x86/xen: event channels delivery on HVM.
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
44
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/hypercall.h>
49 #include <asm/xen/hypervisor.h>
50 #include <asm/fixmap.h>
51 #include <asm/processor.h>
52 #include <asm/proto.h>
53 #include <asm/msr-index.h>
54 #include <asm/traps.h>
55 #include <asm/setup.h>
56 #include <asm/desc.h>
57 #include <asm/pgalloc.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/reboot.h>
61 #include <asm/setup.h>
62 #include <asm/stackprotector.h>
63 #include <asm/hypervisor.h>
64
65 #include "xen-ops.h"
66 #include "mmu.h"
67 #include "multicalls.h"
68
69 EXPORT_SYMBOL_GPL(hypercall_page);
70
71 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
72 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
73
74 enum xen_domain_type xen_domain_type = XEN_NATIVE;
75 EXPORT_SYMBOL_GPL(xen_domain_type);
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 void *xen_initial_gdt;
83
84 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
85 __read_mostly int xen_have_vector_callback;
86 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
87
88 /*
89  * Point at some empty memory to start with. We map the real shared_info
90  * page as soon as fixmap is up and running.
91  */
92 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
93
94 /*
95  * Flag to determine whether vcpu info placement is available on all
96  * VCPUs.  We assume it is to start with, and then set it to zero on
97  * the first failure.  This is because it can succeed on some VCPUs
98  * and not others, since it can involve hypervisor memory allocation,
99  * or because the guest failed to guarantee all the appropriate
100  * constraints on all VCPUs (ie buffer can't cross a page boundary).
101  *
102  * Note that any particular CPU may be using a placed vcpu structure,
103  * but we can only optimise if the all are.
104  *
105  * 0: not available, 1: available
106  */
107 static int have_vcpu_info_placement = 1;
108
109 static void xen_vcpu_setup(int cpu)
110 {
111         struct vcpu_register_vcpu_info info;
112         int err;
113         struct vcpu_info *vcpup;
114
115         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
116         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
117
118         if (!have_vcpu_info_placement)
119                 return;         /* already tested, not available */
120
121         vcpup = &per_cpu(xen_vcpu_info, cpu);
122
123         info.mfn = arbitrary_virt_to_mfn(vcpup);
124         info.offset = offset_in_page(vcpup);
125
126         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
127                cpu, vcpup, info.mfn, info.offset);
128
129         /* Check to see if the hypervisor will put the vcpu_info
130            structure where we want it, which allows direct access via
131            a percpu-variable. */
132         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
133
134         if (err) {
135                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
136                 have_vcpu_info_placement = 0;
137         } else {
138                 /* This cpu is using the registered vcpu info, even if
139                    later ones fail to. */
140                 per_cpu(xen_vcpu, cpu) = vcpup;
141
142                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
143                        cpu, vcpup);
144         }
145 }
146
147 /*
148  * On restore, set the vcpu placement up again.
149  * If it fails, then we're in a bad state, since
150  * we can't back out from using it...
151  */
152 void xen_vcpu_restore(void)
153 {
154         int cpu;
155
156         for_each_online_cpu(cpu) {
157                 bool other_cpu = (cpu != smp_processor_id());
158
159                 if (other_cpu &&
160                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
161                         BUG();
162
163                 xen_setup_runstate_info(cpu);
164
165                 if (have_vcpu_info_placement)
166                         xen_vcpu_setup(cpu);
167
168                 if (other_cpu &&
169                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
170                         BUG();
171         }
172 }
173
174 static void __init xen_banner(void)
175 {
176         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
177         struct xen_extraversion extra;
178         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
179
180         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
181                pv_info.name);
182         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
183                version >> 16, version & 0xffff, extra.extraversion,
184                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
185 }
186
187 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
188 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
189
190 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
191                       unsigned int *cx, unsigned int *dx)
192 {
193         unsigned maskebx = ~0;
194         unsigned maskecx = ~0;
195         unsigned maskedx = ~0;
196
197         /*
198          * Mask out inconvenient features, to try and disable as many
199          * unsupported kernel subsystems as possible.
200          */
201         switch (*ax) {
202         case 1:
203                 maskecx = cpuid_leaf1_ecx_mask;
204                 maskedx = cpuid_leaf1_edx_mask;
205                 break;
206
207         case 0xb:
208                 /* Suppress extended topology stuff */
209                 maskebx = 0;
210                 break;
211         }
212
213         asm(XEN_EMULATE_PREFIX "cpuid"
214                 : "=a" (*ax),
215                   "=b" (*bx),
216                   "=c" (*cx),
217                   "=d" (*dx)
218                 : "0" (*ax), "2" (*cx));
219
220         *bx &= maskebx;
221         *cx &= maskecx;
222         *dx &= maskedx;
223 }
224
225 static __init void xen_init_cpuid_mask(void)
226 {
227         unsigned int ax, bx, cx, dx;
228
229         cpuid_leaf1_edx_mask =
230                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
231                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
232                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
233
234         if (!xen_initial_domain())
235                 cpuid_leaf1_edx_mask &=
236                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
237                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
238
239         ax = 1;
240         cx = 0;
241         xen_cpuid(&ax, &bx, &cx, &dx);
242
243         /* cpuid claims we support xsave; try enabling it to see what happens */
244         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
245                 unsigned long cr4;
246
247                 set_in_cr4(X86_CR4_OSXSAVE);
248                 
249                 cr4 = read_cr4();
250
251                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
252                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
253
254                 clear_in_cr4(X86_CR4_OSXSAVE);
255         }
256 }
257
258 static void xen_set_debugreg(int reg, unsigned long val)
259 {
260         HYPERVISOR_set_debugreg(reg, val);
261 }
262
263 static unsigned long xen_get_debugreg(int reg)
264 {
265         return HYPERVISOR_get_debugreg(reg);
266 }
267
268 static void xen_end_context_switch(struct task_struct *next)
269 {
270         xen_mc_flush();
271         paravirt_end_context_switch(next);
272 }
273
274 static unsigned long xen_store_tr(void)
275 {
276         return 0;
277 }
278
279 /*
280  * Set the page permissions for a particular virtual address.  If the
281  * address is a vmalloc mapping (or other non-linear mapping), then
282  * find the linear mapping of the page and also set its protections to
283  * match.
284  */
285 static void set_aliased_prot(void *v, pgprot_t prot)
286 {
287         int level;
288         pte_t *ptep;
289         pte_t pte;
290         unsigned long pfn;
291         struct page *page;
292
293         ptep = lookup_address((unsigned long)v, &level);
294         BUG_ON(ptep == NULL);
295
296         pfn = pte_pfn(*ptep);
297         page = pfn_to_page(pfn);
298
299         pte = pfn_pte(pfn, prot);
300
301         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
302                 BUG();
303
304         if (!PageHighMem(page)) {
305                 void *av = __va(PFN_PHYS(pfn));
306
307                 if (av != v)
308                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
309                                 BUG();
310         } else
311                 kmap_flush_unused();
312 }
313
314 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
315 {
316         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
317         int i;
318
319         for(i = 0; i < entries; i += entries_per_page)
320                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
321 }
322
323 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
324 {
325         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
326         int i;
327
328         for(i = 0; i < entries; i += entries_per_page)
329                 set_aliased_prot(ldt + i, PAGE_KERNEL);
330 }
331
332 static void xen_set_ldt(const void *addr, unsigned entries)
333 {
334         struct mmuext_op *op;
335         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
336
337         op = mcs.args;
338         op->cmd = MMUEXT_SET_LDT;
339         op->arg1.linear_addr = (unsigned long)addr;
340         op->arg2.nr_ents = entries;
341
342         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
343
344         xen_mc_issue(PARAVIRT_LAZY_CPU);
345 }
346
347 static void xen_load_gdt(const struct desc_ptr *dtr)
348 {
349         unsigned long va = dtr->address;
350         unsigned int size = dtr->size + 1;
351         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
352         unsigned long frames[pages];
353         int f;
354
355         /*
356          * A GDT can be up to 64k in size, which corresponds to 8192
357          * 8-byte entries, or 16 4k pages..
358          */
359
360         BUG_ON(size > 65536);
361         BUG_ON(va & ~PAGE_MASK);
362
363         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
364                 int level;
365                 pte_t *ptep;
366                 unsigned long pfn, mfn;
367                 void *virt;
368
369                 /*
370                  * The GDT is per-cpu and is in the percpu data area.
371                  * That can be virtually mapped, so we need to do a
372                  * page-walk to get the underlying MFN for the
373                  * hypercall.  The page can also be in the kernel's
374                  * linear range, so we need to RO that mapping too.
375                  */
376                 ptep = lookup_address(va, &level);
377                 BUG_ON(ptep == NULL);
378
379                 pfn = pte_pfn(*ptep);
380                 mfn = pfn_to_mfn(pfn);
381                 virt = __va(PFN_PHYS(pfn));
382
383                 frames[f] = mfn;
384
385                 make_lowmem_page_readonly((void *)va);
386                 make_lowmem_page_readonly(virt);
387         }
388
389         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
390                 BUG();
391 }
392
393 /*
394  * load_gdt for early boot, when the gdt is only mapped once
395  */
396 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
397 {
398         unsigned long va = dtr->address;
399         unsigned int size = dtr->size + 1;
400         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
401         unsigned long frames[pages];
402         int f;
403
404         /*
405          * A GDT can be up to 64k in size, which corresponds to 8192
406          * 8-byte entries, or 16 4k pages..
407          */
408
409         BUG_ON(size > 65536);
410         BUG_ON(va & ~PAGE_MASK);
411
412         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
413                 pte_t pte;
414                 unsigned long pfn, mfn;
415
416                 pfn = virt_to_pfn(va);
417                 mfn = pfn_to_mfn(pfn);
418
419                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
420
421                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
422                         BUG();
423
424                 frames[f] = mfn;
425         }
426
427         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
428                 BUG();
429 }
430
431 static void load_TLS_descriptor(struct thread_struct *t,
432                                 unsigned int cpu, unsigned int i)
433 {
434         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
435         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
436         struct multicall_space mc = __xen_mc_entry(0);
437
438         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
439 }
440
441 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
442 {
443         /*
444          * XXX sleazy hack: If we're being called in a lazy-cpu zone
445          * and lazy gs handling is enabled, it means we're in a
446          * context switch, and %gs has just been saved.  This means we
447          * can zero it out to prevent faults on exit from the
448          * hypervisor if the next process has no %gs.  Either way, it
449          * has been saved, and the new value will get loaded properly.
450          * This will go away as soon as Xen has been modified to not
451          * save/restore %gs for normal hypercalls.
452          *
453          * On x86_64, this hack is not used for %gs, because gs points
454          * to KERNEL_GS_BASE (and uses it for PDA references), so we
455          * must not zero %gs on x86_64
456          *
457          * For x86_64, we need to zero %fs, otherwise we may get an
458          * exception between the new %fs descriptor being loaded and
459          * %fs being effectively cleared at __switch_to().
460          */
461         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
462 #ifdef CONFIG_X86_32
463                 lazy_load_gs(0);
464 #else
465                 loadsegment(fs, 0);
466 #endif
467         }
468
469         xen_mc_batch();
470
471         load_TLS_descriptor(t, cpu, 0);
472         load_TLS_descriptor(t, cpu, 1);
473         load_TLS_descriptor(t, cpu, 2);
474
475         xen_mc_issue(PARAVIRT_LAZY_CPU);
476 }
477
478 #ifdef CONFIG_X86_64
479 static void xen_load_gs_index(unsigned int idx)
480 {
481         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
482                 BUG();
483 }
484 #endif
485
486 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
487                                 const void *ptr)
488 {
489         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
490         u64 entry = *(u64 *)ptr;
491
492         preempt_disable();
493
494         xen_mc_flush();
495         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
496                 BUG();
497
498         preempt_enable();
499 }
500
501 static int cvt_gate_to_trap(int vector, const gate_desc *val,
502                             struct trap_info *info)
503 {
504         unsigned long addr;
505
506         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
507                 return 0;
508
509         info->vector = vector;
510
511         addr = gate_offset(*val);
512 #ifdef CONFIG_X86_64
513         /*
514          * Look for known traps using IST, and substitute them
515          * appropriately.  The debugger ones are the only ones we care
516          * about.  Xen will handle faults like double_fault and
517          * machine_check, so we should never see them.  Warn if
518          * there's an unexpected IST-using fault handler.
519          */
520         if (addr == (unsigned long)debug)
521                 addr = (unsigned long)xen_debug;
522         else if (addr == (unsigned long)int3)
523                 addr = (unsigned long)xen_int3;
524         else if (addr == (unsigned long)stack_segment)
525                 addr = (unsigned long)xen_stack_segment;
526         else if (addr == (unsigned long)double_fault ||
527                  addr == (unsigned long)nmi) {
528                 /* Don't need to handle these */
529                 return 0;
530 #ifdef CONFIG_X86_MCE
531         } else if (addr == (unsigned long)machine_check) {
532                 return 0;
533 #endif
534         } else {
535                 /* Some other trap using IST? */
536                 if (WARN_ON(val->ist != 0))
537                         return 0;
538         }
539 #endif  /* CONFIG_X86_64 */
540         info->address = addr;
541
542         info->cs = gate_segment(*val);
543         info->flags = val->dpl;
544         /* interrupt gates clear IF */
545         if (val->type == GATE_INTERRUPT)
546                 info->flags |= 1 << 2;
547
548         return 1;
549 }
550
551 /* Locations of each CPU's IDT */
552 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
553
554 /* Set an IDT entry.  If the entry is part of the current IDT, then
555    also update Xen. */
556 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
557 {
558         unsigned long p = (unsigned long)&dt[entrynum];
559         unsigned long start, end;
560
561         preempt_disable();
562
563         start = __get_cpu_var(idt_desc).address;
564         end = start + __get_cpu_var(idt_desc).size + 1;
565
566         xen_mc_flush();
567
568         native_write_idt_entry(dt, entrynum, g);
569
570         if (p >= start && (p + 8) <= end) {
571                 struct trap_info info[2];
572
573                 info[1].address = 0;
574
575                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
576                         if (HYPERVISOR_set_trap_table(info))
577                                 BUG();
578         }
579
580         preempt_enable();
581 }
582
583 static void xen_convert_trap_info(const struct desc_ptr *desc,
584                                   struct trap_info *traps)
585 {
586         unsigned in, out, count;
587
588         count = (desc->size+1) / sizeof(gate_desc);
589         BUG_ON(count > 256);
590
591         for (in = out = 0; in < count; in++) {
592                 gate_desc *entry = (gate_desc*)(desc->address) + in;
593
594                 if (cvt_gate_to_trap(in, entry, &traps[out]))
595                         out++;
596         }
597         traps[out].address = 0;
598 }
599
600 void xen_copy_trap_info(struct trap_info *traps)
601 {
602         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
603
604         xen_convert_trap_info(desc, traps);
605 }
606
607 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
608    hold a spinlock to protect the static traps[] array (static because
609    it avoids allocation, and saves stack space). */
610 static void xen_load_idt(const struct desc_ptr *desc)
611 {
612         static DEFINE_SPINLOCK(lock);
613         static struct trap_info traps[257];
614
615         spin_lock(&lock);
616
617         __get_cpu_var(idt_desc) = *desc;
618
619         xen_convert_trap_info(desc, traps);
620
621         xen_mc_flush();
622         if (HYPERVISOR_set_trap_table(traps))
623                 BUG();
624
625         spin_unlock(&lock);
626 }
627
628 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
629    they're handled differently. */
630 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
631                                 const void *desc, int type)
632 {
633         preempt_disable();
634
635         switch (type) {
636         case DESC_LDT:
637         case DESC_TSS:
638                 /* ignore */
639                 break;
640
641         default: {
642                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
643
644                 xen_mc_flush();
645                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
646                         BUG();
647         }
648
649         }
650
651         preempt_enable();
652 }
653
654 /*
655  * Version of write_gdt_entry for use at early boot-time needed to
656  * update an entry as simply as possible.
657  */
658 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
659                                             const void *desc, int type)
660 {
661         switch (type) {
662         case DESC_LDT:
663         case DESC_TSS:
664                 /* ignore */
665                 break;
666
667         default: {
668                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
669
670                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
671                         dt[entry] = *(struct desc_struct *)desc;
672         }
673
674         }
675 }
676
677 static void xen_load_sp0(struct tss_struct *tss,
678                          struct thread_struct *thread)
679 {
680         struct multicall_space mcs = xen_mc_entry(0);
681         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
682         xen_mc_issue(PARAVIRT_LAZY_CPU);
683 }
684
685 static void xen_set_iopl_mask(unsigned mask)
686 {
687         struct physdev_set_iopl set_iopl;
688
689         /* Force the change at ring 0. */
690         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
691         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
692 }
693
694 static void xen_io_delay(void)
695 {
696 }
697
698 #ifdef CONFIG_X86_LOCAL_APIC
699 static u32 xen_apic_read(u32 reg)
700 {
701         return 0;
702 }
703
704 static void xen_apic_write(u32 reg, u32 val)
705 {
706         /* Warn to see if there's any stray references */
707         WARN_ON(1);
708 }
709
710 static u64 xen_apic_icr_read(void)
711 {
712         return 0;
713 }
714
715 static void xen_apic_icr_write(u32 low, u32 id)
716 {
717         /* Warn to see if there's any stray references */
718         WARN_ON(1);
719 }
720
721 static void xen_apic_wait_icr_idle(void)
722 {
723         return;
724 }
725
726 static u32 xen_safe_apic_wait_icr_idle(void)
727 {
728         return 0;
729 }
730
731 static void set_xen_basic_apic_ops(void)
732 {
733         apic->read = xen_apic_read;
734         apic->write = xen_apic_write;
735         apic->icr_read = xen_apic_icr_read;
736         apic->icr_write = xen_apic_icr_write;
737         apic->wait_icr_idle = xen_apic_wait_icr_idle;
738         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
739 }
740
741 #endif
742
743
744 static void xen_clts(void)
745 {
746         struct multicall_space mcs;
747
748         mcs = xen_mc_entry(0);
749
750         MULTI_fpu_taskswitch(mcs.mc, 0);
751
752         xen_mc_issue(PARAVIRT_LAZY_CPU);
753 }
754
755 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
756
757 static unsigned long xen_read_cr0(void)
758 {
759         unsigned long cr0 = percpu_read(xen_cr0_value);
760
761         if (unlikely(cr0 == 0)) {
762                 cr0 = native_read_cr0();
763                 percpu_write(xen_cr0_value, cr0);
764         }
765
766         return cr0;
767 }
768
769 static void xen_write_cr0(unsigned long cr0)
770 {
771         struct multicall_space mcs;
772
773         percpu_write(xen_cr0_value, cr0);
774
775         /* Only pay attention to cr0.TS; everything else is
776            ignored. */
777         mcs = xen_mc_entry(0);
778
779         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
780
781         xen_mc_issue(PARAVIRT_LAZY_CPU);
782 }
783
784 static void xen_write_cr4(unsigned long cr4)
785 {
786         cr4 &= ~X86_CR4_PGE;
787         cr4 &= ~X86_CR4_PSE;
788
789         native_write_cr4(cr4);
790 }
791
792 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
793 {
794         int ret;
795
796         ret = 0;
797
798         switch (msr) {
799 #ifdef CONFIG_X86_64
800                 unsigned which;
801                 u64 base;
802
803         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
804         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
805         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
806
807         set:
808                 base = ((u64)high << 32) | low;
809                 if (HYPERVISOR_set_segment_base(which, base) != 0)
810                         ret = -EIO;
811                 break;
812 #endif
813
814         case MSR_STAR:
815         case MSR_CSTAR:
816         case MSR_LSTAR:
817         case MSR_SYSCALL_MASK:
818         case MSR_IA32_SYSENTER_CS:
819         case MSR_IA32_SYSENTER_ESP:
820         case MSR_IA32_SYSENTER_EIP:
821                 /* Fast syscall setup is all done in hypercalls, so
822                    these are all ignored.  Stub them out here to stop
823                    Xen console noise. */
824                 break;
825
826         default:
827                 ret = native_write_msr_safe(msr, low, high);
828         }
829
830         return ret;
831 }
832
833 void xen_setup_shared_info(void)
834 {
835         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
836                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
837                            xen_start_info->shared_info);
838
839                 HYPERVISOR_shared_info =
840                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
841         } else
842                 HYPERVISOR_shared_info =
843                         (struct shared_info *)__va(xen_start_info->shared_info);
844
845 #ifndef CONFIG_SMP
846         /* In UP this is as good a place as any to set up shared info */
847         xen_setup_vcpu_info_placement();
848 #endif
849
850         xen_setup_mfn_list_list();
851 }
852
853 /* This is called once we have the cpu_possible_map */
854 void xen_setup_vcpu_info_placement(void)
855 {
856         int cpu;
857
858         for_each_possible_cpu(cpu)
859                 xen_vcpu_setup(cpu);
860
861         /* xen_vcpu_setup managed to place the vcpu_info within the
862            percpu area for all cpus, so make use of it */
863         if (have_vcpu_info_placement) {
864                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
865
866                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
867                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
868                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
869                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
870                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
871         }
872 }
873
874 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
875                           unsigned long addr, unsigned len)
876 {
877         char *start, *end, *reloc;
878         unsigned ret;
879
880         start = end = reloc = NULL;
881
882 #define SITE(op, x)                                                     \
883         case PARAVIRT_PATCH(op.x):                                      \
884         if (have_vcpu_info_placement) {                                 \
885                 start = (char *)xen_##x##_direct;                       \
886                 end = xen_##x##_direct_end;                             \
887                 reloc = xen_##x##_direct_reloc;                         \
888         }                                                               \
889         goto patch_site
890
891         switch (type) {
892                 SITE(pv_irq_ops, irq_enable);
893                 SITE(pv_irq_ops, irq_disable);
894                 SITE(pv_irq_ops, save_fl);
895                 SITE(pv_irq_ops, restore_fl);
896 #undef SITE
897
898         patch_site:
899                 if (start == NULL || (end-start) > len)
900                         goto default_patch;
901
902                 ret = paravirt_patch_insns(insnbuf, len, start, end);
903
904                 /* Note: because reloc is assigned from something that
905                    appears to be an array, gcc assumes it's non-null,
906                    but doesn't know its relationship with start and
907                    end. */
908                 if (reloc > start && reloc < end) {
909                         int reloc_off = reloc - start;
910                         long *relocp = (long *)(insnbuf + reloc_off);
911                         long delta = start - (char *)addr;
912
913                         *relocp += delta;
914                 }
915                 break;
916
917         default_patch:
918         default:
919                 ret = paravirt_patch_default(type, clobbers, insnbuf,
920                                              addr, len);
921                 break;
922         }
923
924         return ret;
925 }
926
927 static const struct pv_info xen_info __initdata = {
928         .paravirt_enabled = 1,
929         .shared_kernel_pmd = 0,
930
931         .name = "Xen",
932 };
933
934 static const struct pv_init_ops xen_init_ops __initdata = {
935         .patch = xen_patch,
936 };
937
938 static const struct pv_time_ops xen_time_ops __initdata = {
939         .sched_clock = xen_sched_clock,
940 };
941
942 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
943         .cpuid = xen_cpuid,
944
945         .set_debugreg = xen_set_debugreg,
946         .get_debugreg = xen_get_debugreg,
947
948         .clts = xen_clts,
949
950         .read_cr0 = xen_read_cr0,
951         .write_cr0 = xen_write_cr0,
952
953         .read_cr4 = native_read_cr4,
954         .read_cr4_safe = native_read_cr4_safe,
955         .write_cr4 = xen_write_cr4,
956
957         .wbinvd = native_wbinvd,
958
959         .read_msr = native_read_msr_safe,
960         .write_msr = xen_write_msr_safe,
961         .read_tsc = native_read_tsc,
962         .read_pmc = native_read_pmc,
963
964         .iret = xen_iret,
965         .irq_enable_sysexit = xen_sysexit,
966 #ifdef CONFIG_X86_64
967         .usergs_sysret32 = xen_sysret32,
968         .usergs_sysret64 = xen_sysret64,
969 #endif
970
971         .load_tr_desc = paravirt_nop,
972         .set_ldt = xen_set_ldt,
973         .load_gdt = xen_load_gdt,
974         .load_idt = xen_load_idt,
975         .load_tls = xen_load_tls,
976 #ifdef CONFIG_X86_64
977         .load_gs_index = xen_load_gs_index,
978 #endif
979
980         .alloc_ldt = xen_alloc_ldt,
981         .free_ldt = xen_free_ldt,
982
983         .store_gdt = native_store_gdt,
984         .store_idt = native_store_idt,
985         .store_tr = xen_store_tr,
986
987         .write_ldt_entry = xen_write_ldt_entry,
988         .write_gdt_entry = xen_write_gdt_entry,
989         .write_idt_entry = xen_write_idt_entry,
990         .load_sp0 = xen_load_sp0,
991
992         .set_iopl_mask = xen_set_iopl_mask,
993         .io_delay = xen_io_delay,
994
995         /* Xen takes care of %gs when switching to usermode for us */
996         .swapgs = paravirt_nop,
997
998         .start_context_switch = paravirt_start_context_switch,
999         .end_context_switch = xen_end_context_switch,
1000 };
1001
1002 static const struct pv_apic_ops xen_apic_ops __initdata = {
1003 #ifdef CONFIG_X86_LOCAL_APIC
1004         .startup_ipi_hook = paravirt_nop,
1005 #endif
1006 };
1007
1008 static void xen_reboot(int reason)
1009 {
1010         struct sched_shutdown r = { .reason = reason };
1011
1012 #ifdef CONFIG_SMP
1013         smp_send_stop();
1014 #endif
1015
1016         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1017                 BUG();
1018 }
1019
1020 static void xen_restart(char *msg)
1021 {
1022         xen_reboot(SHUTDOWN_reboot);
1023 }
1024
1025 static void xen_emergency_restart(void)
1026 {
1027         xen_reboot(SHUTDOWN_reboot);
1028 }
1029
1030 static void xen_machine_halt(void)
1031 {
1032         xen_reboot(SHUTDOWN_poweroff);
1033 }
1034
1035 static void xen_crash_shutdown(struct pt_regs *regs)
1036 {
1037         xen_reboot(SHUTDOWN_crash);
1038 }
1039
1040 static const struct machine_ops __initdata xen_machine_ops = {
1041         .restart = xen_restart,
1042         .halt = xen_machine_halt,
1043         .power_off = xen_machine_halt,
1044         .shutdown = xen_machine_halt,
1045         .crash_shutdown = xen_crash_shutdown,
1046         .emergency_restart = xen_emergency_restart,
1047 };
1048
1049 /*
1050  * Set up the GDT and segment registers for -fstack-protector.  Until
1051  * we do this, we have to be careful not to call any stack-protected
1052  * function, which is most of the kernel.
1053  */
1054 static void __init xen_setup_stackprotector(void)
1055 {
1056         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1057         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1058
1059         setup_stack_canary_segment(0);
1060         switch_to_new_gdt(0);
1061
1062         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1063         pv_cpu_ops.load_gdt = xen_load_gdt;
1064 }
1065
1066 /* First C function to be called on Xen boot */
1067 asmlinkage void __init xen_start_kernel(void)
1068 {
1069         pgd_t *pgd;
1070
1071         if (!xen_start_info)
1072                 return;
1073
1074         xen_domain_type = XEN_PV_DOMAIN;
1075
1076         /* Install Xen paravirt ops */
1077         pv_info = xen_info;
1078         pv_init_ops = xen_init_ops;
1079         pv_time_ops = xen_time_ops;
1080         pv_cpu_ops = xen_cpu_ops;
1081         pv_apic_ops = xen_apic_ops;
1082
1083         x86_init.resources.memory_setup = xen_memory_setup;
1084         x86_init.oem.arch_setup = xen_arch_setup;
1085         x86_init.oem.banner = xen_banner;
1086
1087         x86_init.timers.timer_init = xen_time_init;
1088         x86_init.timers.setup_percpu_clockev = x86_init_noop;
1089         x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1090
1091         x86_platform.calibrate_tsc = xen_tsc_khz;
1092         x86_platform.get_wallclock = xen_get_wallclock;
1093         x86_platform.set_wallclock = xen_set_wallclock;
1094
1095         /*
1096          * Set up some pagetable state before starting to set any ptes.
1097          */
1098
1099         xen_init_mmu_ops();
1100
1101         /* Prevent unwanted bits from being set in PTEs. */
1102         __supported_pte_mask &= ~_PAGE_GLOBAL;
1103         if (!xen_initial_domain())
1104                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1105
1106         __supported_pte_mask |= _PAGE_IOMAP;
1107
1108         /*
1109          * Prevent page tables from being allocated in highmem, even
1110          * if CONFIG_HIGHPTE is enabled.
1111          */
1112         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1113
1114         /* Work out if we support NX */
1115         x86_configure_nx();
1116
1117         xen_setup_features();
1118
1119         /* Get mfn list */
1120         if (!xen_feature(XENFEAT_auto_translated_physmap))
1121                 xen_build_dynamic_phys_to_machine();
1122
1123         /*
1124          * Set up kernel GDT and segment registers, mainly so that
1125          * -fstack-protector code can be executed.
1126          */
1127         xen_setup_stackprotector();
1128
1129         xen_init_irq_ops();
1130         xen_init_cpuid_mask();
1131
1132 #ifdef CONFIG_X86_LOCAL_APIC
1133         /*
1134          * set up the basic apic ops.
1135          */
1136         set_xen_basic_apic_ops();
1137 #endif
1138
1139         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1140                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1141                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1142         }
1143
1144         machine_ops = xen_machine_ops;
1145
1146         /*
1147          * The only reliable way to retain the initial address of the
1148          * percpu gdt_page is to remember it here, so we can go and
1149          * mark it RW later, when the initial percpu area is freed.
1150          */
1151         xen_initial_gdt = &per_cpu(gdt_page, 0);
1152
1153         xen_smp_init();
1154
1155         pgd = (pgd_t *)xen_start_info->pt_base;
1156
1157         /* Don't do the full vcpu_info placement stuff until we have a
1158            possible map and a non-dummy shared_info. */
1159         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1160
1161         local_irq_disable();
1162         early_boot_irqs_off();
1163
1164         xen_raw_console_write("mapping kernel into physical memory\n");
1165         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1166
1167         init_mm.pgd = pgd;
1168
1169         /* keep using Xen gdt for now; no urgent need to change it */
1170
1171 #ifdef CONFIG_X86_32
1172         pv_info.kernel_rpl = 1;
1173         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1174                 pv_info.kernel_rpl = 0;
1175 #else
1176         pv_info.kernel_rpl = 0;
1177 #endif
1178
1179         /* set the limit of our address space */
1180         xen_reserve_top();
1181
1182 #ifdef CONFIG_X86_32
1183         /* set up basic CPUID stuff */
1184         cpu_detect(&new_cpu_data);
1185         new_cpu_data.hard_math = 1;
1186         new_cpu_data.wp_works_ok = 1;
1187         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1188 #endif
1189
1190         /* Poke various useful things into boot_params */
1191         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1192         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1193                 ? __pa(xen_start_info->mod_start) : 0;
1194         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1195         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1196
1197         if (!xen_initial_domain()) {
1198                 add_preferred_console("xenboot", 0, NULL);
1199                 add_preferred_console("tty", 0, NULL);
1200                 add_preferred_console("hvc", 0, NULL);
1201         } else {
1202                 /* Make sure ACS will be enabled */
1203                 pci_request_acs();
1204         }
1205                 
1206
1207         xen_raw_console_write("about to get started...\n");
1208
1209         xen_setup_runstate_info(0);
1210
1211         /* Start the world */
1212 #ifdef CONFIG_X86_32
1213         i386_start_kernel();
1214 #else
1215         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1216 #endif
1217 }
1218
1219 static uint32_t xen_cpuid_base(void)
1220 {
1221         uint32_t base, eax, ebx, ecx, edx;
1222         char signature[13];
1223
1224         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1225                 cpuid(base, &eax, &ebx, &ecx, &edx);
1226                 *(uint32_t *)(signature + 0) = ebx;
1227                 *(uint32_t *)(signature + 4) = ecx;
1228                 *(uint32_t *)(signature + 8) = edx;
1229                 signature[12] = 0;
1230
1231                 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1232                         return base;
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int init_hvm_pv_info(int *major, int *minor)
1239 {
1240         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1241         u64 pfn;
1242
1243         base = xen_cpuid_base();
1244         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1245
1246         *major = eax >> 16;
1247         *minor = eax & 0xffff;
1248         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1249
1250         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1251
1252         pfn = __pa(hypercall_page);
1253         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1254
1255         xen_setup_features();
1256
1257         pv_info = xen_info;
1258         pv_info.kernel_rpl = 0;
1259
1260         xen_domain_type = XEN_HVM_DOMAIN;
1261
1262         return 0;
1263 }
1264
1265 static void __init init_shared_info(void)
1266 {
1267         struct xen_add_to_physmap xatp;
1268         struct shared_info *shared_info_page;
1269
1270         shared_info_page = (struct shared_info *)
1271                 extend_brk(PAGE_SIZE, PAGE_SIZE);
1272         xatp.domid = DOMID_SELF;
1273         xatp.idx = 0;
1274         xatp.space = XENMAPSPACE_shared_info;
1275         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1276         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1277                 BUG();
1278
1279         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1280
1281         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1282 }
1283
1284 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1285                                     unsigned long action, void *hcpu)
1286 {
1287         int cpu = (long)hcpu;
1288         switch (action) {
1289         case CPU_UP_PREPARE:
1290                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1291                 break;
1292         default:
1293                 break;
1294         }
1295         return NOTIFY_OK;
1296 }
1297
1298 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1299         .notifier_call  = xen_hvm_cpu_notify,
1300 };
1301
1302 static void __init xen_hvm_guest_init(void)
1303 {
1304         int r;
1305         int major, minor;
1306
1307         r = init_hvm_pv_info(&major, &minor);
1308         if (r < 0)
1309                 return;
1310
1311         init_shared_info();
1312
1313         if (xen_feature(XENFEAT_hvm_callback_vector))
1314                 xen_have_vector_callback = 1;
1315         register_cpu_notifier(&xen_hvm_cpu_notifier);
1316         have_vcpu_info_placement = 0;
1317         x86_init.irqs.intr_init = xen_init_IRQ;
1318 }
1319
1320 static bool __init xen_hvm_platform(void)
1321 {
1322         if (xen_pv_domain())
1323                 return false;
1324
1325         if (!xen_cpuid_base())
1326                 return false;
1327
1328         return true;
1329 }
1330
1331 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1332         .name                   = "Xen HVM",
1333         .detect                 = xen_hvm_platform,
1334         .init_platform          = xen_hvm_guest_init,
1335 };
1336 EXPORT_SYMBOL(x86_hyper_xen_hvm);