_BASE:
1904                 data = 0;
1905                 break;
1906         case MSR_P6_PERFCTR0:
1907         case MSR_P6_PERFCTR1:
1908         case MSR_P6_EVNTSEL0:
1909         case MSR_P6_EVNTSEL1:
1910                 if (kvm_pmu_msr(vcpu, msr))
1911                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1912                 data = 0;
1913                 break;
1914         case MSR_IA32_UCODE_REV:
1915                 data = 0x100000000ULL;
1916                 break;
1917         case MSR_MTRRcap:
1918                 data = 0x500 | KVM_NR_VAR_MTRR;
1919                 break;
1920         case 0x200 ... 0x2ff:
1921                 return get_msr_mtrr(vcpu, msr, pdata);
1922         case 0xcd: /* fsb frequency */
1923                 data = 3;
1924                 break;
1925                 /*
1926                  * MSR_EBC_FREQUENCY_ID
1927                  * Conservative value valid for even the basic CPU models.
1928                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1929                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1930                  * and 266MHz for model 3, or 4. Set Core Clock
1931                  * Frequency to System Bus Frequency Ratio to 1 (bits
1932                  * 31:24) even though these are only valid for CPU
1933                  * models > 2, however guests may end up dividing or
1934                  * multiplying by zero otherwise.
1935                  */
1936         case MSR_EBC_FREQUENCY_ID:
1937                 data = 1 << 24;
1938                 break;
1939         case MSR_IA32_APICBASE:
1940                 data = kvm_get_apic_base(vcpu);
1941                 break;
1942         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1943                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1944                 break;
1945         case MSR_IA32_TSCDEADLINE:
1946                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1947                 break;
1948         case MSR_IA32_MISC_ENABLE:
1949                 data = vcpu->arch.ia32_misc_enable_msr;
1950                 break;
1951         case MSR_IA32_PERF_STATUS:
1952                 /* TSC increment by tick */
1953                 data = 1000ULL;
1954                 /* CPU multiplier */
1955                 data |= (((uint64_t)4ULL) << 40);
1956                 break;
1957         case MSR_EFER:
1958                 data = vcpu->arch.efer;
1959                 break;
1960         case MSR_KVM_WALL_CLOCK:
1961         case MSR_KVM_WALL_CLOCK_NEW:
1962                 data = vcpu->kvm->arch.wall_clock;
1963                 break;
1964         case MSR_KVM_SYSTEM_TIME:
1965         case MSR_KVM_SYSTEM_TIME_NEW:
1966                 data = vcpu->arch.time;
1967                 break;
1968         case MSR_KVM_ASYNC_PF_EN:
1969                 data = vcpu->arch.apf.msr_val;
1970                 break;
1971         case MSR_KVM_STEAL_TIME:
1972                 data = vcpu->arch.st.msr_val;
1973                 break;
1974         case MSR_IA32_P5_MC_ADDR:
1975         case MSR_IA32_P5_MC_TYPE:
1976         case MSR_IA32_MCG_CAP:
1977         case MSR_IA32_MCG_CTL:
1978         case MSR_IA32_MCG_STATUS:
1979         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1980                 return get_msr_mce(vcpu, msr, pdata);
1981         case MSR_K7_CLK_CTL:
1982                 /*
1983                  * Provide expected ramp-up count for K7. All other
1984                  * are set to zero, indicating minimum divisors for
1985                  * every field.
1986                  *
1987                  * This prevents guest kernels on AMD host with CPU
1988                  * type 6, model 8 and higher from exploding due to
1989                  * the rdmsr failing.
1990                  */
1991                 data = 0x20000000;
1992                 break;
1993         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1994                 if (kvm_hv_msr_partition_wide(msr)) {
1995                         int r;
1996                         mutex_lock(&vcpu->kvm->lock);
1997                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1998                         mutex_unlock(&vcpu->kvm->lock);
1999                         return r;
2000                 } else
2001                         return get_msr_hyperv(vcpu, msr, pdata);
2002                 break;
2003         case MSR_IA32_BBL_CR_CTL3:
2004                 /* This legacy MSR exists but isn't fully documented in current
2005                  * silicon.  It is however accessed by winxp in very narrow
2006                  * scenarios where it sets bit #19, itself documented as
2007                  * a "reserved" bit.  Best effort attempt to source coherent
2008                  * read data here should the balance of the register be
2009                  * interpreted by the guest:
2010                  *
2011                  * L2 cache control register 3: 64GB range, 256KB size,
2012                  * enabled, latency 0x1, configured
2013                  */
2014                 data = 0xbe702111;
2015                 break;
2016         case MSR_AMD64_OSVW_ID_LENGTH:
2017                 if (!guest_cpuid_has_osvw(vcpu))
2018                         return 1;
2019                 data = vcpu->arch.osvw.length;
2020                 break;
2021         case MSR_AMD64_OSVW_STATUS:
2022                 if (!guest_cpuid_has_osvw(vcpu))
2023                         return 1;
2024                 data = vcpu->arch.osvw.status;
2025                 break;
2026         default:
2027                 if (kvm_pmu_msr(vcpu, msr))
2028                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2029                 if (!ignore_msrs) {
2030                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2031                         return 1;
2032                 } else {
2033                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2034                         data = 0;
2035                 }
2036                 break;
2037         }
2038         *pdata = data;
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2042
2043 /*
2044  * Read or write a bunch of msrs. All parameters are kernel addresses.
2045  *
2046  * @return number of msrs set successfully.
2047  */
2048 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2049                     struct kvm_msr_entry *entries,
2050                     int (*do_msr)(struct kvm_vcpu *vcpu,
2051                                   unsigned index, u64 *data))
2052 {
2053         int i, idx;
2054
2055         idx = srcu_read_lock(&vcpu->kvm->srcu);
2056         for (i = 0; i < msrs->nmsrs; ++i)
2057                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2058                         break;
2059         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2060
2061         return i;
2062 }
2063
2064 /*
2065  * Read or write a bunch of msrs. Parameters are user addresses.
2066  *
2067  * @return number of msrs set successfully.
2068  */
2069 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2070                   int (*do_msr)(struct kvm_vcpu *vcpu,
2071                                 unsigned index, u64 *data),
2072                   int writeback)
2073 {
2074         struct kvm_msrs msrs;
2075         struct kvm_msr_entry *entries;
2076         int r, n;
2077         unsigned size;
2078
2079         r = -EFAULT;
2080         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2081                 goto out;
2082
2083         r = -E2BIG;
2084         if (msrs.nmsrs >= MAX_IO_MSRS)
2085                 goto out;
2086
2087         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2088         entries = memdup_user(user_msrs->entries, size);
2089         if (IS_ERR(entries)) {
2090                 r = PTR_ERR(entries);
2091                 goto out;
2092         }
2093
2094         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2095         if (r < 0)
2096                 goto out_free;
2097
2098         r = -EFAULT;
2099         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2100                 goto out_free;
2101
2102         r = n;
2103
2104 out_free:
2105         kfree(entries);
2106 out:
2107         return r;
2108 }
2109
2110 int kvm_dev_ioctl_check_extension(long ext)
2111 {
2112         int r;
2113
2114         switch (ext) {
2115         case KVM_CAP_IRQCHIP:
2116         case KVM_CAP_HLT:
2117         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2118         case KVM_CAP_SET_TSS_ADDR:
2119         case KVM_CAP_EXT_CPUID:
2120         case KVM_CAP_CLOCKSOURCE:
2121         case KVM_CAP_PIT:
2122         case KVM_CAP_NOP_IO_DELAY:
2123         case KVM_CAP_MP_STATE:
2124         case KVM_CAP_SYNC_MMU:
2125         case KVM_CAP_USER_NMI:
2126         case KVM_CAP_REINJECT_CONTROL:
2127         case KVM_CAP_IRQ_INJECT_STATUS:
2128         case KVM_CAP_ASSIGN_DEV_IRQ:
2129         case KVM_CAP_IRQFD:
2130         case KVM_CAP_IOEVENTFD:
2131         case KVM_CAP_PIT2:
2132         case KVM_CAP_PIT_STATE2:
2133         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2134         case KVM_CAP_XEN_HVM:
2135         case KVM_CAP_ADJUST_CLOCK:
2136         case KVM_CAP_VCPU_EVENTS:
2137         case KVM_CAP_HYPERV:
2138         case KVM_CAP_HYPERV_VAPIC:
2139         case KVM_CAP_HYPERV_SPIN:
2140         case KVM_CAP_PCI_SEGMENT:
2141         case KVM_CAP_DEBUGREGS:
2142         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2143         case KVM_CAP_XSAVE:
2144         case KVM_CAP_ASYNC_PF:
2145         case KVM_CAP_GET_TSC_KHZ:
2146                 r = 1;
2147                 break;
2148         case KVM_CAP_COALESCED_MMIO:
2149                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2150                 break;
2151         case KVM_CAP_VAPIC:
2152                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2153                 break;
2154         case KVM_CAP_NR_VCPUS:
2155                 r = KVM_SOFT_MAX_VCPUS;
2156                 break;
2157         case KVM_CAP_MAX_VCPUS:
2158                 r = KVM_MAX_VCPUS;
2159                 break;
2160         case KVM_CAP_NR_MEMSLOTS:
2161                 r = KVM_MEMORY_SLOTS;
2162                 break;
2163         case KVM_CAP_PV_MMU:    /* obsolete */
2164                 r = 0;
2165                 break;
2166         case KVM_CAP_IOMMU:
2167                 r = iommu_present(&pci_bus_type);
2168                 break;
2169         case KVM_CAP_MCE:
2170                 r = KVM_MAX_MCE_BANKS;
2171                 break;
2172         case KVM_CAP_XCRS:
2173                 r = cpu_has_xsave;
2174                 break;
2175         case KVM_CAP_TSC_CONTROL:
2176                 r = kvm_has_tsc_control;
2177                 break;
2178         case KVM_CAP_TSC_DEADLINE_TIMER:
2179                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2180                 break;
2181         default:
2182                 r = 0;
2183                 break;
2184         }
2185         return r;
2186
2187 }
2188
2189 long kvm_arch_dev_ioctl(struct file *filp,
2190                         unsigned int ioctl, unsigned long arg)
2191 {
2192         void __user *argp = (void __user *)arg;
2193         long r;
2194
2195         switch (ioctl) {
2196         case KVM_GET_MSR_INDEX_LIST: {
2197                 struct kvm_msr_list __user *user_msr_list = argp;
2198                 struct kvm_msr_list msr_list;
2199                 unsigned n;
2200
2201                 r = -EFAULT;
2202                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2203                         goto out;
2204                 n = msr_list.nmsrs;
2205                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2206                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2207                         goto out;
2208                 r = -E2BIG;
2209                 if (n < msr_list.nmsrs)
2210                         goto out;
2211                 r = -EFAULT;
2212                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2213                                  num_msrs_to_save * sizeof(u32)))
2214                         goto out;
2215                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2216                                  &emulated_msrs,
2217                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2218                         goto out;
2219                 r = 0;
2220                 break;
2221         }
2222         case KVM_GET_SUPPORTED_CPUID: {
2223                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2224                 struct kvm_cpuid2 cpuid;
2225
2226                 r = -EFAULT;
2227                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2228                         goto out;
2229                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2230                                                       cpuid_arg->entries);
2231                 if (r)
2232                         goto out;
2233
2234                 r = -EFAULT;
2235                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2236                         goto out;
2237                 r = 0;
2238                 break;
2239         }
2240         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2241                 u64 mce_cap;
2242
2243                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2244                 r = -EFAULT;
2245                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2246                         goto out;
2247                 r = 0;
2248                 break;
2249         }
2250         default:
2251                 r = -EINVAL;
2252         }
2253 out:
2254         return r;
2255 }
2256
2257 static void wbinvd_ipi(void *garbage)
2258 {
2259         wbinvd();
2260 }
2261
2262 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2263 {
2264         return vcpu->kvm->arch.iommu_domain &&
2265                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2266 }
2267
2268 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2269 {
2270         /* Address WBINVD may be executed by guest */
2271         if (need_emulate_wbinvd(vcpu)) {
2272                 if (kvm_x86_ops->has_wbinvd_exit())
2273                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2274                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2275                         smp_call_function_single(vcpu->cpu,
2276                                         wbinvd_ipi, NULL, 1);
2277         }
2278
2279         kvm_x86_ops->vcpu_load(vcpu, cpu);
2280
2281         /* Apply any externally detected TSC adjustments (due to suspend) */
2282         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2283                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2284                 vcpu->arch.tsc_offset_adjustment = 0;
2285                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2286         }
2287
2288         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2289                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2290                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2291                 if (tsc_delta < 0)
2292                         mark_tsc_unstable("KVM discovered backwards TSC");
2293                 if (check_tsc_unstable()) {
2294                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2295                                                 vcpu->arch.last_guest_tsc);
2296                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2297                         vcpu->arch.tsc_catchup = 1;
2298                 }
2299                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2300                 if (vcpu->cpu != cpu)
2301                         kvm_migrate_timers(vcpu);
2302                 vcpu->cpu = cpu;
2303         }
2304
2305         accumulate_steal_time(vcpu);
2306         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2307 }
2308
2309 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2310 {
2311         kvm_x86_ops->vcpu_put(vcpu);
2312         kvm_put_guest_fpu(vcpu);
2313         vcpu->arch.last_host_tsc = native_read_tsc();
2314 }
2315
2316 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2317                                     struct kvm_lapic_state *s)
2318 {
2319         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2320
2321         return 0;
2322 }
2323
2324 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2325                                     struct kvm_lapic_state *s)
2326 {
2327         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2328         kvm_apic_post_state_restore(vcpu);
2329         update_cr8_intercept(vcpu);
2330
2331         return 0;
2332 }
2333
2334 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2335                                     struct kvm_interrupt *irq)
2336 {
2337         if (irq->irq < 0 || irq->irq >= 256)
2338                 return -EINVAL;
2339         if (irqchip_in_kernel(vcpu->kvm))
2340                 return -ENXIO;
2341
2342         kvm_queue_interrupt(vcpu, irq->irq, false);
2343         kvm_make_request(KVM_REQ_EVENT, vcpu);
2344
2345         return 0;
2346 }
2347
2348 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2349 {
2350         kvm_inject_nmi(vcpu);
2351
2352         return 0;
2353 }
2354
2355 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2356                                            struct kvm_tpr_access_ctl *tac)
2357 {
2358         if (tac->flags)
2359                 return -EINVAL;
2360         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2361         return 0;
2362 }
2363
2364 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2365                                         u64 mcg_cap)
2366 {
2367         int r;
2368         unsigned bank_num = mcg_cap & 0xff, bank;
2369
2370         r = -EINVAL;
2371         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2372                 goto out;
2373         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2374                 goto out;
2375         r = 0;
2376         vcpu->arch.mcg_cap = mcg_cap;
2377         /* Init IA32_MCG_CTL to all 1s */
2378         if (mcg_cap & MCG_CTL_P)
2379                 vcpu->arch.mcg_ctl = ~(u64)0;
2380         /* Init IA32_MCi_CTL to all 1s */
2381         for (bank = 0; bank < bank_num; bank++)
2382                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2383 out:
2384         return r;
2385 }
2386
2387 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2388                                       struct kvm_x86_mce *mce)
2389 {
2390         u64 mcg_cap = vcpu->arch.mcg_cap;
2391         unsigned bank_num = mcg_cap & 0xff;
2392         u64 *banks = vcpu->arch.mce_banks;
2393
2394         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2395                 return -EINVAL;
2396         /*
2397          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2398          * reporting is disabled
2399          */
2400         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2401             vcpu->arch.mcg_ctl != ~(u64)0)
2402                 return 0;
2403         banks += 4 * mce->bank;
2404         /*
2405          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2406          * reporting is disabled for the bank
2407          */
2408         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2409                 return 0;
2410         if (mce->status & MCI_STATUS_UC) {
2411                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2412                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2413                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2414                         return 0;
2415                 }
2416                 if (banks[1] & MCI_STATUS_VAL)
2417                         mce->status |= MCI_STATUS_OVER;
2418                 banks[2] = mce->addr;
2419                 banks[3] = mce->misc;
2420                 vcpu->arch.mcg_status = mce->mcg_status;
2421                 banks[1] = mce->status;
2422                 kvm_queue_exception(vcpu, MC_VECTOR);
2423         } else if (!(banks[1] & MCI_STATUS_VAL)
2424                    || !(banks[1] & MCI_STATUS_UC)) {
2425                 if (banks[1] & MCI_STATUS_VAL)
2426                         mce->status |= MCI_STATUS_OVER;
2427                 banks[2] = mce->addr;
2428                 banks[3] = mce->misc;
2429                 banks[1] = mce->status;
2430         } else
2431                 banks[1] |= MCI_STATUS_OVER;
2432         return 0;
2433 }
2434
2435 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2436                                                struct kvm_vcpu_events *events)
2437 {
2438         process_nmi(vcpu);
2439         events->exception.injected =
2440                 vcpu->arch.exception.pending &&
2441                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2442         events->exception.nr = vcpu->arch.exception.nr;
2443         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2444         events->exception.pad = 0;
2445         events->exception.error_code = vcpu->arch.exception.error_code;
2446
2447         events->interrupt.injected =
2448                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2449         events->interrupt.nr = vcpu->arch.interrupt.nr;
2450         events->interrupt.soft = 0;
2451         events->interrupt.shadow =
2452                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2453                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2454
2455         events->nmi.injected = vcpu->arch.nmi_injected;
2456         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2457         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2458         events->nmi.pad = 0;
2459
2460         events->sipi_vector = vcpu->arch.sipi_vector;
2461
2462         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2463                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2464                          | KVM_VCPUEVENT_VALID_SHADOW);
2465         memset(&events->reserved, 0, sizeof(events->reserved));
2466 }
2467
2468 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2469                                               struct kvm_vcpu_events *events)
2470 {
2471         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2472                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2473                               | KVM_VCPUEVENT_VALID_SHADOW))
2474                 return -EINVAL;
2475
2476         process_nmi(vcpu);
2477         vcpu->arch.exception.pending = events->exception.injected;
2478         vcpu->arch.exception.nr = events->exception.nr;
2479         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2480         vcpu->arch.exception.error_code = events->exception.error_code;
2481
2482         vcpu->arch.interrupt.pending = events->interrupt.injected;
2483         vcpu->arch.interrupt.nr = events->interrupt.nr;
2484         vcpu->arch.interrupt.soft = events->interrupt.soft;
2485         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2486                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2487                                                   events->interrupt.shadow);
2488
2489         vcpu->arch.nmi_injected = events->nmi.injected;
2490         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2491                 vcpu->arch.nmi_pending = events->nmi.pending;
2492         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2493
2494         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2495                 vcpu->arch.sipi_vector = events->sipi_vector;
2496
2497         kvm_make_request(KVM_REQ_EVENT, vcpu);
2498
2499         return 0;
2500 }
2501
2502 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2503                                              struct kvm_debugregs *dbgregs)
2504 {
2505         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2506         dbgregs->dr6 = vcpu->arch.dr6;
2507         dbgregs->dr7 = vcpu->arch.dr7;
2508         dbgregs->flags = 0;
2509         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2510 }
2511
2512 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2513                                             struct kvm_debugregs *dbgregs)
2514 {
2515         if (dbgregs->flags)
2516                 return -EINVAL;
2517
2518         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2519         vcpu->arch.dr6 = dbgregs->dr6;
2520         vcpu->arch.dr7 = dbgregs->dr7;
2521
2522         return 0;
2523 }
2524
2525 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2526                                          struct kvm_xsave *guest_xsave)
2527 {
2528         if (cpu_has_xsave)
2529                 memcpy(guest_xsave->region,
2530                         &vcpu->arch.guest_fpu.state->xsave,
2531                         xstate_size);
2532         else {
2533                 memcpy(guest_xsave->region,
2534                         &vcpu->arch.guest_fpu.state->fxsave,
2535                         sizeof(struct i387_fxsave_struct));
2536                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2537                         XSTATE_FPSSE;
2538         }
2539 }
2540
2541 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2542                                         struct kvm_xsave *guest_xsave)
2543 {
2544         u64 xstate_bv =
2545                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2546
2547         if (cpu_has_xsave)
2548                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2549                         guest_xsave->region, xstate_size);
2550         else {
2551                 if (xstate_bv & ~XSTATE_FPSSE)
2552                         return -EINVAL;
2553                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2554                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2555         }
2556         return 0;
2557 }
2558
2559 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2560                                         struct kvm_xcrs *guest_xcrs)
2561 {
2562         if (!cpu_has_xsave) {
2563                 guest_xcrs->nr_xcrs = 0;
2564                 return;
2565         }
2566
2567         guest_xcrs->nr_xcrs = 1;
2568         guest_xcrs->flags = 0;
2569         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2570         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2571 }
2572
2573 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2574                                        struct kvm_xcrs *guest_xcrs)
2575 {
2576         int i, r = 0;
2577
2578         if (!cpu_has_xsave)
2579                 return -EINVAL;
2580
2581         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2582                 return -EINVAL;
2583
2584         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2585                 /* Only support XCR0 currently */
2586                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2587                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2588                                 guest_xcrs->xcrs[0].value);
2589                         break;
2590                 }
2591         if (r)
2592                 r = -EINVAL;
2593         return r;
2594 }
2595
2596 long kvm_arch_vcpu_ioctl(struct file *filp,
2597                          unsigned int ioctl, unsigned long arg)
2598 {
2599         struct kvm_vcpu *vcpu = filp->private_data;
2600         void __user *argp = (void __user *)arg;
2601         int r;
2602         union {
2603                 struct kvm_lapic_state *lapic;
2604                 struct kvm_xsave *xsave;
2605                 struct kvm_xcrs *xcrs;
2606                 void *buffer;
2607         } u;
2608
2609         u.buffer = NULL;
2610         switch (ioctl) {
2611         case KVM_GET_LAPIC: {
2612                 r = -EINVAL;
2613                 if (!vcpu->arch.apic)
2614                         goto out;
2615                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2616
2617                 r = -ENOMEM;
2618                 if (!u.lapic)
2619                         goto out;
2620                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2621                 if (r)
2622                         goto out;
2623                 r = -EFAULT;
2624                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2625                         goto out;
2626                 r = 0;
2627                 break;
2628         }
2629         case KVM_SET_LAPIC: {
2630                 r = -EINVAL;
2631                 if (!vcpu->arch.apic)
2632                         goto out;
2633                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2634                 if (IS_ERR(u.lapic)) {
2635                         r = PTR_ERR(u.lapic);
2636                         goto out;
2637                 }
2638
2639                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2640                 if (r)
2641                         goto out;
2642                 r = 0;
2643                 break;
2644         }
2645         case KVM_INTERRUPT: {
2646                 struct kvm_interrupt irq;
2647
2648                 r = -EFAULT;
2649                 if (copy_from_user(&irq, argp, sizeof irq))
2650                         goto out;
2651                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2652                 if (r)
2653                         goto out;
2654                 r = 0;
2655                 break;
2656         }
2657         case KVM_NMI: {
2658                 r = kvm_vcpu_ioctl_nmi(vcpu);
2659                 if (r)
2660                         goto out;
2661                 r = 0;
2662                 break;
2663         }
2664         case KVM_SET_CPUID: {
2665                 struct kvm_cpuid __user *cpuid_arg = argp;
2666                 struct kvm_cpuid cpuid;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2670                         goto out;
2671                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2672                 if (r)
2673                         goto out;
2674                 break;
2675         }
2676         case KVM_SET_CPUID2: {
2677                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2678                 struct kvm_cpuid2 cpuid;
2679
2680                 r = -EFAULT;
2681                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2682                         goto out;
2683                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2684                                               cpuid_arg->entries);
2685                 if (r)
2686                         goto out;
2687                 break;
2688         }
2689         case KVM_GET_CPUID2: {
2690                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2691                 struct kvm_cpuid2 cpuid;
2692
2693                 r = -EFAULT;
2694                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2695                         goto out;
2696                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2697                                               cpuid_arg->entries);
2698                 if (r)
2699                         goto out;
2700                 r = -EFAULT;
2701                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2702                         goto out;
2703                 r = 0;
2704                 break;
2705         }
2706         case KVM_GET_MSRS:
2707                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2708                 break;
2709         case KVM_SET_MSRS:
2710                 r = msr_io(vcpu, argp, do_set_msr, 0);
2711                 break;
2712         case KVM_TPR_ACCESS_REPORTING: {
2713                 struct kvm_tpr_access_ctl tac;
2714
2715                 r = -EFAULT;
2716                 if (copy_from_user(&tac, argp, sizeof tac))
2717                         goto out;
2718                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2719                 if (r)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(argp, &tac, sizeof tac))
2723                         goto out;
2724                 r = 0;
2725                 break;
2726         };
2727         case KVM_SET_VAPIC_ADDR: {
2728                 struct kvm_vapic_addr va;
2729
2730                 r = -EINVAL;
2731                 if (!irqchip_in_kernel(vcpu->kvm))
2732                         goto out;
2733                 r = -EFAULT;
2734                 if (copy_from_user(&va, argp, sizeof va))
2735                         goto out;
2736                 r = 0;
2737                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2738                 break;
2739         }
2740         case KVM_X86_SETUP_MCE: {
2741                 u64 mcg_cap;
2742
2743                 r = -EFAULT;
2744                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2745                         goto out;
2746                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2747                 break;
2748         }
2749         case KVM_X86_SET_MCE: {
2750                 struct kvm_x86_mce mce;
2751
2752                 r = -EFAULT;
2753                 if (copy_from_user(&mce, argp, sizeof mce))
2754                         goto out;
2755                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2756                 break;
2757         }
2758         case KVM_GET_VCPU_EVENTS: {
2759                 struct kvm_vcpu_events events;
2760
2761                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2762
2763                 r = -EFAULT;
2764                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2765                         break;
2766                 r = 0;
2767                 break;
2768         }
2769         case KVM_SET_VCPU_EVENTS: {
2770                 struct kvm_vcpu_events events;
2771
2772                 r = -EFAULT;
2773                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2774                         break;
2775
2776                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2777                 break;
2778         }
2779         case KVM_GET_DEBUGREGS: {
2780                 struct kvm_debugregs dbgregs;
2781
2782                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2783
2784                 r = -EFAULT;
2785                 if (copy_to_user(argp, &dbgregs,
2786                                  sizeof(struct kvm_debugregs)))
2787                         break;
2788                 r = 0;
2789                 break;
2790         }
2791         case KVM_SET_DEBUGREGS: {
2792                 struct kvm_debugregs dbgregs;
2793
2794                 r = -EFAULT;
2795                 if (copy_from_user(&dbgregs, argp,
2796                                    sizeof(struct kvm_debugregs)))
2797                         break;
2798
2799                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2800                 break;
2801         }
2802         case KVM_GET_XSAVE: {
2803                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2804                 r = -ENOMEM;
2805                 if (!u.xsave)
2806                         break;
2807
2808                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2809
2810                 r = -EFAULT;
2811                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2812                         break;
2813                 r = 0;
2814                 break;
2815         }
2816         case KVM_SET_XSAVE: {
2817                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2818                 if (IS_ERR(u.xsave)) {
2819                         r = PTR_ERR(u.xsave);
2820                         goto out;
2821                 }
2822
2823                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2824                 break;
2825         }
2826         case KVM_GET_XCRS: {
2827                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2828                 r = -ENOMEM;
2829                 if (!u.xcrs)
2830                         break;
2831
2832                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2833
2834                 r = -EFAULT;
2835                 if (copy_to_user(argp, u.xcrs,
2836                                  sizeof(struct kvm_xcrs)))
2837                         break;
2838                 r = 0;
2839                 break;
2840         }
2841         case KVM_SET_XCRS: {
2842                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2843                 if (IS_ERR(u.xcrs)) {
2844                         r = PTR_ERR(u.xcrs);
2845                         goto out;
2846                 }
2847
2848                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2849                 break;
2850         }
2851         case KVM_SET_TSC_KHZ: {
2852                 u32 user_tsc_khz;
2853
2854                 r = -EINVAL;
2855                 user_tsc_khz = (u32)arg;
2856
2857                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2858                         goto out;
2859
2860                 if (user_tsc_khz == 0)
2861                         user_tsc_khz = tsc_khz;
2862
2863                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2864
2865                 r = 0;
2866                 goto out;
2867         }
2868         case KVM_GET_TSC_KHZ: {
2869                 r = vcpu->arch.virtual_tsc_khz;
2870                 goto out;
2871         }
2872         default:
2873                 r = -EINVAL;
2874         }
2875 out:
2876         kfree(u.buffer);
2877         return r;
2878 }
2879
2880 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2881 {
2882         return VM_FAULT_SIGBUS;
2883 }
2884
2885 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2886 {
2887         int ret;
2888
2889         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2890                 return -1;
2891         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2892         return ret;
2893 }
2894
2895 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2896                                               u64 ident_addr)
2897 {
2898         kvm->arch.ept_identity_map_addr = ident_addr;
2899         return 0;
2900 }
2901
2902 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2903                                           u32 kvm_nr_mmu_pages)
2904 {
2905         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2906                 return -EINVAL;
2907
2908         mutex_lock(&kvm->slots_lock);
2909         spin_lock(&kvm->mmu_lock);
2910
2911         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2912         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2913
2914         spin_unlock(&kvm->mmu_lock);
2915         mutex_unlock(&kvm->slots_lock);
2916         return 0;
2917 }
2918
2919 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2920 {
2921         return kvm->arch.n_max_mmu_pages;
2922 }
2923
2924 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2925 {
2926         int r;
2927
2928         r = 0;
2929         switch (chip->chip_id) {
2930         case KVM_IRQCHIP_PIC_MASTER:
2931                 memcpy(&chip->chip.pic,
2932                         &pic_irqchip(kvm)->pics[0],
2933                         sizeof(struct kvm_pic_state));
2934                 break;
2935         case KVM_IRQCHIP_PIC_SLAVE:
2936                 memcpy(&chip->chip.pic,
2937                         &pic_irqchip(kvm)->pics[1],
2938                         sizeof(struct kvm_pic_state));
2939                 break;
2940         case KVM_IRQCHIP_IOAPIC:
2941                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2942                 break;
2943         default:
2944                 r = -EINVAL;
2945                 break;
2946         }
2947         return r;
2948 }
2949
2950 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2951 {
2952         int r;
2953
2954         r = 0;
2955         switch (chip->chip_id) {
2956         case KVM_IRQCHIP_PIC_MASTER:
2957                 spin_lock(&pic_irqchip(kvm)->lock);
2958                 memcpy(&pic_irqchip(kvm)->pics[0],
2959                         &chip->chip.pic,
2960                         sizeof(struct kvm_pic_state));
2961                 spin_unlock(&pic_irqchip(kvm)->lock);
2962                 break;
2963         case KVM_IRQCHIP_PIC_SLAVE:
2964                 spin_lock(&pic_irqchip(kvm)->lock);
2965                 memcpy(&pic_irqchip(kvm)->pics[1],
2966                         &chip->chip.pic,
2967                         sizeof(struct kvm_pic_state));
2968                 spin_unlock(&pic_irqchip(kvm)->lock);
2969                 break;
2970         case KVM_IRQCHIP_IOAPIC:
2971                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2972                 break;
2973         default:
2974                 r = -EINVAL;
2975                 break;
2976         }
2977         kvm_pic_update_irq(pic_irqchip(kvm));
2978         return r;
2979 }
2980
2981 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2982 {
2983         int r = 0;
2984
2985         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2986         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2987         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2988         return r;
2989 }
2990
2991 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2992 {
2993         int r = 0;
2994
2995         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2996         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2997         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2998         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2999         return r;
3000 }
3001
3002 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3003 {
3004         int r = 0;
3005
3006         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3007         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3008                 sizeof(ps->channels));
3009         ps->flags = kvm->arch.vpit->pit_state.flags;
3010         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3011         memset(&ps->reserved, 0, sizeof(ps->reserved));
3012         return r;
3013 }
3014
3015 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3016 {
3017         int r = 0, start = 0;
3018         u32 prev_legacy, cur_legacy;
3019         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3020         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3021         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3022         if (!prev_legacy && cur_legacy)
3023                 start = 1;
3024         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3025                sizeof(kvm->arch.vpit->pit_state.channels));
3026         kvm->arch.vpit->pit_state.flags = ps->flags;
3027         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3028         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3029         return r;
3030 }
3031
3032 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3033                                  struct kvm_reinject_control *control)
3034 {
3035         if (!kvm->arch.vpit)
3036                 return -ENXIO;
3037         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3038         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3039         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3040         return 0;
3041 }
3042
3043 /**
3044  * write_protect_slot - write protect a slot for dirty logging
3045  * @kvm: the kvm instance
3046  * @memslot: the slot we protect
3047  * @dirty_bitmap: the bitmap indicating which pages are dirty
3048  * @nr_dirty_pages: the number of dirty pages
3049  *
3050  * We have two ways to find all sptes to protect:
3051  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3052  *    checks ones that have a spte mapping a page in the slot.
3053  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3054  *
3055  * Generally speaking, if there are not so many dirty pages compared to the
3056  * number of shadow pages, we should use the latter.
3057  *
3058  * Note that letting others write into a page marked dirty in the old bitmap
3059  * by using the remaining tlb entry is not a problem.  That page will become
3060  * write protected again when we flush the tlb and then be reported dirty to
3061  * the user space by copying the old bitmap.
3062  */
3063 static void write_protect_slot(struct kvm *kvm,
3064                                struct kvm_memory_slot *memslot,
3065                                unsigned long *dirty_bitmap,
3066                                unsigned long nr_dirty_pages)
3067 {
3068         spin_lock(&kvm->mmu_lock);
3069
3070         /* Not many dirty pages compared to # of shadow pages. */
3071         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3072                 unsigned long gfn_offset;
3073
3074                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3075                         unsigned long gfn = memslot->base_gfn + gfn_offset;
3076
3077                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3078                 }
3079                 kvm_flush_remote_tlbs(kvm);
3080         } else
3081                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3082
3083         spin_unlock(&kvm->mmu_lock);
3084 }
3085
3086 /*
3087  * Get (and clear) the dirty memory log for a memory slot.
3088  */
3089 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3090                                       struct kvm_dirty_log *log)
3091 {
3092         int r;
3093         struct kvm_memory_slot *memslot;
3094         unsigned long n, nr_dirty_pages;
3095
3096         mutex_lock(&kvm->slots_lock);
3097
3098         r = -EINVAL;
3099         if (log->slot >= KVM_MEMORY_SLOTS)
3100                 goto out;
3101
3102         memslot = id_to_memslot(kvm->memslots, log->slot);
3103         r = -ENOENT;
3104         if (!memslot->dirty_bitmap)
3105                 goto out;
3106
3107         n = kvm_dirty_bitmap_bytes(memslot);
3108         nr_dirty_pages = memslot->nr_dirty_pages;
3109
3110         /* If nothing is dirty, don't bother messing with page tables. */
3111         if (nr_dirty_pages) {
3112                 struct kvm_memslots *slots, *old_slots;
3113                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3114
3115                 dirty_bitmap = memslot->dirty_bitmap;
3116                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3117                 if (dirty_bitmap == dirty_bitmap_head)
3118                         dirty_bitmap_head += n / sizeof(long);
3119                 memset(dirty_bitmap_head, 0, n);
3120
3121                 r = -ENOMEM;
3122                 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3123                 if (!slots)
3124                         goto out;
3125
3126                 memslot = id_to_memslot(slots, log->slot);
3127                 memslot->nr_dirty_pages = 0;
3128                 memslot->dirty_bitmap = dirty_bitmap_head;
3129                 update_memslots(slots, NULL);
3130
3131                 old_slots = kvm->memslots;
3132                 rcu_assign_pointer(kvm->memslots, slots);
3133                 synchronize_srcu_expedited(&kvm->srcu);
3134                 kfree(old_slots);
3135
3136                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3137
3138                 r = -EFAULT;
3139                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3140                         goto out;
3141         } else {
3142                 r = -EFAULT;
3143                 if (clear_user(log->dirty_bitmap, n))
3144                         goto out;
3145         }
3146
3147         r = 0;
3148 out:
3149         mutex_unlock(&kvm->slots_lock);
3150         return r;
3151 }
3152
3153 long kvm_arch_vm_ioctl(struct file *filp,
3154                        unsigned int ioctl, unsigned long arg)
3155 {
3156         struct kvm *kvm = filp->private_data;
3157         void __user *argp = (void __user *)arg;
3158         int r = -ENOTTY;
3159         /*
3160          * This union makes it completely explicit to gcc-3.x
3161          * that these two variables' stack usage should be
3162          * combined, not added together.
3163          */
3164         union {
3165                 struct kvm_pit_state ps;
3166                 struct kvm_pit_state2 ps2;
3167                 struct kvm_pit_config pit_config;
3168         } u;
3169
3170         switch (ioctl) {
3171         case KVM_SET_TSS_ADDR:
3172                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3173                 if (r < 0)
3174                         goto out;
3175                 break;
3176         case KVM_SET_IDENTITY_MAP_ADDR: {
3177                 u64 ident_addr;
3178
3179                 r = -EFAULT;
3180                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3181                         goto out;
3182                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3183                 if (r < 0)
3184                         goto out;
3185                 break;
3186         }
3187         case KVM_SET_NR_MMU_PAGES:
3188                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3189                 if (r)
3190                         goto out;
3191                 break;
3192         case KVM_GET_NR_MMU_PAGES:
3193                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3194                 break;
3195         case KVM_CREATE_IRQCHIP: {
3196                 struct kvm_pic *vpic;
3197
3198                 mutex_lock(&kvm->lock);
3199                 r = -EEXIST;
3200                 if (kvm->arch.vpic)
3201                         goto create_irqchip_unlock;
3202                 r = -EINVAL;
3203                 if (atomic_read(&kvm->online_vcpus))
3204                         goto create_irqchip_unlock;
3205                 r = -ENOMEM;
3206                 vpic = kvm_create_pic(kvm);
3207                 if (vpic) {
3208                         r = kvm_ioapic_init(kvm);
3209                         if (r) {
3210                                 mutex_lock(&kvm->slots_lock);
3211                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3212                                                           &vpic->dev_master);
3213                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3214                                                           &vpic->dev_slave);
3215                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3216                                                           &vpic->dev_eclr);
3217                                 mutex_unlock(&kvm->slots_lock);
3218                                 kfree(vpic);
3219                                 goto create_irqchip_unlock;
3220                         }
3221                 } else
3222                         goto create_irqchip_unlock;
3223                 smp_wmb();
3224                 kvm->arch.vpic = vpic;
3225                 smp_wmb();
3226                 r = kvm_setup_default_irq_routing(kvm);
3227                 if (r) {
3228                         mutex_lock(&kvm->slots_lock);
3229                         mutex_lock(&kvm->irq_lock);
3230                         kvm_ioapic_destroy(kvm);
3231                         kvm_destroy_pic(kvm);
3232                         mutex_unlock(&kvm->irq_lock);
3233                         mutex_unlock(&kvm->slots_lock);
3234                 }
3235         create_irqchip_unlock:
3236                 mutex_unlock(&kvm->lock);
3237                 break;
3238         }
3239         case KVM_CREATE_PIT:
3240                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3241                 goto create_pit;
3242         case KVM_CREATE_PIT2:
3243                 r = -EFAULT;
3244                 if (copy_from_user(&u.pit_config, argp,
3245                                    sizeof(struct kvm_pit_config)))
3246                         goto out;
3247         create_pit:
3248                 mutex_lock(&kvm->slots_lock);
3249                 r = -EEXIST;
3250                 if (kvm->arch.vpit)
3251                         goto create_pit_unlock;
3252                 r = -ENOMEM;
3253                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3254                 if (kvm->arch.vpit)
3255                         r = 0;
3256         create_pit_unlock:
3257                 mutex_unlock(&kvm->slots_lock);
3258                 break;
3259         case KVM_IRQ_LINE_STATUS:
3260         case KVM_IRQ_LINE: {
3261                 struct kvm_irq_level irq_event;
3262
3263                 r = -EFAULT;
3264                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3265                         goto out;
3266                 r = -ENXIO;
3267                 if (irqchip_in_kernel(kvm)) {
3268                         __s32 status;
3269                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3270                                         irq_event.irq, irq_event.level);
3271                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3272                                 r = -EFAULT;
3273                                 irq_event.status = status;
3274                                 if (copy_to_user(argp, &irq_event,
3275                                                         sizeof irq_event))
3276                                         goto out;
3277                         }
3278                         r = 0;
3279                 }
3280                 break;
3281         }
3282         case KVM_GET_IRQCHIP: {
3283                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3284                 struct kvm_irqchip *chip;
3285
3286                 chip = memdup_user(argp, sizeof(*chip));
3287                 if (IS_ERR(chip)) {
3288                         r = PTR_ERR(chip);
3289                         goto out;
3290                 }
3291
3292                 r = -ENXIO;
3293                 if (!irqchip_in_kernel(kvm))
3294                         goto get_irqchip_out;
3295                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3296                 if (r)
3297                         goto get_irqchip_out;
3298                 r = -EFAULT;
3299                 if (copy_to_user(argp, chip, sizeof *chip))
3300                         goto get_irqchip_out;
3301                 r = 0;
3302         get_irqchip_out:
3303                 kfree(chip);
3304                 if (r)
3305                         goto out;
3306                 break;
3307         }
3308         case KVM_SET_IRQCHIP: {
3309                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3310                 struct kvm_irqchip *chip;
3311
3312                 chip = memdup_user(argp, sizeof(*chip));
3313                 if (IS_ERR(chip)) {
3314                         r = PTR_ERR(chip);
3315                         goto out;
3316                 }
3317
3318                 r = -ENXIO;
3319                 if (!irqchip_in_kernel(kvm))
3320                         goto set_irqchip_out;
3321                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3322                 if (r)
3323                         goto set_irqchip_out;
3324                 r = 0;
3325         set_irqchip_out:
3326                 kfree(chip);
3327                 if (r)
3328                         goto out;
3329                 break;
3330         }
3331         case KVM_GET_PIT: {
3332                 r = -EFAULT;
3333                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3334                         goto out;
3335                 r = -ENXIO;
3336                 if (!kvm->arch.vpit)
3337                         goto out;
3338                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3339                 if (r)
3340                         goto out;
3341                 r = -EFAULT;
3342                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3343                         goto out;
3344                 r = 0;
3345                 break;
3346         }
3347         case KVM_SET_PIT: {
3348                 r = -EFAULT;
3349                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3350                         goto out;
3351                 r = -ENXIO;
3352                 if (!kvm->arch.vpit)
3353                         goto out;
3354                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3355                 if (r)
3356                         goto out;
3357                 r = 0;
3358                 break;
3359         }
3360         case KVM_GET_PIT2: {
3361                 r = -ENXIO;
3362                 if (!kvm->arch.vpit)
3363                         goto out;
3364                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3365                 if (r)
3366                         goto out;
3367                 r = -EFAULT;
3368                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3369                         goto out;
3370                 r = 0;
3371                 break;
3372         }
3373         case KVM_SET_PIT2: {
3374                 r = -EFAULT;
3375                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3376                         goto out;
3377                 r = -ENXIO;
3378                 if (!kvm->arch.vpit)
3379                         goto out;
3380                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3381                 if (r)
3382                         goto out;
3383                 r = 0;
3384                 break;
3385         }
3386         case KVM_REINJECT_CONTROL: {
3387                 struct kvm_reinject_control control;
3388                 r =  -EFAULT;
3389                 if (copy_from_user(&control, argp, sizeof(control)))
3390                         goto out;
3391                 r = kvm_vm_ioctl_reinject(kvm, &control);
3392                 if (r)
3393                         goto out;
3394                 r = 0;
3395                 break;
3396         }
3397         case KVM_XEN_HVM_CONFIG: {
3398                 r = -EFAULT;
3399                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3400                                    sizeof(struct kvm_xen_hvm_config)))
3401                         goto out;
3402                 r = -EINVAL;
3403                 if (kvm->arch.xen_hvm_config.flags)
3404                         goto out;
3405                 r = 0;
3406                 break;
3407         }
3408         case KVM_SET_CLOCK: {
3409                 struct kvm_clock_data user_ns;
3410                 u64 now_ns;
3411                 s64 delta;
3412
3413                 r = -EFAULT;
3414                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3415                         goto out;
3416
3417                 r = -EINVAL;
3418                 if (user_ns.flags)
3419                         goto out;
3420
3421                 r = 0;
3422                 local_irq_disable();
3423                 now_ns = get_kernel_ns();
3424                 delta = user_ns.clock - now_ns;
3425                 local_irq_enable();
3426                 kvm->arch.kvmclock_offset = delta;
3427                 break;
3428         }
3429         case KVM_GET_CLOCK: {
3430                 struct kvm_clock_data user_ns;
3431                 u64 now_ns;
3432
3433                 local_irq_disable();
3434                 now_ns = get_kernel_ns();
3435                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3436                 local_irq_enable();
3437                 user_ns.flags = 0;
3438                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3439
3440                 r = -EFAULT;
3441                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3442                         goto out;
3443                 r = 0;
3444                 break;
3445         }
3446
3447         default:
3448                 ;
3449         }
3450 out:
3451         return r;
3452 }
3453
3454 static void kvm_init_msr_list(void)
3455 {
3456         u32 dummy[2];
3457         unsigned i, j;
3458
3459         /* skip the first msrs in the list. KVM-specific */
3460         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3461                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3462                         continue;
3463                 if (j < i)
3464                         msrs_to_save[j] = msrs_to_save[i];
3465                 j++;
3466         }
3467         num_msrs_to_save = j;
3468 }
3469
3470 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3471                            const void *v)
3472 {
3473         int handled = 0;
3474         int n;
3475
3476         do {
3477                 n = min(len, 8);
3478                 if (!(vcpu->arch.apic &&
3479                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3480                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3481                         break;
3482                 handled += n;
3483                 addr += n;
3484                 len -= n;
3485                 v += n;
3486         } while (len);
3487
3488         return handled;
3489 }
3490
3491 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3492 {
3493         int handled = 0;
3494         int n;
3495
3496         do {
3497                 n = min(len, 8);
3498                 if (!(vcpu->arch.apic &&
3499                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3500                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3501                         break;
3502                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3503                 handled += n;
3504                 addr += n;
3505                 len -= n;
3506                 v += n;
3507         } while (len);
3508
3509         return handled;
3510 }
3511
3512 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3513                         struct kvm_segment *var, int seg)
3514 {
3515         kvm_x86_ops->set_segment(vcpu, var, seg);
3516 }
3517
3518 void kvm_get_segment(struct kvm_vcpu *vcpu,
3519                      struct kvm_segment *var, int seg)
3520 {
3521         kvm_x86_ops->get_segment(vcpu, var, seg);
3522 }
3523
3524 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3525 {
3526         gpa_t t_gpa;
3527         struct x86_exception exception;
3528
3529         BUG_ON(!mmu_is_nested(vcpu));
3530
3531         /* NPT walks are always user-walks */
3532         access |= PFERR_USER_MASK;
3533         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3534
3535         return t_gpa;
3536 }
3537
3538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3539                               struct x86_exception *exception)
3540 {
3541         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3542         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3543 }
3544
3545  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3546                                 struct x86_exception *exception)
3547 {
3548         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3549         access |= PFERR_FETCH_MASK;
3550         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3551 }
3552
3553 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3554                                struct x86_exception *exception)
3555 {
3556         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3557         access |= PFERR_WRITE_MASK;
3558         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3559 }
3560
3561 /* uses this to access any guest's mapped memory without checking CPL */
3562 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3563                                 struct x86_exception *exception)
3564 {
3565         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3566 }
3567
3568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3569                                       struct kvm_vcpu *vcpu, u32 access,
3570                                       struct x86_exception *exception)
3571 {
3572         void *data = val;
3573         int r = X86EMUL_CONTINUE;
3574
3575         while (bytes) {
3576                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3577                                                             exception);
3578                 unsigned offset = addr & (PAGE_SIZE-1);
3579                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3580                 int ret;
3581
3582                 if (gpa == UNMAPPED_GVA)
3583                         return X86EMUL_PROPAGATE_FAULT;
3584                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3585                 if (ret < 0) {
3586                         r = X86EMUL_IO_NEEDED;
3587                         goto out;
3588                 }
3589
3590                 bytes -= toread;
3591                 data += toread;
3592                 addr += toread;
3593         }
3594 out:
3595         return r;
3596 }
3597
3598 /* used for instruction fetching */
3599 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3600                                 gva_t addr, void *val, unsigned int bytes,
3601                                 struct x86_exception *exception)
3602 {
3603         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3604         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3605
3606         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3607                                           access | PFERR_FETCH_MASK,
3608                                           exception);
3609 }
3610
3611 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3612                                gva_t addr, void *val, unsigned int bytes,
3613                                struct x86_exception *exception)
3614 {
3615         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3616         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3617
3618         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3619                                           exception);
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3622
3623 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3624                                       gva_t addr, void *val, unsigned int bytes,
3625                                       struct x86_exception *exception)
3626 {
3627         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3628         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3629 }
3630
3631 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3632                                        gva_t addr, void *val,
3633                                        unsigned int bytes,
3634                                        struct x86_exception *exception)
3635 {
3636         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3637         void *data = val;
3638         int r = X86EMUL_CONTINUE;
3639
3640         while (bytes) {
3641                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3642                                                              PFERR_WRITE_MASK,
3643                                                              exception);
3644                 unsigned offset = addr & (PAGE_SIZE-1);
3645                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3646                 int ret;
3647
3648                 if (gpa == UNMAPPED_GVA)
3649                         return X86EMUL_PROPAGATE_FAULT;
3650                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3651                 if (ret < 0) {
3652                         r = X86EMUL_IO_NEEDED;
3653                         goto out;
3654                 }
3655
3656                 bytes -= towrite;
3657                 data += towrite;
3658                 addr += towrite;
3659         }
3660 out:
3661         return r;
3662 }
3663 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3664
3665 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3666                                 gpa_t *gpa, struct x86_exception *exception,
3667                                 bool write)
3668 {
3669         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3670
3671         if (vcpu_match_mmio_gva(vcpu, gva) &&
3672                   check_write_user_access(vcpu, write, access,
3673                   vcpu->arch.access)) {
3674                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3675                                         (gva & (PAGE_SIZE - 1));
3676                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3677                 return 1;
3678         }
3679
3680         if (write)
3681                 access |= PFERR_WRITE_MASK;
3682
3683         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3684
3685         if (*gpa == UNMAPPED_GVA)
3686                 return -1;
3687
3688         /* For APIC access vmexit */
3689         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3690                 return 1;
3691
3692         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3693                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3694                 return 1;
3695         }
3696
3697         return 0;
3698 }
3699
3700 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3701                         const void *val, int bytes)
3702 {
3703         int ret;
3704
3705         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3706         if (ret < 0)
3707                 return 0;
3708         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3709         return 1;
3710 }
3711
3712 struct read_write_emulator_ops {
3713         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3714                                   int bytes);
3715         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3716                                   void *val, int bytes);
3717         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3718                                int bytes, void *val);
3719         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3720                                     void *val, int bytes);
3721         bool write;
3722 };
3723
3724 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3725 {
3726         if (vcpu->mmio_read_completed) {
3727                 memcpy(val, vcpu->mmio_data, bytes);
3728                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3729                                vcpu->mmio_phys_addr, *(u64 *)val);
3730                 vcpu->mmio_read_completed = 0;
3731                 return 1;
3732         }
3733
3734         return 0;
3735 }
3736
3737 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3738                         void *val, int bytes)
3739 {
3740         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3741 }
3742
3743 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3744                          void *val, int bytes)
3745 {
3746         return emulator_write_phys(vcpu, gpa, val, bytes);
3747 }
3748
3749 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3750 {
3751         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3752         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3753 }
3754
3755 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3756                           void *val, int bytes)
3757 {
3758         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3759         return X86EMUL_IO_NEEDED;
3760 }
3761
3762 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3763                            void *val, int bytes)
3764 {
3765         memcpy(vcpu->mmio_data, val, bytes);
3766         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3767         return X86EMUL_CONTINUE;
3768 }
3769
3770 static struct read_write_emulator_ops read_emultor = {
3771         .read_write_prepare = read_prepare,
3772         .read_write_emulate = read_emulate,
3773         .read_write_mmio = vcpu_mmio_read,
3774         .read_write_exit_mmio = read_exit_mmio,
3775 };
3776
3777 static struct read_write_emulator_ops write_emultor = {
3778         .read_write_emulate = write_emulate,
3779         .read_write_mmio = write_mmio,
3780         .read_write_exit_mmio = write_exit_mmio,
3781         .write = true,
3782 };
3783
3784 static int emulator_read_write_onepage(unsigned long addr, void *val,
3785                                        unsigned int bytes,
3786                                        struct x86_exception *exception,
3787                                        struct kvm_vcpu *vcpu,
3788                                        struct read_write_emulator_ops *ops)
3789 {
3790         gpa_t gpa;
3791         int handled, ret;
3792         bool write = ops->write;
3793
3794         if (ops->read_write_prepare &&
3795                   ops->read_write_prepare(vcpu, val, bytes))
3796                 return X86EMUL_CONTINUE;
3797
3798         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3799
3800         if (ret < 0)
3801                 return X86EMUL_PROPAGATE_FAULT;
3802
3803         /* For APIC access vmexit */
3804         if (ret)
3805                 goto mmio;
3806
3807         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3808                 return X86EMUL_CONTINUE;
3809
3810 mmio:
3811         /*
3812          * Is this MMIO handled locally?
3813          */
3814         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3815         if (handled == bytes)
3816                 return X86EMUL_CONTINUE;
3817
3818         gpa += handled;
3819         bytes -= handled;
3820         val += handled;
3821
3822         vcpu->mmio_needed = 1;
3823         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3824         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3825         vcpu->mmio_size = bytes;
3826         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3827         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3828         vcpu->mmio_index = 0;
3829
3830         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3831 }
3832
3833 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3834                         void *val, unsigned int bytes,
3835                         struct x86_exception *exception,
3836                         struct read_write_emulator_ops *ops)
3837 {
3838         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3839
3840         /* Crossing a page boundary? */
3841         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3842                 int rc, now;
3843
3844                 now = -addr & ~PAGE_MASK;
3845                 rc = emulator_read_write_onepage(addr, val, now, exception,
3846                                                  vcpu, ops);
3847
3848                 if (rc != X86EMUL_CONTINUE)
3849                         return rc;
3850                 addr += now;
3851                 val += now;
3852                 bytes -= now;
3853         }
3854
3855         return emulator_read_write_onepage(addr, val, bytes, exception,
3856                                            vcpu, ops);
3857 }
3858
3859 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3860                                   unsigned long addr,
3861                                   void *val,
3862                                   unsigned int bytes,
3863                                   struct x86_exception *exception)
3864 {
3865         return emulator_read_write(ctxt, addr, val, bytes,
3866                                    exception, &read_emultor);
3867 }
3868
3869 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3870                             unsigned long addr,
3871                             const void *val,
3872                             unsigned int bytes,
3873                             struct x86_exception *exception)
3874 {
3875         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3876                                    exception, &write_emultor);
3877 }
3878
3879 #define CMPXCHG_TYPE(t, ptr, old, new) \
3880         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3881
3882 #ifdef CONFIG_X86_64
3883 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3884 #else
3885 #  define CMPXCHG64(ptr, old, new) \
3886         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3887 #endif
3888
3889 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3890                                      unsigned long addr,
3891                                      const void *old,
3892                                      const void *new,
3893                                      unsigned int bytes,
3894                                      struct x86_exception *exception)
3895 {
3896         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3897         gpa_t gpa;
3898         struct page *page;
3899         char *kaddr;
3900         bool exchanged;
3901
3902         /* guests cmpxchg8b have to be emulated atomically */
3903         if (bytes > 8 || (bytes & (bytes - 1)))
3904                 goto emul_write;
3905
3906         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3907
3908         if (gpa == UNMAPPED_GVA ||
3909             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3910                 goto emul_write;
3911
3912         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3913                 goto emul_write;
3914
3915         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3916         if (is_error_page(page)) {
3917                 kvm_release_page_clean(page);
3918                 goto emul_write;
3919         }
3920
3921         kaddr = kmap_atomic(page, KM_USER0);
3922         kaddr += offset_in_page(gpa);
3923         switch (bytes) {
3924         case 1:
3925                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3926                 break;
3927         case 2:
3928                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3929                 break;
3930         case 4:
3931                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3932                 break;
3933         case 8:
3934                 exchanged = CMPXCHG64(kaddr, old, new);
3935                 break;
3936         default:
3937                 BUG();
3938         }
3939         kunmap_atomic(kaddr, KM_USER0);
3940         kvm_release_page_dirty(page);
3941
3942         if (!exchanged)
3943                 return X86EMUL_CMPXCHG_FAILED;
3944
3945         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3946
3947         return X86EMUL_CONTINUE;
3948
3949 emul_write:
3950         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3951
3952         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3953 }
3954
3955 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3956 {
3957         /* TODO: String I/O for in kernel device */
3958         int r;
3959
3960         if (vcpu->arch.pio.in)
3961                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3962                                     vcpu->arch.pio.size, pd);
3963         else
3964                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3965                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3966                                      pd);
3967         return r;
3968 }
3969
3970 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3971                                unsigned short port, void *val,
3972                                unsigned int count, bool in)
3973 {
3974         trace_kvm_pio(!in, port, size, count);
3975
3976         vcpu->arch.pio.port = port;
3977         vcpu->arch.pio.in = in;
3978         vcpu->arch.pio.count  = count;
3979         vcpu->arch.pio.size = size;
3980
3981         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3982                 vcpu->arch.pio.count = 0;
3983                 return 1;
3984         }
3985
3986         vcpu->run->exit_reason = KVM_EXIT_IO;
3987         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3988         vcpu->run->io.size = size;
3989         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3990         vcpu->run->io.count = count;
3991         vcpu->run->io.port = port;
3992
3993         return 0;
3994 }
3995
3996 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3997                                     int size, unsigned short port, void *val,
3998                                     unsigned int count)
3999 {
4000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4001         int ret;
4002
4003         if (vcpu->arch.pio.count)
4004                 goto data_avail;
4005
4006         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4007         if (ret) {
4008 data_avail:
4009                 memcpy(val, vcpu->arch.pio_data, size * count);
4010                 vcpu->arch.pio.count = 0;
4011                 return 1;
4012         }
4013
4014         return 0;
4015 }
4016
4017 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4018                                      int size, unsigned short port,
4019                                      const void *val, unsigned int count)
4020 {
4021         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4022
4023         memcpy(vcpu->arch.pio_data, val, size * count);
4024         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4025 }
4026
4027 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4028 {
4029         return kvm_x86_ops->get_segment_base(vcpu, seg);
4030 }
4031
4032 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4033 {
4034         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4035 }
4036
4037 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4038 {
4039         if (!need_emulate_wbinvd(vcpu))
4040                 return X86EMUL_CONTINUE;
4041
4042         if (kvm_x86_ops->has_wbinvd_exit()) {
4043                 int cpu = get_cpu();
4044
4045                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4046                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4047                                 wbinvd_ipi, NULL, 1);
4048                 put_cpu();
4049                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4050         } else
4051                 wbinvd();
4052         return X86EMUL_CONTINUE;
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4055
4056 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4057 {
4058         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4059 }
4060
4061 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4062 {
4063         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4064 }
4065
4066 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4067 {
4068
4069         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4070 }
4071
4072 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4073 {
4074         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4075 }
4076
4077 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4078 {
4079         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4080         unsigned long value;
4081
4082         switch (cr) {
4083         case 0:
4084                 value = kvm_read_cr0(vcpu);
4085                 break;
4086         case 2:
4087                 value = vcpu->arch.cr2;
4088                 break;
4089         case 3:
4090                 value = kvm_read_cr3(vcpu);
4091                 break;
4092         case 4:
4093                 value = kvm_read_cr4(vcpu);
4094                 break;
4095         case 8:
4096                 value = kvm_get_cr8(vcpu);
4097                 break;
4098         default:
4099                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4100                 return 0;
4101         }
4102
4103         return value;
4104 }
4105
4106 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4107 {
4108         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4109         int res = 0;
4110
4111         switch (cr) {
4112         case 0:
4113                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4114                 break;
4115         case 2:
4116                 vcpu->arch.cr2 = val;
4117                 break;
4118         case 3:
4119                 res = kvm_set_cr3(vcpu, val);
4120                 break;
4121         case 4:
4122                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4123                 break;
4124         case 8:
4125                 res = kvm_set_cr8(vcpu, val);
4126                 break;
4127         default:
4128                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4129                 res = -1;
4130         }
4131
4132         return res;
4133 }
4134
4135 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4136 {
4137         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4138 }
4139
4140 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4141 {
4142         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4143 }
4144
4145 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4146 {
4147         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4148 }
4149
4150 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4151 {
4152         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4153 }
4154
4155 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4156 {
4157         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4158 }
4159
4160 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4161 {
4162         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4163 }
4164
4165 static unsigned long emulator_get_cached_segment_base(
4166         struct x86_emulate_ctxt *ctxt, int seg)
4167 {
4168         return get_segment_base(emul_to_vcpu(ctxt), seg);
4169 }
4170
4171 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4172                                  struct desc_struct *desc, u32 *base3,
4173                                  int seg)
4174 {
4175         struct kvm_segment var;
4176
4177         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4178         *selector = var.selector;
4179
4180         if (var.unusable)
4181                 return false;
4182
4183         if (var.g)
4184                 var.limit >>= 12;
4185         set_desc_limit(desc, var.limit);
4186         set_desc_base(desc, (unsigned long)var.base);
4187 #ifdef CONFIG_X86_64
4188         if (base3)
4189                 *base3 = var.base >> 32;
4190 #endif
4191         desc->type = var.type;
4192         desc->s = var.s;
4193         desc->dpl = var.dpl;
4194         desc->p = var.present;
4195         desc->avl = var.avl;
4196         desc->l = var.l;
4197         desc->d = var.db;
4198         desc->g = var.g;
4199
4200         return true;
4201 }
4202
4203 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4204                                  struct desc_struct *desc, u32 base3,
4205                                  int seg)
4206 {
4207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4208         struct kvm_segment var;
4209
4210         var.selector = selector;
4211         var.base = get_desc_base(desc);
4212 #ifdef CONFIG_X86_64
4213         var.base |= ((u64)base3) << 32;
4214 #endif
4215         var.limit = get_desc_limit(desc);
4216         if (desc->g)
4217                 var.limit = (var.limit << 12) | 0xfff;
4218         var.type = desc->type;
4219         var.present = desc->p;
4220         var.dpl = desc->dpl;
4221         var.db = desc->d;
4222         var.s = desc->s;
4223         var.l = desc->l;
4224         var.g = desc->g;
4225         var.avl = desc->avl;
4226         var.present = desc->p;
4227         var.unusable = !var.present;
4228         var.padding = 0;
4229
4230         kvm_set_segment(vcpu, &var, seg);
4231         return;
4232 }
4233
4234 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4235                             u32 msr_index, u64 *pdata)
4236 {
4237         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4238 }
4239
4240 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4241                             u32 msr_index, u64 data)
4242 {
4243         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4244 }
4245
4246 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4247                              u32 pmc, u64 *pdata)
4248 {
4249         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4250 }
4251
4252 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4253 {
4254         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4255 }
4256
4257 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4258 {
4259         preempt_disable();
4260         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4261         /*
4262          * CR0.TS may reference the host fpu state, not the guest fpu state,
4263          * so it may be clear at this point.
4264          */
4265         clts();
4266 }
4267
4268 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4269 {
4270         preempt_enable();
4271 }
4272
4273 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4274                               struct x86_instruction_info *info,
4275                               enum x86_intercept_stage stage)
4276 {
4277         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4278 }
4279
4280 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4281                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4282 {
4283         struct kvm_cpuid_entry2 *cpuid = NULL;
4284
4285         if (eax && ecx)
4286                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4287                                             *eax, *ecx);
4288
4289         if (cpuid) {
4290                 *eax = cpuid->eax;
4291                 *ecx = cpuid->ecx;
4292                 if (ebx)
4293                         *ebx = cpuid->ebx;
4294                 if (edx)
4295                         *edx = cpuid->edx;
4296                 return true;
4297         }
4298
4299         return false;
4300 }
4301
4302 static struct x86_emulate_ops emulate_ops = {
4303         .read_std            = kvm_read_guest_virt_system,
4304         .write_std           = kvm_write_guest_virt_system,
4305         .fetch               = kvm_fetch_guest_virt,
4306         .read_emulated       = emulator_read_emulated,
4307         .write_emulated      = emulator_write_emulated,
4308         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4309         .invlpg              = emulator_invlpg,
4310         .pio_in_emulated     = emulator_pio_in_emulated,
4311         .pio_out_emulated    = emulator_pio_out_emulated,
4312         .get_segment         = emulator_get_segment,
4313         .set_segment         = emulator_set_segment,
4314         .get_cached_segment_base = emulator_get_cached_segment_base,
4315         .get_gdt             = emulator_get_gdt,
4316         .get_idt             = emulator_get_idt,
4317         .set_gdt             = emulator_set_gdt,
4318         .set_idt             = emulator_set_idt,
4319         .get_cr              = emulator_get_cr,
4320         .set_cr              = emulator_set_cr,
4321         .set_rflags          = emulator_set_rflags,
4322         .cpl                 = emulator_get_cpl,
4323         .get_dr              = emulator_get_dr,
4324         .set_dr              = emulator_set_dr,
4325         .set_msr             = emulator_set_msr,
4326         .get_msr             = emulator_get_msr,
4327         .read_pmc            = emulator_read_pmc,
4328         .halt                = emulator_halt,
4329         .wbinvd              = emulator_wbinvd,
4330         .fix_hypercall       = emulator_fix_hypercall,
4331         .get_fpu             = emulator_get_fpu,
4332         .put_fpu             = emulator_put_fpu,
4333         .intercept           = emulator_intercept,
4334         .get_cpuid           = emulator_get_cpuid,
4335 };
4336
4337 static void cache_all_regs(struct kvm_vcpu *vcpu)
4338 {
4339         kvm_register_read(vcpu, VCPU_REGS_RAX);
4340         kvm_register_read(vcpu, VCPU_REGS_RSP);
4341         kvm_register_read(vcpu, VCPU_REGS_RIP);
4342         vcpu->arch.regs_dirty = ~0;
4343 }
4344
4345 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4346 {
4347         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4348         /*
4349          * an sti; sti; sequence only disable interrupts for the first
4350          * instruction. So, if the last instruction, be it emulated or
4351          * not, left the system with the INT_STI flag enabled, it
4352          * means that the last instruction is an sti. We should not
4353          * leave the flag on in this case. The same goes for mov ss
4354          */
4355         if (!(int_shadow & mask))
4356                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4357 }
4358
4359 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4360 {
4361         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4362         if (ctxt->exception.vector == PF_VECTOR)
4363                 kvm_propagate_fault(vcpu, &ctxt->exception);
4364         else if (ctxt->exception.error_code_valid)
4365                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4366                                       ctxt->exception.error_code);
4367         else
4368                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4369 }
4370
4371 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4372                               const unsigned long *regs)
4373 {
4374         memset(&ctxt->twobyte, 0,
4375                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4376         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4377
4378         ctxt->fetch.start = 0;
4379         ctxt->fetch.end = 0;
4380         ctxt->io_read.pos = 0;
4381         ctxt->io_read.end = 0;
4382         ctxt->mem_read.pos = 0;
4383         ctxt->mem_read.end = 0;
4384 }
4385
4386 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4387 {
4388         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4389         int cs_db, cs_l;
4390
4391         /*
4392          * TODO: fix emulate.c to use guest_read/write_register
4393          * instead of direct ->regs accesses, can save hundred cycles
4394          * on Intel for instructions that don't read/change RSP, for
4395          * for example.
4396          */
4397         cache_all_regs(vcpu);
4398
4399         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4400
4401         ctxt->eflags = kvm_get_rflags(vcpu);
4402         ctxt->eip = kvm_rip_read(vcpu);
4403         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4404                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4405                      cs_l                               ? X86EMUL_MODE_PROT64 :
4406                      cs_db                              ? X86EMUL_MODE_PROT32 :
4407                                                           X86EMUL_MODE_PROT16;
4408         ctxt->guest_mode = is_guest_mode(vcpu);
4409
4410         init_decode_cache(ctxt, vcpu->arch.regs);
4411         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4412 }
4413
4414 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4415 {
4416         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4417         int ret;
4418
4419         init_emulate_ctxt(vcpu);
4420
4421         ctxt->op_bytes = 2;
4422         ctxt->ad_bytes = 2;
4423         ctxt->_eip = ctxt->eip + inc_eip;
4424         ret = emulate_int_real(ctxt, irq);
4425
4426         if (ret != X86EMUL_CONTINUE)
4427                 return EMULATE_FAIL;
4428
4429         ctxt->eip = ctxt->_eip;
4430         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4431         kvm_rip_write(vcpu, ctxt->eip);
4432         kvm_set_rflags(vcpu, ctxt->eflags);
4433
4434         if (irq == NMI_VECTOR)
4435                 vcpu->arch.nmi_pending = 0;
4436         else
4437                 vcpu->arch.interrupt.pending = false;
4438
4439         return EMULATE_DONE;
4440 }
4441 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4442
4443 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4444 {
4445         int r = EMULATE_DONE;
4446
4447         ++vcpu->stat.insn_emulation_fail;
4448         trace_kvm_emulate_insn_failed(vcpu);
4449         if (!is_guest_mode(vcpu)) {
4450                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4451                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4452                 vcpu->run->internal.ndata = 0;
4453                 r = EMULATE_FAIL;
4454         }
4455         kvm_queue_exception(vcpu, UD_VECTOR);
4456
4457         return r;
4458 }
4459
4460 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4461 {
4462         gpa_t gpa;
4463
4464         if (tdp_enabled)
4465                 return false;
4466
4467         /*
4468          * if emulation was due to access to shadowed page table
4469          * and it failed try to unshadow page and re-entetr the
4470          * guest to let CPU execute the instruction.
4471          */
4472         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4473                 return true;
4474
4475         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4476
4477         if (gpa == UNMAPPED_GVA)
4478                 return true; /* let cpu generate fault */
4479
4480         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4481                 return true;
4482
4483         return false;
4484 }
4485
4486 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4487                               unsigned long cr2,  int emulation_type)
4488 {
4489         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4491
4492         last_retry_eip = vcpu->arch.last_retry_eip;
4493         last_retry_addr = vcpu->arch.last_retry_addr;
4494
4495         /*
4496          * If the emulation is caused by #PF and it is non-page_table
4497          * writing instruction, it means the VM-EXIT is caused by shadow
4498          * page protected, we can zap the shadow page and retry this
4499          * instruction directly.
4500          *
4501          * Note: if the guest uses a non-page-table modifying instruction
4502          * on the PDE that points to the instruction, then we will unmap
4503          * the instruction and go to an infinite loop. So, we cache the
4504          * last retried eip and the last fault address, if we meet the eip
4505          * and the address again, we can break out of the potential infinite
4506          * loop.
4507          */
4508         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4509
4510         if (!(emulation_type & EMULTYPE_RETRY))
4511                 return false;
4512
4513         if (x86_page_table_writing_insn(ctxt))
4514                 return false;
4515
4516         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4517                 return false;
4518
4519         vcpu->arch.last_retry_eip = ctxt->eip;
4520         vcpu->arch.last_retry_addr = cr2;
4521
4522         if (!vcpu->arch.mmu.direct_map)
4523                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4524
4525         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4526
4527         return true;
4528 }
4529
4530 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4531                             unsigned long cr2,
4532                             int emulation_type,
4533                             void *insn,
4534                             int insn_len)
4535 {
4536         int r;
4537         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4538         bool writeback = true;
4539
4540         kvm_clear_exception_queue(vcpu);
4541
4542         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4543                 init_emulate_ctxt(vcpu);
4544                 ctxt->interruptibility = 0;
4545                 ctxt->have_exception = false;
4546                 ctxt->perm_ok = false;
4547
4548                 ctxt->only_vendor_specific_insn
4549                         = emulation_type & EMULTYPE_TRAP_UD;
4550
4551                 r = x86_decode_insn(ctxt, insn, insn_len);
4552
4553                 trace_kvm_emulate_insn_start(vcpu);
4554                 ++vcpu->stat.insn_emulation;
4555                 if (r != EMULATION_OK)  {
4556                         if (emulation_type & EMULTYPE_TRAP_UD)
4557                                 return EMULATE_FAIL;
4558                         if (reexecute_instruction(vcpu, cr2))
4559                                 return EMULATE_DONE;
4560                         if (emulation_type & EMULTYPE_SKIP)
4561                                 return EMULATE_FAIL;
4562                         return handle_emulation_failure(vcpu);
4563                 }
4564         }
4565
4566         if (emulation_type & EMULTYPE_SKIP) {
4567                 kvm_rip_write(vcpu, ctxt->_eip);
4568                 return EMULATE_DONE;
4569         }
4570
4571         if (retry_instruction(ctxt, cr2, emulation_type))
4572                 return EMULATE_DONE;
4573
4574         /* this is needed for vmware backdoor interface to work since it
4575            changes registers values  during IO operation */
4576         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4577                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4578                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4579         }
4580
4581 restart:
4582         r = x86_emulate_insn(ctxt);
4583
4584         if (r == EMULATION_INTERCEPTED)
4585                 return EMULATE_DONE;
4586
4587         if (r == EMULATION_FAILED) {
4588                 if (reexecute_instruction(vcpu, cr2))
4589                         return EMULATE_DONE;
4590
4591                 return handle_emulation_failure(vcpu);
4592         }
4593
4594         if (ctxt->have_exception) {
4595                 inject_emulated_exception(vcpu);
4596                 r = EMULATE_DONE;
4597         } else if (vcpu->arch.pio.count) {
4598                 if (!vcpu->arch.pio.in)
4599                         vcpu->arch.pio.count = 0;
4600                 else
4601                         writeback = false;
4602                 r = EMULATE_DO_MMIO;
4603         } else if (vcpu->mmio_needed) {
4604                 if (!vcpu->mmio_is_write)
4605                         writeback = false;
4606                 r = EMULATE_DO_MMIO;
4607         } else if (r == EMULATION_RESTART)
4608                 goto restart;
4609         else
4610                 r = EMULATE_DONE;
4611
4612         if (writeback) {
4613                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4614                 kvm_set_rflags(vcpu, ctxt->eflags);
4615                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4616                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4617                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4618                 kvm_rip_write(vcpu, ctxt->eip);
4619         } else
4620                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4621
4622         return r;
4623 }
4624 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4625
4626 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4627 {
4628         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4629         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4630                                             size, port, &val, 1);
4631         /* do not return to emulator after return from userspace */
4632         vcpu->arch.pio.count = 0;
4633         return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4636
4637 static void tsc_bad(void *info)
4638 {
4639         __this_cpu_write(cpu_tsc_khz, 0);
4640 }
4641
4642 static void tsc_khz_changed(void *data)
4643 {
4644         struct cpufreq_freqs *freq = data;
4645         unsigned long khz = 0;
4646
4647         if (data)
4648                 khz = freq->new;
4649         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4650                 khz = cpufreq_quick_get(raw_smp_processor_id());
4651         if (!khz)
4652                 khz = tsc_khz;
4653         __this_cpu_write(cpu_tsc_khz, khz);
4654 }
4655
4656 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4657                                      void *data)
4658 {
4659         struct cpufreq_freqs *freq = data;
4660         struct kvm *kvm;
4661         struct kvm_vcpu *vcpu;
4662         int i, send_ipi = 0;
4663
4664         /*
4665          * We allow guests to temporarily run on slowing clocks,
4666          * provided we notify them after, or to run on accelerating
4667          * clocks, provided we notify them before.  Thus time never
4668          * goes backwards.
4669          *
4670          * However, we have a problem.  We can't atomically update
4671          * the frequency of a given CPU from this function; it is
4672          * merely a notifier, which can be called from any CPU.
4673          * Changing the TSC frequency at arbitrary points in time
4674          * requires a recomputation of local variables related to
4675          * the TSC for each VCPU.  We must flag these local variables
4676          * to be updated and be sure the update takes place with the
4677          * new frequency before any guests proceed.
4678          *
4679          * Unfortunately, the combination of hotplug CPU and frequency
4680          * change creates an intractable locking scenario; the order
4681          * of when these callouts happen is undefined with respect to
4682          * CPU hotplug, and they can race with each other.  As such,
4683          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4684          * undefined; you can actually have a CPU frequency change take
4685          * place in between the computation of X and the setting of the
4686          * variable.  To protect against this problem, all updates of
4687          * the per_cpu tsc_khz variable are done in an interrupt
4688          * protected IPI, and all callers wishing to update the value
4689          * must wait for a synchronous IPI to complete (which is trivial
4690          * if the caller is on the CPU already).  This establishes the
4691          * necessary total order on variable updates.
4692          *
4693          * Note that because a guest time update may take place
4694          * anytime after the setting of the VCPU's request bit, the
4695          * correct TSC value must be set before the request.  However,
4696          * to ensure the update actually makes it to any guest which
4697          * starts running in hardware virtualization between the set
4698          * and the acquisition of the spinlock, we must also ping the
4699          * CPU after setting the request bit.
4700          *
4701          */
4702
4703         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4704                 return 0;
4705         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4706                 return 0;
4707
4708         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4709
4710         raw_spin_lock(&kvm_lock);
4711         list_for_each_entry(kvm, &vm_list, vm_list) {
4712                 kvm_for_each_vcpu(i, vcpu, kvm) {
4713                         if (vcpu->cpu != freq->cpu)
4714                                 continue;
4715                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4716                         if (vcpu->cpu != smp_processor_id())
4717                                 send_ipi = 1;
4718                 }
4719         }
4720         raw_spin_unlock(&kvm_lock);
4721
4722         if (freq->old < freq->new && send_ipi) {
4723                 /*
4724                  * We upscale the frequency.  Must make the guest
4725                  * doesn't see old kvmclock values while running with
4726                  * the new frequency, otherwise we risk the guest sees
4727                  * time go backwards.
4728                  *
4729                  * In case we update the frequency for another cpu
4730                  * (which might be in guest context) send an interrupt
4731                  * to kick the cpu out of guest context.  Next time
4732                  * guest context is entered kvmclock will be updated,
4733                  * so the guest will not see stale values.
4734                  */
4735                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4736         }
4737         return 0;
4738 }
4739
4740 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4741         .notifier_call  = kvmclock_cpufreq_notifier
4742 };
4743
4744 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4745                                         unsigned long action, void *hcpu)
4746 {
4747         unsigned int cpu = (unsigned long)hcpu;
4748
4749         switch (action) {
4750                 case CPU_ONLINE:
4751                 case CPU_DOWN_FAILED:
4752                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4753                         break;
4754                 case CPU_DOWN_PREPARE:
4755                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4756                         break;
4757         }
4758         return NOTIFY_OK;
4759 }
4760
4761 static struct notifier_block kvmclock_cpu_notifier_block = {
4762         .notifier_call  = kvmclock_cpu_notifier,
4763         .priority = -INT_MAX
4764 };
4765
4766 static void kvm_timer_init(void)
4767 {
4768         int cpu;
4769
4770         max_tsc_khz = tsc_khz;
4771         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4772         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4773 #ifdef CONFIG_CPU_FREQ
4774                 struct cpufreq_policy policy;
4775                 memset(&policy, 0, sizeof(policy));
4776                 cpu = get_cpu();
4777                 cpufreq_get_policy(&policy, cpu);
4778                 if (policy.cpuinfo.max_freq)
4779                         max_tsc_khz = policy.cpuinfo.max_freq;
4780                 put_cpu();
4781 #endif
4782                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4783                                           CPUFREQ_TRANSITION_NOTIFIER);
4784         }
4785         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4786         for_each_online_cpu(cpu)
4787                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4788 }
4789
4790 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4791
4792 int kvm_is_in_guest(void)
4793 {
4794         return __this_cpu_read(current_vcpu) != NULL;
4795 }
4796
4797 static int kvm_is_user_mode(void)
4798 {
4799         int user_mode = 3;
4800
4801         if (__this_cpu_read(current_vcpu))
4802                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4803
4804         return user_mode != 0;
4805 }
4806
4807 static unsigned long kvm_get_guest_ip(void)
4808 {
4809         unsigned long ip = 0;
4810
4811         if (__this_cpu_read(current_vcpu))
4812                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4813
4814         return ip;
4815 }
4816
4817 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4818         .is_in_guest            = kvm_is_in_guest,
4819         .is_user_mode           = kvm_is_user_mode,
4820         .get_guest_ip           = kvm_get_guest_ip,
4821 };
4822
4823 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4824 {
4825         __this_cpu_write(current_vcpu, vcpu);
4826 }
4827 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4828
4829 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4830 {
4831         __this_cpu_write(current_vcpu, NULL);
4832 }
4833 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4834
4835 static void kvm_set_mmio_spte_mask(void)
4836 {
4837         u64 mask;
4838         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4839
4840         /*
4841          * Set the reserved bits and the present bit of an paging-structure
4842          * entry to generate page fault with PFER.RSV = 1.
4843          */
4844         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4845         mask |= 1ull;
4846
4847 #ifdef CONFIG_X86_64
4848         /*
4849          * If reserved bit is not supported, clear the present bit to disable
4850          * mmio page fault.
4851          */
4852         if (maxphyaddr == 52)
4853                 mask &= ~1ull;
4854 #endif
4855
4856         kvm_mmu_set_mmio_spte_mask(mask);
4857 }
4858
4859 int kvm_arch_init(void *opaque)
4860 {
4861         int r;
4862         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4863
4864         if (kvm_x86_ops) {
4865                 printk(KERN_ERR "kvm: already loaded the other module\n");
4866                 r = -EEXIST;
4867                 goto out;
4868         }
4869
4870         if (!ops->cpu_has_kvm_support()) {
4871                 printk(KERN_ERR "kvm: no hardware support\n");
4872                 r = -EOPNOTSUPP;
4873                 goto out;
4874         }
4875         if (ops->disabled_by_bios()) {
4876                 printk(KERN_ERR "kvm: disabled by bios\n");
4877                 r = -EOPNOTSUPP;
4878                 goto out;
4879         }
4880
4881         r = kvm_mmu_module_init();
4882         if (r)
4883                 goto out;
4884
4885         kvm_set_mmio_spte_mask();
4886         kvm_init_msr_list();
4887
4888         kvm_x86_ops = ops;
4889         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4890                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4891
4892         kvm_timer_init();
4893
4894         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4895
4896         if (cpu_has_xsave)
4897                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4898
4899         return 0;
4900
4901 out:
4902         return r;
4903 }
4904
4905 void kvm_arch_exit(void)
4906 {
4907         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4908
4909         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4910                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4911                                             CPUFREQ_TRANSITION_NOTIFIER);
4912         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4913         kvm_x86_ops = NULL;
4914         kvm_mmu_module_exit();
4915 }
4916
4917 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4918 {
4919         ++vcpu->stat.halt_exits;
4920         if (irqchip_in_kernel(vcpu->kvm)) {
4921                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4922                 return 1;
4923         } else {
4924                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4925                 return 0;
4926         }
4927 }
4928 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4929
4930 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4931 {
4932         u64 param, ingpa, outgpa, ret;
4933         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4934         bool fast, longmode;
4935         int cs_db, cs_l;
4936
4937         /*
4938          * hypercall generates UD from non zero cpl and real mode
4939          * per HYPER-V spec
4940          */
4941         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4942                 kvm_queue_exception(vcpu, UD_VECTOR);
4943                 return 0;
4944         }
4945
4946         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4947         longmode = is_long_mode(vcpu) && cs_l == 1;
4948
4949         if (!longmode) {
4950                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4951                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4952                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4953                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4954                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4955                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4956         }
4957 #ifdef CONFIG_X86_64
4958         else {
4959                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4960                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4961                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4962         }
4963 #endif
4964
4965         code = param & 0xffff;
4966         fast = (param >> 16) & 0x1;
4967         rep_cnt = (param >> 32) & 0xfff;
4968         rep_idx = (param >> 48) & 0xfff;
4969
4970         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4971
4972         switch (code) {
4973         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4974                 kvm_vcpu_on_spin(vcpu);
4975                 break;
4976         default:
4977                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4978                 break;
4979         }
4980
4981         ret = res | (((u64)rep_done & 0xfff) << 32);
4982         if (longmode) {
4983                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4984         } else {
4985                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4986                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4987         }
4988
4989         return 1;
4990 }
4991
4992 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4993 {
4994         unsigned long nr, a0, a1, a2, a3, ret;
4995         int r = 1;
4996
4997         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4998                 return kvm_hv_hypercall(vcpu);
4999
5000         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5001         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5002         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5003         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5004         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5005
5006         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5007
5008         if (!is_long_mode(vcpu)) {
5009                 nr &= 0xFFFFFFFF;
5010                 a0 &= 0xFFFFFFFF;
5011                 a1 &= 0xFFFFFFFF;
5012                 a2 &= 0xFFFFFFFF;
5013                 a3 &= 0xFFFFFFFF;
5014         }
5015
5016         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5017                 ret = -KVM_EPERM;
5018                 goto out;
5019         }
5020
5021         switch (nr) {
5022         case KVM_HC_VAPIC_POLL_IRQ:
5023                 ret = 0;
5024                 break;
5025         default:
5026                 ret = -KVM_ENOSYS;
5027                 break;
5028         }
5029 out:
5030         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5031         ++vcpu->stat.hypercalls;
5032         return r;
5033 }
5034 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5035
5036 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5037 {
5038         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5039         char instruction[3];
5040         unsigned long rip = kvm_rip_read(vcpu);
5041
5042         /*
5043          * Blow out the MMU to ensure that no other VCPU has an active mapping
5044          * to ensure that the updated hypercall appears atomically across all
5045          * VCPUs.
5046          */
5047         kvm_mmu_zap_all(vcpu->kvm);
5048
5049         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5050
5051         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5052 }
5053
5054 /*
5055  * Check if userspace requested an interrupt window, and that the
5056  * interrupt window is open.
5057  *
5058  * No need to exit to userspace if we already have an interrupt queued.
5059  */
5060 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5061 {
5062         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5063                 vcpu->run->request_interrupt_window &&
5064                 kvm_arch_interrupt_allowed(vcpu));
5065 }
5066
5067 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5068 {
5069         struct kvm_run *kvm_run = vcpu->run;
5070
5071         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5072         kvm_run->cr8 = kvm_get_cr8(vcpu);
5073         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5074         if (irqchip_in_kernel(vcpu->kvm))
5075                 kvm_run->ready_for_interrupt_injection = 1;
5076         else
5077                 kvm_run->ready_for_interrupt_injection =
5078                         kvm_arch_interrupt_allowed(vcpu) &&
5079                         !kvm_cpu_has_interrupt(vcpu) &&
5080                         !kvm_event_needs_reinjection(vcpu);
5081 }
5082
5083 static void vapic_enter(struct kvm_vcpu *vcpu)
5084 {
5085         struct kvm_lapic *apic = vcpu->arch.apic;
5086         struct page *page;
5087
5088         if (!apic || !apic->vapic_addr)
5089                 return;
5090
5091         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5092
5093         vcpu->arch.apic->vapic_page = page;
5094 }
5095
5096 static void vapic_exit(struct kvm_vcpu *vcpu)
5097 {
5098         struct kvm_lapic *apic = vcpu->arch.apic;
5099         int idx;
5100
5101         if (!apic || !apic->vapic_addr)
5102                 return;
5103
5104         idx = srcu_read_lock(&vcpu->kvm->srcu);
5105         kvm_release_page_dirty(apic->vapic_page);
5106         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5107         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5108 }
5109
5110 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5111 {
5112         int max_irr, tpr;
5113
5114         if (!kvm_x86_ops->update_cr8_intercept)
5115                 return;
5116
5117         if (!vcpu->arch.apic)
5118                 return;
5119
5120         if (!vcpu->arch.apic->vapic_addr)
5121                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5122         else
5123                 max_irr = -1;
5124
5125         if (max_irr != -1)
5126                 max_irr >>= 4;
5127
5128         tpr = kvm_lapic_get_cr8(vcpu);
5129
5130         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5131 }
5132
5133 static void inject_pending_event(struct kvm_vcpu *vcpu)
5134 {
5135         /* try to reinject previous events if any */
5136         if (vcpu->arch.exception.pending) {
5137                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5138                                         vcpu->arch.exception.has_error_code,
5139                                         vcpu->arch.exception.error_code);
5140                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5141                                           vcpu->arch.exception.has_error_code,
5142                                           vcpu->arch.exception.error_code,
5143                                           vcpu->arch.exception.reinject);
5144                 return;
5145         }
5146
5147         if (vcpu->arch.nmi_injected) {
5148                 kvm_x86_ops->set_nmi(vcpu);
5149                 return;
5150         }
5151
5152         if (vcpu->arch.interrupt.pending) {
5153                 kvm_x86_ops->set_irq(vcpu);
5154                 return;
5155         }
5156
5157         /* try to inject new event if pending */
5158         if (vcpu->arch.nmi_pending) {
5159                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5160                         --vcpu->arch.nmi_pending;
5161                         vcpu->arch.nmi_injected = true;
5162                         kvm_x86_ops->set_nmi(vcpu);
5163                 }
5164         } else if (kvm_cpu_has_interrupt(vcpu)) {
5165                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5166                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5167                                             false);
5168                         kvm_x86_ops->set_irq(vcpu);
5169                 }
5170         }
5171 }
5172
5173 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5174 {
5175         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5176                         !vcpu->guest_xcr0_loaded) {
5177                 /* kvm_set_xcr() also depends on this */
5178                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5179                 vcpu->guest_xcr0_loaded = 1;
5180         }
5181 }
5182
5183 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5184 {
5185         if (vcpu->guest_xcr0_loaded) {
5186                 if (vcpu->arch.xcr0 != host_xcr0)
5187                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5188                 vcpu->guest_xcr0_loaded = 0;
5189         }
5190 }
5191
5192 static void process_nmi(struct kvm_vcpu *vcpu)
5193 {
5194         unsigned limit = 2;
5195
5196         /*
5197          * x86 is limited to one NMI running, and one NMI pending after it.
5198          * If an NMI is already in progress, limit further NMIs to just one.
5199          * Otherwise, allow two (and we'll inject the first one immediately).
5200          */
5201         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5202                 limit = 1;
5203
5204         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5205         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5206         kvm_make_request(KVM_REQ_EVENT, vcpu);
5207 }
5208
5209 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5210 {
5211         int r;
5212         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5213                 vcpu->run->request_interrupt_window;
5214         bool req_immediate_exit = 0;
5215
5216         if (vcpu->requests) {
5217                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5218                         kvm_mmu_unload(vcpu);
5219                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5220                         __kvm_migrate_timers(vcpu);
5221                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5222                         r = kvm_guest_time_update(vcpu);
5223                         if (unlikely(r))
5224                                 goto out;
5225                 }
5226                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5227                         kvm_mmu_sync_roots(vcpu);
5228                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5229                         kvm_x86_ops->tlb_flush(vcpu);
5230                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5231                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5232                         r = 0;
5233                         goto out;
5234                 }
5235                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5236                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5237                         r = 0;
5238                         goto out;
5239                 }
5240                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5241                         vcpu->fpu_active = 0;
5242                         kvm_x86_ops->fpu_deactivate(vcpu);
5243                 }
5244                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5245                         /* Page is swapped out. Do synthetic halt */
5246                         vcpu->arch.apf.halted = true;
5247                         r = 1;
5248                         goto out;
5249                 }
5250                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5251                         record_steal_time(vcpu);
5252                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5253                         process_nmi(vcpu);
5254                 req_immediate_exit =
5255                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5256                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5257                         kvm_handle_pmu_event(vcpu);
5258                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5259                         kvm_deliver_pmi(vcpu);
5260         }
5261
5262         r = kvm_mmu_reload(vcpu);
5263         if (unlikely(r))
5264                 goto out;
5265
5266         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5267                 inject_pending_event(vcpu);
5268
5269                 /* enable NMI/IRQ window open exits if needed */
5270                 if (vcpu->arch.nmi_pending)
5271                         kvm_x86_ops->enable_nmi_window(vcpu);
5272                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5273                         kvm_x86_ops->enable_irq_window(vcpu);
5274
5275                 if (kvm_lapic_enabled(vcpu)) {
5276                         update_cr8_intercept(vcpu);
5277                         kvm_lapic_sync_to_vapic(vcpu);
5278                 }
5279         }
5280
5281         preempt_disable();
5282
5283         kvm_x86_ops->prepare_guest_switch(vcpu);
5284         if (vcpu->fpu_active)
5285                 kvm_load_guest_fpu(vcpu);
5286         kvm_load_guest_xcr0(vcpu);
5287
5288         vcpu->mode = IN_GUEST_MODE;
5289
5290         /* We should set ->mode before check ->requests,
5291          * see the comment in make_all_cpus_request.
5292          */
5293         smp_mb();
5294
5295         local_irq_disable();
5296
5297         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5298             || need_resched() || signal_pending(current)) {
5299                 vcpu->mode = OUTSIDE_GUEST_MODE;
5300                 smp_wmb();
5301                 local_irq_enable();
5302                 preempt_enable();
5303                 kvm_x86_ops->cancel_injection(vcpu);
5304                 r = 1;
5305                 goto out;
5306         }
5307
5308         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5309
5310         if (req_immediate_exit)
5311                 smp_send_reschedule(vcpu->cpu);
5312
5313         kvm_guest_enter();
5314
5315         if (unlikely(vcpu->arch.switch_db_regs)) {
5316                 set_debugreg(0, 7);
5317                 set_debugreg(vcpu->arch.eff_db[0], 0);
5318                 set_debugreg(vcpu->arch.eff_db[1], 1);
5319                 set_debugreg(vcpu->arch.eff_db[2], 2);
5320                 set_debugreg(vcpu->arch.eff_db[3], 3);
5321         }
5322
5323         trace_kvm_entry(vcpu->vcpu_id);
5324         kvm_x86_ops->run(vcpu);
5325
5326         /*
5327          * If the guest has used debug registers, at least dr7
5328          * will be disabled while returning to the host.
5329          * If we don't have active breakpoints in the host, we don't
5330          * care about the messed up debug address registers. But if
5331          * we have some of them active, restore the old state.
5332          */
5333         if (hw_breakpoint_active())
5334                 hw_breakpoint_restore();
5335
5336         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5337
5338         vcpu->mode = OUTSIDE_GUEST_MODE;
5339         smp_wmb();
5340         local_irq_enable();
5341
5342         ++vcpu->stat.exits;
5343
5344         /*
5345          * We must have an instruction between local_irq_enable() and
5346          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5347          * the interrupt shadow.  The stat.exits increment will do nicely.
5348          * But we need to prevent reordering, hence this barrier():
5349          */
5350         barrier();
5351
5352         kvm_guest_exit();
5353
5354         preempt_enable();
5355
5356         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5357
5358         /*
5359          * Profile KVM exit RIPs:
5360          */
5361         if (unlikely(prof_on == KVM_PROFILING)) {
5362                 unsigned long rip = kvm_rip_read(vcpu);
5363                 profile_hit(KVM_PROFILING, (void *)rip);
5364         }
5365
5366         if (unlikely(vcpu->arch.tsc_always_catchup))
5367                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5368
5369         kvm_lapic_sync_from_vapic(vcpu);
5370
5371         r = kvm_x86_ops->handle_exit(vcpu);
5372 out:
5373         return r;
5374 }
5375
5376
5377 static int __vcpu_run(struct kvm_vcpu *vcpu)
5378 {
5379         int r;
5380         struct kvm *kvm = vcpu->kvm;
5381
5382         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5383                 pr_debug("vcpu %d received sipi with vector # %x\n",
5384                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5385                 kvm_lapic_reset(vcpu);
5386                 r = kvm_arch_vcpu_reset(vcpu);
5387                 if (r)
5388                         return r;
5389                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5390         }
5391
5392         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5393         vapic_enter(vcpu);
5394
5395         r = 1;
5396         while (r > 0) {
5397                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5398                     !vcpu->arch.apf.halted)
5399                         r = vcpu_enter_guest(vcpu);
5400                 else {
5401                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5402                         kvm_vcpu_block(vcpu);
5403                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5404                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5405                         {
5406                                 switch(vcpu->arch.mp_state) {
5407                                 case KVM_MP_STATE_HALTED:
5408                                         vcpu->arch.mp_state =
5409                                                 KVM_MP_STATE_RUNNABLE;
5410                                 case KVM_MP_STATE_RUNNABLE:
5411                                         vcpu->arch.apf.halted = false;
5412                                         break;
5413                                 case KVM_MP_STATE_SIPI_RECEIVED:
5414                                 default:
5415                                         r = -EINTR;
5416                                         break;
5417                                 }
5418                         }
5419                 }
5420
5421                 if (r <= 0)
5422                         break;
5423
5424                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5425                 if (kvm_cpu_has_pending_timer(vcpu))
5426                         kvm_inject_pending_timer_irqs(vcpu);
5427
5428                 if (dm_request_for_irq_injection(vcpu)) {
5429                         r = -EINTR;
5430                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5431                         ++vcpu->stat.request_irq_exits;
5432                 }
5433
5434                 kvm_check_async_pf_completion(vcpu);
5435
5436                 if (signal_pending(current)) {
5437                         r = -EINTR;
5438                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5439                         ++vcpu->stat.signal_exits;
5440                 }
5441                 if (need_resched()) {
5442                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5443                         kvm_resched(vcpu);
5444                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5445                 }
5446         }
5447
5448         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5449
5450         vapic_exit(vcpu);
5451
5452         return r;
5453 }
5454
5455 static int complete_mmio(struct kvm_vcpu *vcpu)
5456 {
5457         struct kvm_run *run = vcpu->run;
5458         int r;
5459
5460         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5461                 return 1;
5462
5463         if (vcpu->mmio_needed) {
5464                 vcpu->mmio_needed = 0;
5465                 if (!vcpu->mmio_is_write)
5466                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5467                                run->mmio.data, 8);
5468                 vcpu->mmio_index += 8;
5469                 if (vcpu->mmio_index < vcpu->mmio_size) {
5470                         run->exit_reason = KVM_EXIT_MMIO;
5471                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5472                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5473                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5474                         run->mmio.is_write = vcpu->mmio_is_write;
5475                         vcpu->mmio_needed = 1;
5476                         return 0;
5477                 }
5478                 if (vcpu->mmio_is_write)
5479                         return 1;
5480                 vcpu->mmio_read_completed = 1;
5481         }
5482         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5483         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5484         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5485         if (r != EMULATE_DONE)
5486                 return 0;
5487         return 1;
5488 }
5489
5490 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5491 {
5492         int r;
5493         sigset_t sigsaved;
5494
5495         if (!tsk_used_math(current) && init_fpu(current))
5496                 return -ENOMEM;
5497
5498         if (vcpu->sigset_active)
5499                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5500
5501         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5502                 kvm_vcpu_block(vcpu);
5503                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5504                 r = -EAGAIN;
5505                 goto out;
5506         }
5507
5508         /* re-sync apic's tpr */
5509         if (!irqchip_in_kernel(vcpu->kvm)) {
5510                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5511                         r = -EINVAL;
5512                         goto out;
5513                 }
5514         }
5515
5516         r = complete_mmio(vcpu);
5517         if (r <= 0)
5518                 goto out;
5519
5520         r = __vcpu_run(vcpu);
5521
5522 out:
5523         post_kvm_run_save(vcpu);
5524         if (vcpu->sigset_active)
5525                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5526
5527         return r;
5528 }
5529
5530 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5531 {
5532         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5533                 /*
5534                  * We are here if userspace calls get_regs() in the middle of
5535                  * instruction emulation. Registers state needs to be copied
5536                  * back from emulation context to vcpu. Usrapace shouldn't do
5537                  * that usually, but some bad designed PV devices (vmware
5538                  * backdoor interface) need this to work
5539                  */
5540                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5541                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5542                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5543         }
5544         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5545         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5546         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5547         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5548         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5549         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5550         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5551         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5552 #ifdef CONFIG_X86_64
5553         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5554         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5555         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5556         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5557         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5558         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5559         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5560         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5561 #endif
5562
5563         regs->rip = kvm_rip_read(vcpu);
5564         regs->rflags = kvm_get_rflags(vcpu);
5565
5566         return 0;
5567 }
5568
5569 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5570 {
5571         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5572         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5573
5574         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5575         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5576         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5577         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5578         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5579         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5580         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5581         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5582 #ifdef CONFIG_X86_64
5583         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5584         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5585         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5586         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5587         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5588         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5589         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5590         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5591 #endif
5592
5593         kvm_rip_write(vcpu, regs->rip);
5594         kvm_set_rflags(vcpu, regs->rflags);
5595
5596         vcpu->arch.exception.pending = false;
5597
5598         kvm_make_request(KVM_REQ_EVENT, vcpu);
5599
5600         return 0;
5601 }
5602
5603 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5604 {
5605         struct kvm_segment cs;
5606
5607         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5608         *db = cs.db;
5609         *l = cs.l;
5610 }
5611 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5612
5613 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5614                                   struct kvm_sregs *sregs)
5615 {
5616         struct desc_ptr dt;
5617
5618         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5619         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5620         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5621         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5622         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5623         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5624
5625         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5626         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5627
5628         kvm_x86_ops->get_idt(vcpu, &dt);
5629         sregs->idt.limit = dt.size;
5630         sregs->idt.base = dt.address;
5631         kvm_x86_ops->get_gdt(vcpu, &dt);
5632         sregs->gdt.limit = dt.size;
5633         sregs->gdt.base = dt.address;
5634
5635         sregs->cr0 = kvm_read_cr0(vcpu);
5636         sregs->cr2 = vcpu->arch.cr2;
5637         sregs->cr3 = kvm_read_cr3(vcpu);
5638         sregs->cr4 = kvm_read_cr4(vcpu);
5639         sregs->cr8 = kvm_get_cr8(vcpu);
5640         sregs->efer = vcpu->arch.efer;
5641         sregs->apic_base = kvm_get_apic_base(vcpu);
5642
5643         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5644
5645         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5646                 set_bit(vcpu->arch.interrupt.nr,
5647                         (unsigned long *)sregs->interrupt_bitmap);
5648
5649         return 0;
5650 }
5651
5652 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5653                                     struct kvm_mp_state *mp_state)
5654 {
5655         mp_state->mp_state = vcpu->arch.mp_state;
5656         return 0;
5657 }
5658
5659 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5660                                     struct kvm_mp_state *mp_state)
5661 {
5662         vcpu->arch.mp_state = mp_state->mp_state;
5663         kvm_make_request(KVM_REQ_EVENT, vcpu);
5664         return 0;
5665 }
5666
5667 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5668                     int reason, bool has_error_code, u32 error_code)
5669 {
5670         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5671         int ret;
5672
5673         init_emulate_ctxt(vcpu);
5674
5675         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5676                                    has_error_code, error_code);
5677
5678         if (ret)
5679                 return EMULATE_FAIL;
5680
5681         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5682         kvm_rip_write(vcpu, ctxt->eip);
5683         kvm_set_rflags(vcpu, ctxt->eflags);
5684         kvm_make_request(KVM_REQ_EVENT, vcpu);
5685         return EMULATE_DONE;
5686 }
5687 EXPORT_SYMBOL_GPL(kvm_task_switch);
5688
5689 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5690                                   struct kvm_sregs *sregs)
5691 {
5692         int mmu_reset_needed = 0;
5693         int pending_vec, max_bits, idx;
5694         struct desc_ptr dt;
5695
5696         dt.size = sregs->idt.limit;
5697         dt.address = sregs->idt.base;
5698         kvm_x86_ops->set_idt(vcpu, &dt);
5699         dt.size = sregs->gdt.limit;
5700         dt.address = sregs->gdt.base;
5701         kvm_x86_ops->set_gdt(vcpu, &dt);
5702
5703         vcpu->arch.cr2 = sregs->cr2;
5704         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5705         vcpu->arch.cr3 = sregs->cr3;
5706         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5707
5708         kvm_set_cr8(vcpu, sregs->cr8);
5709
5710         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5711         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5712         kvm_set_apic_base(vcpu, sregs->apic_base);
5713
5714         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5715         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5716         vcpu->arch.cr0 = sregs->cr0;
5717
5718         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5719         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5720         if (sregs->cr4 & X86_CR4_OSXSAVE)
5721                 kvm_update_cpuid(vcpu);
5722
5723         idx = srcu_read_lock(&vcpu->kvm->srcu);
5724         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5725                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5726                 mmu_reset_needed = 1;
5727         }
5728         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5729
5730         if (mmu_reset_needed)
5731                 kvm_mmu_reset_context(vcpu);
5732
5733         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5734         pending_vec = find_first_bit(
5735                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5736         if (pending_vec < max_bits) {
5737                 kvm_queue_interrupt(vcpu, pending_vec, false);
5738                 pr_debug("Set back pending irq %d\n", pending_vec);
5739         }
5740
5741         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5742         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5743         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5744         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5745         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5746         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5747
5748         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5749         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5750
5751         update_cr8_intercept(vcpu);
5752
5753         /* Older userspace won't unhalt the vcpu on reset. */
5754         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5755             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5756             !is_protmode(vcpu))
5757                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5758
5759         kvm_make_request(KVM_REQ_EVENT, vcpu);
5760
5761         return 0;
5762 }
5763
5764 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5765                                         struct kvm_guest_debug *dbg)
5766 {
5767         unsigned long rflags;
5768         int i, r;
5769
5770         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5771                 r = -EBUSY;
5772                 if (vcpu->arch.exception.pending)
5773                         goto out;
5774                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5775                         kvm_queue_exception(vcpu, DB_VECTOR);
5776                 else
5777                         kvm_queue_exception(vcpu, BP_VECTOR);
5778         }
5779
5780         /*
5781          * Read rflags as long as potentially injected trace flags are still
5782          * filtered out.
5783          */
5784         rflags = kvm_get_rflags(vcpu);
5785
5786         vcpu->guest_debug = dbg->control;
5787         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5788                 vcpu->guest_debug = 0;
5789
5790         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5791                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5792                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5793                 vcpu->arch.switch_db_regs =
5794                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5795         } else {
5796                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5797                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5798                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5799         }
5800
5801         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5802                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5803                         get_segment_base(vcpu, VCPU_SREG_CS);
5804
5805         /*
5806          * Trigger an rflags update that will inject or remove the trace
5807          * flags.
5808          */
5809         kvm_set_rflags(vcpu, rflags);
5810
5811         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5812
5813         r = 0;
5814
5815 out:
5816
5817         return r;
5818 }
5819
5820 /*
5821  * Translate a guest virtual address to a guest physical address.
5822  */
5823 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5824                                     struct kvm_translation *tr)
5825 {
5826         unsigned long vaddr = tr->linear_address;
5827         gpa_t gpa;
5828         int idx;
5829
5830         idx = srcu_read_lock(&vcpu->kvm->srcu);
5831         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5832         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5833         tr->physical_address = gpa;
5834         tr->valid = gpa != UNMAPPED_GVA;
5835         tr->writeable = 1;
5836         tr->usermode = 0;
5837
5838         return 0;
5839 }
5840
5841 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5842 {
5843         struct i387_fxsave_struct *fxsave =
5844                         &vcpu->arch.guest_fpu.state->fxsave;
5845
5846         memcpy(fpu->fpr, fxsave->st_space, 128);
5847         fpu->fcw = fxsave->cwd;
5848         fpu->fsw = fxsave->swd;
5849         fpu->ftwx = fxsave->twd;
5850         fpu->last_opcode = fxsave->fop;
5851         fpu->last_ip = fxsave->rip;
5852         fpu->last_dp = fxsave->rdp;
5853         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5854
5855         return 0;
5856 }
5857
5858 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5859 {
5860         struct i387_fxsave_struct *fxsave =
5861                         &vcpu->arch.guest_fpu.state->fxsave;
5862
5863         memcpy(fxsave->st_space, fpu->fpr, 128);
5864         fxsave->cwd = fpu->fcw;
5865         fxsave->swd = fpu->fsw;
5866         fxsave->twd = fpu->ftwx;
5867         fxsave->fop = fpu->last_opcode;
5868         fxsave->rip = fpu->last_ip;
5869         fxsave->rdp = fpu->last_dp;
5870         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5871
5872         return 0;
5873 }
5874
5875 int fx_init(struct kvm_vcpu *vcpu)
5876 {
5877         int err;
5878
5879         err = fpu_alloc(&vcpu->arch.guest_fpu);
5880         if (err)
5881                 return err;
5882
5883         fpu_finit(&vcpu->arch.guest_fpu);
5884
5885         /*
5886          * Ensure guest xcr0 is valid for loading
5887          */
5888         vcpu->arch.xcr0 = XSTATE_FP;
5889
5890         vcpu->arch.cr0 |= X86_CR0_ET;
5891
5892         return 0;
5893 }
5894 EXPORT_SYMBOL_GPL(fx_init);
5895
5896 static void fx_free(struct kvm_vcpu *vcpu)
5897 {
5898         fpu_free(&vcpu->arch.guest_fpu);
5899 }
5900
5901 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5902 {
5903         if (vcpu->guest_fpu_loaded)
5904                 return;
5905
5906         /*
5907          * Restore all possible states in the guest,
5908          * and assume host would use all available bits.
5909          * Guest xcr0 would be loaded later.
5910          */
5911         kvm_put_guest_xcr0(vcpu);
5912         vcpu->guest_fpu_loaded = 1;
5913         unlazy_fpu(current);
5914         fpu_restore_checking(&vcpu->arch.guest_fpu);
5915         trace_kvm_fpu(1);
5916 }
5917
5918 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5919 {
5920         kvm_put_guest_xcr0(vcpu);
5921
5922         if (!vcpu->guest_fpu_loaded)
5923                 return;
5924
5925         vcpu->guest_fpu_loaded = 0;
5926         fpu_save_init(&vcpu->arch.guest_fpu);
5927         ++vcpu->stat.fpu_reload;
5928         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5929         trace_kvm_fpu(0);
5930 }
5931
5932 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5933 {
5934         kvmclock_reset(vcpu);
5935
5936         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5937         fx_free(vcpu);
5938         kvm_x86_ops->vcpu_free(vcpu);
5939 }
5940
5941 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5942                                                 unsigned int id)
5943 {
5944         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5945                 printk_once(KERN_WARNING
5946                 "kvm: SMP vm created on host with unstable TSC; "
5947                 "guest TSC will not be reliable\n");
5948         return kvm_x86_ops->vcpu_create(kvm, id);
5949 }
5950
5951 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5952 {
5953         int r;
5954
5955         vcpu->arch.mtrr_state.have_fixed = 1;
5956         vcpu_load(vcpu);
5957         r = kvm_arch_vcpu_reset(vcpu);
5958         if (r == 0)
5959                 r = kvm_mmu_setup(vcpu);
5960         vcpu_put(vcpu);
5961
5962         return r;
5963 }
5964
5965 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5966 {
5967         vcpu->arch.apf.msr_val = 0;
5968
5969         vcpu_load(vcpu);
5970         kvm_mmu_unload(vcpu);
5971         vcpu_put(vcpu);
5972
5973         fx_free(vcpu);
5974         kvm_x86_ops->vcpu_free(vcpu);
5975 }
5976
5977 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5978 {
5979         atomic_set(&vcpu->arch.nmi_queued, 0);
5980         vcpu->arch.nmi_pending = 0;
5981         vcpu->arch.nmi_injected = false;
5982
5983         vcpu->arch.switch_db_regs = 0;
5984         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5985         vcpu->arch.dr6 = DR6_FIXED_1;
5986         vcpu->arch.dr7 = DR7_FIXED_1;
5987
5988         kvm_make_request(KVM_REQ_EVENT, vcpu);
5989         vcpu->arch.apf.msr_val = 0;
5990         vcpu->arch.st.msr_val = 0;
5991
5992         kvmclock_reset(vcpu);
5993
5994         kvm_clear_async_pf_completion_queue(vcpu);
5995         kvm_async_pf_hash_reset(vcpu);
5996         vcpu->arch.apf.halted = false;
5997
5998         kvm_pmu_reset(vcpu);
5999
6000         return kvm_x86_ops->vcpu_reset(vcpu);
6001 }
6002
6003 int kvm_arch_hardware_enable(void *garbage)
6004 {
6005         struct kvm *kvm;
6006         struct kvm_vcpu *vcpu;
6007         int i;
6008         int ret;
6009         u64 local_tsc;
6010         u64 max_tsc = 0;
6011         bool stable, backwards_tsc = false;
6012
6013         kvm_shared_msr_cpu_online();
6014         ret = kvm_x86_ops->hardware_enable(garbage);
6015         if (ret != 0)
6016                 return ret;
6017
6018         local_tsc = native_read_tsc();
6019         stable = !check_tsc_unstable();
6020         list_for_each_entry(kvm, &vm_list, vm_list) {
6021                 kvm_for_each_vcpu(i, vcpu, kvm) {
6022                         if (!stable && vcpu->cpu == smp_processor_id())
6023                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6024                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6025                                 backwards_tsc = true;
6026                                 if (vcpu->arch.last_host_tsc > max_tsc)
6027                                         max_tsc = vcpu->arch.last_host_tsc;
6028                         }
6029                 }
6030         }
6031
6032         /*
6033          * Sometimes, even reliable TSCs go backwards.  This happens on
6034          * platforms that reset TSC during suspend or hibernate actions, but
6035          * maintain synchronization.  We must compensate.  Fortunately, we can
6036          * detect that condition here, which happens early in CPU bringup,
6037          * before any KVM threads can be running.  Unfortunately, we can't
6038          * bring the TSCs fully up to date with real time, as we aren't yet far
6039          * enough into CPU bringup that we know how much real time has actually
6040          * elapsed; our helper function, get_kernel_ns() will be using boot
6041          * variables that haven't been updated yet.
6042          *
6043          * So we simply find the maximum observed TSC above, then record the
6044          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6045          * the adjustment will be applied.  Note that we accumulate
6046          * adjustments, in case multiple suspend cycles happen before some VCPU
6047          * gets a chance to run again.  In the event that no KVM threads get a
6048          * chance to run, we will miss the entire elapsed period, as we'll have
6049          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6050          * loose cycle time.  This isn't too big a deal, since the loss will be
6051          * uniform across all VCPUs (not to mention the scenario is extremely
6052          * unlikely). It is possible that a second hibernate recovery happens
6053          * much faster than a first, causing the observed TSC here to be
6054          * smaller; this would require additional padding adjustment, which is
6055          * why we set last_host_tsc to the local tsc observed here.
6056          *
6057          * N.B. - this code below runs only on platforms with reliable TSC,
6058          * as that is the only way backwards_tsc is set above.  Also note
6059          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6060          * have the same delta_cyc adjustment applied if backwards_tsc
6061          * is detected.  Note further, this adjustment is only done once,
6062          * as we reset last_host_tsc on all VCPUs to stop this from being
6063          * called multiple times (one for each physical CPU bringup).
6064          *
6065          * Platforms with unnreliable TSCs don't have to deal with this, they
6066          * will be compensated by the logic in vcpu_load, which sets the TSC to
6067          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6068          * guarantee that they stay in perfect synchronization.
6069          */
6070         if (backwards_tsc) {
6071                 u64 delta_cyc = max_tsc - local_tsc;
6072                 list_for_each_entry(kvm, &vm_list, vm_list) {
6073                         kvm_for_each_vcpu(i, vcpu, kvm) {
6074                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6075                                 vcpu->arch.last_host_tsc = local_tsc;
6076                         }
6077
6078                         /*
6079                          * We have to disable TSC offset matching.. if you were
6080                          * booting a VM while issuing an S4 host suspend....
6081                          * you may have some problem.  Solving this issue is
6082                          * left as an exercise to the reader.
6083                          */
6084                         kvm->arch.last_tsc_nsec = 0;
6085                         kvm->arch.last_tsc_write = 0;
6086                 }
6087
6088         }
6089         return 0;
6090 }
6091
6092 void kvm_arch_hardware_disable(void *garbage)
6093 {
6094         kvm_x86_ops->hardware_disable(garbage);
6095         drop_user_return_notifiers(garbage);
6096 }
6097
6098 int kvm_arch_hardware_setup(void)
6099 {
6100         return kvm_x86_ops->hardware_setup();
6101 }
6102
6103 void kvm_arch_hardware_unsetup(void)
6104 {
6105         kvm_x86_ops->hardware_unsetup();
6106 }
6107
6108 void kvm_arch_check_processor_compat(void *rtn)
6109 {
6110         kvm_x86_ops->check_processor_compatibility(rtn);
6111 }
6112
6113 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6114 {
6115         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6116 }
6117
6118 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6119 {
6120         struct page *page;
6121         struct kvm *kvm;
6122         int r;
6123
6124         BUG_ON(vcpu->kvm == NULL);
6125         kvm = vcpu->kvm;
6126
6127         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6128         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6129                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6130         else
6131                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6132
6133         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6134         if (!page) {
6135                 r = -ENOMEM;
6136                 goto fail;
6137         }
6138         vcpu->arch.pio_data = page_address(page);
6139
6140         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6141
6142         r = kvm_mmu_create(vcpu);
6143         if (r < 0)
6144                 goto fail_free_pio_data;
6145
6146         if (irqchip_in_kernel(kvm)) {
6147                 r = kvm_create_lapic(vcpu);
6148                 if (r < 0)
6149                         goto fail_mmu_destroy;
6150         }
6151
6152         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6153                                        GFP_KERNEL);
6154         if (!vcpu->arch.mce_banks) {
6155                 r = -ENOMEM;
6156                 goto fail_free_lapic;
6157         }
6158         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6159
6160         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6161                 goto fail_free_mce_banks;
6162
6163         kvm_async_pf_hash_reset(vcpu);
6164         kvm_pmu_init(vcpu);
6165
6166         return 0;
6167 fail_free_mce_banks:
6168         kfree(vcpu->arch.mce_banks);
6169 fail_free_lapic:
6170         kvm_free_lapic(vcpu);
6171 fail_mmu_destroy:
6172         kvm_mmu_destroy(vcpu);
6173 fail_free_pio_data:
6174         free_page((unsigned long)vcpu->arch.pio_data);
6175 fail:
6176         return r;
6177 }
6178
6179 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6180 {
6181         int idx;
6182
6183         kvm_pmu_destroy(vcpu);
6184         kfree(vcpu->arch.mce_banks);
6185         kvm_free_lapic(vcpu);
6186         idx = srcu_read_lock(&vcpu->kvm->srcu);
6187         kvm_mmu_destroy(vcpu);
6188         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6189         free_page((unsigned long)vcpu->arch.pio_data);
6190 }
6191
6192 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6193 {
6194         if (type)
6195                 return -EINVAL;
6196
6197         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6198         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6199
6200         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6201         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6202
6203         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6204
6205         return 0;
6206 }
6207
6208 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6209 {
6210         vcpu_load(vcpu);
6211         kvm_mmu_unload(vcpu);
6212         vcpu_put(vcpu);
6213 }
6214
6215 static void kvm_free_vcpus(struct kvm *kvm)
6216 {
6217         unsigned int i;
6218         struct kvm_vcpu *vcpu;
6219
6220         /*
6221          * Unpin any mmu pages first.
6222          */
6223         kvm_for_each_vcpu(i, vcpu, kvm) {
6224                 kvm_clear_async_pf_completion_queue(vcpu);
6225                 kvm_unload_vcpu_mmu(vcpu);
6226         }
6227         kvm_for_each_vcpu(i, vcpu, kvm)
6228                 kvm_arch_vcpu_free(vcpu);
6229
6230         mutex_lock(&kvm->lock);
6231         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6232                 kvm->vcpus[i] = NULL;
6233
6234         atomic_set(&kvm->online_vcpus, 0);
6235         mutex_unlock(&kvm->lock);
6236 }
6237
6238 void kvm_arch_sync_events(struct kvm *kvm)
6239 {
6240         kvm_free_all_assigned_devices(kvm);
6241         kvm_free_pit(kvm);
6242 }
6243
6244 void kvm_arch_destroy_vm(struct kvm *kvm)
6245 {
6246         kvm_iommu_unmap_guest(kvm);
6247         kfree(kvm->arch.vpic);
6248         kfree(kvm->arch.vioapic);
6249         kvm_free_vcpus(kvm);
6250         if (kvm->arch.apic_access_page)
6251                 put_page(kvm->arch.apic_access_page);
6252         if (kvm->arch.ept_identity_pagetable)
6253                 put_page(kvm->arch.ept_identity_pagetable);
6254 }
6255
6256 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6257                            struct kvm_memory_slot *dont)
6258 {
6259         int i;
6260
6261         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6262                 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6263                         vfree(free->arch.lpage_info[i]);
6264                         free->arch.lpage_info[i] = NULL;
6265                 }
6266         }
6267 }
6268
6269 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6270 {
6271         int i;
6272
6273         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6274                 unsigned long ugfn;
6275                 int lpages;
6276                 int level = i + 2;
6277
6278                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6279                                       slot->base_gfn, level) + 1;
6280
6281                 slot->arch.lpage_info[i] =
6282                         vzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6283                 if (!slot->arch.lpage_info[i])
6284                         goto out_free;
6285
6286                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6287                         slot->arch.lpage_info[i][0].write_count = 1;
6288                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6289                         slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6290                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6291                 /*
6292                  * If the gfn and userspace address are not aligned wrt each
6293                  * other, or if explicitly asked to, disable large page
6294                  * support for this slot
6295                  */
6296                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6297                     !kvm_largepages_enabled()) {
6298                         unsigned long j;
6299
6300                         for (j = 0; j < lpages; ++j)
6301                                 slot->arch.lpage_info[i][j].write_count = 1;
6302                 }
6303         }
6304
6305         return 0;
6306
6307 out_free:
6308         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6309                 vfree(slot->arch.lpage_info[i]);
6310                 slot->arch.lpage_info[i] = NULL;
6311         }
6312         return -ENOMEM;
6313 }
6314
6315 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6316                                 struct kvm_memory_slot *memslot,
6317                                 struct kvm_memory_slot old,
6318                                 struct kvm_userspace_memory_region *mem,
6319                                 int user_alloc)
6320 {
6321         int npages = memslot->npages;
6322         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6323
6324         /* Prevent internal slot pages from being moved by fork()/COW. */
6325         if (memslot->id >= KVM_MEMORY_SLOTS)
6326                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6327
6328         /*To keep backward compatibility with older userspace,
6329          *x86 needs to hanlde !user_alloc case.
6330          */
6331         if (!user_alloc) {
6332                 if (npages && !old.rmap) {
6333                         unsigned long userspace_addr;
6334
6335                         down_write(&current->mm->mmap_sem);
6336                         userspace_addr = do_mmap(NULL, 0,
6337                                                  npages * PAGE_SIZE,
6338                                                  PROT_READ | PROT_WRITE,
6339                                                  map_flags,
6340                                                  0);
6341                         up_write(&current->mm->mmap_sem);
6342
6343                         if (IS_ERR((void *)userspace_addr))
6344                                 return PTR_ERR((void *)userspace_addr);
6345
6346                         memslot->userspace_addr = userspace_addr;
6347                 }
6348         }
6349
6350
6351         return 0;
6352 }
6353
6354 void kvm_arch_commit_memory_region(struct kvm *kvm,
6355                                 struct kvm_userspace_memory_region *mem,
6356                                 struct kvm_memory_slot old,
6357                                 int user_alloc)
6358 {
6359
6360         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6361
6362         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6363                 int ret;
6364
6365                 down_write(&current->mm->mmap_sem);
6366                 ret = do_munmap(current->mm, old.userspace_addr,
6367                                 old.npages * PAGE_SIZE);
6368                 up_write(&current->mm->mmap_sem);
6369                 if (ret < 0)
6370                         printk(KERN_WARNING
6371                                "kvm_vm_ioctl_set_memory_region: "
6372                                "failed to munmap memory\n");
6373         }
6374
6375         if (!kvm->arch.n_requested_mmu_pages)
6376                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6377
6378         spin_lock(&kvm->mmu_lock);
6379         if (nr_mmu_pages)
6380                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6381         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6382         spin_unlock(&kvm->mmu_lock);
6383 }
6384
6385 void kvm_arch_flush_shadow(struct kvm *kvm)
6386 {
6387         kvm_mmu_zap_all(kvm);
6388         kvm_reload_remote_mmus(kvm);
6389 }
6390
6391 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6392 {
6393         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6394                 !vcpu->arch.apf.halted)
6395                 || !list_empty_careful(&vcpu->async_pf.done)
6396                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6397                 || atomic_read(&vcpu->arch.nmi_queued) ||
6398                 (kvm_arch_interrupt_allowed(vcpu) &&
6399                  kvm_cpu_has_interrupt(vcpu));
6400 }
6401
6402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6403 {
6404         int me;
6405         int cpu = vcpu->cpu;
6406
6407         if (waitqueue_active(&vcpu->wq)) {
6408                 wake_up_interruptible(&vcpu->wq);
6409                 ++vcpu->stat.halt_wakeup;
6410         }
6411
6412         me = get_cpu();
6413         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6414                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6415                         smp_send_reschedule(cpu);
6416         put_cpu();
6417 }
6418
6419 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6420 {
6421         return kvm_x86_ops->interrupt_allowed(vcpu);
6422 }
6423
6424 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6425 {
6426         unsigned long current_rip = kvm_rip_read(vcpu) +
6427                 get_segment_base(vcpu, VCPU_SREG_CS);
6428
6429         return current_rip == linear_rip;
6430 }
6431 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6432
6433 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6434 {
6435         unsigned long rflags;
6436
6437         rflags = kvm_x86_ops->get_rflags(vcpu);
6438         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6439                 rflags &= ~X86_EFLAGS_TF;
6440         return rflags;
6441 }
6442 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6443
6444 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6445 {
6446         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6447             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6448                 rflags |= X86_EFLAGS_TF;
6449         kvm_x86_ops->set_rflags(vcpu, rflags);
6450         kvm_make_request(KVM_REQ_EVENT, vcpu);
6451 }
6452 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6453
6454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6455 {
6456         int r;
6457
6458         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6459               is_error_page(work->page))
6460                 return;
6461
6462         r = kvm_mmu_reload(vcpu);
6463         if (unlikely(r))
6464                 return;
6465
6466         if (!vcpu->arch.mmu.direct_map &&
6467               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6468                 return;
6469
6470         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6471 }
6472
6473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6474 {
6475         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6476 }
6477
6478 static inline u32 kvm_async_pf_next_probe(u32 key)
6479 {
6480         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6481 }
6482
6483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6484 {
6485         u32 key = kvm_async_pf_hash_fn(gfn);
6486
6487         while (vcpu->arch.apf.gfns[key] != ~0)
6488                 key = kvm_async_pf_next_probe(key);
6489
6490         vcpu->arch.apf.gfns[key] = gfn;
6491 }
6492
6493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6494 {
6495         int i;
6496         u32 key = kvm_async_pf_hash_fn(gfn);
6497
6498         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6499                      (vcpu->arch.apf.gfns[key] != gfn &&
6500                       vcpu->arch.apf.gfns[key] != ~0); i++)
6501                 key = kvm_async_pf_next_probe(key);
6502
6503         return key;
6504 }
6505
6506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6507 {
6508         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6509 }
6510
6511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6512 {
6513         u32 i, j, k;
6514
6515         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6516         while (true) {
6517                 vcpu->arch.apf.gfns[i] = ~0;
6518                 do {
6519                         j = kvm_async_pf_next_probe(j);
6520                         if (vcpu->arch.apf.gfns[j] == ~0)
6521                                 return;
6522                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6523                         /*
6524                          * k lies cyclically in ]i,j]
6525                          * |    i.k.j |
6526                          * |....j i.k.| or  |.k..j i...|
6527                          */
6528                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6529                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6530                 i = j;
6531         }
6532 }
6533
6534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6535 {
6536
6537         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6538                                       sizeof(val));
6539 }
6540
6541 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6542                                      struct kvm_async_pf *work)
6543 {
6544         struct x86_exception fault;
6545
6546         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6547         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6548
6549         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6550             (vcpu->arch.apf.send_user_only &&
6551              kvm_x86_ops->get_cpl(vcpu) == 0))
6552                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6553         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6554                 fault.vector = PF_VECTOR;
6555                 fault.error_code_valid = true;
6556                 fault.error_code = 0;
6557                 fault.nested_page_fault = false;
6558                 fault.address = work->arch.token;
6559                 kvm_inject_page_fault(vcpu, &fault);
6560         }
6561 }
6562
6563 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6564                                  struct kvm_async_pf *work)
6565 {
6566         struct x86_exception fault;
6567
6568         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6569         if (is_error_page(work->page))
6570                 work->arch.token = ~0; /* broadcast wakeup */
6571         else
6572                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6573
6574         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6575             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6576                 fault.vector = PF_VECTOR;
6577                 fault.error_code_valid = true;
6578                 fault.error_code = 0;
6579                 fault.nested_page_fault = false;
6580                 fault.address = work->arch.token;
6581                 kvm_inject_page_fault(vcpu, &fault);
6582         }
6583         vcpu->arch.apf.halted = false;
6584 }
6585
6586 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6587 {
6588         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6589                 return true;
6590         else
6591                 return !kvm_event_needs_reinjection(vcpu) &&
6592                         kvm_x86_ops->interrupt_allowed(vcpu);
6593 }
6594
6595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);