Merge tag 'md-3.4-fixes' of git://neil.brown.name/md
[linux-flexiantxendom0-3.2.10.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102
103 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
104 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
105 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
107 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
108 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
109 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
110 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131         struct inet_connection_sock *icsk = inet_csk(sk);
132         const unsigned int lss = icsk->icsk_ack.last_seg_size;
133         unsigned int len;
134
135         icsk->icsk_ack.last_seg_size = 0;
136
137         /* skb->len may jitter because of SACKs, even if peer
138          * sends good full-sized frames.
139          */
140         len = skb_shinfo(skb)->gso_size ? : skb->len;
141         if (len >= icsk->icsk_ack.rcv_mss) {
142                 icsk->icsk_ack.rcv_mss = len;
143         } else {
144                 /* Otherwise, we make more careful check taking into account,
145                  * that SACKs block is variable.
146                  *
147                  * "len" is invariant segment length, including TCP header.
148                  */
149                 len += skb->data - skb_transport_header(skb);
150                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151                     /* If PSH is not set, packet should be
152                      * full sized, provided peer TCP is not badly broken.
153                      * This observation (if it is correct 8)) allows
154                      * to handle super-low mtu links fairly.
155                      */
156                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158                         /* Subtract also invariant (if peer is RFC compliant),
159                          * tcp header plus fixed timestamp option length.
160                          * Resulting "len" is MSS free of SACK jitter.
161                          */
162                         len -= tcp_sk(sk)->tcp_header_len;
163                         icsk->icsk_ack.last_seg_size = len;
164                         if (len == lss) {
165                                 icsk->icsk_ack.rcv_mss = len;
166                                 return;
167                         }
168                 }
169                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172         }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177         struct inet_connection_sock *icsk = inet_csk(sk);
178         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180         if (quickacks == 0)
181                 quickacks = 2;
182         if (quickacks > icsk->icsk_ack.quick)
183                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188         struct inet_connection_sock *icsk = inet_csk(sk);
189         tcp_incr_quickack(sk);
190         icsk->icsk_ack.pingpong = 0;
191         icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200         const struct inet_connection_sock *icsk = inet_csk(sk);
201         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206         if (tp->ecn_flags & TCP_ECN_OK)
207                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212         if (tcp_hdr(skb)->cwr)
213                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223         if (!(tp->ecn_flags & TCP_ECN_OK))
224                 return;
225
226         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227         case INET_ECN_NOT_ECT:
228                 /* Funny extension: if ECT is not set on a segment,
229                  * and we already seen ECT on a previous segment,
230                  * it is probably a retransmit.
231                  */
232                 if (tp->ecn_flags & TCP_ECN_SEEN)
233                         tcp_enter_quickack_mode((struct sock *)tp);
234                 break;
235         case INET_ECN_CE:
236                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237                 /* fallinto */
238         default:
239                 tp->ecn_flags |= TCP_ECN_SEEN;
240         }
241 }
242
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246                 tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252                 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258                 return 1;
259         return 0;
260 }
261
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271         sndmem *= TCP_INIT_CWND;
272         if (sk->sk_sndbuf < sndmem)
273                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305         /* Optimize this! */
306         int truesize = tcp_win_from_space(skb->truesize) >> 1;
307         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309         while (tp->rcv_ssthresh <= window) {
310                 if (truesize <= skb->len)
311                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313                 truesize >>= 1;
314                 window >>= 1;
315         }
316         return 0;
317 }
318
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321         struct tcp_sock *tp = tcp_sk(sk);
322
323         /* Check #1 */
324         if (tp->rcv_ssthresh < tp->window_clamp &&
325             (int)tp->rcv_ssthresh < tcp_space(sk) &&
326             !sk_under_memory_pressure(sk)) {
327                 int incr;
328
329                 /* Check #2. Increase window, if skb with such overhead
330                  * will fit to rcvbuf in future.
331                  */
332                 if (tcp_win_from_space(skb->truesize) <= skb->len)
333                         incr = 2 * tp->advmss;
334                 else
335                         incr = __tcp_grow_window(sk, skb);
336
337                 if (incr) {
338                         incr = max_t(int, incr, 2 * skb->len);
339                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340                                                tp->window_clamp);
341                         inet_csk(sk)->icsk_ack.quick |= 1;
342                 }
343         }
344 }
345
346 /* 3. Tuning rcvbuf, when connection enters established state. */
347
348 static void tcp_fixup_rcvbuf(struct sock *sk)
349 {
350         u32 mss = tcp_sk(sk)->advmss;
351         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352         int rcvmem;
353
354         /* Limit to 10 segments if mss <= 1460,
355          * or 14600/mss segments, with a minimum of two segments.
356          */
357         if (mss > 1460)
358                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359
360         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361         while (tcp_win_from_space(rcvmem) < mss)
362                 rcvmem += 128;
363
364         rcvmem *= icwnd;
365
366         if (sk->sk_rcvbuf < rcvmem)
367                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368 }
369
370 /* 4. Try to fixup all. It is made immediately after connection enters
371  *    established state.
372  */
373 static void tcp_init_buffer_space(struct sock *sk)
374 {
375         struct tcp_sock *tp = tcp_sk(sk);
376         int maxwin;
377
378         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379                 tcp_fixup_rcvbuf(sk);
380         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381                 tcp_fixup_sndbuf(sk);
382
383         tp->rcvq_space.space = tp->rcv_wnd;
384
385         maxwin = tcp_full_space(sk);
386
387         if (tp->window_clamp >= maxwin) {
388                 tp->window_clamp = maxwin;
389
390                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391                         tp->window_clamp = max(maxwin -
392                                                (maxwin >> sysctl_tcp_app_win),
393                                                4 * tp->advmss);
394         }
395
396         /* Force reservation of one segment. */
397         if (sysctl_tcp_app_win &&
398             tp->window_clamp > 2 * tp->advmss &&
399             tp->window_clamp + tp->advmss > maxwin)
400                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401
402         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403         tp->snd_cwnd_stamp = tcp_time_stamp;
404 }
405
406 /* 5. Recalculate window clamp after socket hit its memory bounds. */
407 static void tcp_clamp_window(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         struct inet_connection_sock *icsk = inet_csk(sk);
411
412         icsk->icsk_ack.quick = 0;
413
414         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
416             !sk_under_memory_pressure(sk) &&
417             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
418                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419                                     sysctl_tcp_rmem[2]);
420         }
421         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
422                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423 }
424
425 /* Initialize RCV_MSS value.
426  * RCV_MSS is an our guess about MSS used by the peer.
427  * We haven't any direct information about the MSS.
428  * It's better to underestimate the RCV_MSS rather than overestimate.
429  * Overestimations make us ACKing less frequently than needed.
430  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431  */
432 void tcp_initialize_rcv_mss(struct sock *sk)
433 {
434         const struct tcp_sock *tp = tcp_sk(sk);
435         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436
437         hint = min(hint, tp->rcv_wnd / 2);
438         hint = min(hint, TCP_MSS_DEFAULT);
439         hint = max(hint, TCP_MIN_MSS);
440
441         inet_csk(sk)->icsk_ack.rcv_mss = hint;
442 }
443 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444
445 /* Receiver "autotuning" code.
446  *
447  * The algorithm for RTT estimation w/o timestamps is based on
448  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
449  * <http://public.lanl.gov/radiant/pubs.html#DRS>
450  *
451  * More detail on this code can be found at
452  * <http://staff.psc.edu/jheffner/>,
453  * though this reference is out of date.  A new paper
454  * is pending.
455  */
456 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457 {
458         u32 new_sample = tp->rcv_rtt_est.rtt;
459         long m = sample;
460
461         if (m == 0)
462                 m = 1;
463
464         if (new_sample != 0) {
465                 /* If we sample in larger samples in the non-timestamp
466                  * case, we could grossly overestimate the RTT especially
467                  * with chatty applications or bulk transfer apps which
468                  * are stalled on filesystem I/O.
469                  *
470                  * Also, since we are only going for a minimum in the
471                  * non-timestamp case, we do not smooth things out
472                  * else with timestamps disabled convergence takes too
473                  * long.
474                  */
475                 if (!win_dep) {
476                         m -= (new_sample >> 3);
477                         new_sample += m;
478                 } else {
479                         m <<= 3;
480                         if (m < new_sample)
481                                 new_sample = m;
482                 }
483         } else {
484                 /* No previous measure. */
485                 new_sample = m << 3;
486         }
487
488         if (tp->rcv_rtt_est.rtt != new_sample)
489                 tp->rcv_rtt_est.rtt = new_sample;
490 }
491
492 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493 {
494         if (tp->rcv_rtt_est.time == 0)
495                 goto new_measure;
496         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497                 return;
498         tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
499
500 new_measure:
501         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502         tp->rcv_rtt_est.time = tcp_time_stamp;
503 }
504
505 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506                                           const struct sk_buff *skb)
507 {
508         struct tcp_sock *tp = tcp_sk(sk);
509         if (tp->rx_opt.rcv_tsecr &&
510             (TCP_SKB_CB(skb)->end_seq -
511              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
512                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513 }
514
515 /*
516  * This function should be called every time data is copied to user space.
517  * It calculates the appropriate TCP receive buffer space.
518  */
519 void tcp_rcv_space_adjust(struct sock *sk)
520 {
521         struct tcp_sock *tp = tcp_sk(sk);
522         int time;
523         int space;
524
525         if (tp->rcvq_space.time == 0)
526                 goto new_measure;
527
528         time = tcp_time_stamp - tp->rcvq_space.time;
529         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
530                 return;
531
532         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533
534         space = max(tp->rcvq_space.space, space);
535
536         if (tp->rcvq_space.space != space) {
537                 int rcvmem;
538
539                 tp->rcvq_space.space = space;
540
541                 if (sysctl_tcp_moderate_rcvbuf &&
542                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
543                         int new_clamp = space;
544
545                         /* Receive space grows, normalize in order to
546                          * take into account packet headers and sk_buff
547                          * structure overhead.
548                          */
549                         space /= tp->advmss;
550                         if (!space)
551                                 space = 1;
552                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
553                         while (tcp_win_from_space(rcvmem) < tp->advmss)
554                                 rcvmem += 128;
555                         space *= rcvmem;
556                         space = min(space, sysctl_tcp_rmem[2]);
557                         if (space > sk->sk_rcvbuf) {
558                                 sk->sk_rcvbuf = space;
559
560                                 /* Make the window clamp follow along.  */
561                                 tp->window_clamp = new_clamp;
562                         }
563                 }
564         }
565
566 new_measure:
567         tp->rcvq_space.seq = tp->copied_seq;
568         tp->rcvq_space.time = tcp_time_stamp;
569 }
570
571 /* There is something which you must keep in mind when you analyze the
572  * behavior of the tp->ato delayed ack timeout interval.  When a
573  * connection starts up, we want to ack as quickly as possible.  The
574  * problem is that "good" TCP's do slow start at the beginning of data
575  * transmission.  The means that until we send the first few ACK's the
576  * sender will sit on his end and only queue most of his data, because
577  * he can only send snd_cwnd unacked packets at any given time.  For
578  * each ACK we send, he increments snd_cwnd and transmits more of his
579  * queue.  -DaveM
580  */
581 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582 {
583         struct tcp_sock *tp = tcp_sk(sk);
584         struct inet_connection_sock *icsk = inet_csk(sk);
585         u32 now;
586
587         inet_csk_schedule_ack(sk);
588
589         tcp_measure_rcv_mss(sk, skb);
590
591         tcp_rcv_rtt_measure(tp);
592
593         now = tcp_time_stamp;
594
595         if (!icsk->icsk_ack.ato) {
596                 /* The _first_ data packet received, initialize
597                  * delayed ACK engine.
598                  */
599                 tcp_incr_quickack(sk);
600                 icsk->icsk_ack.ato = TCP_ATO_MIN;
601         } else {
602                 int m = now - icsk->icsk_ack.lrcvtime;
603
604                 if (m <= TCP_ATO_MIN / 2) {
605                         /* The fastest case is the first. */
606                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607                 } else if (m < icsk->icsk_ack.ato) {
608                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
610                                 icsk->icsk_ack.ato = icsk->icsk_rto;
611                 } else if (m > icsk->icsk_rto) {
612                         /* Too long gap. Apparently sender failed to
613                          * restart window, so that we send ACKs quickly.
614                          */
615                         tcp_incr_quickack(sk);
616                         sk_mem_reclaim(sk);
617                 }
618         }
619         icsk->icsk_ack.lrcvtime = now;
620
621         TCP_ECN_check_ce(tp, skb);
622
623         if (skb->len >= 128)
624                 tcp_grow_window(sk, skb);
625 }
626
627 /* Called to compute a smoothed rtt estimate. The data fed to this
628  * routine either comes from timestamps, or from segments that were
629  * known _not_ to have been retransmitted [see Karn/Partridge
630  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631  * piece by Van Jacobson.
632  * NOTE: the next three routines used to be one big routine.
633  * To save cycles in the RFC 1323 implementation it was better to break
634  * it up into three procedures. -- erics
635  */
636 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637 {
638         struct tcp_sock *tp = tcp_sk(sk);
639         long m = mrtt; /* RTT */
640
641         /*      The following amusing code comes from Jacobson's
642          *      article in SIGCOMM '88.  Note that rtt and mdev
643          *      are scaled versions of rtt and mean deviation.
644          *      This is designed to be as fast as possible
645          *      m stands for "measurement".
646          *
647          *      On a 1990 paper the rto value is changed to:
648          *      RTO = rtt + 4 * mdev
649          *
650          * Funny. This algorithm seems to be very broken.
651          * These formulae increase RTO, when it should be decreased, increase
652          * too slowly, when it should be increased quickly, decrease too quickly
653          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654          * does not matter how to _calculate_ it. Seems, it was trap
655          * that VJ failed to avoid. 8)
656          */
657         if (m == 0)
658                 m = 1;
659         if (tp->srtt != 0) {
660                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
661                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
662                 if (m < 0) {
663                         m = -m;         /* m is now abs(error) */
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                         /* This is similar to one of Eifel findings.
666                          * Eifel blocks mdev updates when rtt decreases.
667                          * This solution is a bit different: we use finer gain
668                          * for mdev in this case (alpha*beta).
669                          * Like Eifel it also prevents growth of rto,
670                          * but also it limits too fast rto decreases,
671                          * happening in pure Eifel.
672                          */
673                         if (m > 0)
674                                 m >>= 3;
675                 } else {
676                         m -= (tp->mdev >> 2);   /* similar update on mdev */
677                 }
678                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
679                 if (tp->mdev > tp->mdev_max) {
680                         tp->mdev_max = tp->mdev;
681                         if (tp->mdev_max > tp->rttvar)
682                                 tp->rttvar = tp->mdev_max;
683                 }
684                 if (after(tp->snd_una, tp->rtt_seq)) {
685                         if (tp->mdev_max < tp->rttvar)
686                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
687                         tp->rtt_seq = tp->snd_nxt;
688                         tp->mdev_max = tcp_rto_min(sk);
689                 }
690         } else {
691                 /* no previous measure. */
692                 tp->srtt = m << 3;      /* take the measured time to be rtt */
693                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
694                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
695                 tp->rtt_seq = tp->snd_nxt;
696         }
697 }
698
699 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
700  * routine referred to above.
701  */
702 static inline void tcp_set_rto(struct sock *sk)
703 {
704         const struct tcp_sock *tp = tcp_sk(sk);
705         /* Old crap is replaced with new one. 8)
706          *
707          * More seriously:
708          * 1. If rtt variance happened to be less 50msec, it is hallucination.
709          *    It cannot be less due to utterly erratic ACK generation made
710          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711          *    to do with delayed acks, because at cwnd>2 true delack timeout
712          *    is invisible. Actually, Linux-2.4 also generates erratic
713          *    ACKs in some circumstances.
714          */
715         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716
717         /* 2. Fixups made earlier cannot be right.
718          *    If we do not estimate RTO correctly without them,
719          *    all the algo is pure shit and should be replaced
720          *    with correct one. It is exactly, which we pretend to do.
721          */
722
723         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724          * guarantees that rto is higher.
725          */
726         tcp_bound_rto(sk);
727 }
728
729 /* Save metrics learned by this TCP session.
730    This function is called only, when TCP finishes successfully
731    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732  */
733 void tcp_update_metrics(struct sock *sk)
734 {
735         struct tcp_sock *tp = tcp_sk(sk);
736         struct dst_entry *dst = __sk_dst_get(sk);
737
738         if (sysctl_tcp_nometrics_save)
739                 return;
740
741         dst_confirm(dst);
742
743         if (dst && (dst->flags & DST_HOST)) {
744                 const struct inet_connection_sock *icsk = inet_csk(sk);
745                 int m;
746                 unsigned long rtt;
747
748                 if (icsk->icsk_backoff || !tp->srtt) {
749                         /* This session failed to estimate rtt. Why?
750                          * Probably, no packets returned in time.
751                          * Reset our results.
752                          */
753                         if (!(dst_metric_locked(dst, RTAX_RTT)))
754                                 dst_metric_set(dst, RTAX_RTT, 0);
755                         return;
756                 }
757
758                 rtt = dst_metric_rtt(dst, RTAX_RTT);
759                 m = rtt - tp->srtt;
760
761                 /* If newly calculated rtt larger than stored one,
762                  * store new one. Otherwise, use EWMA. Remember,
763                  * rtt overestimation is always better than underestimation.
764                  */
765                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
766                         if (m <= 0)
767                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768                         else
769                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770                 }
771
772                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
773                         unsigned long var;
774                         if (m < 0)
775                                 m = -m;
776
777                         /* Scale deviation to rttvar fixed point */
778                         m >>= 1;
779                         if (m < tp->mdev)
780                                 m = tp->mdev;
781
782                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
783                         if (m >= var)
784                                 var = m;
785                         else
786                                 var -= (var - m) >> 2;
787
788                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789                 }
790
791                 if (tcp_in_initial_slowstart(tp)) {
792                         /* Slow start still did not finish. */
793                         if (dst_metric(dst, RTAX_SSTHRESH) &&
794                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
796                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
797                         if (!dst_metric_locked(dst, RTAX_CWND) &&
798                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
799                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
800                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
801                            icsk->icsk_ca_state == TCP_CA_Open) {
802                         /* Cong. avoidance phase, cwnd is reliable. */
803                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
804                                 dst_metric_set(dst, RTAX_SSTHRESH,
805                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
806                         if (!dst_metric_locked(dst, RTAX_CWND))
807                                 dst_metric_set(dst, RTAX_CWND,
808                                                (dst_metric(dst, RTAX_CWND) +
809                                                 tp->snd_cwnd) >> 1);
810                 } else {
811                         /* Else slow start did not finish, cwnd is non-sense,
812                            ssthresh may be also invalid.
813                          */
814                         if (!dst_metric_locked(dst, RTAX_CWND))
815                                 dst_metric_set(dst, RTAX_CWND,
816                                                (dst_metric(dst, RTAX_CWND) +
817                                                 tp->snd_ssthresh) >> 1);
818                         if (dst_metric(dst, RTAX_SSTHRESH) &&
819                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
820                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
821                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822                 }
823
824                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
825                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
826                             tp->reordering != sysctl_tcp_reordering)
827                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
828                 }
829         }
830 }
831
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 {
834         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
836         if (!cwnd)
837                 cwnd = TCP_INIT_CWND;
838         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 }
840
841 /* Set slow start threshold and cwnd not falling to slow start */
842 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843 {
844         struct tcp_sock *tp = tcp_sk(sk);
845         const struct inet_connection_sock *icsk = inet_csk(sk);
846
847         tp->prior_ssthresh = 0;
848         tp->bytes_acked = 0;
849         if (icsk->icsk_ca_state < TCP_CA_CWR) {
850                 tp->undo_marker = 0;
851                 if (set_ssthresh)
852                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
853                 tp->snd_cwnd = min(tp->snd_cwnd,
854                                    tcp_packets_in_flight(tp) + 1U);
855                 tp->snd_cwnd_cnt = 0;
856                 tp->high_seq = tp->snd_nxt;
857                 tp->snd_cwnd_stamp = tcp_time_stamp;
858                 TCP_ECN_queue_cwr(tp);
859
860                 tcp_set_ca_state(sk, TCP_CA_CWR);
861         }
862 }
863
864 /*
865  * Packet counting of FACK is based on in-order assumptions, therefore TCP
866  * disables it when reordering is detected
867  */
868 static void tcp_disable_fack(struct tcp_sock *tp)
869 {
870         /* RFC3517 uses different metric in lost marker => reset on change */
871         if (tcp_is_fack(tp))
872                 tp->lost_skb_hint = NULL;
873         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881
882 /* Initialize metrics on socket. */
883
884 static void tcp_init_metrics(struct sock *sk)
885 {
886         struct tcp_sock *tp = tcp_sk(sk);
887         struct dst_entry *dst = __sk_dst_get(sk);
888
889         if (dst == NULL)
890                 goto reset;
891
892         dst_confirm(dst);
893
894         if (dst_metric_locked(dst, RTAX_CWND))
895                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896         if (dst_metric(dst, RTAX_SSTHRESH)) {
897                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
900         } else {
901                 /* ssthresh may have been reduced unnecessarily during.
902                  * 3WHS. Restore it back to its initial default.
903                  */
904                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905         }
906         if (dst_metric(dst, RTAX_REORDERING) &&
907             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
908                 tcp_disable_fack(tp);
909                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
910         }
911
912         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
913                 goto reset;
914
915         /* Initial rtt is determined from SYN,SYN-ACK.
916          * The segment is small and rtt may appear much
917          * less than real one. Use per-dst memory
918          * to make it more realistic.
919          *
920          * A bit of theory. RTT is time passed after "normal" sized packet
921          * is sent until it is ACKed. In normal circumstances sending small
922          * packets force peer to delay ACKs and calculation is correct too.
923          * The algorithm is adaptive and, provided we follow specs, it
924          * NEVER underestimate RTT. BUT! If peer tries to make some clever
925          * tricks sort of "quick acks" for time long enough to decrease RTT
926          * to low value, and then abruptly stops to do it and starts to delay
927          * ACKs, wait for troubles.
928          */
929         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
931                 tp->rtt_seq = tp->snd_nxt;
932         }
933         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
935                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
936         }
937         tcp_set_rto(sk);
938 reset:
939         if (tp->srtt == 0) {
940                 /* RFC2988bis: We've failed to get a valid RTT sample from
941                  * 3WHS. This is most likely due to retransmission,
942                  * including spurious one. Reset the RTO back to 3secs
943                  * from the more aggressive 1sec to avoid more spurious
944                  * retransmission.
945                  */
946                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948         }
949         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
950          * retransmitted. In light of RFC2988bis' more aggressive 1sec
951          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952          * retransmission has occurred.
953          */
954         if (tp->total_retrans > 1)
955                 tp->snd_cwnd = 1;
956         else
957                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
958         tp->snd_cwnd_stamp = tcp_time_stamp;
959 }
960
961 static void tcp_update_reordering(struct sock *sk, const int metric,
962                                   const int ts)
963 {
964         struct tcp_sock *tp = tcp_sk(sk);
965         if (metric > tp->reordering) {
966                 int mib_idx;
967
968                 tp->reordering = min(TCP_MAX_REORDERING, metric);
969
970                 /* This exciting event is worth to be remembered. 8) */
971                 if (ts)
972                         mib_idx = LINUX_MIB_TCPTSREORDER;
973                 else if (tcp_is_reno(tp))
974                         mib_idx = LINUX_MIB_TCPRENOREORDER;
975                 else if (tcp_is_fack(tp))
976                         mib_idx = LINUX_MIB_TCPFACKREORDER;
977                 else
978                         mib_idx = LINUX_MIB_TCPSACKREORDER;
979
980                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
981 #if FASTRETRANS_DEBUG > 1
982                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
983                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
984                        tp->reordering,
985                        tp->fackets_out,
986                        tp->sacked_out,
987                        tp->undo_marker ? tp->undo_retrans : 0);
988 #endif
989                 tcp_disable_fack(tp);
990         }
991 }
992
993 /* This must be called before lost_out is incremented */
994 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995 {
996         if ((tp->retransmit_skb_hint == NULL) ||
997             before(TCP_SKB_CB(skb)->seq,
998                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
999                 tp->retransmit_skb_hint = skb;
1000
1001         if (!tp->lost_out ||
1002             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004 }
1005
1006 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007 {
1008         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009                 tcp_verify_retransmit_hint(tp, skb);
1010
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017                                             struct sk_buff *skb)
1018 {
1019         tcp_verify_retransmit_hint(tp, skb);
1020
1021         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022                 tp->lost_out += tcp_skb_pcount(skb);
1023                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024         }
1025 }
1026
1027 /* This procedure tags the retransmission queue when SACKs arrive.
1028  *
1029  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030  * Packets in queue with these bits set are counted in variables
1031  * sacked_out, retrans_out and lost_out, correspondingly.
1032  *
1033  * Valid combinations are:
1034  * Tag  InFlight        Description
1035  * 0    1               - orig segment is in flight.
1036  * S    0               - nothing flies, orig reached receiver.
1037  * L    0               - nothing flies, orig lost by net.
1038  * R    2               - both orig and retransmit are in flight.
1039  * L|R  1               - orig is lost, retransmit is in flight.
1040  * S|R  1               - orig reached receiver, retrans is still in flight.
1041  * (L|S|R is logically valid, it could occur when L|R is sacked,
1042  *  but it is equivalent to plain S and code short-curcuits it to S.
1043  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1044  *
1045  * These 6 states form finite state machine, controlled by the following events:
1046  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1048  * 3. Loss detection event of two flavors:
1049  *      A. Scoreboard estimator decided the packet is lost.
1050  *         A'. Reno "three dupacks" marks head of queue lost.
1051  *         A''. Its FACK modification, head until snd.fack is lost.
1052  *      B. SACK arrives sacking SND.NXT at the moment, when the
1053  *         segment was retransmitted.
1054  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055  *
1056  * It is pleasant to note, that state diagram turns out to be commutative,
1057  * so that we are allowed not to be bothered by order of our actions,
1058  * when multiple events arrive simultaneously. (see the function below).
1059  *
1060  * Reordering detection.
1061  * --------------------
1062  * Reordering metric is maximal distance, which a packet can be displaced
1063  * in packet stream. With SACKs we can estimate it:
1064  *
1065  * 1. SACK fills old hole and the corresponding segment was not
1066  *    ever retransmitted -> reordering. Alas, we cannot use it
1067  *    when segment was retransmitted.
1068  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069  *    for retransmitted and already SACKed segment -> reordering..
1070  * Both of these heuristics are not used in Loss state, when we cannot
1071  * account for retransmits accurately.
1072  *
1073  * SACK block validation.
1074  * ----------------------
1075  *
1076  * SACK block range validation checks that the received SACK block fits to
1077  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078  * Note that SND.UNA is not included to the range though being valid because
1079  * it means that the receiver is rather inconsistent with itself reporting
1080  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081  * perfectly valid, however, in light of RFC2018 which explicitly states
1082  * that "SACK block MUST reflect the newest segment.  Even if the newest
1083  * segment is going to be discarded ...", not that it looks very clever
1084  * in case of head skb. Due to potentional receiver driven attacks, we
1085  * choose to avoid immediate execution of a walk in write queue due to
1086  * reneging and defer head skb's loss recovery to standard loss recovery
1087  * procedure that will eventually trigger (nothing forbids us doing this).
1088  *
1089  * Implements also blockage to start_seq wrap-around. Problem lies in the
1090  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091  * there's no guarantee that it will be before snd_nxt (n). The problem
1092  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093  * wrap (s_w):
1094  *
1095  *         <- outs wnd ->                          <- wrapzone ->
1096  *         u     e      n                         u_w   e_w  s n_w
1097  *         |     |      |                          |     |   |  |
1098  * |<------------+------+----- TCP seqno space --------------+---------->|
1099  * ...-- <2^31 ->|                                           |<--------...
1100  * ...---- >2^31 ------>|                                    |<--------...
1101  *
1102  * Current code wouldn't be vulnerable but it's better still to discard such
1103  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106  * equal to the ideal case (infinite seqno space without wrap caused issues).
1107  *
1108  * With D-SACK the lower bound is extended to cover sequence space below
1109  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1110  * again, D-SACK block must not to go across snd_una (for the same reason as
1111  * for the normal SACK blocks, explained above). But there all simplicity
1112  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113  * fully below undo_marker they do not affect behavior in anyway and can
1114  * therefore be safely ignored. In rare cases (which are more or less
1115  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116  * fragmentation and packet reordering past skb's retransmission. To consider
1117  * them correctly, the acceptable range must be extended even more though
1118  * the exact amount is rather hard to quantify. However, tp->max_window can
1119  * be used as an exaggerated estimate.
1120  */
1121 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122                                   u32 start_seq, u32 end_seq)
1123 {
1124         /* Too far in future, or reversed (interpretation is ambiguous) */
1125         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126                 return 0;
1127
1128         /* Nasty start_seq wrap-around check (see comments above) */
1129         if (!before(start_seq, tp->snd_nxt))
1130                 return 0;
1131
1132         /* In outstanding window? ...This is valid exit for D-SACKs too.
1133          * start_seq == snd_una is non-sensical (see comments above)
1134          */
1135         if (after(start_seq, tp->snd_una))
1136                 return 1;
1137
1138         if (!is_dsack || !tp->undo_marker)
1139                 return 0;
1140
1141         /* ...Then it's D-SACK, and must reside below snd_una completely */
1142         if (after(end_seq, tp->snd_una))
1143                 return 0;
1144
1145         if (!before(start_seq, tp->undo_marker))
1146                 return 1;
1147
1148         /* Too old */
1149         if (!after(end_seq, tp->undo_marker))
1150                 return 0;
1151
1152         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1153          *   start_seq < undo_marker and end_seq >= undo_marker.
1154          */
1155         return !before(start_seq, end_seq - tp->max_window);
1156 }
1157
1158 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1159  * Event "B". Later note: FACK people cheated me again 8), we have to account
1160  * for reordering! Ugly, but should help.
1161  *
1162  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163  * less than what is now known to be received by the other end (derived from
1164  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165  * retransmitted skbs to avoid some costly processing per ACKs.
1166  */
1167 static void tcp_mark_lost_retrans(struct sock *sk)
1168 {
1169         const struct inet_connection_sock *icsk = inet_csk(sk);
1170         struct tcp_sock *tp = tcp_sk(sk);
1171         struct sk_buff *skb;
1172         int cnt = 0;
1173         u32 new_low_seq = tp->snd_nxt;
1174         u32 received_upto = tcp_highest_sack_seq(tp);
1175
1176         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177             !after(received_upto, tp->lost_retrans_low) ||
1178             icsk->icsk_ca_state != TCP_CA_Recovery)
1179                 return;
1180
1181         tcp_for_write_queue(skb, sk) {
1182                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183
1184                 if (skb == tcp_send_head(sk))
1185                         break;
1186                 if (cnt == tp->retrans_out)
1187                         break;
1188                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189                         continue;
1190
1191                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192                         continue;
1193
1194                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1195                  * constraint here (see above) but figuring out that at
1196                  * least tp->reordering SACK blocks reside between ack_seq
1197                  * and received_upto is not easy task to do cheaply with
1198                  * the available datastructures.
1199                  *
1200                  * Whether FACK should check here for tp->reordering segs
1201                  * in-between one could argue for either way (it would be
1202                  * rather simple to implement as we could count fack_count
1203                  * during the walk and do tp->fackets_out - fack_count).
1204                  */
1205                 if (after(received_upto, ack_seq)) {
1206                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207                         tp->retrans_out -= tcp_skb_pcount(skb);
1208
1209                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1210                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1211                 } else {
1212                         if (before(ack_seq, new_low_seq))
1213                                 new_low_seq = ack_seq;
1214                         cnt += tcp_skb_pcount(skb);
1215                 }
1216         }
1217
1218         if (tp->retrans_out)
1219                 tp->lost_retrans_low = new_low_seq;
1220 }
1221
1222 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1223                            struct tcp_sack_block_wire *sp, int num_sacks,
1224                            u32 prior_snd_una)
1225 {
1226         struct tcp_sock *tp = tcp_sk(sk);
1227         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1229         int dup_sack = 0;
1230
1231         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232                 dup_sack = 1;
1233                 tcp_dsack_seen(tp);
1234                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1235         } else if (num_sacks > 1) {
1236                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1238
1239                 if (!after(end_seq_0, end_seq_1) &&
1240                     !before(start_seq_0, start_seq_1)) {
1241                         dup_sack = 1;
1242                         tcp_dsack_seen(tp);
1243                         NET_INC_STATS_BH(sock_net(sk),
1244                                         LINUX_MIB_TCPDSACKOFORECV);
1245                 }
1246         }
1247
1248         /* D-SACK for already forgotten data... Do dumb counting. */
1249         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1250             !after(end_seq_0, prior_snd_una) &&
1251             after(end_seq_0, tp->undo_marker))
1252                 tp->undo_retrans--;
1253
1254         return dup_sack;
1255 }
1256
1257 struct tcp_sacktag_state {
1258         int reord;
1259         int fack_count;
1260         int flag;
1261 };
1262
1263 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264  * the incoming SACK may not exactly match but we can find smaller MSS
1265  * aligned portion of it that matches. Therefore we might need to fragment
1266  * which may fail and creates some hassle (caller must handle error case
1267  * returns).
1268  *
1269  * FIXME: this could be merged to shift decision code
1270  */
1271 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272                                  u32 start_seq, u32 end_seq)
1273 {
1274         int in_sack, err;
1275         unsigned int pkt_len;
1276         unsigned int mss;
1277
1278         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280
1281         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1283                 mss = tcp_skb_mss(skb);
1284                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285
1286                 if (!in_sack) {
1287                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1288                         if (pkt_len < mss)
1289                                 pkt_len = mss;
1290                 } else {
1291                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1292                         if (pkt_len < mss)
1293                                 return -EINVAL;
1294                 }
1295
1296                 /* Round if necessary so that SACKs cover only full MSSes
1297                  * and/or the remaining small portion (if present)
1298                  */
1299                 if (pkt_len > mss) {
1300                         unsigned int new_len = (pkt_len / mss) * mss;
1301                         if (!in_sack && new_len < pkt_len) {
1302                                 new_len += mss;
1303                                 if (new_len > skb->len)
1304                                         return 0;
1305                         }
1306                         pkt_len = new_len;
1307                 }
1308                 err = tcp_fragment(sk, skb, pkt_len, mss);
1309                 if (err < 0)
1310                         return err;
1311         }
1312
1313         return in_sack;
1314 }
1315
1316 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317 static u8 tcp_sacktag_one(struct sock *sk,
1318                           struct tcp_sacktag_state *state, u8 sacked,
1319                           u32 start_seq, u32 end_seq,
1320                           int dup_sack, int pcount)
1321 {
1322         struct tcp_sock *tp = tcp_sk(sk);
1323         int fack_count = state->fack_count;
1324
1325         /* Account D-SACK for retransmitted packet. */
1326         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1327                 if (tp->undo_marker && tp->undo_retrans &&
1328                     after(end_seq, tp->undo_marker))
1329                         tp->undo_retrans--;
1330                 if (sacked & TCPCB_SACKED_ACKED)
1331                         state->reord = min(fack_count, state->reord);
1332         }
1333
1334         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1335         if (!after(end_seq, tp->snd_una))
1336                 return sacked;
1337
1338         if (!(sacked & TCPCB_SACKED_ACKED)) {
1339                 if (sacked & TCPCB_SACKED_RETRANS) {
1340                         /* If the segment is not tagged as lost,
1341                          * we do not clear RETRANS, believing
1342                          * that retransmission is still in flight.
1343                          */
1344                         if (sacked & TCPCB_LOST) {
1345                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1346                                 tp->lost_out -= pcount;
1347                                 tp->retrans_out -= pcount;
1348                         }
1349                 } else {
1350                         if (!(sacked & TCPCB_RETRANS)) {
1351                                 /* New sack for not retransmitted frame,
1352                                  * which was in hole. It is reordering.
1353                                  */
1354                                 if (before(start_seq,
1355                                            tcp_highest_sack_seq(tp)))
1356                                         state->reord = min(fack_count,
1357                                                            state->reord);
1358
1359                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1360                                 if (!after(end_seq, tp->frto_highmark))
1361                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1362                         }
1363
1364                         if (sacked & TCPCB_LOST) {
1365                                 sacked &= ~TCPCB_LOST;
1366                                 tp->lost_out -= pcount;
1367                         }
1368                 }
1369
1370                 sacked |= TCPCB_SACKED_ACKED;
1371                 state->flag |= FLAG_DATA_SACKED;
1372                 tp->sacked_out += pcount;
1373
1374                 fack_count += pcount;
1375
1376                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1378                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1379                         tp->lost_cnt_hint += pcount;
1380
1381                 if (fack_count > tp->fackets_out)
1382                         tp->fackets_out = fack_count;
1383         }
1384
1385         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1386          * frames and clear it. undo_retrans is decreased above, L|R frames
1387          * are accounted above as well.
1388          */
1389         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390                 sacked &= ~TCPCB_SACKED_RETRANS;
1391                 tp->retrans_out -= pcount;
1392         }
1393
1394         return sacked;
1395 }
1396
1397 /* Shift newly-SACKed bytes from this skb to the immediately previous
1398  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399  */
1400 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1401                            struct tcp_sacktag_state *state,
1402                            unsigned int pcount, int shifted, int mss,
1403                            int dup_sack)
1404 {
1405         struct tcp_sock *tp = tcp_sk(sk);
1406         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1407         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1408         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1409
1410         BUG_ON(!pcount);
1411
1412         /* Adjust counters and hints for the newly sacked sequence
1413          * range but discard the return value since prev is already
1414          * marked. We must tag the range first because the seq
1415          * advancement below implicitly advances
1416          * tcp_highest_sack_seq() when skb is highest_sack.
1417          */
1418         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419                         start_seq, end_seq, dup_sack, pcount);
1420
1421         if (skb == tp->lost_skb_hint)
1422                 tp->lost_cnt_hint += pcount;
1423
1424         TCP_SKB_CB(prev)->end_seq += shifted;
1425         TCP_SKB_CB(skb)->seq += shifted;
1426
1427         skb_shinfo(prev)->gso_segs += pcount;
1428         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429         skb_shinfo(skb)->gso_segs -= pcount;
1430
1431         /* When we're adding to gso_segs == 1, gso_size will be zero,
1432          * in theory this shouldn't be necessary but as long as DSACK
1433          * code can come after this skb later on it's better to keep
1434          * setting gso_size to something.
1435          */
1436         if (!skb_shinfo(prev)->gso_size) {
1437                 skb_shinfo(prev)->gso_size = mss;
1438                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439         }
1440
1441         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442         if (skb_shinfo(skb)->gso_segs <= 1) {
1443                 skb_shinfo(skb)->gso_size = 0;
1444                 skb_shinfo(skb)->gso_type = 0;
1445         }
1446
1447         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449
1450         if (skb->len > 0) {
1451                 BUG_ON(!tcp_skb_pcount(skb));
1452                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1453                 return 0;
1454         }
1455
1456         /* Whole SKB was eaten :-) */
1457
1458         if (skb == tp->retransmit_skb_hint)
1459                 tp->retransmit_skb_hint = prev;
1460         if (skb == tp->scoreboard_skb_hint)
1461                 tp->scoreboard_skb_hint = prev;
1462         if (skb == tp->lost_skb_hint) {
1463                 tp->lost_skb_hint = prev;
1464                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465         }
1466
1467         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1468         if (skb == tcp_highest_sack(sk))
1469                 tcp_advance_highest_sack(sk, skb);
1470
1471         tcp_unlink_write_queue(skb, sk);
1472         sk_wmem_free_skb(sk, skb);
1473
1474         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475
1476         return 1;
1477 }
1478
1479 /* I wish gso_size would have a bit more sane initialization than
1480  * something-or-zero which complicates things
1481  */
1482 static int tcp_skb_seglen(const struct sk_buff *skb)
1483 {
1484         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485 }
1486
1487 /* Shifting pages past head area doesn't work */
1488 static int skb_can_shift(const struct sk_buff *skb)
1489 {
1490         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491 }
1492
1493 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1494  * skb.
1495  */
1496 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1497                                           struct tcp_sacktag_state *state,
1498                                           u32 start_seq, u32 end_seq,
1499                                           int dup_sack)
1500 {
1501         struct tcp_sock *tp = tcp_sk(sk);
1502         struct sk_buff *prev;
1503         int mss;
1504         int pcount = 0;
1505         int len;
1506         int in_sack;
1507
1508         if (!sk_can_gso(sk))
1509                 goto fallback;
1510
1511         /* Normally R but no L won't result in plain S */
1512         if (!dup_sack &&
1513             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1514                 goto fallback;
1515         if (!skb_can_shift(skb))
1516                 goto fallback;
1517         /* This frame is about to be dropped (was ACKed). */
1518         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519                 goto fallback;
1520
1521         /* Can only happen with delayed DSACK + discard craziness */
1522         if (unlikely(skb == tcp_write_queue_head(sk)))
1523                 goto fallback;
1524         prev = tcp_write_queue_prev(sk, skb);
1525
1526         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527                 goto fallback;
1528
1529         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531
1532         if (in_sack) {
1533                 len = skb->len;
1534                 pcount = tcp_skb_pcount(skb);
1535                 mss = tcp_skb_seglen(skb);
1536
1537                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1538                  * drop this restriction as unnecessary
1539                  */
1540                 if (mss != tcp_skb_seglen(prev))
1541                         goto fallback;
1542         } else {
1543                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544                         goto noop;
1545                 /* CHECKME: This is non-MSS split case only?, this will
1546                  * cause skipped skbs due to advancing loop btw, original
1547                  * has that feature too
1548                  */
1549                 if (tcp_skb_pcount(skb) <= 1)
1550                         goto noop;
1551
1552                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553                 if (!in_sack) {
1554                         /* TODO: head merge to next could be attempted here
1555                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556                          * though it might not be worth of the additional hassle
1557                          *
1558                          * ...we can probably just fallback to what was done
1559                          * previously. We could try merging non-SACKed ones
1560                          * as well but it probably isn't going to buy off
1561                          * because later SACKs might again split them, and
1562                          * it would make skb timestamp tracking considerably
1563                          * harder problem.
1564                          */
1565                         goto fallback;
1566                 }
1567
1568                 len = end_seq - TCP_SKB_CB(skb)->seq;
1569                 BUG_ON(len < 0);
1570                 BUG_ON(len > skb->len);
1571
1572                 /* MSS boundaries should be honoured or else pcount will
1573                  * severely break even though it makes things bit trickier.
1574                  * Optimize common case to avoid most of the divides
1575                  */
1576                 mss = tcp_skb_mss(skb);
1577
1578                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1579                  * drop this restriction as unnecessary
1580                  */
1581                 if (mss != tcp_skb_seglen(prev))
1582                         goto fallback;
1583
1584                 if (len == mss) {
1585                         pcount = 1;
1586                 } else if (len < mss) {
1587                         goto noop;
1588                 } else {
1589                         pcount = len / mss;
1590                         len = pcount * mss;
1591                 }
1592         }
1593
1594         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596                 goto fallback;
1597
1598         if (!skb_shift(prev, skb, len))
1599                 goto fallback;
1600         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1601                 goto out;
1602
1603         /* Hole filled allows collapsing with the next as well, this is very
1604          * useful when hole on every nth skb pattern happens
1605          */
1606         if (prev == tcp_write_queue_tail(sk))
1607                 goto out;
1608         skb = tcp_write_queue_next(sk, prev);
1609
1610         if (!skb_can_shift(skb) ||
1611             (skb == tcp_send_head(sk)) ||
1612             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1613             (mss != tcp_skb_seglen(skb)))
1614                 goto out;
1615
1616         len = skb->len;
1617         if (skb_shift(prev, skb, len)) {
1618                 pcount += tcp_skb_pcount(skb);
1619                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620         }
1621
1622 out:
1623         state->fack_count += pcount;
1624         return prev;
1625
1626 noop:
1627         return skb;
1628
1629 fallback:
1630         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1631         return NULL;
1632 }
1633
1634 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635                                         struct tcp_sack_block *next_dup,
1636                                         struct tcp_sacktag_state *state,
1637                                         u32 start_seq, u32 end_seq,
1638                                         int dup_sack_in)
1639 {
1640         struct tcp_sock *tp = tcp_sk(sk);
1641         struct sk_buff *tmp;
1642
1643         tcp_for_write_queue_from(skb, sk) {
1644                 int in_sack = 0;
1645                 int dup_sack = dup_sack_in;
1646
1647                 if (skb == tcp_send_head(sk))
1648                         break;
1649
1650                 /* queue is in-order => we can short-circuit the walk early */
1651                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652                         break;
1653
1654                 if ((next_dup != NULL) &&
1655                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656                         in_sack = tcp_match_skb_to_sack(sk, skb,
1657                                                         next_dup->start_seq,
1658                                                         next_dup->end_seq);
1659                         if (in_sack > 0)
1660                                 dup_sack = 1;
1661                 }
1662
1663                 /* skb reference here is a bit tricky to get right, since
1664                  * shifting can eat and free both this skb and the next,
1665                  * so not even _safe variant of the loop is enough.
1666                  */
1667                 if (in_sack <= 0) {
1668                         tmp = tcp_shift_skb_data(sk, skb, state,
1669                                                  start_seq, end_seq, dup_sack);
1670                         if (tmp != NULL) {
1671                                 if (tmp != skb) {
1672                                         skb = tmp;
1673                                         continue;
1674                                 }
1675
1676                                 in_sack = 0;
1677                         } else {
1678                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1679                                                                 start_seq,
1680                                                                 end_seq);
1681                         }
1682                 }
1683
1684                 if (unlikely(in_sack < 0))
1685                         break;
1686
1687                 if (in_sack) {
1688                         TCP_SKB_CB(skb)->sacked =
1689                                 tcp_sacktag_one(sk,
1690                                                 state,
1691                                                 TCP_SKB_CB(skb)->sacked,
1692                                                 TCP_SKB_CB(skb)->seq,
1693                                                 TCP_SKB_CB(skb)->end_seq,
1694                                                 dup_sack,
1695                                                 tcp_skb_pcount(skb));
1696
1697                         if (!before(TCP_SKB_CB(skb)->seq,
1698                                     tcp_highest_sack_seq(tp)))
1699                                 tcp_advance_highest_sack(sk, skb);
1700                 }
1701
1702                 state->fack_count += tcp_skb_pcount(skb);
1703         }
1704         return skb;
1705 }
1706
1707 /* Avoid all extra work that is being done by sacktag while walking in
1708  * a normal way
1709  */
1710 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1711                                         struct tcp_sacktag_state *state,
1712                                         u32 skip_to_seq)
1713 {
1714         tcp_for_write_queue_from(skb, sk) {
1715                 if (skb == tcp_send_head(sk))
1716                         break;
1717
1718                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1719                         break;
1720
1721                 state->fack_count += tcp_skb_pcount(skb);
1722         }
1723         return skb;
1724 }
1725
1726 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727                                                 struct sock *sk,
1728                                                 struct tcp_sack_block *next_dup,
1729                                                 struct tcp_sacktag_state *state,
1730                                                 u32 skip_to_seq)
1731 {
1732         if (next_dup == NULL)
1733                 return skb;
1734
1735         if (before(next_dup->start_seq, skip_to_seq)) {
1736                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738                                        next_dup->start_seq, next_dup->end_seq,
1739                                        1);
1740         }
1741
1742         return skb;
1743 }
1744
1745 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1746 {
1747         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 }
1749
1750 static int
1751 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1752                         u32 prior_snd_una)
1753 {
1754         const struct inet_connection_sock *icsk = inet_csk(sk);
1755         struct tcp_sock *tp = tcp_sk(sk);
1756         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757                                     TCP_SKB_CB(ack_skb)->sacked);
1758         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1759         struct tcp_sack_block sp[TCP_NUM_SACKS];
1760         struct tcp_sack_block *cache;
1761         struct tcp_sacktag_state state;
1762         struct sk_buff *skb;
1763         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1764         int used_sacks;
1765         int found_dup_sack = 0;
1766         int i, j;
1767         int first_sack_index;
1768
1769         state.flag = 0;
1770         state.reord = tp->packets_out;
1771
1772         if (!tp->sacked_out) {
1773                 if (WARN_ON(tp->fackets_out))
1774                         tp->fackets_out = 0;
1775                 tcp_highest_sack_reset(sk);
1776         }
1777
1778         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1779                                          num_sacks, prior_snd_una);
1780         if (found_dup_sack)
1781                 state.flag |= FLAG_DSACKING_ACK;
1782
1783         /* Eliminate too old ACKs, but take into
1784          * account more or less fresh ones, they can
1785          * contain valid SACK info.
1786          */
1787         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788                 return 0;
1789
1790         if (!tp->packets_out)
1791                 goto out;
1792
1793         used_sacks = 0;
1794         first_sack_index = 0;
1795         for (i = 0; i < num_sacks; i++) {
1796                 int dup_sack = !i && found_dup_sack;
1797
1798                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1799                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1800
1801                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1802                                             sp[used_sacks].start_seq,
1803                                             sp[used_sacks].end_seq)) {
1804                         int mib_idx;
1805
1806                         if (dup_sack) {
1807                                 if (!tp->undo_marker)
1808                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1809                                 else
1810                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1811                         } else {
1812                                 /* Don't count olds caused by ACK reordering */
1813                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1814                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1815                                         continue;
1816                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817                         }
1818
1819                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1820                         if (i == 0)
1821                                 first_sack_index = -1;
1822                         continue;
1823                 }
1824
1825                 /* Ignore very old stuff early */
1826                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1827                         continue;
1828
1829                 used_sacks++;
1830         }
1831
1832         /* order SACK blocks to allow in order walk of the retrans queue */
1833         for (i = used_sacks - 1; i > 0; i--) {
1834                 for (j = 0; j < i; j++) {
1835                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1836                                 swap(sp[j], sp[j + 1]);
1837
1838                                 /* Track where the first SACK block goes to */
1839                                 if (j == first_sack_index)
1840                                         first_sack_index = j + 1;
1841                         }
1842                 }
1843         }
1844
1845         skb = tcp_write_queue_head(sk);
1846         state.fack_count = 0;
1847         i = 0;
1848
1849         if (!tp->sacked_out) {
1850                 /* It's already past, so skip checking against it */
1851                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852         } else {
1853                 cache = tp->recv_sack_cache;
1854                 /* Skip empty blocks in at head of the cache */
1855                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1856                        !cache->end_seq)
1857                         cache++;
1858         }
1859
1860         while (i < used_sacks) {
1861                 u32 start_seq = sp[i].start_seq;
1862                 u32 end_seq = sp[i].end_seq;
1863                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1864                 struct tcp_sack_block *next_dup = NULL;
1865
1866                 if (found_dup_sack && ((i + 1) == first_sack_index))
1867                         next_dup = &sp[i + 1];
1868
1869                 /* Skip too early cached blocks */
1870                 while (tcp_sack_cache_ok(tp, cache) &&
1871                        !before(start_seq, cache->end_seq))
1872                         cache++;
1873
1874                 /* Can skip some work by looking recv_sack_cache? */
1875                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1876                     after(end_seq, cache->start_seq)) {
1877
1878                         /* Head todo? */
1879                         if (before(start_seq, cache->start_seq)) {
1880                                 skb = tcp_sacktag_skip(skb, sk, &state,
1881                                                        start_seq);
1882                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1883                                                        &state,
1884                                                        start_seq,
1885                                                        cache->start_seq,
1886                                                        dup_sack);
1887                         }
1888
1889                         /* Rest of the block already fully processed? */
1890                         if (!after(end_seq, cache->end_seq))
1891                                 goto advance_sp;
1892
1893                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1894                                                        &state,
1895                                                        cache->end_seq);
1896
1897                         /* ...tail remains todo... */
1898                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1899                                 /* ...but better entrypoint exists! */
1900                                 skb = tcp_highest_sack(sk);
1901                                 if (skb == NULL)
1902                                         break;
1903                                 state.fack_count = tp->fackets_out;
1904                                 cache++;
1905                                 goto walk;
1906                         }
1907
1908                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1909                         /* Check overlap against next cached too (past this one already) */
1910                         cache++;
1911                         continue;
1912                 }
1913
1914                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1915                         skb = tcp_highest_sack(sk);
1916                         if (skb == NULL)
1917                                 break;
1918                         state.fack_count = tp->fackets_out;
1919                 }
1920                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1921
1922 walk:
1923                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1924                                        start_seq, end_seq, dup_sack);
1925
1926 advance_sp:
1927                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1928                  * due to in-order walk
1929                  */
1930                 if (after(end_seq, tp->frto_highmark))
1931                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1932
1933                 i++;
1934         }
1935
1936         /* Clear the head of the cache sack blocks so we can skip it next time */
1937         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1938                 tp->recv_sack_cache[i].start_seq = 0;
1939                 tp->recv_sack_cache[i].end_seq = 0;
1940         }
1941         for (j = 0; j < used_sacks; j++)
1942                 tp->recv_sack_cache[i++] = sp[j];
1943
1944         tcp_mark_lost_retrans(sk);
1945
1946         tcp_verify_left_out(tp);
1947
1948         if ((state.reord < tp->fackets_out) &&
1949             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1950             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1951                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1952
1953 out:
1954
1955 #if FASTRETRANS_DEBUG > 0
1956         WARN_ON((int)tp->sacked_out < 0);
1957         WARN_ON((int)tp->lost_out < 0);
1958         WARN_ON((int)tp->retrans_out < 0);
1959         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960 #endif
1961         return state.flag;
1962 }
1963
1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1965  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966  */
1967 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 {
1969         u32 holes;
1970
1971         holes = max(tp->lost_out, 1U);
1972         holes = min(holes, tp->packets_out);
1973
1974         if ((tp->sacked_out + holes) > tp->packets_out) {
1975                 tp->sacked_out = tp->packets_out - holes;
1976                 return 1;
1977         }
1978         return 0;
1979 }
1980
1981 /* If we receive more dupacks than we expected counting segments
1982  * in assumption of absent reordering, interpret this as reordering.
1983  * The only another reason could be bug in receiver TCP.
1984  */
1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986 {
1987         struct tcp_sock *tp = tcp_sk(sk);
1988         if (tcp_limit_reno_sacked(tp))
1989                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990 }
1991
1992 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1993
1994 static void tcp_add_reno_sack(struct sock *sk)
1995 {
1996         struct tcp_sock *tp = tcp_sk(sk);
1997         tp->sacked_out++;
1998         tcp_check_reno_reordering(sk, 0);
1999         tcp_verify_left_out(tp);
2000 }
2001
2002 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2003
2004 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2005 {
2006         struct tcp_sock *tp = tcp_sk(sk);
2007
2008         if (acked > 0) {
2009                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2010                 if (acked - 1 >= tp->sacked_out)
2011                         tp->sacked_out = 0;
2012                 else
2013                         tp->sacked_out -= acked - 1;
2014         }
2015         tcp_check_reno_reordering(sk, acked);
2016         tcp_verify_left_out(tp);
2017 }
2018
2019 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2020 {
2021         tp->sacked_out = 0;
2022 }
2023
2024 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2025 {
2026         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027 }
2028
2029 /* F-RTO can only be used if TCP has never retransmitted anything other than
2030  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031  */
2032 int tcp_use_frto(struct sock *sk)
2033 {
2034         const struct tcp_sock *tp = tcp_sk(sk);
2035         const struct inet_connection_sock *icsk = inet_csk(sk);
2036         struct sk_buff *skb;
2037
2038         if (!sysctl_tcp_frto)
2039                 return 0;
2040
2041         /* MTU probe and F-RTO won't really play nicely along currently */
2042         if (icsk->icsk_mtup.probe_size)
2043                 return 0;
2044
2045         if (tcp_is_sackfrto(tp))
2046                 return 1;
2047
2048         /* Avoid expensive walking of rexmit queue if possible */
2049         if (tp->retrans_out > 1)
2050                 return 0;
2051
2052         skb = tcp_write_queue_head(sk);
2053         if (tcp_skb_is_last(sk, skb))
2054                 return 1;
2055         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2056         tcp_for_write_queue_from(skb, sk) {
2057                 if (skb == tcp_send_head(sk))
2058                         break;
2059                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2060                         return 0;
2061                 /* Short-circuit when first non-SACKed skb has been checked */
2062                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2063                         break;
2064         }
2065         return 1;
2066 }
2067
2068 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2069  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2070  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2071  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2072  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2073  * bits are handled if the Loss state is really to be entered (in
2074  * tcp_enter_frto_loss).
2075  *
2076  * Do like tcp_enter_loss() would; when RTO expires the second time it
2077  * does:
2078  *  "Reduce ssthresh if it has not yet been made inside this window."
2079  */
2080 void tcp_enter_frto(struct sock *sk)
2081 {
2082         const struct inet_connection_sock *icsk = inet_csk(sk);
2083         struct tcp_sock *tp = tcp_sk(sk);
2084         struct sk_buff *skb;
2085
2086         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2087             tp->snd_una == tp->high_seq ||
2088             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2089              !icsk->icsk_retransmits)) {
2090                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091                 /* Our state is too optimistic in ssthresh() call because cwnd
2092                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2093                  * recovery has not yet completed. Pattern would be this: RTO,
2094                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095                  * up here twice).
2096                  * RFC4138 should be more specific on what to do, even though
2097                  * RTO is quite unlikely to occur after the first Cumulative ACK
2098                  * due to back-off and complexity of triggering events ...
2099                  */
2100                 if (tp->frto_counter) {
2101                         u32 stored_cwnd;
2102                         stored_cwnd = tp->snd_cwnd;
2103                         tp->snd_cwnd = 2;
2104                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2105                         tp->snd_cwnd = stored_cwnd;
2106                 } else {
2107                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108                 }
2109                 /* ... in theory, cong.control module could do "any tricks" in
2110                  * ssthresh(), which means that ca_state, lost bits and lost_out
2111                  * counter would have to be faked before the call occurs. We
2112                  * consider that too expensive, unlikely and hacky, so modules
2113                  * using these in ssthresh() must deal these incompatibility
2114                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115                  */
2116                 tcp_ca_event(sk, CA_EVENT_FRTO);
2117         }
2118
2119         tp->undo_marker = tp->snd_una;
2120         tp->undo_retrans = 0;
2121
2122         skb = tcp_write_queue_head(sk);
2123         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2124                 tp->undo_marker = 0;
2125         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2126                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2127                 tp->retrans_out -= tcp_skb_pcount(skb);
2128         }
2129         tcp_verify_left_out(tp);
2130
2131         /* Too bad if TCP was application limited */
2132         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2133
2134         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2135          * The last condition is necessary at least in tp->frto_counter case.
2136          */
2137         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2138             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2139             after(tp->high_seq, tp->snd_una)) {
2140                 tp->frto_highmark = tp->high_seq;
2141         } else {
2142                 tp->frto_highmark = tp->snd_nxt;
2143         }
2144         tcp_set_ca_state(sk, TCP_CA_Disorder);
2145         tp->high_seq = tp->snd_nxt;
2146         tp->frto_counter = 1;
2147 }
2148
2149 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2150  * which indicates that we should follow the traditional RTO recovery,
2151  * i.e. mark everything lost and do go-back-N retransmission.
2152  */
2153 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2154 {
2155         struct tcp_sock *tp = tcp_sk(sk);
2156         struct sk_buff *skb;
2157
2158         tp->lost_out = 0;
2159         tp->retrans_out = 0;
2160         if (tcp_is_reno(tp))
2161                 tcp_reset_reno_sack(tp);
2162
2163         tcp_for_write_queue(skb, sk) {
2164                 if (skb == tcp_send_head(sk))
2165                         break;
2166
2167                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2168                 /*
2169                  * Count the retransmission made on RTO correctly (only when
2170                  * waiting for the first ACK and did not get it)...
2171                  */
2172                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2173                         /* For some reason this R-bit might get cleared? */
2174                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2175                                 tp->retrans_out += tcp_skb_pcount(skb);
2176                         /* ...enter this if branch just for the first segment */
2177                         flag |= FLAG_DATA_ACKED;
2178                 } else {
2179                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2180                                 tp->undo_marker = 0;
2181                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182                 }
2183
2184                 /* Marking forward transmissions that were made after RTO lost
2185                  * can cause unnecessary retransmissions in some scenarios,
2186                  * SACK blocks will mitigate that in some but not in all cases.
2187                  * We used to not mark them but it was causing break-ups with
2188                  * receivers that do only in-order receival.
2189                  *
2190                  * TODO: we could detect presence of such receiver and select
2191                  * different behavior per flow.
2192                  */
2193                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2194                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2195                         tp->lost_out += tcp_skb_pcount(skb);
2196                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197                 }
2198         }
2199         tcp_verify_left_out(tp);
2200
2201         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2202         tp->snd_cwnd_cnt = 0;
2203         tp->snd_cwnd_stamp = tcp_time_stamp;
2204         tp->frto_counter = 0;
2205         tp->bytes_acked = 0;
2206
2207         tp->reordering = min_t(unsigned int, tp->reordering,
2208                                sysctl_tcp_reordering);
2209         tcp_set_ca_state(sk, TCP_CA_Loss);
2210         tp->high_seq = tp->snd_nxt;
2211         TCP_ECN_queue_cwr(tp);
2212
2213         tcp_clear_all_retrans_hints(tp);
2214 }
2215
2216 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2217 {
2218         tp->retrans_out = 0;
2219         tp->lost_out = 0;
2220
2221         tp->undo_marker = 0;
2222         tp->undo_retrans = 0;
2223 }
2224
2225 void tcp_clear_retrans(struct tcp_sock *tp)
2226 {
2227         tcp_clear_retrans_partial(tp);
2228
2229         tp->fackets_out = 0;
2230         tp->sacked_out = 0;
2231 }
2232
2233 /* Enter Loss state. If "how" is not zero, forget all SACK information
2234  * and reset tags completely, otherwise preserve SACKs. If receiver
2235  * dropped its ofo queue, we will know this due to reneging detection.
2236  */
2237 void tcp_enter_loss(struct sock *sk, int how)
2238 {
2239         const struct inet_connection_sock *icsk = inet_csk(sk);
2240         struct tcp_sock *tp = tcp_sk(sk);
2241         struct sk_buff *skb;
2242
2243         /* Reduce ssthresh if it has not yet been made inside this window. */
2244         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2245             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2246                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248                 tcp_ca_event(sk, CA_EVENT_LOSS);
2249         }
2250         tp->snd_cwnd       = 1;
2251         tp->snd_cwnd_cnt   = 0;
2252         tp->snd_cwnd_stamp = tcp_time_stamp;
2253
2254         tp->bytes_acked = 0;
2255         tcp_clear_retrans_partial(tp);
2256
2257         if (tcp_is_reno(tp))
2258                 tcp_reset_reno_sack(tp);
2259
2260         if (!how) {
2261                 /* Push undo marker, if it was plain RTO and nothing
2262                  * was retransmitted. */
2263                 tp->undo_marker = tp->snd_una;
2264         } else {
2265                 tp->sacked_out = 0;
2266                 tp->fackets_out = 0;
2267         }
2268         tcp_clear_all_retrans_hints(tp);
2269
2270         tcp_for_write_queue(skb, sk) {
2271                 if (skb == tcp_send_head(sk))
2272                         break;
2273
2274                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2275                         tp->undo_marker = 0;
2276                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2277                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2278                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2279                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2280                         tp->lost_out += tcp_skb_pcount(skb);
2281                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282                 }
2283         }
2284         tcp_verify_left_out(tp);
2285
2286         tp->reordering = min_t(unsigned int, tp->reordering,
2287                                sysctl_tcp_reordering);
2288         tcp_set_ca_state(sk, TCP_CA_Loss);
2289         tp->high_seq = tp->snd_nxt;
2290         TCP_ECN_queue_cwr(tp);
2291         /* Abort F-RTO algorithm if one is in progress */
2292         tp->frto_counter = 0;
2293 }
2294
2295 /* If ACK arrived pointing to a remembered SACK, it means that our
2296  * remembered SACKs do not reflect real state of receiver i.e.
2297  * receiver _host_ is heavily congested (or buggy).
2298  *
2299  * Do processing similar to RTO timeout.
2300  */
2301 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2302 {
2303         if (flag & FLAG_SACK_RENEGING) {
2304                 struct inet_connection_sock *icsk = inet_csk(sk);
2305                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2306
2307                 tcp_enter_loss(sk, 1);
2308                 icsk->icsk_retransmits++;
2309                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2310                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2311                                           icsk->icsk_rto, TCP_RTO_MAX);
2312                 return 1;
2313         }
2314         return 0;
2315 }
2316
2317 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2318 {
2319         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320 }
2321
2322 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2323  * counter when SACK is enabled (without SACK, sacked_out is used for
2324  * that purpose).
2325  *
2326  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2327  * segments up to the highest received SACK block so far and holes in
2328  * between them.
2329  *
2330  * With reordering, holes may still be in flight, so RFC3517 recovery
2331  * uses pure sacked_out (total number of SACKed segments) even though
2332  * it violates the RFC that uses duplicate ACKs, often these are equal
2333  * but when e.g. out-of-window ACKs or packet duplication occurs,
2334  * they differ. Since neither occurs due to loss, TCP should really
2335  * ignore them.
2336  */
2337 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2338 {
2339         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340 }
2341
2342 static inline int tcp_skb_timedout(const struct sock *sk,
2343                                    const struct sk_buff *skb)
2344 {
2345         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346 }
2347
2348 static inline int tcp_head_timedout(const struct sock *sk)
2349 {
2350         const struct tcp_sock *tp = tcp_sk(sk);
2351
2352         return tp->packets_out &&
2353                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354 }
2355
2356 /* Linux NewReno/SACK/FACK/ECN state machine.
2357  * --------------------------------------
2358  *
2359  * "Open"       Normal state, no dubious events, fast path.
2360  * "Disorder"   In all the respects it is "Open",
2361  *              but requires a bit more attention. It is entered when
2362  *              we see some SACKs or dupacks. It is split of "Open"
2363  *              mainly to move some processing from fast path to slow one.
2364  * "CWR"        CWND was reduced due to some Congestion Notification event.
2365  *              It can be ECN, ICMP source quench, local device congestion.
2366  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2367  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2368  *
2369  * tcp_fastretrans_alert() is entered:
2370  * - each incoming ACK, if state is not "Open"
2371  * - when arrived ACK is unusual, namely:
2372  *      * SACK
2373  *      * Duplicate ACK.
2374  *      * ECN ECE.
2375  *
2376  * Counting packets in flight is pretty simple.
2377  *
2378  *      in_flight = packets_out - left_out + retrans_out
2379  *
2380  *      packets_out is SND.NXT-SND.UNA counted in packets.
2381  *
2382  *      retrans_out is number of retransmitted segments.
2383  *
2384  *      left_out is number of segments left network, but not ACKed yet.
2385  *
2386  *              left_out = sacked_out + lost_out
2387  *
2388  *     sacked_out: Packets, which arrived to receiver out of order
2389  *                 and hence not ACKed. With SACKs this number is simply
2390  *                 amount of SACKed data. Even without SACKs
2391  *                 it is easy to give pretty reliable estimate of this number,
2392  *                 counting duplicate ACKs.
2393  *
2394  *       lost_out: Packets lost by network. TCP has no explicit
2395  *                 "loss notification" feedback from network (for now).
2396  *                 It means that this number can be only _guessed_.
2397  *                 Actually, it is the heuristics to predict lossage that
2398  *                 distinguishes different algorithms.
2399  *
2400  *      F.e. after RTO, when all the queue is considered as lost,
2401  *      lost_out = packets_out and in_flight = retrans_out.
2402  *
2403  *              Essentially, we have now two algorithms counting
2404  *              lost packets.
2405  *
2406  *              FACK: It is the simplest heuristics. As soon as we decided
2407  *              that something is lost, we decide that _all_ not SACKed
2408  *              packets until the most forward SACK are lost. I.e.
2409  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2410  *              It is absolutely correct estimate, if network does not reorder
2411  *              packets. And it loses any connection to reality when reordering
2412  *              takes place. We use FACK by default until reordering
2413  *              is suspected on the path to this destination.
2414  *
2415  *              NewReno: when Recovery is entered, we assume that one segment
2416  *              is lost (classic Reno). While we are in Recovery and
2417  *              a partial ACK arrives, we assume that one more packet
2418  *              is lost (NewReno). This heuristics are the same in NewReno
2419  *              and SACK.
2420  *
2421  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2422  *  deflation etc. CWND is real congestion window, never inflated, changes
2423  *  only according to classic VJ rules.
2424  *
2425  * Really tricky (and requiring careful tuning) part of algorithm
2426  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2427  * The first determines the moment _when_ we should reduce CWND and,
2428  * hence, slow down forward transmission. In fact, it determines the moment
2429  * when we decide that hole is caused by loss, rather than by a reorder.
2430  *
2431  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2432  * holes, caused by lost packets.
2433  *
2434  * And the most logically complicated part of algorithm is undo
2435  * heuristics. We detect false retransmits due to both too early
2436  * fast retransmit (reordering) and underestimated RTO, analyzing
2437  * timestamps and D-SACKs. When we detect that some segments were
2438  * retransmitted by mistake and CWND reduction was wrong, we undo
2439  * window reduction and abort recovery phase. This logic is hidden
2440  * inside several functions named tcp_try_undo_<something>.
2441  */
2442
2443 /* This function decides, when we should leave Disordered state
2444  * and enter Recovery phase, reducing congestion window.
2445  *
2446  * Main question: may we further continue forward transmission
2447  * with the same cwnd?
2448  */
2449 static int tcp_time_to_recover(struct sock *sk)
2450 {
2451         struct tcp_sock *tp = tcp_sk(sk);
2452         __u32 packets_out;
2453
2454         /* Do not perform any recovery during F-RTO algorithm */
2455         if (tp->frto_counter)
2456                 return 0;
2457
2458         /* Trick#1: The loss is proven. */
2459         if (tp->lost_out)
2460                 return 1;
2461
2462         /* Not-A-Trick#2 : Classic rule... */
2463         if (tcp_dupack_heuristics(tp) > tp->reordering)
2464                 return 1;
2465
2466         /* Trick#3 : when we use RFC2988 timer restart, fast
2467          * retransmit can be triggered by timeout of queue head.
2468          */
2469         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2470                 return 1;
2471
2472         /* Trick#4: It is still not OK... But will it be useful to delay
2473          * recovery more?
2474          */
2475         packets_out = tp->packets_out;
2476         if (packets_out <= tp->reordering &&
2477             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2478             !tcp_may_send_now(sk)) {
2479                 /* We have nothing to send. This connection is limited
2480                  * either by receiver window or by application.
2481                  */
2482                 return 1;
2483         }
2484
2485         /* If a thin stream is detected, retransmit after first
2486          * received dupack. Employ only if SACK is supported in order
2487          * to avoid possible corner-case series of spurious retransmissions
2488          * Use only if there are no unsent data.
2489          */
2490         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2491             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2492             tcp_is_sack(tp) && !tcp_send_head(sk))
2493                 return 1;
2494
2495         return 0;
2496 }
2497
2498 /* New heuristics: it is possible only after we switched to restart timer
2499  * each time when something is ACKed. Hence, we can detect timed out packets
2500  * during fast retransmit without falling to slow start.
2501  *
2502  * Usefulness of this as is very questionable, since we should know which of
2503  * the segments is the next to timeout which is relatively expensive to find
2504  * in general case unless we add some data structure just for that. The
2505  * current approach certainly won't find the right one too often and when it
2506  * finally does find _something_ it usually marks large part of the window
2507  * right away (because a retransmission with a larger timestamp blocks the
2508  * loop from advancing). -ij
2509  */
2510 static void tcp_timeout_skbs(struct sock *sk)
2511 {
2512         struct tcp_sock *tp = tcp_sk(sk);
2513         struct sk_buff *skb;
2514
2515         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2516                 return;
2517
2518         skb = tp->scoreboard_skb_hint;
2519         if (tp->scoreboard_skb_hint == NULL)
2520                 skb = tcp_write_queue_head(sk);
2521
2522         tcp_for_write_queue_from(skb, sk) {
2523                 if (skb == tcp_send_head(sk))
2524                         break;
2525                 if (!tcp_skb_timedout(sk, skb))
2526                         break;
2527
2528                 tcp_skb_mark_lost(tp, skb);
2529         }
2530
2531         tp->scoreboard_skb_hint = skb;
2532
2533         tcp_verify_left_out(tp);
2534 }
2535
2536 /* Detect loss in event "A" above by marking head of queue up as lost.
2537  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2538  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2539  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2540  * the maximum SACKed segments to pass before reaching this limit.
2541  */
2542 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2543 {
2544         struct tcp_sock *tp = tcp_sk(sk);
2545         struct sk_buff *skb;
2546         int cnt, oldcnt;
2547         int err;
2548         unsigned int mss;
2549         /* Use SACK to deduce losses of new sequences sent during recovery */
2550         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2551
2552         WARN_ON(packets > tp->packets_out);
2553         if (tp->lost_skb_hint) {
2554                 skb = tp->lost_skb_hint;
2555                 cnt = tp->lost_cnt_hint;
2556                 /* Head already handled? */
2557                 if (mark_head && skb != tcp_write_queue_head(sk))
2558                         return;
2559         } else {
2560                 skb = tcp_write_queue_head(sk);
2561                 cnt = 0;
2562         }
2563
2564         tcp_for_write_queue_from(skb, sk) {
2565                 if (skb == tcp_send_head(sk))
2566                         break;
2567                 /* TODO: do this better */
2568                 /* this is not the most efficient way to do this... */
2569                 tp->lost_skb_hint = skb;
2570                 tp->lost_cnt_hint = cnt;
2571
2572                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2573                         break;
2574
2575                 oldcnt = cnt;
2576                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578                         cnt += tcp_skb_pcount(skb);
2579
2580                 if (cnt > packets) {
2581                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583                             (oldcnt >= packets))
2584                                 break;
2585
2586                         mss = skb_shinfo(skb)->gso_size;
2587                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588                         if (err < 0)
2589                                 break;
2590                         cnt = packets;
2591                 }
2592
2593                 tcp_skb_mark_lost(tp, skb);
2594
2595                 if (mark_head)
2596                         break;
2597         }
2598         tcp_verify_left_out(tp);
2599 }
2600
2601 /* Account newly detected lost packet(s) */
2602
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604 {
2605         struct tcp_sock *tp = tcp_sk(sk);
2606
2607         if (tcp_is_reno(tp)) {
2608                 tcp_mark_head_lost(sk, 1, 1);
2609         } else if (tcp_is_fack(tp)) {
2610                 int lost = tp->fackets_out - tp->reordering;
2611                 if (lost <= 0)
2612                         lost = 1;
2613                 tcp_mark_head_lost(sk, lost, 0);
2614         } else {
2615                 int sacked_upto = tp->sacked_out - tp->reordering;
2616                 if (sacked_upto >= 0)
2617                         tcp_mark_head_lost(sk, sacked_upto, 0);
2618                 else if (fast_rexmit)
2619                         tcp_mark_head_lost(sk, 1, 1);
2620         }
2621
2622         tcp_timeout_skbs(sk);
2623 }
2624
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626  * in dubious situations.
2627  */
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629 {
2630         tp->snd_cwnd = min(tp->snd_cwnd,
2631                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632         tp->snd_cwnd_stamp = tcp_time_stamp;
2633 }
2634
2635 /* Lower bound on congestion window is slow start threshold
2636  * unless congestion avoidance choice decides to overide it.
2637  */
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2639 {
2640         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641
2642         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 }
2644
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2647 {
2648         struct tcp_sock *tp = tcp_sk(sk);
2649         int decr = tp->snd_cwnd_cnt + 1;
2650
2651         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653                 tp->snd_cwnd_cnt = decr & 1;
2654                 decr >>= 1;
2655
2656                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657                         tp->snd_cwnd -= decr;
2658
2659                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660                 tp->snd_cwnd_stamp = tcp_time_stamp;
2661         }
2662 }
2663
2664 /* Nothing was retransmitted or returned timestamp is less
2665  * than timestamp of the first retransmission.
2666  */
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668 {
2669         return !tp->retrans_stamp ||
2670                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 }
2673
2674 /* Undo procedures. */
2675
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2678 {
2679         struct tcp_sock *tp = tcp_sk(sk);
2680         struct inet_sock *inet = inet_sk(sk);
2681
2682         if (sk->sk_family == AF_INET) {
2683                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684                        msg,
2685                        &inet->inet_daddr, ntohs(inet->inet_dport),
2686                        tp->snd_cwnd, tcp_left_out(tp),
2687                        tp->snd_ssthresh, tp->prior_ssthresh,
2688                        tp->packets_out);
2689         }
2690 #if IS_ENABLED(CONFIG_IPV6)
2691         else if (sk->sk_family == AF_INET6) {
2692                 struct ipv6_pinfo *np = inet6_sk(sk);
2693                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694                        msg,
2695                        &np->daddr, ntohs(inet->inet_dport),
2696                        tp->snd_cwnd, tcp_left_out(tp),
2697                        tp->snd_ssthresh, tp->prior_ssthresh,
2698                        tp->packets_out);
2699         }
2700 #endif
2701 }
2702 #else
2703 #define DBGUNDO(x...) do { } while (0)
2704 #endif
2705
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707 {
2708         struct tcp_sock *tp = tcp_sk(sk);
2709
2710         if (tp->prior_ssthresh) {
2711                 const struct inet_connection_sock *icsk = inet_csk(sk);
2712
2713                 if (icsk->icsk_ca_ops->undo_cwnd)
2714                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715                 else
2716                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717
2718                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719                         tp->snd_ssthresh = tp->prior_ssthresh;
2720                         TCP_ECN_withdraw_cwr(tp);
2721                 }
2722         } else {
2723                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724         }
2725         tp->snd_cwnd_stamp = tcp_time_stamp;
2726 }
2727
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2729 {
2730         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 }
2732
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2735 {
2736         struct tcp_sock *tp = tcp_sk(sk);
2737
2738         if (tcp_may_undo(tp)) {
2739                 int mib_idx;
2740
2741                 /* Happy end! We did not retransmit anything
2742                  * or our original transmission succeeded.
2743                  */
2744                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745                 tcp_undo_cwr(sk, true);
2746                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748                 else
2749                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2750
2751                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752                 tp->undo_marker = 0;
2753         }
2754         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755                 /* Hold old state until something *above* high_seq
2756                  * is ACKed. For Reno it is MUST to prevent false
2757                  * fast retransmits (RFC2582). SACK TCP is safe. */
2758                 tcp_moderate_cwnd(tp);
2759                 return 1;
2760         }
2761         tcp_set_ca_state(sk, TCP_CA_Open);
2762         return 0;
2763 }
2764
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2767 {
2768         struct tcp_sock *tp = tcp_sk(sk);
2769
2770         if (tp->undo_marker && !tp->undo_retrans) {
2771                 DBGUNDO(sk, "D-SACK");
2772                 tcp_undo_cwr(sk, true);
2773                 tp->undo_marker = 0;
2774                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775         }
2776 }
2777
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779  * window. It would seem that it is trivially available for us in
2780  * tp->retrans_out, however, that kind of assumptions doesn't consider
2781  * what will happen if errors occur when sending retransmission for the
2782  * second time. ...It could the that such segment has only
2783  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784  * the head skb is enough except for some reneging corner cases that
2785  * are not worth the effort.
2786  *
2787  * Main reason for all this complexity is the fact that connection dying
2788  * time now depends on the validity of the retrans_stamp, in particular,
2789  * that successive retransmissions of a segment must not advance
2790  * retrans_stamp under any conditions.
2791  */
2792 static int tcp_any_retrans_done(const struct sock *sk)
2793 {
2794         const struct tcp_sock *tp = tcp_sk(sk);
2795         struct sk_buff *skb;
2796
2797         if (tp->retrans_out)
2798                 return 1;
2799
2800         skb = tcp_write_queue_head(sk);
2801         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802                 return 1;
2803
2804         return 0;
2805 }
2806
2807 /* Undo during fast recovery after partial ACK. */
2808
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2810 {
2811         struct tcp_sock *tp = tcp_sk(sk);
2812         /* Partial ACK arrived. Force Hoe's retransmit. */
2813         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814
2815         if (tcp_may_undo(tp)) {
2816                 /* Plain luck! Hole if filled with delayed
2817                  * packet, rather than with a retransmit.
2818                  */
2819                 if (!tcp_any_retrans_done(sk))
2820                         tp->retrans_stamp = 0;
2821
2822                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823
2824                 DBGUNDO(sk, "Hoe");
2825                 tcp_undo_cwr(sk, false);
2826                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827
2828                 /* So... Do not make Hoe's retransmit yet.
2829                  * If the first packet was delayed, the rest
2830                  * ones are most probably delayed as well.
2831                  */
2832                 failed = 0;
2833         }
2834         return failed;
2835 }
2836
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2839 {
2840         struct tcp_sock *tp = tcp_sk(sk);
2841
2842         if (tcp_may_undo(tp)) {
2843                 struct sk_buff *skb;
2844                 tcp_for_write_queue(skb, sk) {
2845                         if (skb == tcp_send_head(sk))
2846                                 break;
2847                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848                 }
2849
2850                 tcp_clear_all_retrans_hints(tp);
2851
2852                 DBGUNDO(sk, "partial loss");
2853                 tp->lost_out = 0;
2854                 tcp_undo_cwr(sk, true);
2855                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856                 inet_csk(sk)->icsk_retransmits = 0;
2857                 tp->undo_marker = 0;
2858                 if (tcp_is_sack(tp))
2859                         tcp_set_ca_state(sk, TCP_CA_Open);
2860                 return 1;
2861         }
2862         return 0;
2863 }
2864
2865 static inline void tcp_complete_cwr(struct sock *sk)
2866 {
2867         struct tcp_sock *tp = tcp_sk(sk);
2868
2869         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870         if (tp->undo_marker) {
2871                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2872                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873                         tp->snd_cwnd_stamp = tcp_time_stamp;
2874                 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2875                         /* PRR algorithm. */
2876                         tp->snd_cwnd = tp->snd_ssthresh;
2877                         tp->snd_cwnd_stamp = tcp_time_stamp;
2878                 }
2879         }
2880         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2881 }
2882
2883 static void tcp_try_keep_open(struct sock *sk)
2884 {
2885         struct tcp_sock *tp = tcp_sk(sk);
2886         int state = TCP_CA_Open;
2887
2888         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2889                 state = TCP_CA_Disorder;
2890
2891         if (inet_csk(sk)->icsk_ca_state != state) {
2892                 tcp_set_ca_state(sk, state);
2893                 tp->high_seq = tp->snd_nxt;
2894         }
2895 }
2896
2897 static void tcp_try_to_open(struct sock *sk, int flag)
2898 {
2899         struct tcp_sock *tp = tcp_sk(sk);
2900
2901         tcp_verify_left_out(tp);
2902
2903         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2904                 tp->retrans_stamp = 0;
2905
2906         if (flag & FLAG_ECE)
2907                 tcp_enter_cwr(sk, 1);
2908
2909         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2910                 tcp_try_keep_open(sk);
2911                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2912                         tcp_moderate_cwnd(tp);
2913         } else {
2914                 tcp_cwnd_down(sk, flag);
2915         }
2916 }
2917
2918 static void tcp_mtup_probe_failed(struct sock *sk)
2919 {
2920         struct inet_connection_sock *icsk = inet_csk(sk);
2921
2922         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2923         icsk->icsk_mtup.probe_size = 0;
2924 }
2925
2926 static void tcp_mtup_probe_success(struct sock *sk)
2927 {
2928         struct tcp_sock *tp = tcp_sk(sk);
2929         struct inet_connection_sock *icsk = inet_csk(sk);
2930
2931         /* FIXME: breaks with very large cwnd */
2932         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2933         tp->snd_cwnd = tp->snd_cwnd *
2934                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2935                        icsk->icsk_mtup.probe_size;
2936         tp->snd_cwnd_cnt = 0;
2937         tp->snd_cwnd_stamp = tcp_time_stamp;
2938         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2939
2940         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2941         icsk->icsk_mtup.probe_size = 0;
2942         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2943 }
2944
2945 /* Do a simple retransmit without using the backoff mechanisms in
2946  * tcp_timer. This is used for path mtu discovery.
2947  * The socket is already locked here.
2948  */
2949 void tcp_simple_retransmit(struct sock *sk)
2950 {
2951         const struct inet_connection_sock *icsk = inet_csk(sk);
2952         struct tcp_sock *tp = tcp_sk(sk);
2953         struct sk_buff *skb;
2954         unsigned int mss = tcp_current_mss(sk);
2955         u32 prior_lost = tp->lost_out;
2956
2957         tcp_for_write_queue(skb, sk) {
2958                 if (skb == tcp_send_head(sk))
2959                         break;
2960                 if (tcp_skb_seglen(skb) > mss &&
2961                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2962                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2963                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2964                                 tp->retrans_out -= tcp_skb_pcount(skb);
2965                         }
2966                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2967                 }
2968         }
2969
2970         tcp_clear_retrans_hints_partial(tp);
2971
2972         if (prior_lost == tp->lost_out)
2973                 return;
2974
2975         if (tcp_is_reno(tp))
2976                 tcp_limit_reno_sacked(tp);
2977
2978         tcp_verify_left_out(tp);
2979
2980         /* Don't muck with the congestion window here.
2981          * Reason is that we do not increase amount of _data_
2982          * in network, but units changed and effective
2983          * cwnd/ssthresh really reduced now.
2984          */
2985         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2986                 tp->high_seq = tp->snd_nxt;
2987                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2988                 tp->prior_ssthresh = 0;
2989                 tp->undo_marker = 0;
2990                 tcp_set_ca_state(sk, TCP_CA_Loss);
2991         }
2992         tcp_xmit_retransmit_queue(sk);
2993 }
2994 EXPORT_SYMBOL(tcp_simple_retransmit);
2995
2996 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2997  * (proportional rate reduction with slow start reduction bound) as described in
2998  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2999  * It computes the number of packets to send (sndcnt) based on packets newly
3000  * delivered:
3001  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3002  *      cwnd reductions across a full RTT.
3003  *   2) If packets in flight is lower than ssthresh (such as due to excess
3004  *      losses and/or application stalls), do not perform any further cwnd
3005  *      reductions, but instead slow start up to ssthresh.
3006  */
3007 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3008                                         int fast_rexmit, int flag)
3009 {
3010         struct tcp_sock *tp = tcp_sk(sk);
3011         int sndcnt = 0;
3012         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3013
3014         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3015                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3016                                tp->prior_cwnd - 1;
3017                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3018         } else {
3019                 sndcnt = min_t(int, delta,
3020                                max_t(int, tp->prr_delivered - tp->prr_out,
3021                                      newly_acked_sacked) + 1);
3022         }
3023
3024         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3025         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3026 }
3027
3028 /* Process an event, which can update packets-in-flight not trivially.
3029  * Main goal of this function is to calculate new estimate for left_out,
3030  * taking into account both packets sitting in receiver's buffer and
3031  * packets lost by network.
3032  *
3033  * Besides that it does CWND reduction, when packet loss is detected
3034  * and changes state of machine.
3035  *
3036  * It does _not_ decide what to send, it is made in function
3037  * tcp_xmit_retransmit_queue().
3038  */
3039 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3040                                   int newly_acked_sacked, bool is_dupack,
3041                                   int flag)
3042 {
3043         struct inet_connection_sock *icsk = inet_csk(sk);
3044         struct tcp_sock *tp = tcp_sk(sk);
3045         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3046                                     (tcp_fackets_out(tp) > tp->reordering));
3047         int fast_rexmit = 0, mib_idx;
3048
3049         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3050                 tp->sacked_out = 0;
3051         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3052                 tp->fackets_out = 0;
3053
3054         /* Now state machine starts.
3055          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3056         if (flag & FLAG_ECE)
3057                 tp->prior_ssthresh = 0;
3058
3059         /* B. In all the states check for reneging SACKs. */
3060         if (tcp_check_sack_reneging(sk, flag))
3061                 return;
3062
3063         /* C. Check consistency of the current state. */
3064         tcp_verify_left_out(tp);
3065
3066         /* D. Check state exit conditions. State can be terminated
3067          *    when high_seq is ACKed. */
3068         if (icsk->icsk_ca_state == TCP_CA_Open) {
3069                 WARN_ON(tp->retrans_out != 0);
3070                 tp->retrans_stamp = 0;
3071         } else if (!before(tp->snd_una, tp->high_seq)) {
3072                 switch (icsk->icsk_ca_state) {
3073                 case TCP_CA_Loss:
3074                         icsk->icsk_retransmits = 0;
3075                         if (tcp_try_undo_recovery(sk))
3076                                 return;
3077                         break;
3078
3079                 case TCP_CA_CWR:
3080                         /* CWR is to be held something *above* high_seq
3081                          * is ACKed for CWR bit to reach receiver. */
3082                         if (tp->snd_una != tp->high_seq) {
3083                                 tcp_complete_cwr(sk);
3084                                 tcp_set_ca_state(sk, TCP_CA_Open);
3085                         }
3086                         break;
3087
3088                 case TCP_CA_Recovery:
3089                         if (tcp_is_reno(tp))
3090                                 tcp_reset_reno_sack(tp);
3091                         if (tcp_try_undo_recovery(sk))
3092                                 return;
3093                         tcp_complete_cwr(sk);
3094                         break;
3095                 }
3096         }
3097
3098         /* E. Process state. */
3099         switch (icsk->icsk_ca_state) {
3100         case TCP_CA_Recovery:
3101                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3102                         if (tcp_is_reno(tp) && is_dupack)
3103                                 tcp_add_reno_sack(sk);
3104                 } else
3105                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3106                 break;
3107         case TCP_CA_Loss:
3108                 if (flag & FLAG_DATA_ACKED)
3109                         icsk->icsk_retransmits = 0;
3110                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3111                         tcp_reset_reno_sack(tp);
3112                 if (!tcp_try_undo_loss(sk)) {
3113                         tcp_moderate_cwnd(tp);
3114                         tcp_xmit_retransmit_queue(sk);
3115                         return;
3116                 }
3117                 if (icsk->icsk_ca_state != TCP_CA_Open)
3118                         return;
3119                 /* Loss is undone; fall through to processing in Open state. */
3120         default:
3121                 if (tcp_is_reno(tp)) {
3122                         if (flag & FLAG_SND_UNA_ADVANCED)
3123                                 tcp_reset_reno_sack(tp);
3124                         if (is_dupack)
3125                                 tcp_add_reno_sack(sk);
3126                 }
3127
3128                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3129                         tcp_try_undo_dsack(sk);
3130
3131                 if (!tcp_time_to_recover(sk)) {
3132                         tcp_try_to_open(sk, flag);
3133                         return;
3134                 }
3135
3136                 /* MTU probe failure: don't reduce cwnd */
3137                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3138                     icsk->icsk_mtup.probe_size &&
3139                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3140                         tcp_mtup_probe_failed(sk);
3141                         /* Restores the reduction we did in tcp_mtup_probe() */
3142                         tp->snd_cwnd++;
3143                         tcp_simple_retransmit(sk);
3144                         return;
3145                 }
3146
3147                 /* Otherwise enter Recovery state */
3148
3149                 if (tcp_is_reno(tp))
3150                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3151                 else
3152                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3153
3154                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3155
3156                 tp->high_seq = tp->snd_nxt;
3157                 tp->prior_ssthresh = 0;
3158                 tp->undo_marker = tp->snd_una;
3159                 tp->undo_retrans = tp->retrans_out;
3160
3161                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3162                         if (!(flag & FLAG_ECE))
3163                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3164                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3165                         TCP_ECN_queue_cwr(tp);
3166                 }
3167
3168                 tp->bytes_acked = 0;
3169                 tp->snd_cwnd_cnt = 0;
3170                 tp->prior_cwnd = tp->snd_cwnd;
3171                 tp->prr_delivered = 0;
3172                 tp->prr_out = 0;
3173                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3174                 fast_rexmit = 1;
3175         }
3176
3177         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3178                 tcp_update_scoreboard(sk, fast_rexmit);
3179         tp->prr_delivered += newly_acked_sacked;
3180         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3181         tcp_xmit_retransmit_queue(sk);
3182 }
3183
3184 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3185 {
3186         tcp_rtt_estimator(sk, seq_rtt);
3187         tcp_set_rto(sk);
3188         inet_csk(sk)->icsk_backoff = 0;
3189 }
3190 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3191
3192 /* Read draft-ietf-tcplw-high-performance before mucking
3193  * with this code. (Supersedes RFC1323)
3194  */
3195 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3196 {
3197         /* RTTM Rule: A TSecr value received in a segment is used to
3198          * update the averaged RTT measurement only if the segment
3199          * acknowledges some new data, i.e., only if it advances the
3200          * left edge of the send window.
3201          *
3202          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3203          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3204          *
3205          * Changed: reset backoff as soon as we see the first valid sample.
3206          * If we do not, we get strongly overestimated rto. With timestamps
3207          * samples are accepted even from very old segments: f.e., when rtt=1
3208          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3209          * answer arrives rto becomes 120 seconds! If at least one of segments
3210          * in window is lost... Voila.                          --ANK (010210)
3211          */
3212         struct tcp_sock *tp = tcp_sk(sk);
3213
3214         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3215 }
3216
3217 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3218 {
3219         /* We don't have a timestamp. Can only use
3220          * packets that are not retransmitted to determine
3221          * rtt estimates. Also, we must not reset the
3222          * backoff for rto until we get a non-retransmitted
3223          * packet. This allows us to deal with a situation
3224          * where the network delay has increased suddenly.
3225          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3226          */
3227
3228         if (flag & FLAG_RETRANS_DATA_ACKED)
3229                 return;
3230
3231         tcp_valid_rtt_meas(sk, seq_rtt);
3232 }
3233
3234 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3235                                       const s32 seq_rtt)
3236 {
3237         const struct tcp_sock *tp = tcp_sk(sk);
3238         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3239         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3240                 tcp_ack_saw_tstamp(sk, flag);
3241         else if (seq_rtt >= 0)
3242                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3243 }
3244
3245 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3246 {
3247         const struct inet_connection_sock *icsk = inet_csk(sk);
3248         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3249         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3250 }
3251
3252 /* Restart timer after forward progress on connection.
3253  * RFC2988 recommends to restart timer to now+rto.
3254  */
3255 static void tcp_rearm_rto(struct sock *sk)
3256 {
3257         const struct tcp_sock *tp = tcp_sk(sk);
3258
3259         if (!tp->packets_out) {
3260                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3261         } else {
3262                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3263                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3264         }
3265 }
3266
3267 /* If we get here, the whole TSO packet has not been acked. */
3268 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3269 {
3270         struct tcp_sock *tp = tcp_sk(sk);
3271         u32 packets_acked;
3272
3273         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3274
3275         packets_acked = tcp_skb_pcount(skb);
3276         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3277                 return 0;
3278         packets_acked -= tcp_skb_pcount(skb);
3279
3280         if (packets_acked) {
3281                 BUG_ON(tcp_skb_pcount(skb) == 0);
3282                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3283         }
3284
3285         return packets_acked;
3286 }
3287
3288 /* Remove acknowledged frames from the retransmission queue. If our packet
3289  * is before the ack sequence we can discard it as it's confirmed to have
3290  * arrived at the other end.
3291  */
3292 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3293                                u32 prior_snd_una)
3294 {
3295         struct tcp_sock *tp = tcp_sk(sk);
3296         const struct inet_connection_sock *icsk = inet_csk(sk);
3297         struct sk_buff *skb;
3298         u32 now = tcp_time_stamp;
3299         int fully_acked = 1;
3300         int flag = 0;
3301         u32 pkts_acked = 0;
3302         u32 reord = tp->packets_out;
3303         u32 prior_sacked = tp->sacked_out;
3304         s32 seq_rtt = -1;
3305         s32 ca_seq_rtt = -1;
3306         ktime_t last_ackt = net_invalid_timestamp();
3307
3308         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3309                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3310                 u32 acked_pcount;
3311                 u8 sacked = scb->sacked;
3312
3313                 /* Determine how many packets and what bytes were acked, tso and else */
3314                 if (after(scb->end_seq, tp->snd_una)) {
3315                         if (tcp_skb_pcount(skb) == 1 ||
3316                             !after(tp->snd_una, scb->seq))
3317                                 break;
3318
3319                         acked_pcount = tcp_tso_acked(sk, skb);
3320                         if (!acked_pcount)
3321                                 break;
3322
3323                         fully_acked = 0;
3324                 } else {
3325                         acked_pcount = tcp_skb_pcount(skb);
3326                 }
3327
3328                 if (sacked & TCPCB_RETRANS) {
3329                         if (sacked & TCPCB_SACKED_RETRANS)
3330                                 tp->retrans_out -= acked_pcount;
3331                         flag |= FLAG_RETRANS_DATA_ACKED;
3332                         ca_seq_rtt = -1;
3333                         seq_rtt = -1;
3334                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3335                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3336                 } else {
3337                         ca_seq_rtt = now - scb->when;
3338                         last_ackt = skb->tstamp;
3339                         if (seq_rtt < 0) {
3340                                 seq_rtt = ca_seq_rtt;
3341                         }
3342                         if (!(sacked & TCPCB_SACKED_ACKED))
3343                                 reord = min(pkts_acked, reord);
3344                 }
3345
3346                 if (sacked & TCPCB_SACKED_ACKED)
3347                         tp->sacked_out -= acked_pcount;
3348                 if (sacked & TCPCB_LOST)
3349                         tp->lost_out -= acked_pcount;
3350
3351                 tp->packets_out -= acked_pcount;
3352                 pkts_acked += acked_pcount;
3353
3354                 /* Initial outgoing SYN's get put onto the write_queue
3355                  * just like anything else we transmit.  It is not
3356                  * true data, and if we misinform our callers that
3357                  * this ACK acks real data, we will erroneously exit
3358                  * connection startup slow start one packet too
3359                  * quickly.  This is severely frowned upon behavior.
3360                  */
3361                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3362                         flag |= FLAG_DATA_ACKED;
3363                 } else {
3364                         flag |= FLAG_SYN_ACKED;
3365                         tp->retrans_stamp = 0;
3366                 }
3367
3368                 if (!fully_acked)
3369                         break;
3370
3371                 tcp_unlink_write_queue(skb, sk);
3372                 sk_wmem_free_skb(sk, skb);
3373                 tp->scoreboard_skb_hint = NULL;
3374                 if (skb == tp->retransmit_skb_hint)
3375                         tp->retransmit_skb_hint = NULL;
3376                 if (skb == tp->lost_skb_hint)
3377                         tp->lost_skb_hint = NULL;
3378         }
3379
3380         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3381                 tp->snd_up = tp->snd_una;
3382
3383         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3384                 flag |= FLAG_SACK_RENEGING;
3385
3386         if (flag & FLAG_ACKED) {
3387                 const struct tcp_congestion_ops *ca_ops
3388                         = inet_csk(sk)->icsk_ca_ops;
3389
3390                 if (unlikely(icsk->icsk_mtup.probe_size &&
3391                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3392                         tcp_mtup_probe_success(sk);
3393                 }
3394
3395                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3396                 tcp_rearm_rto(sk);
3397
3398                 if (tcp_is_reno(tp)) {
3399                         tcp_remove_reno_sacks(sk, pkts_acked);
3400                 } else {
3401                         int delta;
3402
3403                         /* Non-retransmitted hole got filled? That's reordering */
3404                         if (reord < prior_fackets)
3405                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3406
3407                         delta = tcp_is_fack(tp) ? pkts_acked :
3408                                                   prior_sacked - tp->sacked_out;
3409                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3410                 }
3411
3412                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3413
3414                 if (ca_ops->pkts_acked) {
3415                         s32 rtt_us = -1;
3416
3417                         /* Is the ACK triggering packet unambiguous? */
3418                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3419                                 /* High resolution needed and available? */
3420                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3421                                     !ktime_equal(last_ackt,
3422                                                  net_invalid_timestamp()))
3423                                         rtt_us = ktime_us_delta(ktime_get_real(),
3424                                                                 last_ackt);
3425                                 else if (ca_seq_rtt >= 0)
3426                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3427                         }
3428
3429                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3430                 }
3431         }
3432
3433 #if FASTRETRANS_DEBUG > 0
3434         WARN_ON((int)tp->sacked_out < 0);
3435         WARN_ON((int)tp->lost_out < 0);
3436         WARN_ON((int)tp->retrans_out < 0);
3437         if (!tp->packets_out && tcp_is_sack(tp)) {
3438                 icsk = inet_csk(sk);
3439                 if (tp->lost_out) {
3440                         printk(KERN_DEBUG "Leak l=%u %d\n",
3441                                tp->lost_out, icsk->icsk_ca_state);
3442                         tp->lost_out = 0;
3443                 }
3444                 if (tp->sacked_out) {
3445                         printk(KERN_DEBUG "Leak s=%u %d\n",
3446                                tp->sacked_out, icsk->icsk_ca_state);
3447                         tp->sacked_out = 0;
3448                 }
3449                 if (tp->retrans_out) {
3450                         printk(KERN_DEBUG "Leak r=%u %d\n",
3451                                tp->retrans_out, icsk->icsk_ca_state);
3452                         tp->retrans_out = 0;
3453                 }
3454         }
3455 #endif
3456         return flag;
3457 }
3458
3459 static void tcp_ack_probe(struct sock *sk)
3460 {
3461         const struct tcp_sock *tp = tcp_sk(sk);
3462         struct inet_connection_sock *icsk = inet_csk(sk);
3463
3464         /* Was it a usable window open? */
3465
3466         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3467                 icsk->icsk_backoff = 0;
3468                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3469                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3470                  * This function is not for random using!
3471                  */
3472         } else {
3473                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3474                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3475                                           TCP_RTO_MAX);
3476         }
3477 }
3478
3479 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3480 {
3481         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3482                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3483 }
3484
3485 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3486 {
3487         const struct tcp_sock *tp = tcp_sk(sk);
3488         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3489                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3490 }
3491
3492 /* Check that window update is acceptable.
3493  * The function assumes that snd_una<=ack<=snd_next.
3494  */
3495 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3496                                         const u32 ack, const u32 ack_seq,
3497                                         const u32 nwin)
3498 {
3499         return  after(ack, tp->snd_una) ||
3500                 after(ack_seq, tp->snd_wl1) ||
3501                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3502 }
3503
3504 /* Update our send window.
3505  *
3506  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3507  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3508  */
3509 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3510                                  u32 ack_seq)
3511 {
3512         struct tcp_sock *tp = tcp_sk(sk);
3513         int flag = 0;
3514         u32 nwin = ntohs(tcp_hdr(skb)->window);
3515
3516         if (likely(!tcp_hdr(skb)->syn))
3517                 nwin <<= tp->rx_opt.snd_wscale;
3518
3519         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3520                 flag |= FLAG_WIN_UPDATE;
3521                 tcp_update_wl(tp, ack_seq);
3522
3523                 if (tp->snd_wnd != nwin) {
3524                         tp->snd_wnd = nwin;
3525
3526                         /* Note, it is the only place, where
3527                          * fast path is recovered for sending TCP.
3528                          */
3529                         tp->pred_flags = 0;
3530                         tcp_fast_path_check(sk);
3531
3532                         if (nwin > tp->max_window) {
3533                                 tp->max_window = nwin;
3534                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3535                         }
3536                 }
3537         }
3538
3539         tp->snd_una = ack;
3540
3541         return flag;
3542 }
3543
3544 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3545  * continue in congestion avoidance.
3546  */
3547 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3548 {
3549         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3550         tp->snd_cwnd_cnt = 0;
3551         tp->bytes_acked = 0;
3552         TCP_ECN_queue_cwr(tp);
3553         tcp_moderate_cwnd(tp);
3554 }
3555
3556 /* A conservative spurious RTO response algorithm: reduce cwnd using
3557  * rate halving and continue in congestion avoidance.
3558  */
3559 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3560 {
3561         tcp_enter_cwr(sk, 0);
3562 }
3563
3564 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3565 {
3566         if (flag & FLAG_ECE)
3567                 tcp_ratehalving_spur_to_response(sk);
3568         else
3569                 tcp_undo_cwr(sk, true);
3570 }
3571
3572 /* F-RTO spurious RTO detection algorithm (RFC4138)
3573  *
3574  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3575  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3576  * window (but not to or beyond highest sequence sent before RTO):
3577  *   On First ACK,  send two new segments out.
3578  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3579  *                  algorithm is not part of the F-RTO detection algorithm
3580  *                  given in RFC4138 but can be selected separately).
3581  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3582  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3583  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3584  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3585  *
3586  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3587  * original window even after we transmit two new data segments.
3588  *
3589  * SACK version:
3590  *   on first step, wait until first cumulative ACK arrives, then move to
3591  *   the second step. In second step, the next ACK decides.
3592  *
3593  * F-RTO is implemented (mainly) in four functions:
3594  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3595  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3596  *     called when tcp_use_frto() showed green light
3597  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3598  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3599  *     to prove that the RTO is indeed spurious. It transfers the control
3600  *     from F-RTO to the conventional RTO recovery
3601  */
3602 static int tcp_process_frto(struct sock *sk, int flag)
3603 {
3604         struct tcp_sock *tp = tcp_sk(sk);
3605
3606         tcp_verify_left_out(tp);
3607
3608         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3609         if (flag & FLAG_DATA_ACKED)
3610                 inet_csk(sk)->icsk_retransmits = 0;
3611
3612         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3613             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3614                 tp->undo_marker = 0;
3615
3616         if (!before(tp->snd_una, tp->frto_highmark)) {
3617                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3618                 return 1;
3619         }
3620
3621         if (!tcp_is_sackfrto(tp)) {
3622                 /* RFC4138 shortcoming in step 2; should also have case c):
3623                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3624                  * data, winupdate
3625                  */
3626                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3627                         return 1;
3628
3629                 if (!(flag & FLAG_DATA_ACKED)) {
3630                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3631                                             flag);
3632                         return 1;
3633                 }
3634         } else {
3635                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3636                         /* Prevent sending of new data. */
3637                         tp->snd_cwnd = min(tp->snd_cwnd,
3638                                            tcp_packets_in_flight(tp));
3639                         return 1;
3640                 }
3641
3642                 if ((tp->frto_counter >= 2) &&
3643                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3644                      ((flag & FLAG_DATA_SACKED) &&
3645                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3646                         /* RFC4138 shortcoming (see comment above) */
3647                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3648                             (flag & FLAG_NOT_DUP))
3649                                 return 1;
3650
3651                         tcp_enter_frto_loss(sk, 3, flag);
3652                         return 1;
3653                 }
3654         }
3655
3656         if (tp->frto_counter == 1) {
3657                 /* tcp_may_send_now needs to see updated state */
3658                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3659                 tp->frto_counter = 2;
3660
3661                 if (!tcp_may_send_now(sk))
3662                         tcp_enter_frto_loss(sk, 2, flag);
3663
3664                 return 1;
3665         } else {
3666                 switch (sysctl_tcp_frto_response) {
3667                 case 2:
3668                         tcp_undo_spur_to_response(sk, flag);
3669                         break;
3670                 case 1:
3671                         tcp_conservative_spur_to_response(tp);
3672                         break;
3673                 default:
3674                         tcp_ratehalving_spur_to_response(sk);
3675                         break;
3676                 }
3677                 tp->frto_counter = 0;
3678                 tp->undo_marker = 0;
3679                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3680         }
3681         return 0;
3682 }
3683
3684 /* This routine deals with incoming acks, but not outgoing ones. */
3685 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3686 {
3687         struct inet_connection_sock *icsk = inet_csk(sk);
3688         struct tcp_sock *tp = tcp_sk(sk);
3689         u32 prior_snd_una = tp->snd_una;
3690         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3691         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3692         bool is_dupack = false;
3693         u32 prior_in_flight;
3694         u32 prior_fackets;
3695         int prior_packets;
3696         int prior_sacked = tp->sacked_out;
3697         int pkts_acked = 0;
3698         int newly_acked_sacked = 0;
3699         int frto_cwnd = 0;
3700
3701         /* If the ack is older than previous acks
3702          * then we can probably ignore it.
3703          */
3704         if (before(ack, prior_snd_una))
3705                 goto old_ack;
3706
3707         /* If the ack includes data we haven't sent yet, discard
3708          * this segment (RFC793 Section 3.9).
3709          */
3710         if (after(ack, tp->snd_nxt))
3711                 goto invalid_ack;
3712
3713         if (after(ack, prior_snd_una))
3714                 flag |= FLAG_SND_UNA_ADVANCED;
3715
3716         if (sysctl_tcp_abc) {
3717                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3718                         tp->bytes_acked += ack - prior_snd_una;
3719                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3720                         /* we assume just one segment left network */
3721                         tp->bytes_acked += min(ack - prior_snd_una,
3722                                                tp->mss_cache);
3723         }
3724
3725         prior_fackets = tp->fackets_out;
3726         prior_in_flight = tcp_packets_in_flight(tp);
3727
3728         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3729                 /* Window is constant, pure forward advance.
3730                  * No more checks are required.
3731                  * Note, we use the fact that SND.UNA>=SND.WL2.
3732                  */
3733                 tcp_update_wl(tp, ack_seq);
3734                 tp->snd_una = ack;
3735                 flag |= FLAG_WIN_UPDATE;
3736
3737                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3738
3739                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3740         } else {
3741                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3742                         flag |= FLAG_DATA;
3743                 else
3744                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3745
3746                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3747
3748                 if (TCP_SKB_CB(skb)->sacked)
3749                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3750
3751                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3752                         flag |= FLAG_ECE;
3753
3754                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3755         }
3756
3757         /* We passed data and got it acked, remove any soft error
3758          * log. Something worked...
3759          */
3760         sk->sk_err_soft = 0;
3761         icsk->icsk_probes_out = 0;
3762         tp->rcv_tstamp = tcp_time_stamp;
3763         prior_packets = tp->packets_out;
3764         if (!prior_packets)
3765                 goto no_queue;
3766
3767         /* See if we can take anything off of the retransmit queue. */
3768         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3769
3770         pkts_acked = prior_packets - tp->packets_out;
3771         newly_acked_sacked = (prior_packets - prior_sacked) -
3772                              (tp->packets_out - tp->sacked_out);
3773
3774         if (tp->frto_counter)
3775                 frto_cwnd = tcp_process_frto(sk, flag);
3776         /* Guarantee sacktag reordering detection against wrap-arounds */
3777         if (before(tp->frto_highmark, tp->snd_una))
3778                 tp->frto_highmark = 0;
3779
3780         if (tcp_ack_is_dubious(sk, flag)) {
3781                 /* Advance CWND, if state allows this. */
3782                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3783                     tcp_may_raise_cwnd(sk, flag))
3784                         tcp_cong_avoid(sk, ack, prior_in_flight);
3785                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3786                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3787                                       is_dupack, flag);
3788         } else {
3789                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3790                         tcp_cong_avoid(sk, ack, prior_in_flight);
3791         }
3792
3793         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3794                 dst_confirm(__sk_dst_get(sk));
3795
3796         return 1;
3797
3798 no_queue:
3799         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3800         if (flag & FLAG_DSACKING_ACK)
3801                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3802                                       is_dupack, flag);
3803         /* If this ack opens up a zero window, clear backoff.  It was
3804          * being used to time the probes, and is probably far higher than
3805          * it needs to be for normal retransmission.
3806          */
3807         if (tcp_send_head(sk))
3808                 tcp_ack_probe(sk);
3809         return 1;
3810
3811 invalid_ack:
3812         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3813         return -1;
3814
3815 old_ack:
3816         /* If data was SACKed, tag it and see if we should send more data.
3817          * If data was DSACKed, see if we can undo a cwnd reduction.
3818          */
3819         if (TCP_SKB_CB(skb)->sacked) {
3820                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3821                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3822                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3823                                       is_dupack, flag);
3824         }
3825
3826         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3827         return 0;
3828 }
3829
3830 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831  * But, this can also be called on packets in the established flow when
3832  * the fast version below fails.
3833  */
3834 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3835                        const u8 **hvpp, int estab)
3836 {
3837         const unsigned char *ptr;
3838         const struct tcphdr *th = tcp_hdr(skb);
3839         int length = (th->doff * 4) - sizeof(struct tcphdr);
3840
3841         ptr = (const unsigned char *)(th + 1);
3842         opt_rx->saw_tstamp = 0;
3843
3844         while (length > 0) {
3845                 int opcode = *ptr++;
3846                 int opsize;
3847
3848                 switch (opcode) {
3849                 case TCPOPT_EOL:
3850                         return;
3851                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3852                         length--;
3853                         continue;
3854                 default:
3855                         opsize = *ptr++;
3856                         if (opsize < 2) /* "silly options" */
3857                                 return;
3858                         if (opsize > length)
3859                                 return; /* don't parse partial options */
3860                         switch (opcode) {
3861                         case TCPOPT_MSS:
3862                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3863                                         u16 in_mss = get_unaligned_be16(ptr);
3864                                         if (in_mss) {
3865                                                 if (opt_rx->user_mss &&
3866                                                     opt_rx->user_mss < in_mss)
3867                                                         in_mss = opt_rx->user_mss;
3868                                                 opt_rx->mss_clamp = in_mss;
3869                                         }
3870                                 }
3871                                 break;
3872                         case TCPOPT_WINDOW:
3873                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3874                                     !estab && sysctl_tcp_window_scaling) {
3875                                         __u8 snd_wscale = *(__u8 *)ptr;
3876                                         opt_rx->wscale_ok = 1;
3877                                         if (snd_wscale > 14) {
3878                                                 if (net_ratelimit())
3879                                                         pr_info("%s: Illegal window scaling value %d >14 received\n",
3880                                                                 __func__,
3881                                                                 snd_wscale);
3882                                                 snd_wscale = 14;
3883                                         }
3884                                         opt_rx->snd_wscale = snd_wscale;
3885                                 }
3886                                 break;
3887                         case TCPOPT_TIMESTAMP:
3888                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3889                                     ((estab && opt_rx->tstamp_ok) ||
3890                                      (!estab && sysctl_tcp_timestamps))) {
3891                                         opt_rx->saw_tstamp = 1;
3892                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3893                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3894                                 }
3895                                 break;
3896                         case TCPOPT_SACK_PERM:
3897                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3898                                     !estab && sysctl_tcp_sack) {
3899                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3900                                         tcp_sack_reset(opt_rx);
3901                                 }
3902                                 break;
3903
3904                         case TCPOPT_SACK:
3905                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3906                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3907                                    opt_rx->sack_ok) {
3908                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3909                                 }
3910                                 break;
3911 #ifdef CONFIG_TCP_MD5SIG
3912                         case TCPOPT_MD5SIG:
3913                                 /*
3914                                  * The MD5 Hash has already been
3915                                  * checked (see tcp_v{4,6}_do_rcv()).
3916                                  */
3917                                 break;
3918 #endif
3919                         case TCPOPT_COOKIE:
3920                                 /* This option is variable length.
3921                                  */
3922                                 switch (opsize) {
3923                                 case TCPOLEN_COOKIE_BASE:
3924                                         /* not yet implemented */
3925                                         break;
3926                                 case TCPOLEN_COOKIE_PAIR:
3927                                         /* not yet implemented */
3928                                         break;
3929                                 case TCPOLEN_COOKIE_MIN+0:
3930                                 case TCPOLEN_COOKIE_MIN+2:
3931                                 case TCPOLEN_COOKIE_MIN+4:
3932                                 case TCPOLEN_COOKIE_MIN+6:
3933                                 case TCPOLEN_COOKIE_MAX:
3934                                         /* 16-bit multiple */
3935                                         opt_rx->cookie_plus = opsize;
3936                                         *hvpp = ptr;
3937                                         break;
3938                                 default:
3939                                         /* ignore option */
3940                                         break;
3941                                 }
3942                                 break;
3943                         }
3944
3945                         ptr += opsize-2;
3946                         length -= opsize;
3947                 }
3948         }
3949 }
3950 EXPORT_SYMBOL(tcp_parse_options);
3951
3952 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953 {
3954         const __be32 *ptr = (const __be32 *)(th + 1);
3955
3956         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958                 tp->rx_opt.saw_tstamp = 1;
3959                 ++ptr;
3960                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961                 ++ptr;
3962                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3963                 return 1;
3964         }
3965         return 0;
3966 }
3967
3968 /* Fast parse options. This hopes to only see timestamps.
3969  * If it is wrong it falls back on tcp_parse_options().
3970  */
3971 static int tcp_fast_parse_options(const struct sk_buff *skb,
3972                                   const struct tcphdr *th,
3973                                   struct tcp_sock *tp, const u8 **hvpp)
3974 {
3975         /* In the spirit of fast parsing, compare doff directly to constant
3976          * values.  Because equality is used, short doff can be ignored here.
3977          */
3978         if (th->doff == (sizeof(*th) / 4)) {
3979                 tp->rx_opt.saw_tstamp = 0;
3980                 return 0;
3981         } else if (tp->rx_opt.tstamp_ok &&
3982                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3983                 if (tcp_parse_aligned_timestamp(tp, th))
3984                         return 1;
3985         }
3986         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3987         return 1;
3988 }
3989
3990 #ifdef CONFIG_TCP_MD5SIG
3991 /*
3992  * Parse MD5 Signature option
3993  */
3994 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3995 {
3996         int length = (th->doff << 2) - sizeof(*th);
3997         const u8 *ptr = (const u8 *)(th + 1);
3998
3999         /* If the TCP option is too short, we can short cut */
4000         if (length < TCPOLEN_MD5SIG)
4001                 return NULL;
4002
4003         while (length > 0) {
4004                 int opcode = *ptr++;
4005                 int opsize;
4006
4007                 switch(opcode) {
4008                 case TCPOPT_EOL:
4009                         return NULL;
4010                 case TCPOPT_NOP:
4011                         length--;
4012                         continue;
4013                 default:
4014                         opsize = *ptr++;
4015                         if (opsize < 2 || opsize > length)
4016                                 return NULL;
4017                         if (opcode == TCPOPT_MD5SIG)
4018                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4019                 }
4020                 ptr += opsize - 2;
4021                 length -= opsize;
4022         }
4023         return NULL;
4024 }
4025 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4026 #endif
4027
4028 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4029 {
4030         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4031         tp->rx_opt.ts_recent_stamp = get_seconds();
4032 }
4033
4034 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4035 {
4036         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4037                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4038                  * extra check below makes sure this can only happen
4039                  * for pure ACK frames.  -DaveM
4040                  *
4041                  * Not only, also it occurs for expired timestamps.
4042                  */
4043
4044                 if (tcp_paws_check(&tp->rx_opt, 0))
4045                         tcp_store_ts_recent(tp);
4046         }
4047 }
4048
4049 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4050  *
4051  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4052  * it can pass through stack. So, the following predicate verifies that
4053  * this segment is not used for anything but congestion avoidance or
4054  * fast retransmit. Moreover, we even are able to eliminate most of such
4055  * second order effects, if we apply some small "replay" window (~RTO)
4056  * to timestamp space.
4057  *
4058  * All these measures still do not guarantee that we reject wrapped ACKs
4059  * on networks with high bandwidth, when sequence space is recycled fastly,
4060  * but it guarantees that such events will be very rare and do not affect
4061  * connection seriously. This doesn't look nice, but alas, PAWS is really
4062  * buggy extension.
4063  *
4064  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4065  * states that events when retransmit arrives after original data are rare.
4066  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4067  * the biggest problem on large power networks even with minor reordering.
4068  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4069  * up to bandwidth of 18Gigabit/sec. 8) ]
4070  */
4071
4072 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4073 {
4074         const struct tcp_sock *tp = tcp_sk(sk);
4075         const struct tcphdr *th = tcp_hdr(skb);
4076         u32 seq = TCP_SKB_CB(skb)->seq;
4077         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4078
4079         return (/* 1. Pure ACK with correct sequence number. */
4080                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4081
4082                 /* 2. ... and duplicate ACK. */
4083                 ack == tp->snd_una &&
4084
4085                 /* 3. ... and does not update window. */
4086                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4087
4088                 /* 4. ... and sits in replay window. */
4089                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4090 }
4091
4092 static inline int tcp_paws_discard(const struct sock *sk,
4093                                    const struct sk_buff *skb)
4094 {
4095         const struct tcp_sock *tp = tcp_sk(sk);
4096
4097         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4098                !tcp_disordered_ack(sk, skb);
4099 }
4100
4101 /* Check segment sequence number for validity.
4102  *
4103  * Segment controls are considered valid, if the segment
4104  * fits to the window after truncation to the window. Acceptability
4105  * of data (and SYN, FIN, of course) is checked separately.
4106  * See tcp_data_queue(), for example.
4107  *
4108  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4109  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4110  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4111  * (borrowed from freebsd)
4112  */
4113
4114 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4115 {
4116         return  !before(end_seq, tp->rcv_wup) &&
4117                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4118 }
4119
4120 /* When we get a reset we do this. */
4121 static void tcp_reset(struct sock *sk)
4122 {
4123         /* We want the right error as BSD sees it (and indeed as we do). */
4124         switch (sk->sk_state) {
4125         case TCP_SYN_SENT:
4126                 sk->sk_err = ECONNREFUSED;
4127                 break;
4128         case TCP_CLOSE_WAIT:
4129                 sk->sk_err = EPIPE;
4130                 break;
4131         case TCP_CLOSE:
4132                 return;
4133         default:
4134                 sk->sk_err = ECONNRESET;
4135         }
4136         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4137         smp_wmb();
4138
4139         if (!sock_flag(sk, SOCK_DEAD))
4140                 sk->sk_error_report(sk);
4141
4142         tcp_done(sk);
4143 }
4144
4145 /*
4146  *      Process the FIN bit. This now behaves as it is supposed to work
4147  *      and the FIN takes effect when it is validly part of sequence
4148  *      space. Not before when we get holes.
4149  *
4150  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4151  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4152  *      TIME-WAIT)
4153  *
4154  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4155  *      close and we go into CLOSING (and later onto TIME-WAIT)
4156  *
4157  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4158  */
4159 static void tcp_fin(struct sock *sk)
4160 {
4161         struct tcp_sock *tp = tcp_sk(sk);
4162
4163         inet_csk_schedule_ack(sk);
4164
4165         sk->sk_shutdown |= RCV_SHUTDOWN;
4166         sock_set_flag(sk, SOCK_DONE);
4167
4168         switch (sk->sk_state) {
4169         case TCP_SYN_RECV:
4170         case TCP_ESTABLISHED:
4171                 /* Move to CLOSE_WAIT */
4172                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4173                 inet_csk(sk)->icsk_ack.pingpong = 1;
4174                 break;
4175
4176         case TCP_CLOSE_WAIT:
4177         case TCP_CLOSING:
4178                 /* Received a retransmission of the FIN, do
4179                  * nothing.
4180                  */
4181                 break;
4182         case TCP_LAST_ACK:
4183                 /* RFC793: Remain in the LAST-ACK state. */
4184                 break;
4185
4186         case TCP_FIN_WAIT1:
4187                 /* This case occurs when a simultaneous close
4188                  * happens, we must ack the received FIN and
4189                  * enter the CLOSING state.
4190                  */
4191                 tcp_send_ack(sk);
4192                 tcp_set_state(sk, TCP_CLOSING);
4193                 break;
4194         case TCP_FIN_WAIT2:
4195                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4196                 tcp_send_ack(sk);
4197                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4198                 break;
4199         default:
4200                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4201                  * cases we should never reach this piece of code.
4202                  */
4203                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4204                        __func__, sk->sk_state);
4205                 break;
4206         }
4207
4208         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4209          * Probably, we should reset in this case. For now drop them.
4210          */
4211         __skb_queue_purge(&tp->out_of_order_queue);
4212         if (tcp_is_sack(tp))
4213                 tcp_sack_reset(&tp->rx_opt);
4214         sk_mem_reclaim(sk);
4215
4216         if (!sock_flag(sk, SOCK_DEAD)) {
4217                 sk->sk_state_change(sk);
4218
4219                 /* Do not send POLL_HUP for half duplex close. */
4220                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4221                     sk->sk_state == TCP_CLOSE)
4222                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4223                 else
4224                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4225         }
4226 }
4227
4228 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4229                                   u32 end_seq)
4230 {
4231         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4232                 if (before(seq, sp->start_seq))
4233                         sp->start_seq = seq;
4234                 if (after(end_seq, sp->end_seq))
4235                         sp->end_seq = end_seq;
4236                 return 1;
4237         }
4238         return 0;
4239 }
4240
4241 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4242 {
4243         struct tcp_sock *tp = tcp_sk(sk);
4244
4245         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4246                 int mib_idx;
4247
4248                 if (before(seq, tp->rcv_nxt))
4249                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4250                 else
4251                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4252
4253                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4254
4255                 tp->rx_opt.dsack = 1;
4256                 tp->duplicate_sack[0].start_seq = seq;
4257                 tp->duplicate_sack[0].end_seq = end_seq;
4258         }
4259 }
4260
4261 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4262 {
4263         struct tcp_sock *tp = tcp_sk(sk);
4264
4265         if (!tp->rx_opt.dsack)
4266                 tcp_dsack_set(sk, seq, end_seq);
4267         else
4268                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4269 }
4270
4271 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4272 {
4273         struct tcp_sock *tp = tcp_sk(sk);
4274
4275         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4276             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4277                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4278                 tcp_enter_quickack_mode(sk);
4279
4280                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4281                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4282
4283                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4284                                 end_seq = tp->rcv_nxt;
4285                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4286                 }
4287         }
4288
4289         tcp_send_ack(sk);
4290 }
4291
4292 /* These routines update the SACK block as out-of-order packets arrive or
4293  * in-order packets close up the sequence space.
4294  */
4295 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4296 {
4297         int this_sack;
4298         struct tcp_sack_block *sp = &tp->selective_acks[0];
4299         struct tcp_sack_block *swalk = sp + 1;
4300
4301         /* See if the recent change to the first SACK eats into
4302          * or hits the sequence space of other SACK blocks, if so coalesce.
4303          */
4304         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4305                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4306                         int i;
4307
4308                         /* Zap SWALK, by moving every further SACK up by one slot.
4309                          * Decrease num_sacks.
4310                          */
4311                         tp->rx_opt.num_sacks--;
4312                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4313                                 sp[i] = sp[i + 1];
4314                         continue;
4315                 }
4316                 this_sack++, swalk++;
4317         }
4318 }
4319
4320 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4321 {
4322         struct tcp_sock *tp = tcp_sk(sk);
4323         struct tcp_sack_block *sp = &tp->selective_acks[0];
4324         int cur_sacks = tp->rx_opt.num_sacks;
4325         int this_sack;
4326
4327         if (!cur_sacks)
4328                 goto new_sack;
4329
4330         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4331                 if (tcp_sack_extend(sp, seq, end_seq)) {
4332                         /* Rotate this_sack to the first one. */
4333                         for (; this_sack > 0; this_sack--, sp--)
4334                                 swap(*sp, *(sp - 1));
4335                         if (cur_sacks > 1)
4336                                 tcp_sack_maybe_coalesce(tp);
4337                         return;
4338                 }
4339         }
4340
4341         /* Could not find an adjacent existing SACK, build a new one,
4342          * put it at the front, and shift everyone else down.  We
4343          * always know there is at least one SACK present already here.
4344          *
4345          * If the sack array is full, forget about the last one.
4346          */
4347         if (this_sack >= TCP_NUM_SACKS) {
4348                 this_sack--;
4349                 tp->rx_opt.num_sacks--;
4350                 sp--;
4351         }
4352         for (; this_sack > 0; this_sack--, sp--)
4353                 *sp = *(sp - 1);
4354
4355 new_sack:
4356         /* Build the new head SACK, and we're done. */
4357         sp->start_seq = seq;
4358         sp->end_seq = end_seq;
4359         tp->rx_opt.num_sacks++;
4360 }
4361
4362 /* RCV.NXT advances, some SACKs should be eaten. */
4363
4364 static void tcp_sack_remove(struct tcp_sock *tp)
4365 {
4366         struct tcp_sack_block *sp = &tp->selective_acks[0];
4367         int num_sacks = tp->rx_opt.num_sacks;
4368         int this_sack;
4369
4370         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371         if (skb_queue_empty(&tp->out_of_order_queue)) {
4372                 tp->rx_opt.num_sacks = 0;
4373                 return;
4374         }
4375
4376         for (this_sack = 0; this_sack < num_sacks;) {
4377                 /* Check if the start of the sack is covered by RCV.NXT. */
4378                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4379                         int i;
4380
4381                         /* RCV.NXT must cover all the block! */
4382                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383
4384                         /* Zap this SACK, by moving forward any other SACKS. */
4385                         for (i=this_sack+1; i < num_sacks; i++)
4386                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4387                         num_sacks--;
4388                         continue;
4389                 }
4390                 this_sack++;
4391                 sp++;
4392         }
4393         tp->rx_opt.num_sacks = num_sacks;
4394 }
4395
4396 /* This one checks to see if we can put data from the
4397  * out_of_order queue into the receive_queue.
4398  */
4399 static void tcp_ofo_queue(struct sock *sk)
4400 {
4401         struct tcp_sock *tp = tcp_sk(sk);
4402         __u32 dsack_high = tp->rcv_nxt;
4403         struct sk_buff *skb;
4404
4405         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4406                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4407                         break;
4408
4409                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4410                         __u32 dsack = dsack_high;
4411                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4412                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4413                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4414                 }
4415
4416                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4417                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4418                         __skb_unlink(skb, &tp->out_of_order_queue);
4419                         __kfree_skb(skb);
4420                         continue;
4421                 }
4422                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4423                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4424                            TCP_SKB_CB(skb)->end_seq);
4425
4426                 __skb_unlink(skb, &tp->out_of_order_queue);
4427                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4428                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4429                 if (tcp_hdr(skb)->fin)
4430                         tcp_fin(sk);
4431         }
4432 }
4433
4434 static int tcp_prune_ofo_queue(struct sock *sk);
4435 static int tcp_prune_queue(struct sock *sk);
4436
4437 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4438 {
4439         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4440             !sk_rmem_schedule(sk, size)) {
4441
4442                 if (tcp_prune_queue(sk) < 0)
4443                         return -1;
4444
4445                 if (!sk_rmem_schedule(sk, size)) {
4446                         if (!tcp_prune_ofo_queue(sk))
4447                                 return -1;
4448
4449                         if (!sk_rmem_schedule(sk, size))
4450                                 return -1;
4451                 }
4452         }
4453         return 0;
4454 }
4455
4456 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4457 {
4458         struct tcp_sock *tp = tcp_sk(sk);
4459         struct sk_buff *skb1;
4460         u32 seq, end_seq;
4461
4462         TCP_ECN_check_ce(tp, skb);
4463
4464         if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4465                 /* TODO: should increment a counter */
4466                 __kfree_skb(skb);
4467                 return;
4468         }
4469
4470         /* Disable header prediction. */
4471         tp->pred_flags = 0;
4472         inet_csk_schedule_ack(sk);
4473
4474         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4475                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4476
4477         skb1 = skb_peek_tail(&tp->out_of_order_queue);
4478         if (!skb1) {
4479                 /* Initial out of order segment, build 1 SACK. */
4480                 if (tcp_is_sack(tp)) {
4481                         tp->rx_opt.num_sacks = 1;
4482                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4483                         tp->selective_acks[0].end_seq =
4484                                                 TCP_SKB_CB(skb)->end_seq;
4485                 }
4486                 __skb_queue_head(&tp->out_of_order_queue, skb);
4487                 goto end;
4488         }
4489
4490         seq = TCP_SKB_CB(skb)->seq;
4491         end_seq = TCP_SKB_CB(skb)->end_seq;
4492
4493         if (seq == TCP_SKB_CB(skb1)->end_seq) {
4494                 /* Packets in ofo can stay in queue a long time.
4495                  * Better try to coalesce them right now
4496                  * to avoid future tcp_collapse_ofo_queue(),
4497                  * probably the most expensive function in tcp stack.
4498                  */
4499                 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4500                         NET_INC_STATS_BH(sock_net(sk),
4501                                          LINUX_MIB_TCPRCVCOALESCE);
4502                         BUG_ON(skb_copy_bits(skb, 0,
4503                                              skb_put(skb1, skb->len),
4504                                              skb->len));
4505                         TCP_SKB_CB(skb1)->end_seq = end_seq;
4506                         TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4507                         __kfree_skb(skb);
4508                         skb = NULL;
4509                 } else {
4510                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4511                 }
4512
4513                 if (!tp->rx_opt.num_sacks ||
4514                     tp->selective_acks[0].end_seq != seq)
4515                         goto add_sack;
4516
4517                 /* Common case: data arrive in order after hole. */
4518                 tp->selective_acks[0].end_seq = end_seq;
4519                 goto end;
4520         }
4521
4522         /* Find place to insert this segment. */
4523         while (1) {
4524                 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4525                         break;
4526                 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4527                         skb1 = NULL;
4528                         break;
4529                 }
4530                 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4531         }
4532
4533         /* Do skb overlap to previous one? */
4534         if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4535                 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4536                         /* All the bits are present. Drop. */
4537                         __kfree_skb(skb);
4538                         skb = NULL;
4539                         tcp_dsack_set(sk, seq, end_seq);
4540                         goto add_sack;
4541                 }
4542                 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4543                         /* Partial overlap. */
4544                         tcp_dsack_set(sk, seq,
4545                                       TCP_SKB_CB(skb1)->end_seq);
4546                 } else {
4547                         if (skb_queue_is_first(&tp->out_of_order_queue,
4548                                                skb1))
4549                                 skb1 = NULL;
4550                         else
4551                                 skb1 = skb_queue_prev(
4552                                         &tp->out_of_order_queue,
4553                                         skb1);
4554                 }
4555         }
4556         if (!skb1)
4557                 __skb_queue_head(&tp->out_of_order_queue, skb);
4558         else
4559                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4560
4561         /* And clean segments covered by new one as whole. */
4562         while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4563                 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4564
4565                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4566                         break;
4567                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4568                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4569                                          end_seq);
4570                         break;
4571                 }
4572                 __skb_unlink(skb1, &tp->out_of_order_queue);
4573                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4574                                  TCP_SKB_CB(skb1)->end_seq);
4575                 __kfree_skb(skb1);
4576         }
4577
4578 add_sack:
4579         if (tcp_is_sack(tp))
4580                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4581 end:
4582         if (skb)
4583                 skb_set_owner_r(skb, sk);
4584 }
4585
4586
4587 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4588 {
4589         const struct tcphdr *th = tcp_hdr(skb);
4590         struct tcp_sock *tp = tcp_sk(sk);
4591         int eaten = -1;
4592
4593         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4594                 goto drop;
4595
4596         skb_dst_drop(skb);
4597         __skb_pull(skb, th->doff * 4);
4598
4599         TCP_ECN_accept_cwr(tp, skb);
4600
4601         tp->rx_opt.dsack = 0;
4602
4603         /*  Queue data for delivery to the user.
4604          *  Packets in sequence go to the receive queue.
4605          *  Out of sequence packets to the out_of_order_queue.
4606          */
4607         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4608                 if (tcp_receive_window(tp) == 0)
4609                         goto out_of_window;
4610
4611                 /* Ok. In sequence. In window. */
4612                 if (tp->ucopy.task == current &&
4613                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4614                     sock_owned_by_user(sk) && !tp->urg_data) {
4615                         int chunk = min_t(unsigned int, skb->len,
4616                                           tp->ucopy.len);
4617
4618                         __set_current_state(TASK_RUNNING);
4619
4620                         local_bh_enable();
4621                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4622                                 tp->ucopy.len -= chunk;
4623                                 tp->copied_seq += chunk;
4624                                 eaten = (chunk == skb->len);
4625                                 tcp_rcv_space_adjust(sk);
4626                         }
4627                         local_bh_disable();
4628                 }
4629
4630                 if (eaten <= 0) {
4631 queue_and_out:
4632                         if (eaten < 0 &&
4633                             tcp_try_rmem_schedule(sk, skb->truesize))
4634                                 goto drop;
4635
4636                         skb_set_owner_r(skb, sk);
4637                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4638                 }
4639                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4640                 if (skb->len)
4641                         tcp_event_data_recv(sk, skb);
4642                 if (th->fin)
4643                         tcp_fin(sk);
4644
4645                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4646                         tcp_ofo_queue(sk);
4647
4648                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4649                          * gap in queue is filled.
4650                          */
4651                         if (skb_queue_empty(&tp->out_of_order_queue))
4652                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4653                 }
4654
4655                 if (tp->rx_opt.num_sacks)
4656                         tcp_sack_remove(tp);
4657
4658                 tcp_fast_path_check(sk);
4659
4660                 if (eaten > 0)
4661                         __kfree_skb(skb);
4662                 else if (!sock_flag(sk, SOCK_DEAD))
4663                         sk->sk_data_ready(sk, 0);
4664                 return;
4665         }
4666
4667         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4668                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4669                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4670                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4671
4672 out_of_window:
4673                 tcp_enter_quickack_mode(sk);
4674                 inet_csk_schedule_ack(sk);
4675 drop:
4676                 __kfree_skb(skb);
4677                 return;
4678         }
4679
4680         /* Out of window. F.e. zero window probe. */
4681         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4682                 goto out_of_window;
4683
4684         tcp_enter_quickack_mode(sk);
4685
4686         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4687                 /* Partial packet, seq < rcv_next < end_seq */
4688                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4689                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4690                            TCP_SKB_CB(skb)->end_seq);
4691
4692                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4693
4694                 /* If window is closed, drop tail of packet. But after
4695                  * remembering D-SACK for its head made in previous line.
4696                  */
4697                 if (!tcp_receive_window(tp))
4698                         goto out_of_window;
4699                 goto queue_and_out;
4700         }
4701
4702         tcp_data_queue_ofo(sk, skb);
4703 }
4704
4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4706                                         struct sk_buff_head *list)
4707 {
4708         struct sk_buff *next = NULL;
4709
4710         if (!skb_queue_is_last(list, skb))
4711                 next = skb_queue_next(list, skb);
4712
4713         __skb_unlink(skb, list);
4714         __kfree_skb(skb);
4715         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4716
4717         return next;
4718 }
4719
4720 /* Collapse contiguous sequence of skbs head..tail with
4721  * sequence numbers start..end.
4722  *
4723  * If tail is NULL, this means until the end of the list.
4724  *
4725  * Segments with FIN/SYN are not collapsed (only because this
4726  * simplifies code)
4727  */
4728 static void
4729 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4730              struct sk_buff *head, struct sk_buff *tail,
4731              u32 start, u32 end)
4732 {
4733         struct sk_buff *skb, *n;
4734         bool end_of_skbs;
4735
4736         /* First, check that queue is collapsible and find
4737          * the point where collapsing can be useful. */
4738         skb = head;
4739 restart:
4740         end_of_skbs = true;
4741         skb_queue_walk_from_safe(list, skb, n) {
4742                 if (skb == tail)
4743                         break;
4744                 /* No new bits? It is possible on ofo queue. */
4745                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4746                         skb = tcp_collapse_one(sk, skb, list);
4747                         if (!skb)
4748                                 break;
4749                         goto restart;
4750                 }
4751
4752                 /* The first skb to collapse is:
4753                  * - not SYN/FIN and
4754                  * - bloated or contains data before "start" or
4755                  *   overlaps to the next one.
4756                  */
4757                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4758                     (tcp_win_from_space(skb->truesize) > skb->len ||
4759                      before(TCP_SKB_CB(skb)->seq, start))) {
4760                         end_of_skbs = false;
4761                         break;
4762                 }
4763
4764                 if (!skb_queue_is_last(list, skb)) {
4765                         struct sk_buff *next = skb_queue_next(list, skb);
4766                         if (next != tail &&
4767                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4768                                 end_of_skbs = false;
4769                                 break;
4770                         }
4771                 }
4772
4773                 /* Decided to skip this, advance start seq. */
4774                 start = TCP_SKB_CB(skb)->end_seq;
4775         }
4776         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4777                 return;
4778
4779         while (before(start, end)) {
4780                 struct sk_buff *nskb;
4781                 unsigned int header = skb_headroom(skb);
4782                 int copy = SKB_MAX_ORDER(header, 0);
4783
4784                 /* Too big header? This can happen with IPv6. */
4785                 if (copy < 0)
4786                         return;
4787                 if (end - start < copy)
4788                         copy = end - start;
4789                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4790                 if (!nskb)
4791                         return;
4792
4793                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4794                 skb_set_network_header(nskb, (skb_network_header(skb) -
4795                                               skb->head));
4796                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4797                                                 skb->head));
4798                 skb_reserve(nskb, header);
4799                 memcpy(nskb->head, skb->head, header);
4800                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4801                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4802                 __skb_queue_before(list, skb, nskb);
4803                 skb_set_owner_r(nskb, sk);
4804
4805                 /* Copy data, releasing collapsed skbs. */
4806                 while (copy > 0) {
4807                         int offset = start - TCP_SKB_CB(skb)->seq;
4808                         int size = TCP_SKB_CB(skb)->end_seq - start;
4809
4810                         BUG_ON(offset < 0);
4811                         if (size > 0) {
4812                                 size = min(copy, size);
4813                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4814                                         BUG();
4815                                 TCP_SKB_CB(nskb)->end_seq += size;
4816                                 copy -= size;
4817                                 start += size;
4818                         }
4819                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4820                                 skb = tcp_collapse_one(sk, skb, list);
4821                                 if (!skb ||
4822                                     skb == tail ||
4823                                     tcp_hdr(skb)->syn ||
4824                                     tcp_hdr(skb)->fin)
4825                                         return;
4826                         }
4827                 }
4828         }
4829 }
4830
4831 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4832  * and tcp_collapse() them until all the queue is collapsed.
4833  */
4834 static void tcp_collapse_ofo_queue(struct sock *sk)
4835 {
4836         struct tcp_sock *tp = tcp_sk(sk);
4837         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4838         struct sk_buff *head;
4839         u32 start, end;
4840
4841         if (skb == NULL)
4842                 return;
4843
4844         start = TCP_SKB_CB(skb)->seq;
4845         end = TCP_SKB_CB(skb)->end_seq;
4846         head = skb;
4847
4848         for (;;) {
4849                 struct sk_buff *next = NULL;
4850
4851                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4852                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4853                 skb = next;
4854
4855                 /* Segment is terminated when we see gap or when
4856                  * we are at the end of all the queue. */
4857                 if (!skb ||
4858                     after(TCP_SKB_CB(skb)->seq, end) ||
4859                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4860                         tcp_collapse(sk, &tp->out_of_order_queue,
4861                                      head, skb, start, end);
4862                         head = skb;
4863                         if (!skb)
4864                                 break;
4865                         /* Start new segment */
4866                         start = TCP_SKB_CB(skb)->seq;
4867                         end = TCP_SKB_CB(skb)->end_seq;
4868                 } else {
4869                         if (before(TCP_SKB_CB(skb)->seq, start))
4870                                 start = TCP_SKB_CB(skb)->seq;
4871                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4872                                 end = TCP_SKB_CB(skb)->end_seq;
4873                 }
4874         }
4875 }
4876
4877 /*
4878  * Purge the out-of-order queue.
4879  * Return true if queue was pruned.
4880  */
4881 static int tcp_prune_ofo_queue(struct sock *sk)
4882 {
4883         struct tcp_sock *tp = tcp_sk(sk);
4884         int res = 0;
4885
4886         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4887                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4888                 __skb_queue_purge(&tp->out_of_order_queue);
4889
4890                 /* Reset SACK state.  A conforming SACK implementation will
4891                  * do the same at a timeout based retransmit.  When a connection
4892                  * is in a sad state like this, we care only about integrity
4893                  * of the connection not performance.
4894                  */
4895                 if (tp->rx_opt.sack_ok)
4896                         tcp_sack_reset(&tp->rx_opt);
4897                 sk_mem_reclaim(sk);
4898                 res = 1;
4899         }
4900         return res;
4901 }
4902
4903 /* Reduce allocated memory if we can, trying to get
4904  * the socket within its memory limits again.
4905  *
4906  * Return less than zero if we should start dropping frames
4907  * until the socket owning process reads some of the data
4908  * to stabilize the situation.
4909  */
4910 static int tcp_prune_queue(struct sock *sk)
4911 {
4912         struct tcp_sock *tp = tcp_sk(sk);
4913
4914         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4915
4916         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4917
4918         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4919                 tcp_clamp_window(sk);
4920         else if (sk_under_memory_pressure(sk))
4921                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4922
4923         tcp_collapse_ofo_queue(sk);
4924         if (!skb_queue_empty(&sk->sk_receive_queue))
4925                 tcp_collapse(sk, &sk->sk_receive_queue,
4926                              skb_peek(&sk->sk_receive_queue),
4927                              NULL,
4928                              tp->copied_seq, tp->rcv_nxt);
4929         sk_mem_reclaim(sk);
4930
4931         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4932                 return 0;
4933
4934         /* Collapsing did not help, destructive actions follow.
4935          * This must not ever occur. */
4936
4937         tcp_prune_ofo_queue(sk);
4938
4939         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4940                 return 0;
4941
4942         /* If we are really being abused, tell the caller to silently
4943          * drop receive data on the floor.  It will get retransmitted
4944          * and hopefully then we'll have sufficient space.
4945          */
4946         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4947
4948         /* Massive buffer overcommit. */
4949         tp->pred_flags = 0;
4950         return -1;
4951 }
4952
4953 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4954  * As additional protections, we do not touch cwnd in retransmission phases,
4955  * and if application hit its sndbuf limit recently.
4956  */
4957 void tcp_cwnd_application_limited(struct sock *sk)
4958 {
4959         struct tcp_sock *tp = tcp_sk(sk);
4960
4961         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4962             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4963                 /* Limited by application or receiver window. */
4964                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4965                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4966                 if (win_used < tp->snd_cwnd) {
4967                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4968                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4969                 }
4970                 tp->snd_cwnd_used = 0;
4971         }
4972         tp->snd_cwnd_stamp = tcp_time_stamp;
4973 }
4974
4975 static int tcp_should_expand_sndbuf(const struct sock *sk)
4976 {
4977         const struct tcp_sock *tp = tcp_sk(sk);
4978
4979         /* If the user specified a specific send buffer setting, do
4980          * not modify it.
4981          */
4982         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4983                 return 0;
4984
4985         /* If we are under global TCP memory pressure, do not expand.  */
4986         if (sk_under_memory_pressure(sk))
4987                 return 0;
4988
4989         /* If we are under soft global TCP memory pressure, do not expand.  */
4990         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4991                 return 0;
4992
4993         /* If we filled the congestion window, do not expand.  */
4994         if (tp->packets_out >= tp->snd_cwnd)
4995                 return 0;
4996
4997         return 1;
4998 }
4999
5000 /* When incoming ACK allowed to free some skb from write_queue,
5001  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5002  * on the exit from tcp input handler.
5003  *
5004  * PROBLEM: sndbuf expansion does not work well with largesend.
5005  */
5006 static void tcp_new_space(struct sock *sk)
5007 {
5008         struct tcp_sock *tp = tcp_sk(sk);
5009
5010         if (tcp_should_expand_sndbuf(sk)) {
5011                 int sndmem = SKB_TRUESIZE(max_t(u32,
5012                                                 tp->rx_opt.mss_clamp,
5013                                                 tp->mss_cache) +
5014                                           MAX_TCP_HEADER);
5015                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5016                                      tp->reordering + 1);
5017                 sndmem *= 2 * demanded;
5018                 if (sndmem > sk->sk_sndbuf)
5019                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5020                 tp->snd_cwnd_stamp = tcp_time_stamp;
5021         }
5022
5023         sk->sk_write_space(sk);
5024 }
5025
5026 static void tcp_check_space(struct sock *sk)
5027 {
5028         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5029                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5030                 if (sk->sk_socket &&
5031                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5032                         tcp_new_space(sk);
5033         }
5034 }
5035
5036 static inline void tcp_data_snd_check(struct sock *sk)
5037 {
5038         tcp_push_pending_frames(sk);
5039         tcp_check_space(sk);
5040 }
5041
5042 /*
5043  * Check if sending an ack is needed.
5044  */
5045 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5046 {
5047         struct tcp_sock *tp = tcp_sk(sk);
5048
5049             /* More than one full frame received... */
5050         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5051              /* ... and right edge of window advances far enough.
5052               * (tcp_recvmsg() will send ACK otherwise). Or...
5053               */
5054              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5055             /* We ACK each frame or... */
5056             tcp_in_quickack_mode(sk) ||
5057             /* We have out of order data. */
5058             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5059                 /* Then ack it now */
5060                 tcp_send_ack(sk);
5061         } else {
5062                 /* Else, send delayed ack. */
5063                 tcp_send_delayed_ack(sk);
5064         }
5065 }
5066
5067 static inline void tcp_ack_snd_check(struct sock *sk)
5068 {
5069         if (!inet_csk_ack_scheduled(sk)) {
5070                 /* We sent a data segment already. */
5071                 return;
5072         }
5073         __tcp_ack_snd_check(sk, 1);
5074 }
5075
5076 /*
5077  *      This routine is only called when we have urgent data
5078  *      signaled. Its the 'slow' part of tcp_urg. It could be
5079  *      moved inline now as tcp_urg is only called from one
5080  *      place. We handle URGent data wrong. We have to - as
5081  *      BSD still doesn't use the correction from RFC961.
5082  *      For 1003.1g we should support a new option TCP_STDURG to permit
5083  *      either form (or just set the sysctl tcp_stdurg).
5084  */
5085
5086 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5087 {
5088         struct tcp_sock *tp = tcp_sk(sk);
5089         u32 ptr = ntohs(th->urg_ptr);
5090
5091         if (ptr && !sysctl_tcp_stdurg)
5092                 ptr--;
5093         ptr += ntohl(th->seq);
5094
5095         /* Ignore urgent data that we've already seen and read. */
5096         if (after(tp->copied_seq, ptr))
5097                 return;
5098
5099         /* Do not replay urg ptr.
5100          *
5101          * NOTE: interesting situation not covered by specs.
5102          * Misbehaving sender may send urg ptr, pointing to segment,
5103          * which we already have in ofo queue. We are not able to fetch
5104          * such data and will stay in TCP_URG_NOTYET until will be eaten
5105          * by recvmsg(). Seems, we are not obliged to handle such wicked
5106          * situations. But it is worth to think about possibility of some
5107          * DoSes using some hypothetical application level deadlock.
5108          */
5109         if (before(ptr, tp->rcv_nxt))
5110                 return;
5111
5112         /* Do we already have a newer (or duplicate) urgent pointer? */
5113         if (tp->urg_data && !after(ptr, tp->urg_seq))
5114                 return;
5115
5116         /* Tell the world about our new urgent pointer. */
5117         sk_send_sigurg(sk);
5118
5119         /* We may be adding urgent data when the last byte read was
5120          * urgent. To do this requires some care. We cannot just ignore
5121          * tp->copied_seq since we would read the last urgent byte again
5122          * as data, nor can we alter copied_seq until this data arrives
5123          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5124          *
5125          * NOTE. Double Dutch. Rendering to plain English: author of comment
5126          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5127          * and expect that both A and B disappear from stream. This is _wrong_.
5128          * Though this happens in BSD with high probability, this is occasional.
5129          * Any application relying on this is buggy. Note also, that fix "works"
5130          * only in this artificial test. Insert some normal data between A and B and we will
5131          * decline of BSD again. Verdict: it is better to remove to trap
5132          * buggy users.
5133          */
5134         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5135             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5136                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5137                 tp->copied_seq++;
5138                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5139                         __skb_unlink(skb, &sk->sk_receive_queue);
5140                         __kfree_skb(skb);
5141                 }
5142         }
5143
5144         tp->urg_data = TCP_URG_NOTYET;
5145         tp->urg_seq = ptr;
5146
5147         /* Disable header prediction. */
5148         tp->pred_flags = 0;
5149 }
5150
5151 /* This is the 'fast' part of urgent handling. */
5152 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5153 {
5154         struct tcp_sock *tp = tcp_sk(sk);
5155
5156         /* Check if we get a new urgent pointer - normally not. */
5157         if (th->urg)
5158                 tcp_check_urg(sk, th);
5159
5160         /* Do we wait for any urgent data? - normally not... */
5161         if (tp->urg_data == TCP_URG_NOTYET) {
5162                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5163                           th->syn;
5164
5165                 /* Is the urgent pointer pointing into this packet? */
5166                 if (ptr < skb->len) {
5167                         u8 tmp;
5168                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5169                                 BUG();
5170                         tp->urg_data = TCP_URG_VALID | tmp;
5171                         if (!sock_flag(sk, SOCK_DEAD))
5172                                 sk->sk_data_ready(sk, 0);
5173                 }
5174         }
5175 }
5176
5177 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5178 {
5179         struct tcp_sock *tp = tcp_sk(sk);
5180         int chunk = skb->len - hlen;
5181         int err;
5182
5183         local_bh_enable();
5184         if (skb_csum_unnecessary(skb))
5185                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5186         else
5187                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5188                                                        tp->ucopy.iov);
5189
5190         if (!err) {
5191                 tp->ucopy.len -= chunk;
5192                 tp->copied_seq += chunk;
5193                 tcp_rcv_space_adjust(sk);
5194         }
5195
5196         local_bh_disable();
5197         return err;
5198 }
5199
5200 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5201                                             struct sk_buff *skb)
5202 {
5203         __sum16 result;
5204
5205         if (sock_owned_by_user(sk)) {
5206                 local_bh_enable();
5207                 result = __tcp_checksum_complete(skb);
5208                 local_bh_disable();
5209         } else {
5210                 result = __tcp_checksum_complete(skb);
5211         }
5212         return result;
5213 }
5214
5215 static inline int tcp_checksum_complete_user(struct sock *sk,
5216                                              struct sk_buff *skb)
5217 {
5218         return !skb_csum_unnecessary(skb) &&
5219                __tcp_checksum_complete_user(sk, skb);
5220 }
5221
5222 #ifdef CONFIG_NET_DMA
5223 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5224                                   int hlen)
5225 {
5226         struct tcp_sock *tp = tcp_sk(sk);
5227         int chunk = skb->len - hlen;
5228         int dma_cookie;
5229         int copied_early = 0;
5230
5231         if (tp->ucopy.wakeup)
5232                 return 0;
5233
5234         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5235                 tp->ucopy.dma_chan = net_dma_find_channel();
5236
5237         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5238
5239                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5240                                                          skb, hlen,
5241                                                          tp->ucopy.iov, chunk,
5242                                                          tp->ucopy.pinned_list);
5243
5244                 if (dma_cookie < 0)
5245                         goto out;
5246
5247                 tp->ucopy.dma_cookie = dma_cookie;
5248                 copied_early = 1;
5249
5250                 tp->ucopy.len -= chunk;
5251                 tp->copied_seq += chunk;
5252                 tcp_rcv_space_adjust(sk);
5253
5254                 if ((tp->ucopy.len == 0) ||
5255                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5256                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5257                         tp->ucopy.wakeup = 1;
5258                         sk->sk_data_ready(sk, 0);
5259                 }
5260         } else if (chunk > 0) {
5261                 tp->ucopy.wakeup = 1;
5262                 sk->sk_data_ready(sk, 0);
5263         }
5264 out:
5265         return copied_early;
5266 }
5267 #endif /* CONFIG_NET_DMA */
5268
5269 /* Does PAWS and seqno based validation of an incoming segment, flags will
5270  * play significant role here.
5271  */
5272 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5273                               const struct tcphdr *th, int syn_inerr)
5274 {
5275         const u8 *hash_location;
5276         struct tcp_sock *tp = tcp_sk(sk);
5277
5278         /* RFC1323: H1. Apply PAWS check first. */
5279         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5280             tp->rx_opt.saw_tstamp &&
5281             tcp_paws_discard(sk, skb)) {
5282                 if (!th->rst) {
5283                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5284                         tcp_send_dupack(sk, skb);
5285                         goto discard;
5286                 }
5287                 /* Reset is accepted even if it did not pass PAWS. */
5288         }
5289
5290         /* Step 1: check sequence number */
5291         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5292                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5293                  * (RST) segments are validated by checking their SEQ-fields."
5294                  * And page 69: "If an incoming segment is not acceptable,
5295                  * an acknowledgment should be sent in reply (unless the RST
5296                  * bit is set, if so drop the segment and return)".
5297                  */
5298                 if (!th->rst)
5299                         tcp_send_dupack(sk, skb);
5300                 goto discard;
5301         }
5302
5303         /* Step 2: check RST bit */
5304         if (th->rst) {
5305                 tcp_reset(sk);
5306                 goto discard;
5307         }
5308
5309         /* ts_recent update must be made after we are sure that the packet
5310          * is in window.
5311          */
5312         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5313
5314         /* step 3: check security and precedence [ignored] */
5315
5316         /* step 4: Check for a SYN in window. */
5317         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5318                 if (syn_inerr)
5319                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5320                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5321                 tcp_reset(sk);
5322                 return -1;
5323         }
5324
5325         return 1;
5326
5327 discard:
5328         __kfree_skb(skb);
5329         return 0;
5330 }
5331
5332 /*
5333  *      TCP receive function for the ESTABLISHED state.
5334  *
5335  *      It is split into a fast path and a slow path. The fast path is
5336  *      disabled when:
5337  *      - A zero window was announced from us - zero window probing
5338  *        is only handled properly in the slow path.
5339  *      - Out of order segments arrived.
5340  *      - Urgent data is expected.
5341  *      - There is no buffer space left
5342  *      - Unexpected TCP flags/window values/header lengths are received
5343  *        (detected by checking the TCP header against pred_flags)
5344  *      - Data is sent in both directions. Fast path only supports pure senders
5345  *        or pure receivers (this means either the sequence number or the ack
5346  *        value must stay constant)
5347  *      - Unexpected TCP option.
5348  *
5349  *      When these conditions are not satisfied it drops into a standard
5350  *      receive procedure patterned after RFC793 to handle all cases.
5351  *      The first three cases are guaranteed by proper pred_flags setting,
5352  *      the rest is checked inline. Fast processing is turned on in
5353  *      tcp_data_queue when everything is OK.
5354  */
5355 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5356                         const struct tcphdr *th, unsigned int len)
5357 {
5358         struct tcp_sock *tp = tcp_sk(sk);
5359         int res;
5360
5361         /*
5362          *      Header prediction.
5363          *      The code loosely follows the one in the famous
5364          *      "30 instruction TCP receive" Van Jacobson mail.
5365          *
5366          *      Van's trick is to deposit buffers into socket queue
5367          *      on a device interrupt, to call tcp_recv function
5368          *      on the receive process context and checksum and copy
5369          *      the buffer to user space. smart...
5370          *
5371          *      Our current scheme is not silly either but we take the
5372          *      extra cost of the net_bh soft interrupt processing...
5373          *      We do checksum and copy also but from device to kernel.
5374          */
5375
5376         tp->rx_opt.saw_tstamp = 0;
5377
5378         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5379          *      if header_prediction is to be made
5380          *      'S' will always be tp->tcp_header_len >> 2
5381          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382          *  turn it off (when there are holes in the receive
5383          *       space for instance)
5384          *      PSH flag is ignored.
5385          */
5386
5387         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390                 int tcp_header_len = tp->tcp_header_len;
5391
5392                 /* Timestamp header prediction: tcp_header_len
5393                  * is automatically equal to th->doff*4 due to pred_flags
5394                  * match.
5395                  */
5396
5397                 /* Check timestamp */
5398                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399                         /* No? Slow path! */
5400                         if (!tcp_parse_aligned_timestamp(tp, th))
5401                                 goto slow_path;
5402
5403                         /* If PAWS failed, check it more carefully in slow path */
5404                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5405                                 goto slow_path;
5406
5407                         /* DO NOT update ts_recent here, if checksum fails
5408                          * and timestamp was corrupted part, it will result
5409                          * in a hung connection since we will drop all
5410                          * future packets due to the PAWS test.
5411                          */
5412                 }
5413
5414                 if (len <= tcp_header_len) {
5415                         /* Bulk data transfer: sender */
5416                         if (len == tcp_header_len) {
5417                                 /* Predicted packet is in window by definition.
5418                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419                                  * Hence, check seq<=rcv_wup reduces to:
5420                                  */
5421                                 if (tcp_header_len ==
5422                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423                                     tp->rcv_nxt == tp->rcv_wup)
5424                                         tcp_store_ts_recent(tp);
5425
5426                                 /* We know that such packets are checksummed
5427                                  * on entry.
5428                                  */
5429                                 tcp_ack(sk, skb, 0);
5430                                 __kfree_skb(skb);
5431                                 tcp_data_snd_check(sk);
5432                                 return 0;
5433                         } else { /* Header too small */
5434                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5435                                 goto discard;
5436                         }
5437                 } else {
5438                         int eaten = 0;
5439                         int copied_early = 0;
5440
5441                         if (tp->copied_seq == tp->rcv_nxt &&
5442                             len - tcp_header_len <= tp->ucopy.len) {
5443 #ifdef CONFIG_NET_DMA
5444                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5445                                         copied_early = 1;
5446                                         eaten = 1;
5447                                 }
5448 #endif
5449                                 if (tp->ucopy.task == current &&
5450                                     sock_owned_by_user(sk) && !copied_early) {
5451                                         __set_current_state(TASK_RUNNING);
5452
5453                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5454                                                 eaten = 1;
5455                                 }
5456                                 if (eaten) {
5457                                         /* Predicted packet is in window by definition.
5458                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459                                          * Hence, check seq<=rcv_wup reduces to:
5460                                          */
5461                                         if (tcp_header_len ==
5462                                             (sizeof(struct tcphdr) +
5463                                              TCPOLEN_TSTAMP_ALIGNED) &&
5464                                             tp->rcv_nxt == tp->rcv_wup)
5465                                                 tcp_store_ts_recent(tp);
5466
5467                                         tcp_rcv_rtt_measure_ts(sk, skb);
5468
5469                                         __skb_pull(skb, tcp_header_len);
5470                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5471                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5472                                 }
5473                                 if (copied_early)
5474                                         tcp_cleanup_rbuf(sk, skb->len);
5475                         }
5476                         if (!eaten) {
5477                                 if (tcp_checksum_complete_user(sk, skb))
5478                                         goto csum_error;
5479
5480                                 /* Predicted packet is in window by definition.
5481                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5482                                  * Hence, check seq<=rcv_wup reduces to:
5483                                  */
5484                                 if (tcp_header_len ==
5485                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5486                                     tp->rcv_nxt == tp->rcv_wup)
5487                                         tcp_store_ts_recent(tp);
5488
5489                                 tcp_rcv_rtt_measure_ts(sk, skb);
5490
5491                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5492                                         goto step5;
5493
5494                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5495
5496                                 /* Bulk data transfer: receiver */
5497                                 __skb_pull(skb, tcp_header_len);
5498                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5499                                 skb_set_owner_r(skb, sk);
5500                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5501                         }
5502
5503                         tcp_event_data_recv(sk, skb);
5504
5505                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5506                                 /* Well, only one small jumplet in fast path... */
5507                                 tcp_ack(sk, skb, FLAG_DATA);
5508                                 tcp_data_snd_check(sk);
5509                                 if (!inet_csk_ack_scheduled(sk))
5510                                         goto no_ack;
5511                         }
5512
5513                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5514                                 __tcp_ack_snd_check(sk, 0);
5515 no_ack:
5516 #ifdef CONFIG_NET_DMA
5517                         if (copied_early)
5518                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5519                         else
5520 #endif
5521                         if (eaten)
5522                                 __kfree_skb(skb);
5523                         else
5524                                 sk->sk_data_ready(sk, 0);
5525                         return 0;
5526                 }
5527         }
5528
5529 slow_path:
5530         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5531                 goto csum_error;
5532
5533         /*
5534          *      Standard slow path.
5535          */
5536
5537         res = tcp_validate_incoming(sk, skb, th, 1);
5538         if (res <= 0)
5539                 return -res;
5540
5541 step5:
5542         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5543                 goto discard;
5544
5545         tcp_rcv_rtt_measure_ts(sk, skb);
5546
5547         /* Process urgent data. */
5548         tcp_urg(sk, skb, th);
5549
5550         /* step 7: process the segment text */
5551         tcp_data_queue(sk, skb);
5552
5553         tcp_data_snd_check(sk);
5554         tcp_ack_snd_check(sk);
5555         return 0;
5556
5557 csum_error:
5558         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5559
5560 discard:
5561         __kfree_skb(skb);
5562         return 0;
5563 }
5564 EXPORT_SYMBOL(tcp_rcv_established);
5565
5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5567                                          const struct tcphdr *th, unsigned int len)
5568 {
5569         const u8 *hash_location;
5570         struct inet_connection_sock *icsk = inet_csk(sk);
5571         struct tcp_sock *tp = tcp_sk(sk);
5572         struct tcp_cookie_values *cvp = tp->cookie_values;
5573         int saved_clamp = tp->rx_opt.mss_clamp;
5574
5575         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5576
5577         if (th->ack) {
5578                 /* rfc793:
5579                  * "If the state is SYN-SENT then
5580                  *    first check the ACK bit
5581                  *      If the ACK bit is set
5582                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5583                  *        a reset (unless the RST bit is set, if so drop
5584                  *        the segment and return)"
5585                  *
5586                  *  We do not send data with SYN, so that RFC-correct
5587                  *  test reduces to:
5588                  */
5589                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5590                         goto reset_and_undo;
5591
5592                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5593                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5594                              tcp_time_stamp)) {
5595                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5596                         goto reset_and_undo;
5597                 }
5598
5599                 /* Now ACK is acceptable.
5600                  *
5601                  * "If the RST bit is set
5602                  *    If the ACK was acceptable then signal the user "error:
5603                  *    connection reset", drop the segment, enter CLOSED state,
5604                  *    delete TCB, and return."
5605                  */
5606
5607                 if (th->rst) {
5608                         tcp_reset(sk);
5609                         goto discard;
5610                 }
5611
5612                 /* rfc793:
5613                  *   "fifth, if neither of the SYN or RST bits is set then
5614                  *    drop the segment and return."
5615                  *
5616                  *    See note below!
5617                  *                                        --ANK(990513)
5618                  */
5619                 if (!th->syn)
5620                         goto discard_and_undo;
5621
5622                 /* rfc793:
5623                  *   "If the SYN bit is on ...
5624                  *    are acceptable then ...
5625                  *    (our SYN has been ACKed), change the connection
5626                  *    state to ESTABLISHED..."
5627                  */
5628
5629                 TCP_ECN_rcv_synack(tp, th);
5630
5631                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5632                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5633
5634                 /* Ok.. it's good. Set up sequence numbers and
5635                  * move to established.
5636                  */
5637                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5638                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5639
5640                 /* RFC1323: The window in SYN & SYN/ACK segments is
5641                  * never scaled.
5642                  */
5643                 tp->snd_wnd = ntohs(th->window);
5644                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5645
5646                 if (!tp->rx_opt.wscale_ok) {
5647                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648                         tp->window_clamp = min(tp->window_clamp, 65535U);
5649                 }
5650
5651                 if (tp->rx_opt.saw_tstamp) {
5652                         tp->rx_opt.tstamp_ok       = 1;
5653                         tp->tcp_header_len =
5654                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5656                         tcp_store_ts_recent(tp);
5657                 } else {
5658                         tp->tcp_header_len = sizeof(struct tcphdr);
5659                 }
5660
5661                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662                         tcp_enable_fack(tp);
5663
5664                 tcp_mtup_init(sk);
5665                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666                 tcp_initialize_rcv_mss(sk);
5667
5668                 /* Remember, tcp_poll() does not lock socket!
5669                  * Change state from SYN-SENT only after copied_seq
5670                  * is initialized. */
5671                 tp->copied_seq = tp->rcv_nxt;
5672
5673                 if (cvp != NULL &&
5674                     cvp->cookie_pair_size > 0 &&
5675                     tp->rx_opt.cookie_plus > 0) {
5676                         int cookie_size = tp->rx_opt.cookie_plus
5677                                         - TCPOLEN_COOKIE_BASE;
5678                         int cookie_pair_size = cookie_size
5679                                              + cvp->cookie_desired;
5680
5681                         /* A cookie extension option was sent and returned.
5682                          * Note that each incoming SYNACK replaces the
5683                          * Responder cookie.  The initial exchange is most
5684                          * fragile, as protection against spoofing relies
5685                          * entirely upon the sequence and timestamp (above).
5686                          * This replacement strategy allows the correct pair to
5687                          * pass through, while any others will be filtered via
5688                          * Responder verification later.
5689                          */
5690                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5691                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5692                                        hash_location, cookie_size);
5693                                 cvp->cookie_pair_size = cookie_pair_size;
5694                         }
5695                 }
5696
5697                 smp_mb();
5698                 tcp_set_state(sk, TCP_ESTABLISHED);
5699
5700                 security_inet_conn_established(sk, skb);
5701
5702                 /* Make sure socket is routed, for correct metrics.  */
5703                 icsk->icsk_af_ops->rebuild_header(sk);
5704
5705                 tcp_init_metrics(sk);
5706
5707                 tcp_init_congestion_control(sk);
5708
5709                 /* Prevent spurious tcp_cwnd_restart() on first data
5710                  * packet.
5711                  */
5712                 tp->lsndtime = tcp_time_stamp;
5713
5714                 tcp_init_buffer_space(sk);
5715
5716                 if (sock_flag(sk, SOCK_KEEPOPEN))
5717                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5718
5719                 if (!tp->rx_opt.snd_wscale)
5720                         __tcp_fast_path_on(tp, tp->snd_wnd);
5721                 else
5722                         tp->pred_flags = 0;
5723
5724                 if (!sock_flag(sk, SOCK_DEAD)) {
5725                         sk->sk_state_change(sk);
5726                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5727                 }
5728
5729                 if (sk->sk_write_pending ||
5730                     icsk->icsk_accept_queue.rskq_defer_accept ||
5731                     icsk->icsk_ack.pingpong) {
5732                         /* Save one ACK. Data will be ready after
5733                          * several ticks, if write_pending is set.
5734                          *
5735                          * It may be deleted, but with this feature tcpdumps
5736                          * look so _wonderfully_ clever, that I was not able
5737                          * to stand against the temptation 8)     --ANK
5738                          */
5739                         inet_csk_schedule_ack(sk);
5740                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5741                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5742                         tcp_incr_quickack(sk);
5743                         tcp_enter_quickack_mode(sk);
5744                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5745                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5746
5747 discard:
5748                         __kfree_skb(skb);
5749                         return 0;
5750                 } else {
5751                         tcp_send_ack(sk);
5752                 }
5753                 return -1;
5754         }
5755
5756         /* No ACK in the segment */
5757
5758         if (th->rst) {
5759                 /* rfc793:
5760                  * "If the RST bit is set
5761                  *
5762                  *      Otherwise (no ACK) drop the segment and return."
5763                  */
5764
5765                 goto discard_and_undo;
5766         }
5767
5768         /* PAWS check. */
5769         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5770             tcp_paws_reject(&tp->rx_opt, 0))
5771                 goto discard_and_undo;
5772
5773         if (th->syn) {
5774                 /* We see SYN without ACK. It is attempt of
5775                  * simultaneous connect with crossed SYNs.
5776                  * Particularly, it can be connect to self.
5777                  */
5778                 tcp_set_state(sk, TCP_SYN_RECV);
5779
5780                 if (tp->rx_opt.saw_tstamp) {
5781                         tp->rx_opt.tstamp_ok = 1;
5782                         tcp_store_ts_recent(tp);
5783                         tp->tcp_header_len =
5784                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5785                 } else {
5786                         tp->tcp_header_len = sizeof(struct tcphdr);
5787                 }
5788
5789                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5790                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5791
5792                 /* RFC1323: The window in SYN & SYN/ACK segments is
5793                  * never scaled.
5794                  */
5795                 tp->snd_wnd    = ntohs(th->window);
5796                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5797                 tp->max_window = tp->snd_wnd;
5798
5799                 TCP_ECN_rcv_syn(tp, th);
5800
5801                 tcp_mtup_init(sk);
5802                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5803                 tcp_initialize_rcv_mss(sk);
5804
5805                 tcp_send_synack(sk);
5806 #if 0
5807                 /* Note, we could accept data and URG from this segment.
5808                  * There are no obstacles to make this.
5809                  *
5810                  * However, if we ignore data in ACKless segments sometimes,
5811                  * we have no reasons to accept it sometimes.
5812                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5813                  * is not flawless. So, discard packet for sanity.
5814                  * Uncomment this return to process the data.
5815                  */
5816                 return -1;
5817 #else
5818                 goto discard;
5819 #endif
5820         }
5821         /* "fifth, if neither of the SYN or RST bits is set then
5822          * drop the segment and return."
5823          */
5824
5825 discard_and_undo:
5826         tcp_clear_options(&tp->rx_opt);
5827         tp->rx_opt.mss_clamp = saved_clamp;
5828         goto discard;
5829
5830 reset_and_undo:
5831         tcp_clear_options(&tp->rx_opt);
5832         tp->rx_opt.mss_clamp = saved_clamp;
5833         return 1;
5834 }
5835
5836 /*
5837  *      This function implements the receiving procedure of RFC 793 for
5838  *      all states except ESTABLISHED and TIME_WAIT.
5839  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5840  *      address independent.
5841  */
5842
5843 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5844                           const struct tcphdr *th, unsigned int len)
5845 {
5846         struct tcp_sock *tp = tcp_sk(sk);
5847         struct inet_connection_sock *icsk = inet_csk(sk);
5848         int queued = 0;
5849         int res;
5850
5851         tp->rx_opt.saw_tstamp = 0;
5852
5853         switch (sk->sk_state) {
5854         case TCP_CLOSE:
5855                 goto discard;
5856
5857         case TCP_LISTEN:
5858                 if (th->ack)
5859                         return 1;
5860
5861                 if (th->rst)
5862                         goto discard;
5863
5864                 if (th->syn) {
5865                         if (th->fin)
5866                                 goto discard;
5867                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5868                                 return 1;
5869
5870                         /* Now we have several options: In theory there is
5871                          * nothing else in the frame. KA9Q has an option to
5872                          * send data with the syn, BSD accepts data with the
5873                          * syn up to the [to be] advertised window and
5874                          * Solaris 2.1 gives you a protocol error. For now
5875                          * we just ignore it, that fits the spec precisely
5876                          * and avoids incompatibilities. It would be nice in
5877                          * future to drop through and process the data.
5878                          *
5879                          * Now that TTCP is starting to be used we ought to
5880                          * queue this data.
5881                          * But, this leaves one open to an easy denial of
5882                          * service attack, and SYN cookies can't defend
5883                          * against this problem. So, we drop the data
5884                          * in the interest of security over speed unless
5885                          * it's still in use.
5886                          */
5887                         kfree_skb(skb);
5888                         return 0;
5889                 }
5890                 goto discard;
5891
5892         case TCP_SYN_SENT:
5893                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5894                 if (queued >= 0)
5895                         return queued;
5896
5897                 /* Do step6 onward by hand. */
5898                 tcp_urg(sk, skb, th);
5899                 __kfree_skb(skb);
5900                 tcp_data_snd_check(sk);
5901                 return 0;
5902         }
5903
5904         res = tcp_validate_incoming(sk, skb, th, 0);
5905         if (res <= 0)
5906                 return -res;
5907
5908         /* step 5: check the ACK field */
5909         if (th->ack) {
5910                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5911
5912                 switch (sk->sk_state) {
5913                 case TCP_SYN_RECV:
5914                         if (acceptable) {
5915                                 tp->copied_seq = tp->rcv_nxt;
5916                                 smp_mb();
5917                                 tcp_set_state(sk, TCP_ESTABLISHED);
5918                                 sk->sk_state_change(sk);
5919
5920                                 /* Note, that this wakeup is only for marginal
5921                                  * crossed SYN case. Passively open sockets
5922                                  * are not waked up, because sk->sk_sleep ==
5923                                  * NULL and sk->sk_socket == NULL.
5924                                  */
5925                                 if (sk->sk_socket)
5926                                         sk_wake_async(sk,
5927                                                       SOCK_WAKE_IO, POLL_OUT);
5928
5929                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5930                                 tp->snd_wnd = ntohs(th->window) <<
5931                                               tp->rx_opt.snd_wscale;
5932                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5933
5934                                 if (tp->rx_opt.tstamp_ok)
5935                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5936
5937                                 /* Make sure socket is routed, for
5938                                  * correct metrics.
5939                                  */
5940                                 icsk->icsk_af_ops->rebuild_header(sk);
5941
5942                                 tcp_init_metrics(sk);
5943
5944                                 tcp_init_congestion_control(sk);
5945
5946                                 /* Prevent spurious tcp_cwnd_restart() on
5947                                  * first data packet.
5948                                  */
5949                                 tp->lsndtime = tcp_time_stamp;
5950
5951                                 tcp_mtup_init(sk);
5952                                 tcp_initialize_rcv_mss(sk);
5953                                 tcp_init_buffer_space(sk);
5954                                 tcp_fast_path_on(tp);
5955                         } else {
5956                                 return 1;
5957                         }
5958                         break;
5959
5960                 case TCP_FIN_WAIT1:
5961                         if (tp->snd_una == tp->write_seq) {
5962                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5963                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5964                                 dst_confirm(__sk_dst_get(sk));
5965
5966                                 if (!sock_flag(sk, SOCK_DEAD))
5967                                         /* Wake up lingering close() */
5968                                         sk->sk_state_change(sk);
5969                                 else {
5970                                         int tmo;
5971
5972                                         if (tp->linger2 < 0 ||
5973                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5974                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5975                                                 tcp_done(sk);
5976                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5977                                                 return 1;
5978                                         }
5979
5980                                         tmo = tcp_fin_time(sk);
5981                                         if (tmo > TCP_TIMEWAIT_LEN) {
5982                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5983                                         } else if (th->fin || sock_owned_by_user(sk)) {
5984                                                 /* Bad case. We could lose such FIN otherwise.
5985                                                  * It is not a big problem, but it looks confusing
5986                                                  * and not so rare event. We still can lose it now,
5987                                                  * if it spins in bh_lock_sock(), but it is really
5988                                                  * marginal case.
5989                                                  */
5990                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5991                                         } else {
5992                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5993                                                 goto discard;
5994                                         }
5995                                 }
5996                         }
5997                         break;
5998
5999                 case TCP_CLOSING:
6000                         if (tp->snd_una == tp->write_seq) {
6001                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6002                                 goto discard;
6003                         }
6004                         break;
6005
6006                 case TCP_LAST_ACK:
6007                         if (tp->snd_una == tp->write_seq) {
6008                                 tcp_update_metrics(sk);
6009                                 tcp_done(sk);
6010                                 goto discard;
6011                         }
6012                         break;
6013                 }
6014         } else
6015                 goto discard;
6016
6017         /* step 6: check the URG bit */
6018         tcp_urg(sk, skb, th);
6019
6020         /* step 7: process the segment text */
6021         switch (sk->sk_state) {
6022         case TCP_CLOSE_WAIT:
6023         case TCP_CLOSING:
6024         case TCP_LAST_ACK:
6025                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6026                         break;
6027         case TCP_FIN_WAIT1:
6028         case TCP_FIN_WAIT2:
6029                 /* RFC 793 says to queue data in these states,
6030                  * RFC 1122 says we MUST send a reset.
6031                  * BSD 4.4 also does reset.
6032                  */
6033                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6034                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6035                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6036                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6037                                 tcp_reset(sk);
6038                                 return 1;
6039                         }
6040                 }
6041                 /* Fall through */
6042         case TCP_ESTABLISHED:
6043                 tcp_data_queue(sk, skb);
6044                 queued = 1;
6045                 break;
6046         }
6047
6048         /* tcp_data could move socket to TIME-WAIT */
6049         if (sk->sk_state != TCP_CLOSE) {
6050                 tcp_data_snd_check(sk);
6051                 tcp_ack_snd_check(sk);
6052         }
6053
6054         if (!queued) {
6055 discard:
6056                 __kfree_skb(skb);
6057         }
6058         return 0;
6059 }
6060 EXPORT_SYMBOL(tcp_rcv_state_process);