- patches.arch/x86_mce_intel_decode_physical_address.patch:
[linux-flexiantxendom0-3.2.10.git] / drivers / net / vxge / vxge-traffic.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2009 Neterion Inc.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
19
20 /*
21  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22  * @vp: Virtual Path handle.
23  *
24  * Enable vpath interrupts. The function is to be executed the last in
25  * vpath initialization sequence.
26  *
27  * See also: vxge_hw_vpath_intr_disable()
28  */
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
30 {
31         u64 val64;
32
33         struct __vxge_hw_virtualpath *vpath;
34         struct vxge_hw_vpath_reg __iomem *vp_reg;
35         enum vxge_hw_status status = VXGE_HW_OK;
36         if (vp == NULL) {
37                 status = VXGE_HW_ERR_INVALID_HANDLE;
38                 goto exit;
39         }
40
41         vpath = vp->vpath;
42
43         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45                 goto exit;
46         }
47
48         vp_reg = vpath->vp_reg;
49
50         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53                         &vp_reg->general_errors_reg);
54
55         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56                         &vp_reg->pci_config_errors_reg);
57
58         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59                         &vp_reg->mrpcim_to_vpath_alarm_reg);
60
61         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62                         &vp_reg->srpcim_to_vpath_alarm_reg);
63
64         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65                         &vp_reg->vpath_ppif_int_status);
66
67         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68                         &vp_reg->srpcim_msg_to_vpath_reg);
69
70         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71                         &vp_reg->vpath_pcipif_int_status);
72
73         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74                         &vp_reg->prc_alarm_reg);
75
76         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77                         &vp_reg->wrdma_alarm_status);
78
79         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80                         &vp_reg->asic_ntwk_vp_err_reg);
81
82         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83                         &vp_reg->xgmac_vp_int_status);
84
85         val64 = readq(&vp_reg->vpath_general_int_status);
86
87         /* Mask unwanted interrupts */
88
89         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90                         &vp_reg->vpath_pcipif_int_mask);
91
92         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93                         &vp_reg->srpcim_msg_to_vpath_mask);
94
95         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96                         &vp_reg->srpcim_to_vpath_alarm_mask);
97
98         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99                         &vp_reg->mrpcim_to_vpath_alarm_mask);
100
101         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102                         &vp_reg->pci_config_errors_mask);
103
104         /* Unmask the individual interrupts */
105
106         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110                 &vp_reg->general_errors_mask);
111
112         __vxge_hw_pio_mem_write32_upper(
113                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119                 &vp_reg->kdfcctl_errors_mask);
120
121         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123         __vxge_hw_pio_mem_write32_upper(
124                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125                 &vp_reg->prc_alarm_mask);
126
127         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130         if (vpath->hldev->first_vp_id != vpath->vp_id)
131                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132                         &vp_reg->asic_ntwk_vp_err_mask);
133         else
134                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137                 &vp_reg->asic_ntwk_vp_err_mask);
138
139         __vxge_hw_pio_mem_write32_upper(0,
140                 &vp_reg->vpath_general_int_mask);
141 exit:
142         return status;
143
144 }
145
146 /*
147  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148  * @vp: Virtual Path handle.
149  *
150  * Disable vpath interrupts. The function is to be executed the last in
151  * vpath initialization sequence.
152  *
153  * See also: vxge_hw_vpath_intr_enable()
154  */
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156                         struct __vxge_hw_vpath_handle *vp)
157 {
158         u64 val64;
159
160         struct __vxge_hw_virtualpath *vpath;
161         enum vxge_hw_status status = VXGE_HW_OK;
162         struct vxge_hw_vpath_reg __iomem *vp_reg;
163         if (vp == NULL) {
164                 status = VXGE_HW_ERR_INVALID_HANDLE;
165                 goto exit;
166         }
167
168         vpath = vp->vpath;
169
170         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172                 goto exit;
173         }
174         vp_reg = vpath->vp_reg;
175
176         __vxge_hw_pio_mem_write32_upper(
177                 (u32)VXGE_HW_INTR_MASK_ALL,
178                 &vp_reg->vpath_general_int_mask);
179
180         val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
181
182         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
183
184         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185                         &vp_reg->general_errors_mask);
186
187         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188                         &vp_reg->pci_config_errors_mask);
189
190         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191                         &vp_reg->mrpcim_to_vpath_alarm_mask);
192
193         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194                         &vp_reg->srpcim_to_vpath_alarm_mask);
195
196         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197                         &vp_reg->vpath_ppif_int_mask);
198
199         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200                         &vp_reg->srpcim_msg_to_vpath_mask);
201
202         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203                         &vp_reg->vpath_pcipif_int_mask);
204
205         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206                         &vp_reg->wrdma_alarm_mask);
207
208         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209                         &vp_reg->prc_alarm_mask);
210
211         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212                         &vp_reg->xgmac_vp_int_mask);
213
214         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215                         &vp_reg->asic_ntwk_vp_err_mask);
216
217 exit:
218         return status;
219 }
220
221 /**
222  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223  * @channeh: Channel for rx or tx handle
224  * @msix_id:  MSIX ID
225  *
226  * The function masks the msix interrupt for the given msix_id
227  *
228  * Returns: 0
229  */
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
231 {
232
233         __vxge_hw_pio_mem_write32_upper(
234                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
235                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
236 }
237
238 /**
239  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
240  * @channeh: Channel for rx or tx handle
241  * @msix_id:  MSI ID
242  *
243  * The function unmasks the msix interrupt for the given msix_id
244  *
245  * Returns: 0
246  */
247 void
248 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
249 {
250
251         __vxge_hw_pio_mem_write32_upper(
252                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
253                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
254 }
255
256 /**
257  * vxge_hw_device_set_intr_type - Updates the configuration
258  *              with new interrupt type.
259  * @hldev: HW device handle.
260  * @intr_mode: New interrupt type
261  */
262 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
263 {
264
265         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
266            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
267            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
268            (intr_mode != VXGE_HW_INTR_MODE_DEF))
269                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
270
271         hldev->config.intr_mode = intr_mode;
272         return intr_mode;
273 }
274
275 /**
276  * vxge_hw_device_intr_enable - Enable interrupts.
277  * @hldev: HW device handle.
278  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
279  *      the type(s) of interrupts to enable.
280  *
281  * Enable Titan interrupts. The function is to be executed the last in
282  * Titan initialization sequence.
283  *
284  * See also: vxge_hw_device_intr_disable()
285  */
286 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
287 {
288         u32 i;
289         u64 val64;
290         u32 val32;
291
292         vxge_hw_device_mask_all(hldev);
293
294         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
295
296                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
297                         continue;
298
299                 vxge_hw_vpath_intr_enable(
300                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
301         }
302
303         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
304                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
305                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
306
307                 if (val64 != 0) {
308                         writeq(val64, &hldev->common_reg->tim_int_status0);
309
310                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
311                 }
312
313                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
314                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
315
316                 if (val32 != 0) {
317                         __vxge_hw_pio_mem_write32_upper(val32,
318                                         &hldev->common_reg->tim_int_status1);
319
320                         __vxge_hw_pio_mem_write32_upper(~val32,
321                                         &hldev->common_reg->tim_int_mask1);
322                 }
323         }
324
325         val64 = readq(&hldev->common_reg->titan_general_int_status);
326
327         vxge_hw_device_unmask_all(hldev);
328 }
329
330 /**
331  * vxge_hw_device_intr_disable - Disable Titan interrupts.
332  * @hldev: HW device handle.
333  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
334  *      the type(s) of interrupts to disable.
335  *
336  * Disable Titan interrupts.
337  *
338  * See also: vxge_hw_device_intr_enable()
339  */
340 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
341 {
342         u32 i;
343
344         vxge_hw_device_mask_all(hldev);
345
346         /* mask all the tim interrupts */
347         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
348         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
349                 &hldev->common_reg->tim_int_mask1);
350
351         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
352
353                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
354                         continue;
355
356                 vxge_hw_vpath_intr_disable(
357                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
358         }
359 }
360
361 /**
362  * vxge_hw_device_mask_all - Mask all device interrupts.
363  * @hldev: HW device handle.
364  *
365  * Mask all device interrupts.
366  *
367  * See also: vxge_hw_device_unmask_all()
368  */
369 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
370 {
371         u64 val64;
372
373         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
374                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
375
376         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
377                                 &hldev->common_reg->titan_mask_all_int);
378 }
379
380 /**
381  * vxge_hw_device_unmask_all - Unmask all device interrupts.
382  * @hldev: HW device handle.
383  *
384  * Unmask all device interrupts.
385  *
386  * See also: vxge_hw_device_mask_all()
387  */
388 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
389 {
390         u64 val64 = 0;
391
392         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
393                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
394
395         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
396                         &hldev->common_reg->titan_mask_all_int);
397 }
398
399 /**
400  * vxge_hw_device_flush_io - Flush io writes.
401  * @hldev: HW device handle.
402  *
403  * The function performs a read operation to flush io writes.
404  *
405  * Returns: void
406  */
407 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
408 {
409         u32 val32;
410
411         val32 = readl(&hldev->common_reg->titan_general_int_status);
412 }
413
414 /**
415  * vxge_hw_device_begin_irq - Begin IRQ processing.
416  * @hldev: HW device handle.
417  * @skip_alarms: Do not clear the alarms
418  * @reason: "Reason" for the interrupt, the value of Titan's
419  *      general_int_status register.
420  *
421  * The function performs two actions, It first checks whether (shared IRQ) the
422  * interrupt was raised by the device. Next, it masks the device interrupts.
423  *
424  * Note:
425  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
426  * bridge. Therefore, two back-to-back interrupts are potentially possible.
427  *
428  * Returns: 0, if the interrupt is not "ours" (note that in this case the
429  * device remain enabled).
430  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
431  * status.
432  */
433 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
434                                              u32 skip_alarms, u64 *reason)
435 {
436         u32 i;
437         u64 val64;
438         u64 adapter_status;
439         u64 vpath_mask;
440         enum vxge_hw_status ret = VXGE_HW_OK;
441
442         val64 = readq(&hldev->common_reg->titan_general_int_status);
443
444         if (unlikely(!val64)) {
445                 /* not Titan interrupt  */
446                 *reason = 0;
447                 ret = VXGE_HW_ERR_WRONG_IRQ;
448                 goto exit;
449         }
450
451         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
452
453                 adapter_status = readq(&hldev->common_reg->adapter_status);
454
455                 if (adapter_status == VXGE_HW_ALL_FOXES) {
456
457                         __vxge_hw_device_handle_error(hldev,
458                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
459                         *reason = 0;
460                         ret = VXGE_HW_ERR_SLOT_FREEZE;
461                         goto exit;
462                 }
463         }
464
465         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
466
467         *reason = val64;
468
469         vpath_mask = hldev->vpaths_deployed >>
470                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
471
472         if (val64 &
473             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
474                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
475
476                 return VXGE_HW_OK;
477         }
478
479         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
480
481         if (unlikely(val64 &
482                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
483
484                 enum vxge_hw_status error_level = VXGE_HW_OK;
485
486                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
487
488                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
489
490                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
491                                 continue;
492
493                         ret = __vxge_hw_vpath_alarm_process(
494                                 &hldev->virtual_paths[i], skip_alarms);
495
496                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
497
498                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
499                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
500                                 break;
501                 }
502
503                 ret = error_level;
504         }
505 exit:
506         return ret;
507 }
508
509 /*
510  * __vxge_hw_device_handle_link_up_ind
511  * @hldev: HW device handle.
512  *
513  * Link up indication handler. The function is invoked by HW when
514  * Titan indicates that the link is up for programmable amount of time.
515  */
516 enum vxge_hw_status
517 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
518 {
519         /*
520          * If the previous link state is not down, return.
521          */
522         if (hldev->link_state == VXGE_HW_LINK_UP)
523                 goto exit;
524
525         hldev->link_state = VXGE_HW_LINK_UP;
526
527         /* notify driver */
528         if (hldev->uld_callbacks.link_up)
529                 hldev->uld_callbacks.link_up(hldev);
530 exit:
531         return VXGE_HW_OK;
532 }
533
534 /*
535  * __vxge_hw_device_handle_link_down_ind
536  * @hldev: HW device handle.
537  *
538  * Link down indication handler. The function is invoked by HW when
539  * Titan indicates that the link is down.
540  */
541 enum vxge_hw_status
542 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
543 {
544         /*
545          * If the previous link state is not down, return.
546          */
547         if (hldev->link_state == VXGE_HW_LINK_DOWN)
548                 goto exit;
549
550         hldev->link_state = VXGE_HW_LINK_DOWN;
551
552         /* notify driver */
553         if (hldev->uld_callbacks.link_down)
554                 hldev->uld_callbacks.link_down(hldev);
555 exit:
556         return VXGE_HW_OK;
557 }
558
559 /**
560  * __vxge_hw_device_handle_error - Handle error
561  * @hldev: HW device
562  * @vp_id: Vpath Id
563  * @type: Error type. Please see enum vxge_hw_event{}
564  *
565  * Handle error.
566  */
567 enum vxge_hw_status
568 __vxge_hw_device_handle_error(
569                 struct __vxge_hw_device *hldev,
570                 u32 vp_id,
571                 enum vxge_hw_event type)
572 {
573         switch (type) {
574         case VXGE_HW_EVENT_UNKNOWN:
575                 break;
576         case VXGE_HW_EVENT_RESET_START:
577         case VXGE_HW_EVENT_RESET_COMPLETE:
578         case VXGE_HW_EVENT_LINK_DOWN:
579         case VXGE_HW_EVENT_LINK_UP:
580                 goto out;
581         case VXGE_HW_EVENT_ALARM_CLEARED:
582                 goto out;
583         case VXGE_HW_EVENT_ECCERR:
584         case VXGE_HW_EVENT_MRPCIM_ECCERR:
585                 goto out;
586         case VXGE_HW_EVENT_FIFO_ERR:
587         case VXGE_HW_EVENT_VPATH_ERR:
588         case VXGE_HW_EVENT_CRITICAL_ERR:
589         case VXGE_HW_EVENT_SERR:
590                 break;
591         case VXGE_HW_EVENT_SRPCIM_SERR:
592         case VXGE_HW_EVENT_MRPCIM_SERR:
593                 goto out;
594         case VXGE_HW_EVENT_SLOT_FREEZE:
595                 break;
596         default:
597                 vxge_assert(0);
598                 goto out;
599         }
600
601         /* notify driver */
602         if (hldev->uld_callbacks.crit_err)
603                 hldev->uld_callbacks.crit_err(
604                         (struct __vxge_hw_device *)hldev,
605                         type, vp_id);
606 out:
607
608         return VXGE_HW_OK;
609 }
610
611 /**
612  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
613  * condition that has caused the Tx and RX interrupt.
614  * @hldev: HW device.
615  *
616  * Acknowledge (that is, clear) the condition that has caused
617  * the Tx and Rx interrupt.
618  * See also: vxge_hw_device_begin_irq(),
619  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
620  */
621 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
622 {
623
624         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
625            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
626                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
627                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
628                                 &hldev->common_reg->tim_int_status0);
629         }
630
631         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
632            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
633                 __vxge_hw_pio_mem_write32_upper(
634                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
635                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
636                                 &hldev->common_reg->tim_int_status1);
637         }
638 }
639
640 /*
641  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
642  * @channel: Channel
643  * @dtrh: Buffer to return the DTR pointer
644  *
645  * Allocates a dtr from the reserve array. If the reserve array is empty,
646  * it swaps the reserve and free arrays.
647  *
648  */
649 enum vxge_hw_status
650 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
651 {
652         void **tmp_arr;
653
654         if (channel->reserve_ptr - channel->reserve_top > 0) {
655 _alloc_after_swap:
656                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
657
658                 return VXGE_HW_OK;
659         }
660
661         /* switch between empty and full arrays */
662
663         /* the idea behind such a design is that by having free and reserved
664          * arrays separated we basically separated irq and non-irq parts.
665          * i.e. no additional lock need to be done when we free a resource */
666
667         if (channel->length - channel->free_ptr > 0) {
668
669                 tmp_arr = channel->reserve_arr;
670                 channel->reserve_arr = channel->free_arr;
671                 channel->free_arr = tmp_arr;
672                 channel->reserve_ptr = channel->length;
673                 channel->reserve_top = channel->free_ptr;
674                 channel->free_ptr = channel->length;
675
676                 channel->stats->reserve_free_swaps_cnt++;
677
678                 goto _alloc_after_swap;
679         }
680
681         channel->stats->full_cnt++;
682
683         *dtrh = NULL;
684         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
685 }
686
687 /*
688  * vxge_hw_channel_dtr_post - Post a dtr to the channel
689  * @channelh: Channel
690  * @dtrh: DTR pointer
691  *
692  * Posts a dtr to work array.
693  *
694  */
695 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
696 {
697         vxge_assert(channel->work_arr[channel->post_index] == NULL);
698
699         channel->work_arr[channel->post_index++] = dtrh;
700
701         /* wrap-around */
702         if (channel->post_index == channel->length)
703                 channel->post_index = 0;
704 }
705
706 /*
707  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
708  * @channel: Channel
709  * @dtr: Buffer to return the next completed DTR pointer
710  *
711  * Returns the next completed dtr with out removing it from work array
712  *
713  */
714 void
715 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
716 {
717         vxge_assert(channel->compl_index < channel->length);
718
719         *dtrh = channel->work_arr[channel->compl_index];
720         prefetch(*dtrh);
721 }
722
723 /*
724  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
725  * @channel: Channel handle
726  *
727  * Removes the next completed dtr from work array
728  *
729  */
730 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
731 {
732         channel->work_arr[channel->compl_index] = NULL;
733
734         /* wrap-around */
735         if (++channel->compl_index == channel->length)
736                 channel->compl_index = 0;
737
738         channel->stats->total_compl_cnt++;
739 }
740
741 /*
742  * vxge_hw_channel_dtr_free - Frees a dtr
743  * @channel: Channel handle
744  * @dtr:  DTR pointer
745  *
746  * Returns the dtr to free array
747  *
748  */
749 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
750 {
751         channel->free_arr[--channel->free_ptr] = dtrh;
752 }
753
754 /*
755  * vxge_hw_channel_dtr_count
756  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
757  *
758  * Retreive number of DTRs available. This function can not be called
759  * from data path. ring_initial_replenishi() is the only user.
760  */
761 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
762 {
763         return (channel->reserve_ptr - channel->reserve_top) +
764                 (channel->length - channel->free_ptr);
765 }
766
767 /**
768  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
769  * @ring: Handle to the ring object used for receive
770  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
771  * with a valid handle.
772  *
773  * Reserve Rx descriptor for the subsequent filling-in driver
774  * and posting on the corresponding channel (@channelh)
775  * via vxge_hw_ring_rxd_post().
776  *
777  * Returns: VXGE_HW_OK - success.
778  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
779  *
780  */
781 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
782         void **rxdh)
783 {
784         enum vxge_hw_status status;
785         struct __vxge_hw_channel *channel;
786
787         channel = &ring->channel;
788
789         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
790
791         if (status == VXGE_HW_OK) {
792                 struct vxge_hw_ring_rxd_1 *rxdp =
793                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
794
795                 rxdp->control_0 = rxdp->control_1 = 0;
796         }
797
798         return status;
799 }
800
801 /**
802  * vxge_hw_ring_rxd_free - Free descriptor.
803  * @ring: Handle to the ring object used for receive
804  * @rxdh: Descriptor handle.
805  *
806  * Free the reserved descriptor. This operation is "symmetrical" to
807  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
808  * lifecycle.
809  *
810  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
811  * be:
812  *
813  * - reserved (vxge_hw_ring_rxd_reserve);
814  *
815  * - posted     (vxge_hw_ring_rxd_post);
816  *
817  * - completed (vxge_hw_ring_rxd_next_completed);
818  *
819  * - and recycled again (vxge_hw_ring_rxd_free).
820  *
821  * For alternative state transitions and more details please refer to
822  * the design doc.
823  *
824  */
825 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
826 {
827         struct __vxge_hw_channel *channel;
828
829         channel = &ring->channel;
830
831         vxge_hw_channel_dtr_free(channel, rxdh);
832
833 }
834
835 /**
836  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
837  * @ring: Handle to the ring object used for receive
838  * @rxdh: Descriptor handle.
839  *
840  * This routine prepares a rxd and posts
841  */
842 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
843 {
844         struct __vxge_hw_channel *channel;
845
846         channel = &ring->channel;
847
848         vxge_hw_channel_dtr_post(channel, rxdh);
849 }
850
851 /**
852  * vxge_hw_ring_rxd_post_post - Process rxd after post.
853  * @ring: Handle to the ring object used for receive
854  * @rxdh: Descriptor handle.
855  *
856  * Processes rxd after post
857  */
858 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
859 {
860         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
861         struct __vxge_hw_channel *channel;
862
863         channel = &ring->channel;
864
865         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
866
867         if (ring->stats->common_stats.usage_cnt > 0)
868                 ring->stats->common_stats.usage_cnt--;
869 }
870
871 /**
872  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
873  * @ring: Handle to the ring object used for receive
874  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
875  *
876  * Post descriptor on the ring.
877  * Prior to posting the descriptor should be filled in accordance with
878  * Host/Titan interface specification for a given service (LL, etc.).
879  *
880  */
881 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
882 {
883         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
884         struct __vxge_hw_channel *channel;
885
886         channel = &ring->channel;
887
888         wmb();
889         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
890
891         vxge_hw_channel_dtr_post(channel, rxdh);
892
893         if (ring->stats->common_stats.usage_cnt > 0)
894                 ring->stats->common_stats.usage_cnt--;
895 }
896
897 /**
898  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
899  * @ring: Handle to the ring object used for receive
900  * @rxdh: Descriptor handle.
901  *
902  * Processes rxd after post with memory barrier.
903  */
904 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
905 {
906         struct __vxge_hw_channel *channel;
907
908         channel = &ring->channel;
909
910         wmb();
911         vxge_hw_ring_rxd_post_post(ring, rxdh);
912 }
913
914 /**
915  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
916  * @ring: Handle to the ring object used for receive
917  * @rxdh: Descriptor handle. Returned by HW.
918  * @t_code:     Transfer code, as per Titan User Guide,
919  *       Receive Descriptor Format. Returned by HW.
920  *
921  * Retrieve the _next_ completed descriptor.
922  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
923  * driver of new completed descriptors. After that
924  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
925  * completions (the very first completion is passed by HW via
926  * vxge_hw_ring_callback_f).
927  *
928  * Implementation-wise, the driver is free to call
929  * vxge_hw_ring_rxd_next_completed either immediately from inside the
930  * ring callback, or in a deferred fashion and separate (from HW)
931  * context.
932  *
933  * Non-zero @t_code means failure to fill-in receive buffer(s)
934  * of the descriptor.
935  * For instance, parity error detected during the data transfer.
936  * In this case Titan will complete the descriptor and indicate
937  * for the host that the received data is not to be used.
938  * For details please refer to Titan User Guide.
939  *
940  * Returns: VXGE_HW_OK - success.
941  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
942  * are currently available for processing.
943  *
944  * See also: vxge_hw_ring_callback_f{},
945  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
946  */
947 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
948         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
949 {
950         struct __vxge_hw_channel *channel;
951         struct vxge_hw_ring_rxd_1 *rxdp;
952         enum vxge_hw_status status = VXGE_HW_OK;
953         u64 control_0, own;
954
955         channel = &ring->channel;
956
957         vxge_hw_channel_dtr_try_complete(channel, rxdh);
958
959         rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
960         if (rxdp == NULL) {
961                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
962                 goto exit;
963         }
964
965         control_0 = rxdp->control_0;
966         own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
967         *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
968
969         /* check whether it is not the end */
970         if (!own || ((*t_code == VXGE_HW_RING_T_CODE_FRM_DROP) && own)) {
971
972                 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
973                                 0);
974
975                 ++ring->cmpl_cnt;
976                 vxge_hw_channel_dtr_complete(channel);
977
978                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
979
980                 ring->stats->common_stats.usage_cnt++;
981                 if (ring->stats->common_stats.usage_max <
982                                 ring->stats->common_stats.usage_cnt)
983                         ring->stats->common_stats.usage_max =
984                                 ring->stats->common_stats.usage_cnt;
985
986                 status = VXGE_HW_OK;
987                 goto exit;
988         }
989
990         /* reset it. since we don't want to return
991          * garbage to the driver */
992         *rxdh = NULL;
993         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
994 exit:
995         return status;
996 }
997
998 /**
999  * vxge_hw_ring_handle_tcode - Handle transfer code.
1000  * @ring: Handle to the ring object used for receive
1001  * @rxdh: Descriptor handle.
1002  * @t_code: One of the enumerated (and documented in the Titan user guide)
1003  * "transfer codes".
1004  *
1005  * Handle descriptor's transfer code. The latter comes with each completed
1006  * descriptor.
1007  *
1008  * Returns: one of the enum vxge_hw_status{} enumerated types.
1009  * VXGE_HW_OK                   - for success.
1010  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1011  */
1012 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1013         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1014 {
1015         struct __vxge_hw_channel *channel;
1016         enum vxge_hw_status status = VXGE_HW_OK;
1017
1018         channel = &ring->channel;
1019
1020         /* If the t_code is not supported and if the
1021          * t_code is other than 0x5 (unparseable packet
1022          * such as unknown UPV6 header), Drop it !!!
1023          */
1024
1025         if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1026                 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1027                 status = VXGE_HW_OK;
1028                 goto exit;
1029         }
1030
1031         if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1032                 status = VXGE_HW_ERR_INVALID_TCODE;
1033                 goto exit;
1034         }
1035
1036         ring->stats->rxd_t_code_err_cnt[t_code]++;
1037 exit:
1038         return status;
1039 }
1040
1041 /**
1042  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1043  *
1044  * @fifo: fifohandle
1045  * @txdl_ptr: The starting location of the TxDL in host memory
1046  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1047  * @no_snoop: No snoop flags
1048  *
1049  * This function posts a non-offload doorbell to doorbell FIFO
1050  *
1051  */
1052 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1053         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1054 {
1055         struct __vxge_hw_channel *channel;
1056
1057         channel = &fifo->channel;
1058
1059         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1060                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1061                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1062                 &fifo->nofl_db->control_0);
1063
1064         mmiowb();
1065
1066         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1067
1068         mmiowb();
1069 }
1070
1071 /**
1072  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1073  * the fifo
1074  * @fifoh: Handle to the fifo object used for non offload send
1075  */
1076 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1077 {
1078         return vxge_hw_channel_dtr_count(&fifoh->channel);
1079 }
1080
1081 /**
1082  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1083  * @fifoh: Handle to the fifo object used for non offload send
1084  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1085  *        with a valid handle.
1086  * @txdl_priv: Buffer to return the pointer to per txdl space
1087  *
1088  * Reserve a single TxDL (that is, fifo descriptor)
1089  * for the subsequent filling-in by driver)
1090  * and posting on the corresponding channel (@channelh)
1091  * via vxge_hw_fifo_txdl_post().
1092  *
1093  * Note: it is the responsibility of driver to reserve multiple descriptors
1094  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1095  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1096  *
1097  * Returns: VXGE_HW_OK - success;
1098  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1099  *
1100  */
1101 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1102         struct __vxge_hw_fifo *fifo,
1103         void **txdlh, void **txdl_priv)
1104 {
1105         struct __vxge_hw_channel *channel;
1106         enum vxge_hw_status status;
1107         int i;
1108
1109         channel = &fifo->channel;
1110
1111         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1112
1113         if (status == VXGE_HW_OK) {
1114                 struct vxge_hw_fifo_txd *txdp =
1115                         (struct vxge_hw_fifo_txd *)*txdlh;
1116                 struct __vxge_hw_fifo_txdl_priv *priv;
1117
1118                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1119
1120                 /* reset the TxDL's private */
1121                 priv->align_dma_offset = 0;
1122                 priv->align_vaddr_start = priv->align_vaddr;
1123                 priv->align_used_frags = 0;
1124                 priv->frags = 0;
1125                 priv->alloc_frags = fifo->config->max_frags;
1126                 priv->next_txdl_priv = NULL;
1127
1128                 *txdl_priv = (void *)(size_t)txdp->host_control;
1129
1130                 for (i = 0; i < fifo->config->max_frags; i++) {
1131                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1132                         txdp->control_0 = txdp->control_1 = 0;
1133                 }
1134         }
1135
1136         return status;
1137 }
1138
1139 /**
1140  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1141  * descriptor.
1142  * @fifo: Handle to the fifo object used for non offload send
1143  * @txdlh: Descriptor handle.
1144  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1145  *            (of buffers).
1146  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1147  * @size: Size of the data buffer (in bytes).
1148  *
1149  * This API is part of the preparation of the transmit descriptor for posting
1150  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1151  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1152  * All three APIs fill in the fields of the fifo descriptor,
1153  * in accordance with the Titan specification.
1154  *
1155  */
1156 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1157                                   void *txdlh, u32 frag_idx,
1158                                   dma_addr_t dma_pointer, u32 size)
1159 {
1160         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1161         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1162         struct __vxge_hw_channel *channel;
1163
1164         channel = &fifo->channel;
1165
1166         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1167         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1168
1169         if (frag_idx != 0)
1170                 txdp->control_0 = txdp->control_1 = 0;
1171         else {
1172                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1173                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1174                 txdp->control_1 |= fifo->interrupt_type;
1175                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1176                         fifo->tx_intr_num);
1177                 if (txdl_priv->frags) {
1178                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1179                         (txdl_priv->frags - 1);
1180                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1181                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1182                 }
1183         }
1184
1185         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1186
1187         txdp->buffer_pointer = (u64)dma_pointer;
1188         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1189         fifo->stats->total_buffers++;
1190         txdl_priv->frags++;
1191 }
1192
1193 /**
1194  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1195  * @fifo: Handle to the fifo object used for non offload send
1196  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1197  * @frags: Number of contiguous buffers that are part of a single
1198  *         transmit operation.
1199  *
1200  * Post descriptor on the 'fifo' type channel for transmission.
1201  * Prior to posting the descriptor should be filled in accordance with
1202  * Host/Titan interface specification for a given service (LL, etc.).
1203  *
1204  */
1205 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1206 {
1207         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1208         struct vxge_hw_fifo_txd *txdp_last;
1209         struct vxge_hw_fifo_txd *txdp_first;
1210         struct __vxge_hw_channel *channel;
1211
1212         channel = &fifo->channel;
1213
1214         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1215         txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1216
1217         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1218         txdp_last->control_0 |=
1219               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1220         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1221
1222         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1223
1224         __vxge_hw_non_offload_db_post(fifo,
1225                 (u64)txdl_priv->dma_addr,
1226                 txdl_priv->frags - 1,
1227                 fifo->no_snoop_bits);
1228
1229         fifo->stats->total_posts++;
1230         fifo->stats->common_stats.usage_cnt++;
1231         if (fifo->stats->common_stats.usage_max <
1232                 fifo->stats->common_stats.usage_cnt)
1233                 fifo->stats->common_stats.usage_max =
1234                         fifo->stats->common_stats.usage_cnt;
1235 }
1236
1237 /**
1238  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1239  * @fifo: Handle to the fifo object used for non offload send
1240  * @txdlh: Descriptor handle. Returned by HW.
1241  * @t_code: Transfer code, as per Titan User Guide,
1242  *          Transmit Descriptor Format.
1243  *          Returned by HW.
1244  *
1245  * Retrieve the _next_ completed descriptor.
1246  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1247  * driver of new completed descriptors. After that
1248  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1249  * completions (the very first completion is passed by HW via
1250  * vxge_hw_channel_callback_f).
1251  *
1252  * Implementation-wise, the driver is free to call
1253  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1254  * channel callback, or in a deferred fashion and separate (from HW)
1255  * context.
1256  *
1257  * Non-zero @t_code means failure to process the descriptor.
1258  * The failure could happen, for instance, when the link is
1259  * down, in which case Titan completes the descriptor because it
1260  * is not able to send the data out.
1261  *
1262  * For details please refer to Titan User Guide.
1263  *
1264  * Returns: VXGE_HW_OK - success.
1265  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1266  * are currently available for processing.
1267  *
1268  */
1269 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1270         struct __vxge_hw_fifo *fifo, void **txdlh,
1271         enum vxge_hw_fifo_tcode *t_code)
1272 {
1273         struct __vxge_hw_channel *channel;
1274         struct vxge_hw_fifo_txd *txdp;
1275         enum vxge_hw_status status = VXGE_HW_OK;
1276
1277         channel = &fifo->channel;
1278
1279         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1280
1281         txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1282         if (txdp == NULL) {
1283                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1284                 goto exit;
1285         }
1286
1287         /* check whether host owns it */
1288         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1289
1290                 vxge_assert(txdp->host_control != 0);
1291
1292                 vxge_hw_channel_dtr_complete(channel);
1293
1294                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1295
1296                 if (fifo->stats->common_stats.usage_cnt > 0)
1297                         fifo->stats->common_stats.usage_cnt--;
1298
1299                 status = VXGE_HW_OK;
1300                 goto exit;
1301         }
1302
1303         /* no more completions */
1304         *txdlh = NULL;
1305         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1306 exit:
1307         return status;
1308 }
1309
1310 /**
1311  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1312  * @fifo: Handle to the fifo object used for non offload send
1313  * @txdlh: Descriptor handle.
1314  * @t_code: One of the enumerated (and documented in the Titan user guide)
1315  *          "transfer codes".
1316  *
1317  * Handle descriptor's transfer code. The latter comes with each completed
1318  * descriptor.
1319  *
1320  * Returns: one of the enum vxge_hw_status{} enumerated types.
1321  * VXGE_HW_OK - for success.
1322  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1323  */
1324 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1325                                               void *txdlh,
1326                                               enum vxge_hw_fifo_tcode t_code)
1327 {
1328         struct __vxge_hw_channel *channel;
1329
1330         enum vxge_hw_status status = VXGE_HW_OK;
1331         channel = &fifo->channel;
1332
1333         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1334                 status = VXGE_HW_ERR_INVALID_TCODE;
1335                 goto exit;
1336         }
1337
1338         fifo->stats->txd_t_code_err_cnt[t_code]++;
1339 exit:
1340         return status;
1341 }
1342
1343 /**
1344  * vxge_hw_fifo_txdl_free - Free descriptor.
1345  * @fifo: Handle to the fifo object used for non offload send
1346  * @txdlh: Descriptor handle.
1347  *
1348  * Free the reserved descriptor. This operation is "symmetrical" to
1349  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1350  * lifecycle.
1351  *
1352  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1353  * be:
1354  *
1355  * - reserved (vxge_hw_fifo_txdl_reserve);
1356  *
1357  * - posted (vxge_hw_fifo_txdl_post);
1358  *
1359  * - completed (vxge_hw_fifo_txdl_next_completed);
1360  *
1361  * - and recycled again (vxge_hw_fifo_txdl_free).
1362  *
1363  * For alternative state transitions and more details please refer to
1364  * the design doc.
1365  *
1366  */
1367 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1368 {
1369         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1370         u32 max_frags;
1371         struct __vxge_hw_channel *channel;
1372
1373         channel = &fifo->channel;
1374
1375         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1376                         (struct vxge_hw_fifo_txd *)txdlh);
1377
1378         max_frags = fifo->config->max_frags;
1379
1380         vxge_hw_channel_dtr_free(channel, txdlh);
1381 }
1382
1383 /**
1384  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1385  *               to MAC address table.
1386  * @vp: Vpath handle.
1387  * @macaddr: MAC address to be added for this vpath into the list
1388  * @macaddr_mask: MAC address mask for macaddr
1389  * @duplicate_mode: Duplicate MAC address add mode. Please see
1390  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1391  *
1392  * Adds the given mac address and mac address mask into the list for this
1393  * vpath.
1394  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1395  * vxge_hw_vpath_mac_addr_get_next
1396  *
1397  */
1398 enum vxge_hw_status
1399 vxge_hw_vpath_mac_addr_add(
1400         struct __vxge_hw_vpath_handle *vp,
1401         u8 (macaddr)[ETH_ALEN],
1402         u8 (macaddr_mask)[ETH_ALEN],
1403         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1404 {
1405         u32 i;
1406         u64 data1 = 0ULL;
1407         u64 data2 = 0ULL;
1408         enum vxge_hw_status status = VXGE_HW_OK;
1409
1410         if (vp == NULL) {
1411                 status = VXGE_HW_ERR_INVALID_HANDLE;
1412                 goto exit;
1413         }
1414
1415         for (i = 0; i < ETH_ALEN; i++) {
1416                 data1 <<= 8;
1417                 data1 |= (u8)macaddr[i];
1418
1419                 data2 <<= 8;
1420                 data2 |= (u8)macaddr_mask[i];
1421         }
1422
1423         switch (duplicate_mode) {
1424         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1425                 i = 0;
1426                 break;
1427         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1428                 i = 1;
1429                 break;
1430         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1431                 i = 2;
1432                 break;
1433         default:
1434                 i = 0;
1435                 break;
1436         }
1437
1438         status = __vxge_hw_vpath_rts_table_set(vp,
1439                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1440                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1441                         0,
1442                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1443                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1444                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1445 exit:
1446         return status;
1447 }
1448
1449 /**
1450  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1451  *               from MAC address table.
1452  * @vp: Vpath handle.
1453  * @macaddr: First MAC address entry for this vpath in the list
1454  * @macaddr_mask: MAC address mask for macaddr
1455  *
1456  * Returns the first mac address and mac address mask in the list for this
1457  * vpath.
1458  * see also: vxge_hw_vpath_mac_addr_get_next
1459  *
1460  */
1461 enum vxge_hw_status
1462 vxge_hw_vpath_mac_addr_get(
1463         struct __vxge_hw_vpath_handle *vp,
1464         u8 (macaddr)[ETH_ALEN],
1465         u8 (macaddr_mask)[ETH_ALEN])
1466 {
1467         u32 i;
1468         u64 data1 = 0ULL;
1469         u64 data2 = 0ULL;
1470         enum vxge_hw_status status = VXGE_HW_OK;
1471
1472         if (vp == NULL) {
1473                 status = VXGE_HW_ERR_INVALID_HANDLE;
1474                 goto exit;
1475         }
1476
1477         status = __vxge_hw_vpath_rts_table_get(vp,
1478                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1479                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1480                         0, &data1, &data2);
1481
1482         if (status != VXGE_HW_OK)
1483                 goto exit;
1484
1485         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1486
1487         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1488
1489         for (i = ETH_ALEN; i > 0; i--) {
1490                 macaddr[i-1] = (u8)(data1 & 0xFF);
1491                 data1 >>= 8;
1492
1493                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1494                 data2 >>= 8;
1495         }
1496 exit:
1497         return status;
1498 }
1499
1500 /**
1501  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1502  * vpath
1503  *               from MAC address table.
1504  * @vp: Vpath handle.
1505  * @macaddr: Next MAC address entry for this vpath in the list
1506  * @macaddr_mask: MAC address mask for macaddr
1507  *
1508  * Returns the next mac address and mac address mask in the list for this
1509  * vpath.
1510  * see also: vxge_hw_vpath_mac_addr_get
1511  *
1512  */
1513 enum vxge_hw_status
1514 vxge_hw_vpath_mac_addr_get_next(
1515         struct __vxge_hw_vpath_handle *vp,
1516         u8 (macaddr)[ETH_ALEN],
1517         u8 (macaddr_mask)[ETH_ALEN])
1518 {
1519         u32 i;
1520         u64 data1 = 0ULL;
1521         u64 data2 = 0ULL;
1522         enum vxge_hw_status status = VXGE_HW_OK;
1523
1524         if (vp == NULL) {
1525                 status = VXGE_HW_ERR_INVALID_HANDLE;
1526                 goto exit;
1527         }
1528
1529         status = __vxge_hw_vpath_rts_table_get(vp,
1530                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1531                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1532                         0, &data1, &data2);
1533
1534         if (status != VXGE_HW_OK)
1535                 goto exit;
1536
1537         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1538
1539         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1540
1541         for (i = ETH_ALEN; i > 0; i--) {
1542                 macaddr[i-1] = (u8)(data1 & 0xFF);
1543                 data1 >>= 8;
1544
1545                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1546                 data2 >>= 8;
1547         }
1548
1549 exit:
1550         return status;
1551 }
1552
1553 /**
1554  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1555  *               to MAC address table.
1556  * @vp: Vpath handle.
1557  * @macaddr: MAC address to be added for this vpath into the list
1558  * @macaddr_mask: MAC address mask for macaddr
1559  *
1560  * Delete the given mac address and mac address mask into the list for this
1561  * vpath.
1562  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1563  * vxge_hw_vpath_mac_addr_get_next
1564  *
1565  */
1566 enum vxge_hw_status
1567 vxge_hw_vpath_mac_addr_delete(
1568         struct __vxge_hw_vpath_handle *vp,
1569         u8 (macaddr)[ETH_ALEN],
1570         u8 (macaddr_mask)[ETH_ALEN])
1571 {
1572         u32 i;
1573         u64 data1 = 0ULL;
1574         u64 data2 = 0ULL;
1575         enum vxge_hw_status status = VXGE_HW_OK;
1576
1577         if (vp == NULL) {
1578                 status = VXGE_HW_ERR_INVALID_HANDLE;
1579                 goto exit;
1580         }
1581
1582         for (i = 0; i < ETH_ALEN; i++) {
1583                 data1 <<= 8;
1584                 data1 |= (u8)macaddr[i];
1585
1586                 data2 <<= 8;
1587                 data2 |= (u8)macaddr_mask[i];
1588         }
1589
1590         status = __vxge_hw_vpath_rts_table_set(vp,
1591                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1592                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1593                         0,
1594                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1595                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1596 exit:
1597         return status;
1598 }
1599
1600 /**
1601  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1602  *               to vlan id table.
1603  * @vp: Vpath handle.
1604  * @vid: vlan id to be added for this vpath into the list
1605  *
1606  * Adds the given vlan id into the list for this  vpath.
1607  * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1608  * vxge_hw_vpath_vid_get_next
1609  *
1610  */
1611 enum vxge_hw_status
1612 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1613 {
1614         enum vxge_hw_status status = VXGE_HW_OK;
1615
1616         if (vp == NULL) {
1617                 status = VXGE_HW_ERR_INVALID_HANDLE;
1618                 goto exit;
1619         }
1620
1621         status = __vxge_hw_vpath_rts_table_set(vp,
1622                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1623                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1624                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1625 exit:
1626         return status;
1627 }
1628
1629 /**
1630  * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1631  *               from vlan id table.
1632  * @vp: Vpath handle.
1633  * @vid: Buffer to return vlan id
1634  *
1635  * Returns the first vlan id in the list for this vpath.
1636  * see also: vxge_hw_vpath_vid_get_next
1637  *
1638  */
1639 enum vxge_hw_status
1640 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1641 {
1642         u64 data;
1643         enum vxge_hw_status status = VXGE_HW_OK;
1644
1645         if (vp == NULL) {
1646                 status = VXGE_HW_ERR_INVALID_HANDLE;
1647                 goto exit;
1648         }
1649
1650         status = __vxge_hw_vpath_rts_table_get(vp,
1651                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1652                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1653                         0, vid, &data);
1654
1655         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1656 exit:
1657         return status;
1658 }
1659
1660 /**
1661  * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1662  *               from vlan id table.
1663  * @vp: Vpath handle.
1664  * @vid: Buffer to return vlan id
1665  *
1666  * Returns the next vlan id in the list for this vpath.
1667  * see also: vxge_hw_vpath_vid_get
1668  *
1669  */
1670 enum vxge_hw_status
1671 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1672 {
1673         u64 data;
1674         enum vxge_hw_status status = VXGE_HW_OK;
1675
1676         if (vp == NULL) {
1677                 status = VXGE_HW_ERR_INVALID_HANDLE;
1678                 goto exit;
1679         }
1680
1681         status = __vxge_hw_vpath_rts_table_get(vp,
1682                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1683                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1684                         0, vid, &data);
1685
1686         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1687 exit:
1688         return status;
1689 }
1690
1691 /**
1692  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1693  *               to vlan id table.
1694  * @vp: Vpath handle.
1695  * @vid: vlan id to be added for this vpath into the list
1696  *
1697  * Adds the given vlan id into the list for this  vpath.
1698  * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1699  * vxge_hw_vpath_vid_get_next
1700  *
1701  */
1702 enum vxge_hw_status
1703 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1704 {
1705         enum vxge_hw_status status = VXGE_HW_OK;
1706
1707         if (vp == NULL) {
1708                 status = VXGE_HW_ERR_INVALID_HANDLE;
1709                 goto exit;
1710         }
1711
1712         status = __vxge_hw_vpath_rts_table_set(vp,
1713                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1714                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1715                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1716 exit:
1717         return status;
1718 }
1719
1720 /**
1721  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1722  * @vp: Vpath handle.
1723  *
1724  * Enable promiscuous mode of Titan-e operation.
1725  *
1726  * See also: vxge_hw_vpath_promisc_disable().
1727  */
1728 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1729                         struct __vxge_hw_vpath_handle *vp)
1730 {
1731         u64 val64;
1732         struct __vxge_hw_virtualpath *vpath;
1733         enum vxge_hw_status status = VXGE_HW_OK;
1734
1735         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1736                 status = VXGE_HW_ERR_INVALID_HANDLE;
1737                 goto exit;
1738         }
1739
1740         vpath = vp->vpath;
1741
1742         /* Enable promiscous mode for function 0 only */
1743         if (!(vpath->hldev->access_rights &
1744                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1745                 return VXGE_HW_OK;
1746
1747         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1748
1749         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1750
1751                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1752                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1753                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1754                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1755
1756                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1757         }
1758 exit:
1759         return status;
1760 }
1761
1762 /**
1763  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1764  * @vp: Vpath handle.
1765  *
1766  * Disable promiscuous mode of Titan-e operation.
1767  *
1768  * See also: vxge_hw_vpath_promisc_enable().
1769  */
1770 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
1771                         struct __vxge_hw_vpath_handle *vp)
1772 {
1773         u64 val64;
1774         struct __vxge_hw_virtualpath *vpath;
1775         enum vxge_hw_status status = VXGE_HW_OK;
1776
1777         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1778                 status = VXGE_HW_ERR_INVALID_HANDLE;
1779                 goto exit;
1780         }
1781
1782         vpath = vp->vpath;
1783
1784         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1785
1786         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
1787
1788                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1789                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1790                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
1791
1792                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1793         }
1794 exit:
1795         return status;
1796 }
1797
1798 /*
1799  * vxge_hw_vpath_bcast_enable - Enable broadcast
1800  * @vp: Vpath handle.
1801  *
1802  * Enable receiving broadcasts.
1803  */
1804 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
1805                         struct __vxge_hw_vpath_handle *vp)
1806 {
1807         u64 val64;
1808         struct __vxge_hw_virtualpath *vpath;
1809         enum vxge_hw_status status = VXGE_HW_OK;
1810
1811         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1812                 status = VXGE_HW_ERR_INVALID_HANDLE;
1813                 goto exit;
1814         }
1815
1816         vpath = vp->vpath;
1817
1818         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1819
1820         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
1821                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
1822                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1823         }
1824 exit:
1825         return status;
1826 }
1827
1828 /**
1829  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1830  * @vp: Vpath handle.
1831  *
1832  * Enable Titan-e multicast addresses.
1833  * Returns: VXGE_HW_OK on success.
1834  *
1835  */
1836 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
1837                         struct __vxge_hw_vpath_handle *vp)
1838 {
1839         u64 val64;
1840         struct __vxge_hw_virtualpath *vpath;
1841         enum vxge_hw_status status = VXGE_HW_OK;
1842
1843         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1844                 status = VXGE_HW_ERR_INVALID_HANDLE;
1845                 goto exit;
1846         }
1847
1848         vpath = vp->vpath;
1849
1850         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1851
1852         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
1853                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1854                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1855         }
1856 exit:
1857         return status;
1858 }
1859
1860 /**
1861  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
1862  * @vp: Vpath handle.
1863  *
1864  * Disable Titan-e multicast addresses.
1865  * Returns: VXGE_HW_OK - success.
1866  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1867  *
1868  */
1869 enum vxge_hw_status
1870 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
1871 {
1872         u64 val64;
1873         struct __vxge_hw_virtualpath *vpath;
1874         enum vxge_hw_status status = VXGE_HW_OK;
1875
1876         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1877                 status = VXGE_HW_ERR_INVALID_HANDLE;
1878                 goto exit;
1879         }
1880
1881         vpath = vp->vpath;
1882
1883         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1884
1885         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
1886                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1887                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1888         }
1889 exit:
1890         return status;
1891 }
1892
1893 /*
1894  * __vxge_hw_vpath_alarm_process - Process Alarms.
1895  * @vpath: Virtual Path.
1896  * @skip_alarms: Do not clear the alarms
1897  *
1898  * Process vpath alarms.
1899  *
1900  */
1901 enum vxge_hw_status __vxge_hw_vpath_alarm_process(
1902                         struct __vxge_hw_virtualpath *vpath,
1903                         u32 skip_alarms)
1904 {
1905         u64 val64;
1906         u64 alarm_status;
1907         u64 pic_status;
1908         struct __vxge_hw_device *hldev = NULL;
1909         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
1910         u64 mask64;
1911         struct vxge_hw_vpath_stats_sw_info *sw_stats;
1912         struct vxge_hw_vpath_reg __iomem *vp_reg;
1913
1914         if (vpath == NULL) {
1915                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1916                         alarm_event);
1917                 goto out2;
1918         }
1919
1920         hldev = vpath->hldev;
1921         vp_reg = vpath->vp_reg;
1922         alarm_status = readq(&vp_reg->vpath_general_int_status);
1923
1924         if (alarm_status == VXGE_HW_ALL_FOXES) {
1925                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
1926                         alarm_event);
1927                 goto out;
1928         }
1929
1930         sw_stats = vpath->sw_stats;
1931
1932         if (alarm_status & ~(
1933                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
1934                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
1935                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
1936                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
1937                 sw_stats->error_stats.unknown_alarms++;
1938
1939                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1940                         alarm_event);
1941                 goto out;
1942         }
1943
1944         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
1945
1946                 val64 = readq(&vp_reg->xgmac_vp_int_status);
1947
1948                 if (val64 &
1949                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
1950
1951                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
1952
1953                         if (((val64 &
1954                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
1955                              (!(val64 &
1956                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
1957                             ((val64 &
1958                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
1959                              (!(val64 &
1960                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1961                                      ))) {
1962                                 sw_stats->error_stats.network_sustained_fault++;
1963
1964                                 writeq(
1965                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
1966                                         &vp_reg->asic_ntwk_vp_err_mask);
1967
1968                                 __vxge_hw_device_handle_link_down_ind(hldev);
1969                                 alarm_event = VXGE_HW_SET_LEVEL(
1970                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
1971                         }
1972
1973                         if (((val64 &
1974                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
1975                              (!(val64 &
1976                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
1977                             ((val64 &
1978                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
1979                              (!(val64 &
1980                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1981                                      ))) {
1982
1983                                 sw_stats->error_stats.network_sustained_ok++;
1984
1985                                 writeq(
1986                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
1987                                         &vp_reg->asic_ntwk_vp_err_mask);
1988
1989                                 __vxge_hw_device_handle_link_up_ind(hldev);
1990                                 alarm_event = VXGE_HW_SET_LEVEL(
1991                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
1992                         }
1993
1994                         writeq(VXGE_HW_INTR_MASK_ALL,
1995                                 &vp_reg->asic_ntwk_vp_err_reg);
1996
1997                         alarm_event = VXGE_HW_SET_LEVEL(
1998                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
1999
2000                         if (skip_alarms)
2001                                 return VXGE_HW_OK;
2002                 }
2003         }
2004
2005         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
2006
2007                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
2008
2009                 if (pic_status &
2010                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
2011
2012                         val64 = readq(&vp_reg->general_errors_reg);
2013                         mask64 = readq(&vp_reg->general_errors_mask);
2014
2015                         if ((val64 &
2016                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
2017                                 ~mask64) {
2018                                 sw_stats->error_stats.ini_serr_det++;
2019
2020                                 alarm_event = VXGE_HW_SET_LEVEL(
2021                                         VXGE_HW_EVENT_SERR, alarm_event);
2022                         }
2023
2024                         if ((val64 &
2025                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
2026                                 ~mask64) {
2027                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
2028
2029                                 alarm_event = VXGE_HW_SET_LEVEL(
2030                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
2031                         }
2032
2033                         if ((val64 &
2034                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
2035                                 ~mask64)
2036                                 sw_stats->error_stats.statsb_pif_chain_error++;
2037
2038                         if ((val64 &
2039                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
2040                                 ~mask64)
2041                                 sw_stats->error_stats.statsb_drop_timeout++;
2042
2043                         if ((val64 &
2044                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
2045                                 ~mask64)
2046                                 sw_stats->error_stats.target_illegal_access++;
2047
2048                         if (!skip_alarms) {
2049                                 writeq(VXGE_HW_INTR_MASK_ALL,
2050                                         &vp_reg->general_errors_reg);
2051                                 alarm_event = VXGE_HW_SET_LEVEL(
2052                                         VXGE_HW_EVENT_ALARM_CLEARED,
2053                                         alarm_event);
2054                         }
2055                 }
2056
2057                 if (pic_status &
2058                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
2059
2060                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
2061                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
2062
2063                         if ((val64 &
2064                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
2065                                 ~mask64) {
2066                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
2067
2068                                 alarm_event = VXGE_HW_SET_LEVEL(
2069                                         VXGE_HW_EVENT_FIFO_ERR,
2070                                         alarm_event);
2071                         }
2072
2073                         if ((val64 &
2074                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
2075                                 ~mask64) {
2076                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
2077
2078                                 alarm_event = VXGE_HW_SET_LEVEL(
2079                                         VXGE_HW_EVENT_FIFO_ERR,
2080                                         alarm_event);
2081                         }
2082
2083                         if ((val64 &
2084                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
2085                                 ~mask64) {
2086                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
2087
2088                                 alarm_event = VXGE_HW_SET_LEVEL(
2089                                         VXGE_HW_EVENT_FIFO_ERR,
2090                                         alarm_event);
2091                         }
2092
2093                         if (!skip_alarms) {
2094                                 writeq(VXGE_HW_INTR_MASK_ALL,
2095                                         &vp_reg->kdfcctl_errors_reg);
2096                                 alarm_event = VXGE_HW_SET_LEVEL(
2097                                         VXGE_HW_EVENT_ALARM_CLEARED,
2098                                         alarm_event);
2099                         }
2100                 }
2101
2102         }
2103
2104         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
2105
2106                 val64 = readq(&vp_reg->wrdma_alarm_status);
2107
2108                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
2109
2110                         val64 = readq(&vp_reg->prc_alarm_reg);
2111                         mask64 = readq(&vp_reg->prc_alarm_mask);
2112
2113                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
2114                                 ~mask64)
2115                                 sw_stats->error_stats.prc_ring_bumps++;
2116
2117                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
2118                                 ~mask64) {
2119                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
2120
2121                                 alarm_event = VXGE_HW_SET_LEVEL(
2122                                         VXGE_HW_EVENT_VPATH_ERR,
2123                                         alarm_event);
2124                         }
2125
2126                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
2127                                 & ~mask64) {
2128                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
2129
2130                                 alarm_event = VXGE_HW_SET_LEVEL(
2131                                                 VXGE_HW_EVENT_VPATH_ERR,
2132                                                 alarm_event);
2133                         }
2134
2135                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
2136                                  & ~mask64) {
2137                                 sw_stats->error_stats.prc_quanta_size_err++;
2138
2139                                 alarm_event = VXGE_HW_SET_LEVEL(
2140                                         VXGE_HW_EVENT_VPATH_ERR,
2141                                         alarm_event);
2142                         }
2143
2144                         if (!skip_alarms) {
2145                                 writeq(VXGE_HW_INTR_MASK_ALL,
2146                                         &vp_reg->prc_alarm_reg);
2147                                 alarm_event = VXGE_HW_SET_LEVEL(
2148                                                 VXGE_HW_EVENT_ALARM_CLEARED,
2149                                                 alarm_event);
2150                         }
2151                 }
2152         }
2153 out:
2154         hldev->stats.sw_dev_err_stats.vpath_alarms++;
2155 out2:
2156         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
2157                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
2158                 return VXGE_HW_OK;
2159
2160         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
2161
2162         if (alarm_event == VXGE_HW_EVENT_SERR)
2163                 return VXGE_HW_ERR_CRITICAL;
2164
2165         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
2166                 VXGE_HW_ERR_SLOT_FREEZE :
2167                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
2168                 VXGE_HW_ERR_VPATH;
2169 }
2170
2171 /*
2172  * vxge_hw_vpath_alarm_process - Process Alarms.
2173  * @vpath: Virtual Path.
2174  * @skip_alarms: Do not clear the alarms
2175  *
2176  * Process vpath alarms.
2177  *
2178  */
2179 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2180                         struct __vxge_hw_vpath_handle *vp,
2181                         u32 skip_alarms)
2182 {
2183         enum vxge_hw_status status = VXGE_HW_OK;
2184
2185         if (vp == NULL) {
2186                 status = VXGE_HW_ERR_INVALID_HANDLE;
2187                 goto exit;
2188         }
2189
2190         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2191 exit:
2192         return status;
2193 }
2194
2195 /**
2196  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2197  *                            alrms
2198  * @vp: Virtual Path handle.
2199  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2200  *             interrupts(Can be repeated). If fifo or ring are not enabled
2201  *             the MSIX vector for that should be set to 0
2202  * @alarm_msix_id: MSIX vector for alarm.
2203  *
2204  * This API will associate a given MSIX vector numbers with the four TIM
2205  * interrupts and alarm interrupt.
2206  */
2207 void
2208 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2209                        int alarm_msix_id)
2210 {
2211         u64 val64;
2212         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2213         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2214         u32 vp_id = vp->vpath->vp_id;
2215
2216         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2217                   (vp_id * 4) + tim_msix_id[0]) |
2218                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2219                   (vp_id * 4) + tim_msix_id[1]);
2220
2221         writeq(val64, &vp_reg->interrupt_cfg0);
2222
2223         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2224                         (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2225                         &vp_reg->interrupt_cfg2);
2226
2227         if (vpath->hldev->config.intr_mode ==
2228                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2229                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2230                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2231                                 0, 32), &vp_reg->one_shot_vect1_en);
2232         }
2233
2234         if (vpath->hldev->config.intr_mode ==
2235                 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2236                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2237                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2238                                 0, 32), &vp_reg->one_shot_vect2_en);
2239
2240                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2241                                 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2242                                 0, 32), &vp_reg->one_shot_vect3_en);
2243         }
2244 }
2245
2246 /**
2247  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2248  * @vp: Virtual Path handle.
2249  * @msix_id:  MSIX ID
2250  *
2251  * The function masks the msix interrupt for the given msix_id
2252  *
2253  * Returns: 0,
2254  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2255  * status.
2256  * See also:
2257  */
2258 void
2259 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2260 {
2261         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2262         __vxge_hw_pio_mem_write32_upper(
2263                 (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2264                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2265 }
2266
2267 /**
2268  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2269  * @vp: Virtual Path handle.
2270  * @msix_id:  MSI ID
2271  *
2272  * The function clears the msix interrupt for the given msix_id
2273  *
2274  * Returns: 0,
2275  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2276  * status.
2277  * See also:
2278  */
2279 void
2280 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2281 {
2282         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2283         if (hldev->config.intr_mode ==
2284                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2285                 __vxge_hw_pio_mem_write32_upper(
2286                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2287                                 &hldev->common_reg->
2288                                         clr_msix_one_shot_vec[msix_id%4]);
2289         } else {
2290                 __vxge_hw_pio_mem_write32_upper(
2291                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2292                                 &hldev->common_reg->
2293                                         clear_msix_mask_vect[msix_id%4]);
2294         }
2295 }
2296
2297 /**
2298  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2299  * @vp: Virtual Path handle.
2300  * @msix_id:  MSI ID
2301  *
2302  * The function unmasks the msix interrupt for the given msix_id
2303  *
2304  * Returns: 0,
2305  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2306  * status.
2307  * See also:
2308  */
2309 void
2310 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2311 {
2312         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2313         __vxge_hw_pio_mem_write32_upper(
2314                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2315                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2316 }
2317
2318 /**
2319  * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2320  * @vp: Virtual Path handle.
2321  *
2322  * The function masks all msix interrupt for the given vpath
2323  *
2324  */
2325 void
2326 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
2327 {
2328
2329         __vxge_hw_pio_mem_write32_upper(
2330                 (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
2331                 &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
2332 }
2333
2334 /**
2335  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2336  * @vp: Virtual Path handle.
2337  *
2338  * Mask Tx and Rx vpath interrupts.
2339  *
2340  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2341  */
2342 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2343 {
2344         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2345         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2346         u64     val64;
2347         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2348
2349         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2350                 tim_int_mask1, vp->vpath->vp_id);
2351
2352         val64 = readq(&hldev->common_reg->tim_int_mask0);
2353
2354         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2355                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2356                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2357                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2358                         &hldev->common_reg->tim_int_mask0);
2359         }
2360
2361         val64 = readl(&hldev->common_reg->tim_int_mask1);
2362
2363         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2364                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2365                 __vxge_hw_pio_mem_write32_upper(
2366                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2367                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2368                         &hldev->common_reg->tim_int_mask1);
2369         }
2370 }
2371
2372 /**
2373  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2374  * @vp: Virtual Path handle.
2375  *
2376  * Unmask Tx and Rx vpath interrupts.
2377  *
2378  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2379  */
2380 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2381 {
2382         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2383         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2384         u64     val64;
2385         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2386
2387         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2388                 tim_int_mask1, vp->vpath->vp_id);
2389
2390         val64 = readq(&hldev->common_reg->tim_int_mask0);
2391
2392         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2393            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2394                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2395                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2396                         &hldev->common_reg->tim_int_mask0);
2397         }
2398
2399         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2400            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2401                 __vxge_hw_pio_mem_write32_upper(
2402                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2403                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2404                         &hldev->common_reg->tim_int_mask1);
2405         }
2406 }
2407
2408 /**
2409  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2410  * descriptors and process the same.
2411  * @ring: Handle to the ring object used for receive
2412  *
2413  * The function polls the Rx for the completed  descriptors and calls
2414  * the driver via supplied completion   callback.
2415  *
2416  * Returns: VXGE_HW_OK, if the polling is completed successful.
2417  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2418  * descriptors available which are yet to be processed.
2419  *
2420  * See also: vxge_hw_vpath_poll_rx()
2421  */
2422 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2423 {
2424         u8 t_code;
2425         enum vxge_hw_status status = VXGE_HW_OK;
2426         void *first_rxdh;
2427         u64 val64 = 0;
2428         int new_count = 0;
2429
2430         ring->cmpl_cnt = 0;
2431
2432         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2433         if (status == VXGE_HW_OK)
2434                 ring->callback(ring, first_rxdh,
2435                         t_code, ring->channel.userdata);
2436
2437         if (ring->cmpl_cnt != 0) {
2438                 ring->doorbell_cnt += ring->cmpl_cnt;
2439                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2440                         /*
2441                          * Each RxD is of 4 qwords, update the number of
2442                          * qwords replenished
2443                          */
2444                         new_count = (ring->doorbell_cnt * 4);
2445
2446                         /* For each block add 4 more qwords */
2447                         ring->total_db_cnt += ring->doorbell_cnt;
2448                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2449                                 new_count += 4;
2450                                 /* Reset total count */
2451                                 ring->total_db_cnt %= ring->rxds_per_block;
2452                         }
2453                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2454                                 &ring->vp_reg->prc_rxd_doorbell);
2455                         val64 =
2456                           readl(&ring->common_reg->titan_general_int_status);
2457                         ring->doorbell_cnt = 0;
2458                 }
2459         }
2460
2461         return status;
2462 }
2463
2464 /**
2465  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2466  * the same.
2467  * @fifo: Handle to the fifo object used for non offload send
2468  *
2469  * The function polls the Tx for the completed  descriptors and calls
2470  * the driver via supplied completion callback.
2471  *
2472  * Returns: VXGE_HW_OK, if the polling is completed successful.
2473  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2474  * descriptors available which are yet to be processed.
2475  *
2476  * See also: vxge_hw_vpath_poll_tx().
2477  */
2478 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2479                                         struct sk_buff ***skb_ptr, int nr_skb,
2480                                         int *more)
2481 {
2482         enum vxge_hw_fifo_tcode t_code;
2483         void *first_txdlh;
2484         enum vxge_hw_status status = VXGE_HW_OK;
2485         struct __vxge_hw_channel *channel;
2486
2487         channel = &fifo->channel;
2488
2489         status = vxge_hw_fifo_txdl_next_completed(fifo,
2490                                 &first_txdlh, &t_code);
2491         if (status == VXGE_HW_OK)
2492                 if (fifo->callback(fifo, first_txdlh, t_code,
2493                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2494                         status = VXGE_HW_COMPLETIONS_REMAIN;
2495
2496         return status;
2497 }