- patches.arch/x86_mce_intel_decode_physical_address.patch:
[linux-flexiantxendom0-3.2.10.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30
31 /*
32  * Read from eeprom
33  */
34 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
35 {
36         u32 status, timeout;
37
38         ATH5K_TRACE(ah->ah_sc);
39         /*
40          * Initialize EEPROM access
41          */
42         if (ah->ah_version == AR5K_AR5210) {
43                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
44                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
45         } else {
46                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
47                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
48                                 AR5K_EEPROM_CMD_READ);
49         }
50
51         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
52                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
53                 if (status & AR5K_EEPROM_STAT_RDDONE) {
54                         if (status & AR5K_EEPROM_STAT_RDERR)
55                                 return -EIO;
56                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
57                                         0xffff);
58                         return 0;
59                 }
60                 udelay(15);
61         }
62
63         return -ETIMEDOUT;
64 }
65
66 /*
67  * Translate binary channel representation in EEPROM to frequency
68  */
69 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
70                                  unsigned int mode)
71 {
72         u16 val;
73
74         if (bin == AR5K_EEPROM_CHANNEL_DIS)
75                 return bin;
76
77         if (mode == AR5K_EEPROM_MODE_11A) {
78                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
79                         val = (5 * bin) + 4800;
80                 else
81                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
82                                 (bin * 10) + 5100;
83         } else {
84                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
85                         val = bin + 2300;
86                 else
87                         val = bin + 2400;
88         }
89
90         return val;
91 }
92
93 /*
94  * Initialize eeprom & capabilities structs
95  */
96 static int
97 ath5k_eeprom_init_header(struct ath5k_hw *ah)
98 {
99         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
100         int ret;
101         u16 val;
102         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
103
104         /*
105          * Read values from EEPROM and store them in the capability structure
106          */
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
110         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
111         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
112
113         /* Return if we have an old EEPROM */
114         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
115                 return 0;
116
117         /*
118          * Validate the checksum of the EEPROM date. There are some
119          * devices with invalid EEPROMs.
120          */
121         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
122         if (val) {
123                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
124                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
125                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
126                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
127
128                 /*
129                  * Fail safe check to prevent stupid loops due
130                  * to busted EEPROMs. XXX: This value is likely too
131                  * big still, waiting on a better value.
132                  */
133                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
134                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
135                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
136                                   eep_max, eep_max,
137                                   3 * AR5K_EEPROM_INFO_MAX,
138                                   3 * AR5K_EEPROM_INFO_MAX);
139                         return -EIO;
140                 }
141         }
142
143         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
144                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
145                 cksum ^= val;
146         }
147         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
148                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
149                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
150                           cksum, eep_max,
151                           eep_max == AR5K_EEPROM_INFO_MAX ?
152                                 "default size" : "custom size");
153                 return -EIO;
154         }
155
156         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
157             ee_ant_gain);
158
159         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
160                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
161                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
162
163                 /* XXX: Don't know which versions include these two */
164                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
165
166                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
167                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
168
169                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
170                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
171                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
172                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
173                 }
174         }
175
176         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
177                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
178                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
179                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
180
181                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
182                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
183                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
184         }
185
186         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
187
188         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
189                 ee->ee_is_hb63 = true;
190         else
191                 ee->ee_is_hb63 = false;
192
193         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
194         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
195         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
196
197         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
198          * and enable serdes programming if needed.
199          *
200          * XXX: Serdes values seem to be fixed so
201          * no need to read them here, we write them
202          * during ath5k_hw_attach */
203         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
204         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
205                                                         true : false;
206
207         return 0;
208 }
209
210
211 /*
212  * Read antenna infos from eeprom
213  */
214 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
215                 unsigned int mode)
216 {
217         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
218         u32 o = *offset;
219         u16 val;
220         int ret, i = 0;
221
222         AR5K_EEPROM_READ(o++, val);
223         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
224         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
225         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
226
227         AR5K_EEPROM_READ(o++, val);
228         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
229         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
230         ee->ee_ant_control[mode][i++]   = val & 0x3f;
231
232         AR5K_EEPROM_READ(o++, val);
233         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
234         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
235         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
236
237         AR5K_EEPROM_READ(o++, val);
238         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
239         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
240         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
241         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
242
243         AR5K_EEPROM_READ(o++, val);
244         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
245         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
246         ee->ee_ant_control[mode][i++]   = val & 0x3f;
247
248         /* Get antenna switch tables */
249         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
250             (ee->ee_ant_control[mode][0] << 4);
251         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
252              ee->ee_ant_control[mode][1]        |
253             (ee->ee_ant_control[mode][2] << 6)  |
254             (ee->ee_ant_control[mode][3] << 12) |
255             (ee->ee_ant_control[mode][4] << 18) |
256             (ee->ee_ant_control[mode][5] << 24);
257         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
258              ee->ee_ant_control[mode][6]        |
259             (ee->ee_ant_control[mode][7] << 6)  |
260             (ee->ee_ant_control[mode][8] << 12) |
261             (ee->ee_ant_control[mode][9] << 18) |
262             (ee->ee_ant_control[mode][10] << 24);
263
264         /* return new offset */
265         *offset = o;
266
267         return 0;
268 }
269
270 /*
271  * Read supported modes and some mode-specific calibration data
272  * from eeprom
273  */
274 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
275                 unsigned int mode)
276 {
277         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
278         u32 o = *offset;
279         u16 val;
280         int ret;
281
282         ee->ee_n_piers[mode] = 0;
283         AR5K_EEPROM_READ(o++, val);
284         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
285         switch(mode) {
286         case AR5K_EEPROM_MODE_11A:
287                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
288                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
289                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
290
291                 AR5K_EEPROM_READ(o++, val);
292                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
293                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
294                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
295                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
296                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
297                 ee->ee_db[mode][0]      = val & 0x7;
298                 break;
299         case AR5K_EEPROM_MODE_11G:
300         case AR5K_EEPROM_MODE_11B:
301                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
302                 ee->ee_db[mode][1]      = val & 0x7;
303                 break;
304         }
305
306         AR5K_EEPROM_READ(o++, val);
307         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
308         ee->ee_thr_62[mode]             = val & 0xff;
309
310         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
311                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
312
313         AR5K_EEPROM_READ(o++, val);
314         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
315         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
316
317         AR5K_EEPROM_READ(o++, val);
318         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
319
320         if ((val & 0xff) & 0x80)
321                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
322         else
323                 ee->ee_noise_floor_thr[mode] = val & 0xff;
324
325         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
326                 ee->ee_noise_floor_thr[mode] =
327                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
328
329         AR5K_EEPROM_READ(o++, val);
330         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
331         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
332         ee->ee_xpd[mode]                = val & 0x1;
333
334         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
335             mode != AR5K_EEPROM_MODE_11B)
336                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
337
338         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
339                 AR5K_EEPROM_READ(o++, val);
340                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
341
342                 if (mode == AR5K_EEPROM_MODE_11A)
343                         ee->ee_xr_power[mode] = val & 0x3f;
344                 else {
345                         /* b_DB_11[bg] and b_OB_11[bg] */
346                         ee->ee_ob[mode][0] = val & 0x7;
347                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
348                 }
349         }
350
351         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
352                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
353                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
354         } else {
355                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
356
357                 AR5K_EEPROM_READ(o++, val);
358                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
359
360                 if (mode == AR5K_EEPROM_MODE_11G) {
361                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
362                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
363                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
364                 }
365         }
366
367         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
368                         mode == AR5K_EEPROM_MODE_11A) {
369                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
370                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
371         }
372
373         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
374                 goto done;
375
376         /* Note: >= v5 have bg freq piers on another location
377          * so these freq piers are ignored for >= v5 (should be 0xff
378          * anyway) */
379         switch(mode) {
380         case AR5K_EEPROM_MODE_11A:
381                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
382                         break;
383
384                 AR5K_EEPROM_READ(o++, val);
385                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
386                 break;
387         case AR5K_EEPROM_MODE_11B:
388                 AR5K_EEPROM_READ(o++, val);
389
390                 ee->ee_pwr_cal_b[0].freq =
391                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
392                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
393                         ee->ee_n_piers[mode]++;
394
395                 ee->ee_pwr_cal_b[1].freq =
396                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
397                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
398                         ee->ee_n_piers[mode]++;
399
400                 AR5K_EEPROM_READ(o++, val);
401                 ee->ee_pwr_cal_b[2].freq =
402                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404                         ee->ee_n_piers[mode]++;
405
406                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408                 break;
409         case AR5K_EEPROM_MODE_11G:
410                 AR5K_EEPROM_READ(o++, val);
411
412                 ee->ee_pwr_cal_g[0].freq =
413                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
414                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
415                         ee->ee_n_piers[mode]++;
416
417                 ee->ee_pwr_cal_g[1].freq =
418                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
419                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
420                         ee->ee_n_piers[mode]++;
421
422                 AR5K_EEPROM_READ(o++, val);
423                 ee->ee_turbo_max_power[mode] = val & 0x7f;
424                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
425
426                 AR5K_EEPROM_READ(o++, val);
427                 ee->ee_pwr_cal_g[2].freq =
428                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
429                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
430                         ee->ee_n_piers[mode]++;
431
432                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
433                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
434
435                 AR5K_EEPROM_READ(o++, val);
436                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
437                 ee->ee_q_cal[mode] = val & 0x1f;
438
439                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
440                         AR5K_EEPROM_READ(o++, val);
441                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
442                 }
443                 break;
444         }
445
446         /*
447          * Read turbo mode information on newer EEPROM versions
448          */
449         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
450                 goto done;
451
452         switch (mode){
453         case AR5K_EEPROM_MODE_11A:
454                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
455
456                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
457                 AR5K_EEPROM_READ(o++, val);
458                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
459                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
460
461                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
462                 AR5K_EEPROM_READ(o++, val);
463                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
464                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
465
466                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
467                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
468                 break;
469         case AR5K_EEPROM_MODE_11G:
470                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
471
472                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
473                 AR5K_EEPROM_READ(o++, val);
474                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
475                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
476
477                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
478                 AR5K_EEPROM_READ(o++, val);
479                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
480                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
481                 break;
482         }
483
484 done:
485         /* return new offset */
486         *offset = o;
487
488         return 0;
489 }
490
491 /* Read mode-specific data (except power calibration data) */
492 static int
493 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
494 {
495         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
496         u32 mode_offset[3];
497         unsigned int mode;
498         u32 offset;
499         int ret;
500
501         /*
502          * Get values for all modes
503          */
504         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
505         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
506         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
507
508         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
509                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
510
511         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
512                 offset = mode_offset[mode];
513
514                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
515                 if (ret)
516                         return ret;
517
518                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
519                 if (ret)
520                         return ret;
521         }
522
523         /* override for older eeprom versions for better performance */
524         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
525                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
526                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
527                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
528         }
529
530         return 0;
531 }
532
533 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
534  * frequency mask) */
535 static inline int
536 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
537                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
538 {
539         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
540         int o = *offset;
541         int i = 0;
542         u8 freq1, freq2;
543         int ret;
544         u16 val;
545
546         ee->ee_n_piers[mode] = 0;
547         while(i < max) {
548                 AR5K_EEPROM_READ(o++, val);
549
550                 freq1 = val & 0xff;
551                 if (!freq1)
552                         break;
553
554                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
555                                 freq1, mode);
556                 ee->ee_n_piers[mode]++;
557
558                 freq2 = (val >> 8) & 0xff;
559                 if (!freq2)
560                         break;
561
562                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
563                                 freq2, mode);
564                 ee->ee_n_piers[mode]++;
565         }
566
567         /* return new offset */
568         *offset = o;
569
570         return 0;
571 }
572
573 /* Read frequency piers for 802.11a */
574 static int
575 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
576 {
577         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
578         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
579         int i, ret;
580         u16 val;
581         u8 mask;
582
583         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
584                 ath5k_eeprom_read_freq_list(ah, &offset,
585                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
586                         AR5K_EEPROM_MODE_11A);
587         } else {
588                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
589
590                 AR5K_EEPROM_READ(offset++, val);
591                 pcal[0].freq  = (val >> 9) & mask;
592                 pcal[1].freq  = (val >> 2) & mask;
593                 pcal[2].freq  = (val << 5) & mask;
594
595                 AR5K_EEPROM_READ(offset++, val);
596                 pcal[2].freq |= (val >> 11) & 0x1f;
597                 pcal[3].freq  = (val >> 4) & mask;
598                 pcal[4].freq  = (val << 3) & mask;
599
600                 AR5K_EEPROM_READ(offset++, val);
601                 pcal[4].freq |= (val >> 13) & 0x7;
602                 pcal[5].freq  = (val >> 6) & mask;
603                 pcal[6].freq  = (val << 1) & mask;
604
605                 AR5K_EEPROM_READ(offset++, val);
606                 pcal[6].freq |= (val >> 15) & 0x1;
607                 pcal[7].freq  = (val >> 8) & mask;
608                 pcal[8].freq  = (val >> 1) & mask;
609                 pcal[9].freq  = (val << 6) & mask;
610
611                 AR5K_EEPROM_READ(offset++, val);
612                 pcal[9].freq |= (val >> 10) & 0x3f;
613
614                 /* Fixed number of piers */
615                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
616
617                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
618                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
619                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
620                 }
621         }
622
623         return 0;
624 }
625
626 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
627 static inline int
628 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
629 {
630         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
631         struct ath5k_chan_pcal_info *pcal;
632
633         switch(mode) {
634         case AR5K_EEPROM_MODE_11B:
635                 pcal = ee->ee_pwr_cal_b;
636                 break;
637         case AR5K_EEPROM_MODE_11G:
638                 pcal = ee->ee_pwr_cal_g;
639                 break;
640         default:
641                 return -EINVAL;
642         }
643
644         ath5k_eeprom_read_freq_list(ah, &offset,
645                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
646                 mode);
647
648         return 0;
649 }
650
651 /*
652  * Read power calibration for RF5111 chips
653  *
654  * For RF5111 we have an XPD -eXternal Power Detector- curve
655  * for each calibrated channel. Each curve has 0,5dB Power steps
656  * on x axis and PCDAC steps (offsets) on y axis and looks like an
657  * exponential function. To recreate the curve we read 11 points
658  * here and interpolate later.
659  */
660
661 /* Used to match PCDAC steps with power values on RF5111 chips
662  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
663  * steps that match with the power values we read from eeprom. On
664  * older eeprom versions (< 3.2) these steps are equaly spaced at
665  * 10% of the pcdac curve -until the curve reaches it's maximum-
666  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
667  * these 11 steps are spaced in a different way. This function returns
668  * the pcdac steps based on eeprom version and curve min/max so that we
669  * can have pcdac/pwr points.
670  */
671 static inline void
672 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
673 {
674         static const u16 intercepts3[] =
675                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
676         static const u16 intercepts3_2[] =
677                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
678         const u16 *ip;
679         int i;
680
681         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
682                 ip = intercepts3_2;
683         else
684                 ip = intercepts3;
685
686         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
687                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
688 }
689
690 /* Convert RF5111 specific data to generic raw data
691  * used by interpolation code */
692 static int
693 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
694                                 struct ath5k_chan_pcal_info *chinfo)
695 {
696         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
697         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
698         struct ath5k_pdgain_info *pd;
699         u8 pier, point, idx;
700         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
701
702         /* Fill raw data for each calibration pier */
703         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
704
705                 pcinfo = &chinfo[pier].rf5111_info;
706
707                 /* Allocate pd_curves for this cal pier */
708                 chinfo[pier].pd_curves =
709                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
710                                 sizeof(struct ath5k_pdgain_info),
711                                 GFP_KERNEL);
712
713                 if (!chinfo[pier].pd_curves)
714                         return -ENOMEM;
715
716                 /* Only one curve for RF5111
717                  * find out which one and place
718                  * in in pd_curves.
719                  * Note: ee_x_gain is reversed here */
720                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
721
722                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
723                                 pdgain_idx[0] = idx;
724                                 break;
725                         }
726                 }
727
728                 ee->ee_pd_gains[mode] = 1;
729
730                 pd = &chinfo[pier].pd_curves[idx];
731
732                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
733
734                 /* Allocate pd points for this curve */
735                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
736                                         sizeof(u8), GFP_KERNEL);
737                 if (!pd->pd_step)
738                         return -ENOMEM;
739
740                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
741                                         sizeof(s16), GFP_KERNEL);
742                 if (!pd->pd_pwr)
743                         return -ENOMEM;
744
745                 /* Fill raw dataset
746                  * (convert power to 0.25dB units
747                  * for RF5112 combatibility) */
748                 for (point = 0; point < pd->pd_points; point++) {
749
750                         /* Absolute values */
751                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
752
753                         /* Already sorted */
754                         pd->pd_step[point] = pcinfo->pcdac[point];
755                 }
756
757                 /* Set min/max pwr */
758                 chinfo[pier].min_pwr = pd->pd_pwr[0];
759                 chinfo[pier].max_pwr = pd->pd_pwr[10];
760
761         }
762
763         return 0;
764 }
765
766 /* Parse EEPROM data */
767 static int
768 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
769 {
770         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
771         struct ath5k_chan_pcal_info *pcal;
772         int offset, ret;
773         int i;
774         u16 val;
775
776         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
777         switch(mode) {
778         case AR5K_EEPROM_MODE_11A:
779                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
780                         return 0;
781
782                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
783                         offset + AR5K_EEPROM_GROUP1_OFFSET);
784                 if (ret < 0)
785                         return ret;
786
787                 offset += AR5K_EEPROM_GROUP2_OFFSET;
788                 pcal = ee->ee_pwr_cal_a;
789                 break;
790         case AR5K_EEPROM_MODE_11B:
791                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
792                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
793                         return 0;
794
795                 pcal = ee->ee_pwr_cal_b;
796                 offset += AR5K_EEPROM_GROUP3_OFFSET;
797
798                 /* fixed piers */
799                 pcal[0].freq = 2412;
800                 pcal[1].freq = 2447;
801                 pcal[2].freq = 2484;
802                 ee->ee_n_piers[mode] = 3;
803                 break;
804         case AR5K_EEPROM_MODE_11G:
805                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
806                         return 0;
807
808                 pcal = ee->ee_pwr_cal_g;
809                 offset += AR5K_EEPROM_GROUP4_OFFSET;
810
811                 /* fixed piers */
812                 pcal[0].freq = 2312;
813                 pcal[1].freq = 2412;
814                 pcal[2].freq = 2484;
815                 ee->ee_n_piers[mode] = 3;
816                 break;
817         default:
818                 return -EINVAL;
819         }
820
821         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
822                 struct ath5k_chan_pcal_info_rf5111 *cdata =
823                         &pcal[i].rf5111_info;
824
825                 AR5K_EEPROM_READ(offset++, val);
826                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
827                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
828                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
829
830                 AR5K_EEPROM_READ(offset++, val);
831                 cdata->pwr[0] |= ((val >> 14) & 0x3);
832                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
833                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
834                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
835
836                 AR5K_EEPROM_READ(offset++, val);
837                 cdata->pwr[3] |= ((val >> 12) & 0xf);
838                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
839                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
840
841                 AR5K_EEPROM_READ(offset++, val);
842                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
843                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
844                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
845
846                 AR5K_EEPROM_READ(offset++, val);
847                 cdata->pwr[8] |= ((val >> 14) & 0x3);
848                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
849                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
850
851                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
852                         cdata->pcdac_max, cdata->pcdac);
853         }
854
855         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
856 }
857
858
859 /*
860  * Read power calibration for RF5112 chips
861  *
862  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
863  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
864  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
865  * power steps on x axis and PCDAC steps on y axis and looks like a
866  * linear function. To recreate the curve and pass the power values
867  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
868  * and 3 points for xpd 3 (higher gain -> lower power) here and
869  * interpolate later.
870  *
871  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
872  */
873
874 /* Convert RF5112 specific data to generic raw data
875  * used by interpolation code */
876 static int
877 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
878                                 struct ath5k_chan_pcal_info *chinfo)
879 {
880         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
881         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
882         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
883         unsigned int pier, pdg, point;
884
885         /* Fill raw data for each calibration pier */
886         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
887
888                 pcinfo = &chinfo[pier].rf5112_info;
889
890                 /* Allocate pd_curves for this cal pier */
891                 chinfo[pier].pd_curves =
892                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
893                                         sizeof(struct ath5k_pdgain_info),
894                                         GFP_KERNEL);
895
896                 if (!chinfo[pier].pd_curves)
897                         return -ENOMEM;
898
899                 /* Fill pd_curves */
900                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
901
902                         u8 idx = pdgain_idx[pdg];
903                         struct ath5k_pdgain_info *pd =
904                                         &chinfo[pier].pd_curves[idx];
905
906                         /* Lowest gain curve (max power) */
907                         if (pdg == 0) {
908                                 /* One more point for better accuracy */
909                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
910
911                                 /* Allocate pd points for this curve */
912                                 pd->pd_step = kcalloc(pd->pd_points,
913                                                 sizeof(u8), GFP_KERNEL);
914
915                                 if (!pd->pd_step)
916                                         return -ENOMEM;
917
918                                 pd->pd_pwr = kcalloc(pd->pd_points,
919                                                 sizeof(s16), GFP_KERNEL);
920
921                                 if (!pd->pd_pwr)
922                                         return -ENOMEM;
923
924
925                                 /* Fill raw dataset
926                                  * (all power levels are in 0.25dB units) */
927                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
928                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
929
930                                 for (point = 1; point < pd->pd_points;
931                                 point++) {
932                                         /* Absolute values */
933                                         pd->pd_pwr[point] =
934                                                 pcinfo->pwr_x0[point];
935
936                                         /* Deltas */
937                                         pd->pd_step[point] =
938                                                 pd->pd_step[point - 1] +
939                                                 pcinfo->pcdac_x0[point];
940                                 }
941
942                                 /* Set min power for this frequency */
943                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
944
945                         /* Highest gain curve (min power) */
946                         } else if (pdg == 1) {
947
948                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
949
950                                 /* Allocate pd points for this curve */
951                                 pd->pd_step = kcalloc(pd->pd_points,
952                                                 sizeof(u8), GFP_KERNEL);
953
954                                 if (!pd->pd_step)
955                                         return -ENOMEM;
956
957                                 pd->pd_pwr = kcalloc(pd->pd_points,
958                                                 sizeof(s16), GFP_KERNEL);
959
960                                 if (!pd->pd_pwr)
961                                         return -ENOMEM;
962
963                                 /* Fill raw dataset
964                                  * (all power levels are in 0.25dB units) */
965                                 for (point = 0; point < pd->pd_points;
966                                 point++) {
967                                         /* Absolute values */
968                                         pd->pd_pwr[point] =
969                                                 pcinfo->pwr_x3[point];
970
971                                         /* Fixed points */
972                                         pd->pd_step[point] =
973                                                 pcinfo->pcdac_x3[point];
974                                 }
975
976                                 /* Since we have a higher gain curve
977                                  * override min power */
978                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
979                         }
980                 }
981         }
982
983         return 0;
984 }
985
986 /* Parse EEPROM data */
987 static int
988 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
989 {
990         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
991         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
992         struct ath5k_chan_pcal_info *gen_chan_info;
993         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
994         u32 offset;
995         u8 i, c;
996         u16 val;
997         int ret;
998         u8 pd_gains = 0;
999
1000         /* Count how many curves we have and
1001          * identify them (which one of the 4
1002          * available curves we have on each count).
1003          * Curves are stored from lower (x0) to
1004          * higher (x3) gain */
1005         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1006                 /* ee_x_gain[mode] is x gain mask */
1007                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1008                         pdgain_idx[pd_gains++] = i;
1009         }
1010         ee->ee_pd_gains[mode] = pd_gains;
1011
1012         if (pd_gains == 0 || pd_gains > 2)
1013                 return -EINVAL;
1014
1015         switch (mode) {
1016         case AR5K_EEPROM_MODE_11A:
1017                 /*
1018                  * Read 5GHz EEPROM channels
1019                  */
1020                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1021                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1022
1023                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1024                 gen_chan_info = ee->ee_pwr_cal_a;
1025                 break;
1026         case AR5K_EEPROM_MODE_11B:
1027                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1028                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1029                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1030
1031                 /* NB: frequency piers parsed during mode init */
1032                 gen_chan_info = ee->ee_pwr_cal_b;
1033                 break;
1034         case AR5K_EEPROM_MODE_11G:
1035                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1036                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1037                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1038                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1039                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1040
1041                 /* NB: frequency piers parsed during mode init */
1042                 gen_chan_info = ee->ee_pwr_cal_g;
1043                 break;
1044         default:
1045                 return -EINVAL;
1046         }
1047
1048         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1049                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1050
1051                 /* Power values in quarter dB
1052                  * for the lower xpd gain curve
1053                  * (0 dBm -> higher output power) */
1054                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1055                         AR5K_EEPROM_READ(offset++, val);
1056                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1057                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1058                 }
1059
1060                 /* PCDAC steps
1061                  * corresponding to the above power
1062                  * measurements */
1063                 AR5K_EEPROM_READ(offset++, val);
1064                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1065                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1066                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1067
1068                 /* Power values in quarter dB
1069                  * for the higher xpd gain curve
1070                  * (18 dBm -> lower output power) */
1071                 AR5K_EEPROM_READ(offset++, val);
1072                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1073                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1074
1075                 AR5K_EEPROM_READ(offset++, val);
1076                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1077
1078                 /* PCDAC steps
1079                  * corresponding to the above power
1080                  * measurements (fixed) */
1081                 chan_pcal_info->pcdac_x3[0] = 20;
1082                 chan_pcal_info->pcdac_x3[1] = 35;
1083                 chan_pcal_info->pcdac_x3[2] = 63;
1084
1085                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1086                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1087
1088                         /* Last xpd0 power level is also channel maximum */
1089                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1090                 } else {
1091                         chan_pcal_info->pcdac_x0[0] = 1;
1092                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1093                 }
1094
1095         }
1096
1097         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1098 }
1099
1100
1101 /*
1102  * Read power calibration for RF2413 chips
1103  *
1104  * For RF2413 we have a Power to PDDAC table (Power Detector)
1105  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1106  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1107  * axis and looks like an exponential function like the RF5111 curve.
1108  *
1109  * To recreate the curves we read here the points and interpolate
1110  * later. Note that in most cases only 2 (higher and lower) curves are
1111  * used (like RF5112) but vendors have the oportunity to include all
1112  * 4 curves on eeprom. The final curve (higher power) has an extra
1113  * point for better accuracy like RF5112.
1114  */
1115
1116 /* For RF2413 power calibration data doesn't start on a fixed location and
1117  * if a mode is not supported, it's section is missing -not zeroed-.
1118  * So we need to calculate the starting offset for each section by using
1119  * these two functions */
1120
1121 /* Return the size of each section based on the mode and the number of pd
1122  * gains available (maximum 4). */
1123 static inline unsigned int
1124 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1125 {
1126         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1127         unsigned int sz;
1128
1129         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1130         sz *= ee->ee_n_piers[mode];
1131
1132         return sz;
1133 }
1134
1135 /* Return the starting offset for a section based on the modes supported
1136  * and each section's size. */
1137 static unsigned int
1138 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1139 {
1140         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1141
1142         switch(mode) {
1143         case AR5K_EEPROM_MODE_11G:
1144                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1145                         offset += ath5k_pdgains_size_2413(ee,
1146                                         AR5K_EEPROM_MODE_11B) +
1147                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1148                 /* fall through */
1149         case AR5K_EEPROM_MODE_11B:
1150                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1151                         offset += ath5k_pdgains_size_2413(ee,
1152                                         AR5K_EEPROM_MODE_11A) +
1153                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1154                 /* fall through */
1155         case AR5K_EEPROM_MODE_11A:
1156                 break;
1157         default:
1158                 break;
1159         }
1160
1161         return offset;
1162 }
1163
1164 /* Convert RF2413 specific data to generic raw data
1165  * used by interpolation code */
1166 static int
1167 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1168                                 struct ath5k_chan_pcal_info *chinfo)
1169 {
1170         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1171         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1172         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1173         unsigned int pier, pdg, point;
1174
1175         /* Fill raw data for each calibration pier */
1176         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1177
1178                 pcinfo = &chinfo[pier].rf2413_info;
1179
1180                 /* Allocate pd_curves for this cal pier */
1181                 chinfo[pier].pd_curves =
1182                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1183                                         sizeof(struct ath5k_pdgain_info),
1184                                         GFP_KERNEL);
1185
1186                 if (!chinfo[pier].pd_curves)
1187                         return -ENOMEM;
1188
1189                 /* Fill pd_curves */
1190                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1191
1192                         u8 idx = pdgain_idx[pdg];
1193                         struct ath5k_pdgain_info *pd =
1194                                         &chinfo[pier].pd_curves[idx];
1195
1196                         /* One more point for the highest power
1197                          * curve (lowest gain) */
1198                         if (pdg == ee->ee_pd_gains[mode] - 1)
1199                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1200                         else
1201                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1202
1203                         /* Allocate pd points for this curve */
1204                         pd->pd_step = kcalloc(pd->pd_points,
1205                                         sizeof(u8), GFP_KERNEL);
1206
1207                         if (!pd->pd_step)
1208                                 return -ENOMEM;
1209
1210                         pd->pd_pwr = kcalloc(pd->pd_points,
1211                                         sizeof(s16), GFP_KERNEL);
1212
1213                         if (!pd->pd_pwr)
1214                                 return -ENOMEM;
1215
1216                         /* Fill raw dataset
1217                          * convert all pwr levels to
1218                          * quarter dB for RF5112 combatibility */
1219                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1220                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1221
1222                         for (point = 1; point < pd->pd_points; point++) {
1223
1224                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1225                                         2 * pcinfo->pwr[pdg][point - 1];
1226
1227                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1228                                                 pcinfo->pddac[pdg][point - 1];
1229
1230                         }
1231
1232                         /* Highest gain curve -> min power */
1233                         if (pdg == 0)
1234                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1235
1236                         /* Lowest gain curve -> max power */
1237                         if (pdg == ee->ee_pd_gains[mode] - 1)
1238                                 chinfo[pier].max_pwr =
1239                                         pd->pd_pwr[pd->pd_points - 1];
1240                 }
1241         }
1242
1243         return 0;
1244 }
1245
1246 /* Parse EEPROM data */
1247 static int
1248 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1249 {
1250         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1251         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1252         struct ath5k_chan_pcal_info *chinfo;
1253         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1254         u32 offset;
1255         int idx, i, ret;
1256         u16 val;
1257         u8 pd_gains = 0;
1258
1259         /* Count how many curves we have and
1260          * identify them (which one of the 4
1261          * available curves we have on each count).
1262          * Curves are stored from higher to
1263          * lower gain so we go backwards */
1264         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1265                 /* ee_x_gain[mode] is x gain mask */
1266                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1267                         pdgain_idx[pd_gains++] = idx;
1268
1269         }
1270         ee->ee_pd_gains[mode] = pd_gains;
1271
1272         if (pd_gains == 0)
1273                 return -EINVAL;
1274
1275         offset = ath5k_cal_data_offset_2413(ee, mode);
1276         switch (mode) {
1277         case AR5K_EEPROM_MODE_11A:
1278                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1279                         return 0;
1280
1281                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1282                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1283                 chinfo = ee->ee_pwr_cal_a;
1284                 break;
1285         case AR5K_EEPROM_MODE_11B:
1286                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1287                         return 0;
1288
1289                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1290                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1291                 chinfo = ee->ee_pwr_cal_b;
1292                 break;
1293         case AR5K_EEPROM_MODE_11G:
1294                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1295                         return 0;
1296
1297                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1298                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1299                 chinfo = ee->ee_pwr_cal_g;
1300                 break;
1301         default:
1302                 return -EINVAL;
1303         }
1304
1305         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1306                 pcinfo = &chinfo[i].rf2413_info;
1307
1308                 /*
1309                  * Read pwr_i, pddac_i and the first
1310                  * 2 pd points (pwr, pddac)
1311                  */
1312                 AR5K_EEPROM_READ(offset++, val);
1313                 pcinfo->pwr_i[0] = val & 0x1f;
1314                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1315                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1316
1317                 AR5K_EEPROM_READ(offset++, val);
1318                 pcinfo->pddac[0][0] = val & 0x3f;
1319                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1320                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1321
1322                 AR5K_EEPROM_READ(offset++, val);
1323                 pcinfo->pwr[0][2] = val & 0xf;
1324                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1325
1326                 pcinfo->pwr[0][3] = 0;
1327                 pcinfo->pddac[0][3] = 0;
1328
1329                 if (pd_gains > 1) {
1330                         /*
1331                          * Pd gain 0 is not the last pd gain
1332                          * so it only has 2 pd points.
1333                          * Continue wih pd gain 1.
1334                          */
1335                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1336
1337                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1338                         AR5K_EEPROM_READ(offset++, val);
1339                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1340
1341                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1342                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1343
1344                         AR5K_EEPROM_READ(offset++, val);
1345                         pcinfo->pwr[1][1] = val & 0xf;
1346                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1347                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1348
1349                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1350                         AR5K_EEPROM_READ(offset++, val);
1351                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1352
1353                         pcinfo->pwr[1][3] = 0;
1354                         pcinfo->pddac[1][3] = 0;
1355                 } else if (pd_gains == 1) {
1356                         /*
1357                          * Pd gain 0 is the last one so
1358                          * read the extra point.
1359                          */
1360                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1361
1362                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1363                         AR5K_EEPROM_READ(offset++, val);
1364                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1365                 }
1366
1367                 /*
1368                  * Proceed with the other pd_gains
1369                  * as above.
1370                  */
1371                 if (pd_gains > 2) {
1372                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1373                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1374
1375                         AR5K_EEPROM_READ(offset++, val);
1376                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1377                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1378                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1379
1380                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1381                         AR5K_EEPROM_READ(offset++, val);
1382                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1383
1384                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1385                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1386
1387                         pcinfo->pwr[2][3] = 0;
1388                         pcinfo->pddac[2][3] = 0;
1389                 } else if (pd_gains == 2) {
1390                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1391                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1392                 }
1393
1394                 if (pd_gains > 3) {
1395                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1396                         AR5K_EEPROM_READ(offset++, val);
1397                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1398
1399                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1400                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1401                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1402
1403                         AR5K_EEPROM_READ(offset++, val);
1404                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1405                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1406                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1407
1408                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1409                         AR5K_EEPROM_READ(offset++, val);
1410                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1411
1412                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1413                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1414
1415                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1416                         AR5K_EEPROM_READ(offset++, val);
1417                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1418                 } else if (pd_gains == 3) {
1419                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1420                         AR5K_EEPROM_READ(offset++, val);
1421                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1422
1423                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1424                 }
1425         }
1426
1427         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1428 }
1429
1430
1431 /*
1432  * Read per rate target power (this is the maximum tx power
1433  * supported by the card). This info is used when setting
1434  * tx power, no matter the channel.
1435  *
1436  * This also works for v5 EEPROMs.
1437  */
1438 static int
1439 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1440 {
1441         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1442         struct ath5k_rate_pcal_info *rate_pcal_info;
1443         u8 *rate_target_pwr_num;
1444         u32 offset;
1445         u16 val;
1446         int ret, i;
1447
1448         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1449         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1450         switch (mode) {
1451         case AR5K_EEPROM_MODE_11A:
1452                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1453                 rate_pcal_info = ee->ee_rate_tpwr_a;
1454                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1455                 break;
1456         case AR5K_EEPROM_MODE_11B:
1457                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1458                 rate_pcal_info = ee->ee_rate_tpwr_b;
1459                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1460                 break;
1461         case AR5K_EEPROM_MODE_11G:
1462                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1463                 rate_pcal_info = ee->ee_rate_tpwr_g;
1464                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1465                 break;
1466         default:
1467                 return -EINVAL;
1468         }
1469
1470         /* Different freq mask for older eeproms (<= v3.2) */
1471         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1472                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1473                         AR5K_EEPROM_READ(offset++, val);
1474                         rate_pcal_info[i].freq =
1475                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1476
1477                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1478                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1479
1480                         AR5K_EEPROM_READ(offset++, val);
1481
1482                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1483                             val == 0) {
1484                                 (*rate_target_pwr_num) = i;
1485                                 break;
1486                         }
1487
1488                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1489                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1490                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1491                 }
1492         } else {
1493                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1494                         AR5K_EEPROM_READ(offset++, val);
1495                         rate_pcal_info[i].freq =
1496                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1497
1498                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1499                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1500
1501                         AR5K_EEPROM_READ(offset++, val);
1502
1503                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1504                             val == 0) {
1505                                 (*rate_target_pwr_num) = i;
1506                                 break;
1507                         }
1508
1509                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1510                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1511                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1512                 }
1513         }
1514
1515         return 0;
1516 }
1517
1518 /*
1519  * Read per channel calibration info from EEPROM
1520  *
1521  * This info is used to calibrate the baseband power table. Imagine
1522  * that for each channel there is a power curve that's hw specific
1523  * (depends on amplifier etc) and we try to "correct" this curve using
1524  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1525  * it can use accurate power values when setting tx power (takes amplifier's
1526  * performance on each channel into account).
1527  *
1528  * EEPROM provides us with the offsets for some pre-calibrated channels
1529  * and we have to interpolate to create the full table for these channels and
1530  * also the table for any channel.
1531  */
1532 static int
1533 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1534 {
1535         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1536         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1537         int mode;
1538         int err;
1539
1540         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1541                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1542                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1543         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1544                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1545                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1546         else
1547                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1548
1549
1550         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1551         mode++) {
1552                 err = read_pcal(ah, mode);
1553                 if (err)
1554                         return err;
1555
1556                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1557                 if (err < 0)
1558                         return err;
1559         }
1560
1561         return 0;
1562 }
1563
1564 static int
1565 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1566 {
1567         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568         struct ath5k_chan_pcal_info *chinfo;
1569         u8 pier, pdg;
1570
1571         switch (mode) {
1572         case AR5K_EEPROM_MODE_11A:
1573                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1574                         return 0;
1575                 chinfo = ee->ee_pwr_cal_a;
1576                 break;
1577         case AR5K_EEPROM_MODE_11B:
1578                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1579                         return 0;
1580                 chinfo = ee->ee_pwr_cal_b;
1581                 break;
1582         case AR5K_EEPROM_MODE_11G:
1583                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1584                         return 0;
1585                 chinfo = ee->ee_pwr_cal_g;
1586                 break;
1587         default:
1588                 return -EINVAL;
1589         }
1590
1591         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1592                 if (!chinfo[pier].pd_curves)
1593                         continue;
1594
1595                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1596                         struct ath5k_pdgain_info *pd =
1597                                         &chinfo[pier].pd_curves[pdg];
1598
1599                         if (pd != NULL) {
1600                                 kfree(pd->pd_step);
1601                                 kfree(pd->pd_pwr);
1602                         }
1603                 }
1604
1605                 kfree(chinfo[pier].pd_curves);
1606         }
1607
1608         return 0;
1609 }
1610
1611 void
1612 ath5k_eeprom_detach(struct ath5k_hw *ah)
1613 {
1614         u8 mode;
1615
1616         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1617                 ath5k_eeprom_free_pcal_info(ah, mode);
1618 }
1619
1620 /* Read conformance test limits used for regulatory control */
1621 static int
1622 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1623 {
1624         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1625         struct ath5k_edge_power *rep;
1626         unsigned int fmask, pmask;
1627         unsigned int ctl_mode;
1628         int ret, i, j;
1629         u32 offset;
1630         u16 val;
1631
1632         pmask = AR5K_EEPROM_POWER_M;
1633         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1634         offset = AR5K_EEPROM_CTL(ee->ee_version);
1635         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1636         for (i = 0; i < ee->ee_ctls; i += 2) {
1637                 AR5K_EEPROM_READ(offset++, val);
1638                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1639                 ee->ee_ctl[i + 1] = val & 0xff;
1640         }
1641
1642         offset = AR5K_EEPROM_GROUP8_OFFSET;
1643         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1644                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1645                         AR5K_EEPROM_GROUP5_OFFSET;
1646         else
1647                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1648
1649         rep = ee->ee_ctl_pwr;
1650         for(i = 0; i < ee->ee_ctls; i++) {
1651                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1652                 case AR5K_CTL_11A:
1653                 case AR5K_CTL_TURBO:
1654                         ctl_mode = AR5K_EEPROM_MODE_11A;
1655                         break;
1656                 default:
1657                         ctl_mode = AR5K_EEPROM_MODE_11G;
1658                         break;
1659                 }
1660                 if (ee->ee_ctl[i] == 0) {
1661                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1662                                 offset += 8;
1663                         else
1664                                 offset += 7;
1665                         rep += AR5K_EEPROM_N_EDGES;
1666                         continue;
1667                 }
1668                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1669                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1670                                 AR5K_EEPROM_READ(offset++, val);
1671                                 rep[j].freq = (val >> 8) & fmask;
1672                                 rep[j + 1].freq = val & fmask;
1673                         }
1674                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1675                                 AR5K_EEPROM_READ(offset++, val);
1676                                 rep[j].edge = (val >> 8) & pmask;
1677                                 rep[j].flag = (val >> 14) & 1;
1678                                 rep[j + 1].edge = val & pmask;
1679                                 rep[j + 1].flag = (val >> 6) & 1;
1680                         }
1681                 } else {
1682                         AR5K_EEPROM_READ(offset++, val);
1683                         rep[0].freq = (val >> 9) & fmask;
1684                         rep[1].freq = (val >> 2) & fmask;
1685                         rep[2].freq = (val << 5) & fmask;
1686
1687                         AR5K_EEPROM_READ(offset++, val);
1688                         rep[2].freq |= (val >> 11) & 0x1f;
1689                         rep[3].freq = (val >> 4) & fmask;
1690                         rep[4].freq = (val << 3) & fmask;
1691
1692                         AR5K_EEPROM_READ(offset++, val);
1693                         rep[4].freq |= (val >> 13) & 0x7;
1694                         rep[5].freq = (val >> 6) & fmask;
1695                         rep[6].freq = (val << 1) & fmask;
1696
1697                         AR5K_EEPROM_READ(offset++, val);
1698                         rep[6].freq |= (val >> 15) & 0x1;
1699                         rep[7].freq = (val >> 8) & fmask;
1700
1701                         rep[0].edge = (val >> 2) & pmask;
1702                         rep[1].edge = (val << 4) & pmask;
1703
1704                         AR5K_EEPROM_READ(offset++, val);
1705                         rep[1].edge |= (val >> 12) & 0xf;
1706                         rep[2].edge = (val >> 6) & pmask;
1707                         rep[3].edge = val & pmask;
1708
1709                         AR5K_EEPROM_READ(offset++, val);
1710                         rep[4].edge = (val >> 10) & pmask;
1711                         rep[5].edge = (val >> 4) & pmask;
1712                         rep[6].edge = (val << 2) & pmask;
1713
1714                         AR5K_EEPROM_READ(offset++, val);
1715                         rep[6].edge |= (val >> 14) & 0x3;
1716                         rep[7].edge = (val >> 8) & pmask;
1717                 }
1718                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1719                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1720                                 rep[j].freq, ctl_mode);
1721                 }
1722                 rep += AR5K_EEPROM_N_EDGES;
1723         }
1724
1725         return 0;
1726 }
1727
1728 static int
1729 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1730 {
1731         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1732         u32 offset;
1733         u16 val;
1734         int ret = 0, i;
1735
1736         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1737                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1738
1739         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1740                 /* No spur info for 5GHz */
1741                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1742                 /* 2 channels for 2GHz (2464/2420) */
1743                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1744                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1745                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1746         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1747                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1748                         AR5K_EEPROM_READ(offset, val);
1749                         ee->ee_spur_chans[i][0] = val;
1750                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1751                                                                         val);
1752                         ee->ee_spur_chans[i][1] = val;
1753                         offset++;
1754                 }
1755         }
1756
1757         return ret;
1758 }
1759
1760 /*
1761  * Initialize eeprom data structure
1762  */
1763 int
1764 ath5k_eeprom_init(struct ath5k_hw *ah)
1765 {
1766         int err;
1767
1768         err = ath5k_eeprom_init_header(ah);
1769         if (err < 0)
1770                 return err;
1771
1772         err = ath5k_eeprom_init_modes(ah);
1773         if (err < 0)
1774                 return err;
1775
1776         err = ath5k_eeprom_read_pcal_info(ah);
1777         if (err < 0)
1778                 return err;
1779
1780         err = ath5k_eeprom_read_ctl_info(ah);
1781         if (err < 0)
1782                 return err;
1783
1784         err = ath5k_eeprom_read_spur_chans(ah);
1785         if (err < 0)
1786                 return err;
1787
1788         return 0;
1789 }
1790
1791 /*
1792  * Read the MAC address from eeprom
1793  */
1794 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1795 {
1796         u8 mac_d[ETH_ALEN] = {};
1797         u32 total, offset;
1798         u16 data;
1799         int octet, ret;
1800
1801         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1802         if (ret)
1803                 return ret;
1804
1805         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1806                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1807                 if (ret)
1808                         return ret;
1809
1810                 total += data;
1811                 mac_d[octet + 1] = data & 0xff;
1812                 mac_d[octet] = data >> 8;
1813                 octet += 2;
1814         }
1815
1816         if (!total || total == 3 * 0xffff)
1817                 return -EINVAL;
1818
1819         memcpy(mac, mac_d, ETH_ALEN);
1820
1821         return 0;
1822 }