Merge tag 'md-3.4-fixes' of git://neil.brown.name/md
[linux-flexiantxendom0-3.2.10.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regulator/of_regulator.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
35
36 #include "dummy.h"
37
38 #define rdev_crit(rdev, fmt, ...)                                       \
39         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...)                                        \
41         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...)                                       \
43         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...)                                       \
45         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...)                                        \
47         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_list);
51 static LIST_HEAD(regulator_map_list);
52 static bool has_full_constraints;
53 static bool board_wants_dummy_regulator;
54
55 static struct dentry *debugfs_root;
56
57 /*
58  * struct regulator_map
59  *
60  * Used to provide symbolic supply names to devices.
61  */
62 struct regulator_map {
63         struct list_head list;
64         const char *dev_name;   /* The dev_name() for the consumer */
65         const char *supply;
66         struct regulator_dev *regulator;
67 };
68
69 /*
70  * struct regulator
71  *
72  * One for each consumer device.
73  */
74 struct regulator {
75         struct device *dev;
76         struct list_head list;
77         int uA_load;
78         int min_uV;
79         int max_uV;
80         char *supply_name;
81         struct device_attribute dev_attr;
82         struct regulator_dev *rdev;
83         struct dentry *debugfs;
84 };
85
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator_dev *rdev);
88 static int _regulator_get_voltage(struct regulator_dev *rdev);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static void _notifier_call_chain(struct regulator_dev *rdev,
92                                   unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94                                      int min_uV, int max_uV);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98
99 static const char *rdev_get_name(struct regulator_dev *rdev)
100 {
101         if (rdev->constraints && rdev->constraints->name)
102                 return rdev->constraints->name;
103         else if (rdev->desc->name)
104                 return rdev->desc->name;
105         else
106                 return "";
107 }
108
109 /* gets the regulator for a given consumer device */
110 static struct regulator *get_device_regulator(struct device *dev)
111 {
112         struct regulator *regulator = NULL;
113         struct regulator_dev *rdev;
114
115         mutex_lock(&regulator_list_mutex);
116         list_for_each_entry(rdev, &regulator_list, list) {
117                 mutex_lock(&rdev->mutex);
118                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
119                         if (regulator->dev == dev) {
120                                 mutex_unlock(&rdev->mutex);
121                                 mutex_unlock(&regulator_list_mutex);
122                                 return regulator;
123                         }
124                 }
125                 mutex_unlock(&rdev->mutex);
126         }
127         mutex_unlock(&regulator_list_mutex);
128         return NULL;
129 }
130
131 /**
132  * of_get_regulator - get a regulator device node based on supply name
133  * @dev: Device pointer for the consumer (of regulator) device
134  * @supply: regulator supply name
135  *
136  * Extract the regulator device node corresponding to the supply name.
137  * retruns the device node corresponding to the regulator if found, else
138  * returns NULL.
139  */
140 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141 {
142         struct device_node *regnode = NULL;
143         char prop_name[32]; /* 32 is max size of property name */
144
145         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146
147         snprintf(prop_name, 32, "%s-supply", supply);
148         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149
150         if (!regnode) {
151                 dev_dbg(dev, "Looking up %s property in node %s failed",
152                                 prop_name, dev->of_node->full_name);
153                 return NULL;
154         }
155         return regnode;
156 }
157
158 /* Platform voltage constraint check */
159 static int regulator_check_voltage(struct regulator_dev *rdev,
160                                    int *min_uV, int *max_uV)
161 {
162         BUG_ON(*min_uV > *max_uV);
163
164         if (!rdev->constraints) {
165                 rdev_err(rdev, "no constraints\n");
166                 return -ENODEV;
167         }
168         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169                 rdev_err(rdev, "operation not allowed\n");
170                 return -EPERM;
171         }
172
173         if (*max_uV > rdev->constraints->max_uV)
174                 *max_uV = rdev->constraints->max_uV;
175         if (*min_uV < rdev->constraints->min_uV)
176                 *min_uV = rdev->constraints->min_uV;
177
178         if (*min_uV > *max_uV) {
179                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180                          *min_uV, *max_uV);
181                 return -EINVAL;
182         }
183
184         return 0;
185 }
186
187 /* Make sure we select a voltage that suits the needs of all
188  * regulator consumers
189  */
190 static int regulator_check_consumers(struct regulator_dev *rdev,
191                                      int *min_uV, int *max_uV)
192 {
193         struct regulator *regulator;
194
195         list_for_each_entry(regulator, &rdev->consumer_list, list) {
196                 /*
197                  * Assume consumers that didn't say anything are OK
198                  * with anything in the constraint range.
199                  */
200                 if (!regulator->min_uV && !regulator->max_uV)
201                         continue;
202
203                 if (*max_uV > regulator->max_uV)
204                         *max_uV = regulator->max_uV;
205                 if (*min_uV < regulator->min_uV)
206                         *min_uV = regulator->min_uV;
207         }
208
209         if (*min_uV > *max_uV)
210                 return -EINVAL;
211
212         return 0;
213 }
214
215 /* current constraint check */
216 static int regulator_check_current_limit(struct regulator_dev *rdev,
217                                         int *min_uA, int *max_uA)
218 {
219         BUG_ON(*min_uA > *max_uA);
220
221         if (!rdev->constraints) {
222                 rdev_err(rdev, "no constraints\n");
223                 return -ENODEV;
224         }
225         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226                 rdev_err(rdev, "operation not allowed\n");
227                 return -EPERM;
228         }
229
230         if (*max_uA > rdev->constraints->max_uA)
231                 *max_uA = rdev->constraints->max_uA;
232         if (*min_uA < rdev->constraints->min_uA)
233                 *min_uA = rdev->constraints->min_uA;
234
235         if (*min_uA > *max_uA) {
236                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237                          *min_uA, *max_uA);
238                 return -EINVAL;
239         }
240
241         return 0;
242 }
243
244 /* operating mode constraint check */
245 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246 {
247         switch (*mode) {
248         case REGULATOR_MODE_FAST:
249         case REGULATOR_MODE_NORMAL:
250         case REGULATOR_MODE_IDLE:
251         case REGULATOR_MODE_STANDBY:
252                 break;
253         default:
254                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
255                 return -EINVAL;
256         }
257
258         if (!rdev->constraints) {
259                 rdev_err(rdev, "no constraints\n");
260                 return -ENODEV;
261         }
262         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263                 rdev_err(rdev, "operation not allowed\n");
264                 return -EPERM;
265         }
266
267         /* The modes are bitmasks, the most power hungry modes having
268          * the lowest values. If the requested mode isn't supported
269          * try higher modes. */
270         while (*mode) {
271                 if (rdev->constraints->valid_modes_mask & *mode)
272                         return 0;
273                 *mode /= 2;
274         }
275
276         return -EINVAL;
277 }
278
279 /* dynamic regulator mode switching constraint check */
280 static int regulator_check_drms(struct regulator_dev *rdev)
281 {
282         if (!rdev->constraints) {
283                 rdev_err(rdev, "no constraints\n");
284                 return -ENODEV;
285         }
286         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287                 rdev_err(rdev, "operation not allowed\n");
288                 return -EPERM;
289         }
290         return 0;
291 }
292
293 static ssize_t device_requested_uA_show(struct device *dev,
294                              struct device_attribute *attr, char *buf)
295 {
296         struct regulator *regulator;
297
298         regulator = get_device_regulator(dev);
299         if (regulator == NULL)
300                 return 0;
301
302         return sprintf(buf, "%d\n", regulator->uA_load);
303 }
304
305 static ssize_t regulator_uV_show(struct device *dev,
306                                 struct device_attribute *attr, char *buf)
307 {
308         struct regulator_dev *rdev = dev_get_drvdata(dev);
309         ssize_t ret;
310
311         mutex_lock(&rdev->mutex);
312         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313         mutex_unlock(&rdev->mutex);
314
315         return ret;
316 }
317 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318
319 static ssize_t regulator_uA_show(struct device *dev,
320                                 struct device_attribute *attr, char *buf)
321 {
322         struct regulator_dev *rdev = dev_get_drvdata(dev);
323
324         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325 }
326 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327
328 static ssize_t regulator_name_show(struct device *dev,
329                              struct device_attribute *attr, char *buf)
330 {
331         struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333         return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 }
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         default:
418                 return -ERANGE;
419         }
420
421         return sprintf(buf, "%s\n", label);
422 }
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425 static ssize_t regulator_min_uA_show(struct device *dev,
426                                     struct device_attribute *attr, char *buf)
427 {
428         struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430         if (!rdev->constraints)
431                 return sprintf(buf, "constraint not defined\n");
432
433         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434 }
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437 static ssize_t regulator_max_uA_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446 }
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449 static ssize_t regulator_min_uV_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "constraint not defined\n");
456
457         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458 }
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461 static ssize_t regulator_max_uV_show(struct device *dev,
462                                     struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "constraint not defined\n");
468
469         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470 }
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473 static ssize_t regulator_total_uA_show(struct device *dev,
474                                       struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477         struct regulator *regulator;
478         int uA = 0;
479
480         mutex_lock(&rdev->mutex);
481         list_for_each_entry(regulator, &rdev->consumer_list, list)
482                 uA += regulator->uA_load;
483         mutex_unlock(&rdev->mutex);
484         return sprintf(buf, "%d\n", uA);
485 }
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488 static ssize_t regulator_num_users_show(struct device *dev,
489                                       struct device_attribute *attr, char *buf)
490 {
491         struct regulator_dev *rdev = dev_get_drvdata(dev);
492         return sprintf(buf, "%d\n", rdev->use_count);
493 }
494
495 static ssize_t regulator_type_show(struct device *dev,
496                                   struct device_attribute *attr, char *buf)
497 {
498         struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500         switch (rdev->desc->type) {
501         case REGULATOR_VOLTAGE:
502                 return sprintf(buf, "voltage\n");
503         case REGULATOR_CURRENT:
504                 return sprintf(buf, "current\n");
505         }
506         return sprintf(buf, "unknown\n");
507 }
508
509 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515 }
516 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517                 regulator_suspend_mem_uV_show, NULL);
518
519 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525 }
526 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527                 regulator_suspend_disk_uV_show, NULL);
528
529 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530                                 struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535 }
536 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537                 regulator_suspend_standby_uV_show, NULL);
538
539 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540                                 struct device_attribute *attr, char *buf)
541 {
542         struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544         return regulator_print_opmode(buf,
545                 rdev->constraints->state_mem.mode);
546 }
547 static DEVICE_ATTR(suspend_mem_mode, 0444,
548                 regulator_suspend_mem_mode_show, NULL);
549
550 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return regulator_print_opmode(buf,
556                 rdev->constraints->state_disk.mode);
557 }
558 static DEVICE_ATTR(suspend_disk_mode, 0444,
559                 regulator_suspend_disk_mode_show, NULL);
560
561 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562                                 struct device_attribute *attr, char *buf)
563 {
564         struct regulator_dev *rdev = dev_get_drvdata(dev);
565
566         return regulator_print_opmode(buf,
567                 rdev->constraints->state_standby.mode);
568 }
569 static DEVICE_ATTR(suspend_standby_mode, 0444,
570                 regulator_suspend_standby_mode_show, NULL);
571
572 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573                                    struct device_attribute *attr, char *buf)
574 {
575         struct regulator_dev *rdev = dev_get_drvdata(dev);
576
577         return regulator_print_state(buf,
578                         rdev->constraints->state_mem.enabled);
579 }
580 static DEVICE_ATTR(suspend_mem_state, 0444,
581                 regulator_suspend_mem_state_show, NULL);
582
583 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584                                    struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return regulator_print_state(buf,
589                         rdev->constraints->state_disk.enabled);
590 }
591 static DEVICE_ATTR(suspend_disk_state, 0444,
592                 regulator_suspend_disk_state_show, NULL);
593
594 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595                                    struct device_attribute *attr, char *buf)
596 {
597         struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599         return regulator_print_state(buf,
600                         rdev->constraints->state_standby.enabled);
601 }
602 static DEVICE_ATTR(suspend_standby_state, 0444,
603                 regulator_suspend_standby_state_show, NULL);
604
605
606 /*
607  * These are the only attributes are present for all regulators.
608  * Other attributes are a function of regulator functionality.
609  */
610 static struct device_attribute regulator_dev_attrs[] = {
611         __ATTR(name, 0444, regulator_name_show, NULL),
612         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
613         __ATTR(type, 0444, regulator_type_show, NULL),
614         __ATTR_NULL,
615 };
616
617 static void regulator_dev_release(struct device *dev)
618 {
619         struct regulator_dev *rdev = dev_get_drvdata(dev);
620         kfree(rdev);
621 }
622
623 static struct class regulator_class = {
624         .name = "regulator",
625         .dev_release = regulator_dev_release,
626         .dev_attrs = regulator_dev_attrs,
627 };
628
629 /* Calculate the new optimum regulator operating mode based on the new total
630  * consumer load. All locks held by caller */
631 static void drms_uA_update(struct regulator_dev *rdev)
632 {
633         struct regulator *sibling;
634         int current_uA = 0, output_uV, input_uV, err;
635         unsigned int mode;
636
637         err = regulator_check_drms(rdev);
638         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639             (!rdev->desc->ops->get_voltage &&
640              !rdev->desc->ops->get_voltage_sel) ||
641             !rdev->desc->ops->set_mode)
642                 return;
643
644         /* get output voltage */
645         output_uV = _regulator_get_voltage(rdev);
646         if (output_uV <= 0)
647                 return;
648
649         /* get input voltage */
650         input_uV = 0;
651         if (rdev->supply)
652                 input_uV = _regulator_get_voltage(rdev);
653         if (input_uV <= 0)
654                 input_uV = rdev->constraints->input_uV;
655         if (input_uV <= 0)
656                 return;
657
658         /* calc total requested load */
659         list_for_each_entry(sibling, &rdev->consumer_list, list)
660                 current_uA += sibling->uA_load;
661
662         /* now get the optimum mode for our new total regulator load */
663         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664                                                   output_uV, current_uA);
665
666         /* check the new mode is allowed */
667         err = regulator_mode_constrain(rdev, &mode);
668         if (err == 0)
669                 rdev->desc->ops->set_mode(rdev, mode);
670 }
671
672 static int suspend_set_state(struct regulator_dev *rdev,
673         struct regulator_state *rstate)
674 {
675         int ret = 0;
676         bool can_set_state;
677
678         can_set_state = rdev->desc->ops->set_suspend_enable &&
679                 rdev->desc->ops->set_suspend_disable;
680
681         /* If we have no suspend mode configration don't set anything;
682          * only warn if the driver actually makes the suspend mode
683          * configurable.
684          */
685         if (!rstate->enabled && !rstate->disabled) {
686                 if (can_set_state)
687                         rdev_warn(rdev, "No configuration\n");
688                 return 0;
689         }
690
691         if (rstate->enabled && rstate->disabled) {
692                 rdev_err(rdev, "invalid configuration\n");
693                 return -EINVAL;
694         }
695
696         if (!can_set_state) {
697                 rdev_err(rdev, "no way to set suspend state\n");
698                 return -EINVAL;
699         }
700
701         if (rstate->enabled)
702                 ret = rdev->desc->ops->set_suspend_enable(rdev);
703         else
704                 ret = rdev->desc->ops->set_suspend_disable(rdev);
705         if (ret < 0) {
706                 rdev_err(rdev, "failed to enabled/disable\n");
707                 return ret;
708         }
709
710         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712                 if (ret < 0) {
713                         rdev_err(rdev, "failed to set voltage\n");
714                         return ret;
715                 }
716         }
717
718         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720                 if (ret < 0) {
721                         rdev_err(rdev, "failed to set mode\n");
722                         return ret;
723                 }
724         }
725         return ret;
726 }
727
728 /* locks held by caller */
729 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730 {
731         if (!rdev->constraints)
732                 return -EINVAL;
733
734         switch (state) {
735         case PM_SUSPEND_STANDBY:
736                 return suspend_set_state(rdev,
737                         &rdev->constraints->state_standby);
738         case PM_SUSPEND_MEM:
739                 return suspend_set_state(rdev,
740                         &rdev->constraints->state_mem);
741         case PM_SUSPEND_MAX:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_disk);
744         default:
745                 return -EINVAL;
746         }
747 }
748
749 static void print_constraints(struct regulator_dev *rdev)
750 {
751         struct regulation_constraints *constraints = rdev->constraints;
752         char buf[80] = "";
753         int count = 0;
754         int ret;
755
756         if (constraints->min_uV && constraints->max_uV) {
757                 if (constraints->min_uV == constraints->max_uV)
758                         count += sprintf(buf + count, "%d mV ",
759                                          constraints->min_uV / 1000);
760                 else
761                         count += sprintf(buf + count, "%d <--> %d mV ",
762                                          constraints->min_uV / 1000,
763                                          constraints->max_uV / 1000);
764         }
765
766         if (!constraints->min_uV ||
767             constraints->min_uV != constraints->max_uV) {
768                 ret = _regulator_get_voltage(rdev);
769                 if (ret > 0)
770                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
771         }
772
773         if (constraints->uV_offset)
774                 count += sprintf(buf, "%dmV offset ",
775                                  constraints->uV_offset / 1000);
776
777         if (constraints->min_uA && constraints->max_uA) {
778                 if (constraints->min_uA == constraints->max_uA)
779                         count += sprintf(buf + count, "%d mA ",
780                                          constraints->min_uA / 1000);
781                 else
782                         count += sprintf(buf + count, "%d <--> %d mA ",
783                                          constraints->min_uA / 1000,
784                                          constraints->max_uA / 1000);
785         }
786
787         if (!constraints->min_uA ||
788             constraints->min_uA != constraints->max_uA) {
789                 ret = _regulator_get_current_limit(rdev);
790                 if (ret > 0)
791                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
792         }
793
794         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795                 count += sprintf(buf + count, "fast ");
796         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797                 count += sprintf(buf + count, "normal ");
798         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799                 count += sprintf(buf + count, "idle ");
800         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801                 count += sprintf(buf + count, "standby");
802
803         rdev_info(rdev, "%s\n", buf);
804
805         if ((constraints->min_uV != constraints->max_uV) &&
806             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807                 rdev_warn(rdev,
808                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809 }
810
811 static int machine_constraints_voltage(struct regulator_dev *rdev,
812         struct regulation_constraints *constraints)
813 {
814         struct regulator_ops *ops = rdev->desc->ops;
815         int ret;
816
817         /* do we need to apply the constraint voltage */
818         if (rdev->constraints->apply_uV &&
819             rdev->constraints->min_uV == rdev->constraints->max_uV) {
820                 ret = _regulator_do_set_voltage(rdev,
821                                                 rdev->constraints->min_uV,
822                                                 rdev->constraints->max_uV);
823                 if (ret < 0) {
824                         rdev_err(rdev, "failed to apply %duV constraint\n",
825                                  rdev->constraints->min_uV);
826                         return ret;
827                 }
828         }
829
830         /* constrain machine-level voltage specs to fit
831          * the actual range supported by this regulator.
832          */
833         if (ops->list_voltage && rdev->desc->n_voltages) {
834                 int     count = rdev->desc->n_voltages;
835                 int     i;
836                 int     min_uV = INT_MAX;
837                 int     max_uV = INT_MIN;
838                 int     cmin = constraints->min_uV;
839                 int     cmax = constraints->max_uV;
840
841                 /* it's safe to autoconfigure fixed-voltage supplies
842                    and the constraints are used by list_voltage. */
843                 if (count == 1 && !cmin) {
844                         cmin = 1;
845                         cmax = INT_MAX;
846                         constraints->min_uV = cmin;
847                         constraints->max_uV = cmax;
848                 }
849
850                 /* voltage constraints are optional */
851                 if ((cmin == 0) && (cmax == 0))
852                         return 0;
853
854                 /* else require explicit machine-level constraints */
855                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856                         rdev_err(rdev, "invalid voltage constraints\n");
857                         return -EINVAL;
858                 }
859
860                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861                 for (i = 0; i < count; i++) {
862                         int     value;
863
864                         value = ops->list_voltage(rdev, i);
865                         if (value <= 0)
866                                 continue;
867
868                         /* maybe adjust [min_uV..max_uV] */
869                         if (value >= cmin && value < min_uV)
870                                 min_uV = value;
871                         if (value <= cmax && value > max_uV)
872                                 max_uV = value;
873                 }
874
875                 /* final: [min_uV..max_uV] valid iff constraints valid */
876                 if (max_uV < min_uV) {
877                         rdev_err(rdev, "unsupportable voltage constraints\n");
878                         return -EINVAL;
879                 }
880
881                 /* use regulator's subset of machine constraints */
882                 if (constraints->min_uV < min_uV) {
883                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884                                  constraints->min_uV, min_uV);
885                         constraints->min_uV = min_uV;
886                 }
887                 if (constraints->max_uV > max_uV) {
888                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889                                  constraints->max_uV, max_uV);
890                         constraints->max_uV = max_uV;
891                 }
892         }
893
894         return 0;
895 }
896
897 /**
898  * set_machine_constraints - sets regulator constraints
899  * @rdev: regulator source
900  * @constraints: constraints to apply
901  *
902  * Allows platform initialisation code to define and constrain
903  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904  * Constraints *must* be set by platform code in order for some
905  * regulator operations to proceed i.e. set_voltage, set_current_limit,
906  * set_mode.
907  */
908 static int set_machine_constraints(struct regulator_dev *rdev,
909         const struct regulation_constraints *constraints)
910 {
911         int ret = 0;
912         struct regulator_ops *ops = rdev->desc->ops;
913
914         if (constraints)
915                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916                                             GFP_KERNEL);
917         else
918                 rdev->constraints = kzalloc(sizeof(*constraints),
919                                             GFP_KERNEL);
920         if (!rdev->constraints)
921                 return -ENOMEM;
922
923         ret = machine_constraints_voltage(rdev, rdev->constraints);
924         if (ret != 0)
925                 goto out;
926
927         /* do we need to setup our suspend state */
928         if (rdev->constraints->initial_state) {
929                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930                 if (ret < 0) {
931                         rdev_err(rdev, "failed to set suspend state\n");
932                         goto out;
933                 }
934         }
935
936         if (rdev->constraints->initial_mode) {
937                 if (!ops->set_mode) {
938                         rdev_err(rdev, "no set_mode operation\n");
939                         ret = -EINVAL;
940                         goto out;
941                 }
942
943                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944                 if (ret < 0) {
945                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946                         goto out;
947                 }
948         }
949
950         /* If the constraints say the regulator should be on at this point
951          * and we have control then make sure it is enabled.
952          */
953         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954             ops->enable) {
955                 ret = ops->enable(rdev);
956                 if (ret < 0) {
957                         rdev_err(rdev, "failed to enable\n");
958                         goto out;
959                 }
960         }
961
962         print_constraints(rdev);
963         return 0;
964 out:
965         kfree(rdev->constraints);
966         rdev->constraints = NULL;
967         return ret;
968 }
969
970 /**
971  * set_supply - set regulator supply regulator
972  * @rdev: regulator name
973  * @supply_rdev: supply regulator name
974  *
975  * Called by platform initialisation code to set the supply regulator for this
976  * regulator. This ensures that a regulators supply will also be enabled by the
977  * core if it's child is enabled.
978  */
979 static int set_supply(struct regulator_dev *rdev,
980                       struct regulator_dev *supply_rdev)
981 {
982         int err;
983
984         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985
986         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987         if (rdev->supply == NULL) {
988                 err = -ENOMEM;
989                 return err;
990         }
991
992         return 0;
993 }
994
995 /**
996  * set_consumer_device_supply - Bind a regulator to a symbolic supply
997  * @rdev:         regulator source
998  * @consumer_dev_name: dev_name() string for device supply applies to
999  * @supply:       symbolic name for supply
1000  *
1001  * Allows platform initialisation code to map physical regulator
1002  * sources to symbolic names for supplies for use by devices.  Devices
1003  * should use these symbolic names to request regulators, avoiding the
1004  * need to provide board-specific regulator names as platform data.
1005  */
1006 static int set_consumer_device_supply(struct regulator_dev *rdev,
1007                                       const char *consumer_dev_name,
1008                                       const char *supply)
1009 {
1010         struct regulator_map *node;
1011         int has_dev;
1012
1013         if (supply == NULL)
1014                 return -EINVAL;
1015
1016         if (consumer_dev_name != NULL)
1017                 has_dev = 1;
1018         else
1019                 has_dev = 0;
1020
1021         list_for_each_entry(node, &regulator_map_list, list) {
1022                 if (node->dev_name && consumer_dev_name) {
1023                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024                                 continue;
1025                 } else if (node->dev_name || consumer_dev_name) {
1026                         continue;
1027                 }
1028
1029                 if (strcmp(node->supply, supply) != 0)
1030                         continue;
1031
1032                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033                          consumer_dev_name,
1034                          dev_name(&node->regulator->dev),
1035                          node->regulator->desc->name,
1036                          supply,
1037                          dev_name(&rdev->dev), rdev_get_name(rdev));
1038                 return -EBUSY;
1039         }
1040
1041         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042         if (node == NULL)
1043                 return -ENOMEM;
1044
1045         node->regulator = rdev;
1046         node->supply = supply;
1047
1048         if (has_dev) {
1049                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050                 if (node->dev_name == NULL) {
1051                         kfree(node);
1052                         return -ENOMEM;
1053                 }
1054         }
1055
1056         list_add(&node->list, &regulator_map_list);
1057         return 0;
1058 }
1059
1060 static void unset_regulator_supplies(struct regulator_dev *rdev)
1061 {
1062         struct regulator_map *node, *n;
1063
1064         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065                 if (rdev == node->regulator) {
1066                         list_del(&node->list);
1067                         kfree(node->dev_name);
1068                         kfree(node);
1069                 }
1070         }
1071 }
1072
1073 #define REG_STR_SIZE    64
1074
1075 static struct regulator *create_regulator(struct regulator_dev *rdev,
1076                                           struct device *dev,
1077                                           const char *supply_name)
1078 {
1079         struct regulator *regulator;
1080         char buf[REG_STR_SIZE];
1081         int err, size;
1082
1083         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084         if (regulator == NULL)
1085                 return NULL;
1086
1087         mutex_lock(&rdev->mutex);
1088         regulator->rdev = rdev;
1089         list_add(&regulator->list, &rdev->consumer_list);
1090
1091         if (dev) {
1092                 /* create a 'requested_microamps_name' sysfs entry */
1093                 size = scnprintf(buf, REG_STR_SIZE,
1094                                  "microamps_requested_%s-%s",
1095                                  dev_name(dev), supply_name);
1096                 if (size >= REG_STR_SIZE)
1097                         goto overflow_err;
1098
1099                 regulator->dev = dev;
1100                 sysfs_attr_init(&regulator->dev_attr.attr);
1101                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102                 if (regulator->dev_attr.attr.name == NULL)
1103                         goto attr_name_err;
1104
1105                 regulator->dev_attr.attr.mode = 0444;
1106                 regulator->dev_attr.show = device_requested_uA_show;
1107                 err = device_create_file(dev, &regulator->dev_attr);
1108                 if (err < 0) {
1109                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110                         goto attr_name_err;
1111                 }
1112
1113                 /* also add a link to the device sysfs entry */
1114                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115                                  dev->kobj.name, supply_name);
1116                 if (size >= REG_STR_SIZE)
1117                         goto attr_err;
1118
1119                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120                 if (regulator->supply_name == NULL)
1121                         goto attr_err;
1122
1123                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124                                         buf);
1125                 if (err) {
1126                         rdev_warn(rdev, "could not add device link %s err %d\n",
1127                                   dev->kobj.name, err);
1128                         goto link_name_err;
1129                 }
1130         } else {
1131                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132                 if (regulator->supply_name == NULL)
1133                         goto attr_err;
1134         }
1135
1136         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137                                                 rdev->debugfs);
1138         if (!regulator->debugfs) {
1139                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1140         } else {
1141                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142                                    &regulator->uA_load);
1143                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144                                    &regulator->min_uV);
1145                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146                                    &regulator->max_uV);
1147         }
1148
1149         mutex_unlock(&rdev->mutex);
1150         return regulator;
1151 link_name_err:
1152         kfree(regulator->supply_name);
1153 attr_err:
1154         device_remove_file(regulator->dev, &regulator->dev_attr);
1155 attr_name_err:
1156         kfree(regulator->dev_attr.attr.name);
1157 overflow_err:
1158         list_del(&regulator->list);
1159         kfree(regulator);
1160         mutex_unlock(&rdev->mutex);
1161         return NULL;
1162 }
1163
1164 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1165 {
1166         if (!rdev->desc->ops->enable_time)
1167                 return 0;
1168         return rdev->desc->ops->enable_time(rdev);
1169 }
1170
1171 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172                                                          const char *supply)
1173 {
1174         struct regulator_dev *r;
1175         struct device_node *node;
1176
1177         /* first do a dt based lookup */
1178         if (dev && dev->of_node) {
1179                 node = of_get_regulator(dev, supply);
1180                 if (node)
1181                         list_for_each_entry(r, &regulator_list, list)
1182                                 if (r->dev.parent &&
1183                                         node == r->dev.of_node)
1184                                         return r;
1185         }
1186
1187         /* if not found, try doing it non-dt way */
1188         list_for_each_entry(r, &regulator_list, list)
1189                 if (strcmp(rdev_get_name(r), supply) == 0)
1190                         return r;
1191
1192         return NULL;
1193 }
1194
1195 /* Internal regulator request function */
1196 static struct regulator *_regulator_get(struct device *dev, const char *id,
1197                                         int exclusive)
1198 {
1199         struct regulator_dev *rdev;
1200         struct regulator_map *map;
1201         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1202         const char *devname = NULL;
1203         int ret;
1204
1205         if (id == NULL) {
1206                 pr_err("get() with no identifier\n");
1207                 return regulator;
1208         }
1209
1210         if (dev)
1211                 devname = dev_name(dev);
1212
1213         mutex_lock(&regulator_list_mutex);
1214
1215         rdev = regulator_dev_lookup(dev, id);
1216         if (rdev)
1217                 goto found;
1218
1219         list_for_each_entry(map, &regulator_map_list, list) {
1220                 /* If the mapping has a device set up it must match */
1221                 if (map->dev_name &&
1222                     (!devname || strcmp(map->dev_name, devname)))
1223                         continue;
1224
1225                 if (strcmp(map->supply, id) == 0) {
1226                         rdev = map->regulator;
1227                         goto found;
1228                 }
1229         }
1230
1231         if (board_wants_dummy_regulator) {
1232                 rdev = dummy_regulator_rdev;
1233                 goto found;
1234         }
1235
1236 #ifdef CONFIG_REGULATOR_DUMMY
1237         if (!devname)
1238                 devname = "deviceless";
1239
1240         /* If the board didn't flag that it was fully constrained then
1241          * substitute in a dummy regulator so consumers can continue.
1242          */
1243         if (!has_full_constraints) {
1244                 pr_warn("%s supply %s not found, using dummy regulator\n",
1245                         devname, id);
1246                 rdev = dummy_regulator_rdev;
1247                 goto found;
1248         }
1249 #endif
1250
1251         mutex_unlock(&regulator_list_mutex);
1252         return regulator;
1253
1254 found:
1255         if (rdev->exclusive) {
1256                 regulator = ERR_PTR(-EPERM);
1257                 goto out;
1258         }
1259
1260         if (exclusive && rdev->open_count) {
1261                 regulator = ERR_PTR(-EBUSY);
1262                 goto out;
1263         }
1264
1265         if (!try_module_get(rdev->owner))
1266                 goto out;
1267
1268         regulator = create_regulator(rdev, dev, id);
1269         if (regulator == NULL) {
1270                 regulator = ERR_PTR(-ENOMEM);
1271                 module_put(rdev->owner);
1272                 goto out;
1273         }
1274
1275         rdev->open_count++;
1276         if (exclusive) {
1277                 rdev->exclusive = 1;
1278
1279                 ret = _regulator_is_enabled(rdev);
1280                 if (ret > 0)
1281                         rdev->use_count = 1;
1282                 else
1283                         rdev->use_count = 0;
1284         }
1285
1286 out:
1287         mutex_unlock(&regulator_list_mutex);
1288
1289         return regulator;
1290 }
1291
1292 /**
1293  * regulator_get - lookup and obtain a reference to a regulator.
1294  * @dev: device for regulator "consumer"
1295  * @id: Supply name or regulator ID.
1296  *
1297  * Returns a struct regulator corresponding to the regulator producer,
1298  * or IS_ERR() condition containing errno.
1299  *
1300  * Use of supply names configured via regulator_set_device_supply() is
1301  * strongly encouraged.  It is recommended that the supply name used
1302  * should match the name used for the supply and/or the relevant
1303  * device pins in the datasheet.
1304  */
1305 struct regulator *regulator_get(struct device *dev, const char *id)
1306 {
1307         return _regulator_get(dev, id, 0);
1308 }
1309 EXPORT_SYMBOL_GPL(regulator_get);
1310
1311 static void devm_regulator_release(struct device *dev, void *res)
1312 {
1313         regulator_put(*(struct regulator **)res);
1314 }
1315
1316 /**
1317  * devm_regulator_get - Resource managed regulator_get()
1318  * @dev: device for regulator "consumer"
1319  * @id: Supply name or regulator ID.
1320  *
1321  * Managed regulator_get(). Regulators returned from this function are
1322  * automatically regulator_put() on driver detach. See regulator_get() for more
1323  * information.
1324  */
1325 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1326 {
1327         struct regulator **ptr, *regulator;
1328
1329         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1330         if (!ptr)
1331                 return ERR_PTR(-ENOMEM);
1332
1333         regulator = regulator_get(dev, id);
1334         if (!IS_ERR(regulator)) {
1335                 *ptr = regulator;
1336                 devres_add(dev, ptr);
1337         } else {
1338                 devres_free(ptr);
1339         }
1340
1341         return regulator;
1342 }
1343 EXPORT_SYMBOL_GPL(devm_regulator_get);
1344
1345 /**
1346  * regulator_get_exclusive - obtain exclusive access to a regulator.
1347  * @dev: device for regulator "consumer"
1348  * @id: Supply name or regulator ID.
1349  *
1350  * Returns a struct regulator corresponding to the regulator producer,
1351  * or IS_ERR() condition containing errno.  Other consumers will be
1352  * unable to obtain this reference is held and the use count for the
1353  * regulator will be initialised to reflect the current state of the
1354  * regulator.
1355  *
1356  * This is intended for use by consumers which cannot tolerate shared
1357  * use of the regulator such as those which need to force the
1358  * regulator off for correct operation of the hardware they are
1359  * controlling.
1360  *
1361  * Use of supply names configured via regulator_set_device_supply() is
1362  * strongly encouraged.  It is recommended that the supply name used
1363  * should match the name used for the supply and/or the relevant
1364  * device pins in the datasheet.
1365  */
1366 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1367 {
1368         return _regulator_get(dev, id, 1);
1369 }
1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1371
1372 /**
1373  * regulator_put - "free" the regulator source
1374  * @regulator: regulator source
1375  *
1376  * Note: drivers must ensure that all regulator_enable calls made on this
1377  * regulator source are balanced by regulator_disable calls prior to calling
1378  * this function.
1379  */
1380 void regulator_put(struct regulator *regulator)
1381 {
1382         struct regulator_dev *rdev;
1383
1384         if (regulator == NULL || IS_ERR(regulator))
1385                 return;
1386
1387         mutex_lock(&regulator_list_mutex);
1388         rdev = regulator->rdev;
1389
1390         debugfs_remove_recursive(regulator->debugfs);
1391
1392         /* remove any sysfs entries */
1393         if (regulator->dev) {
1394                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1395                 device_remove_file(regulator->dev, &regulator->dev_attr);
1396                 kfree(regulator->dev_attr.attr.name);
1397         }
1398         kfree(regulator->supply_name);
1399         list_del(&regulator->list);
1400         kfree(regulator);
1401
1402         rdev->open_count--;
1403         rdev->exclusive = 0;
1404
1405         module_put(rdev->owner);
1406         mutex_unlock(&regulator_list_mutex);
1407 }
1408 EXPORT_SYMBOL_GPL(regulator_put);
1409
1410 static int devm_regulator_match(struct device *dev, void *res, void *data)
1411 {
1412         struct regulator **r = res;
1413         if (!r || !*r) {
1414                 WARN_ON(!r || !*r);
1415                 return 0;
1416         }
1417         return *r == data;
1418 }
1419
1420 /**
1421  * devm_regulator_put - Resource managed regulator_put()
1422  * @regulator: regulator to free
1423  *
1424  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425  * this function will not need to be called and the resource management
1426  * code will ensure that the resource is freed.
1427  */
1428 void devm_regulator_put(struct regulator *regulator)
1429 {
1430         int rc;
1431
1432         rc = devres_destroy(regulator->dev, devm_regulator_release,
1433                             devm_regulator_match, regulator);
1434         if (rc == 0)
1435                 regulator_put(regulator);
1436         else
1437                 WARN_ON(rc);
1438 }
1439 EXPORT_SYMBOL_GPL(devm_regulator_put);
1440
1441 static int _regulator_can_change_status(struct regulator_dev *rdev)
1442 {
1443         if (!rdev->constraints)
1444                 return 0;
1445
1446         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1447                 return 1;
1448         else
1449                 return 0;
1450 }
1451
1452 /* locks held by regulator_enable() */
1453 static int _regulator_enable(struct regulator_dev *rdev)
1454 {
1455         int ret, delay;
1456
1457         /* check voltage and requested load before enabling */
1458         if (rdev->constraints &&
1459             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1460                 drms_uA_update(rdev);
1461
1462         if (rdev->use_count == 0) {
1463                 /* The regulator may on if it's not switchable or left on */
1464                 ret = _regulator_is_enabled(rdev);
1465                 if (ret == -EINVAL || ret == 0) {
1466                         if (!_regulator_can_change_status(rdev))
1467                                 return -EPERM;
1468
1469                         if (!rdev->desc->ops->enable)
1470                                 return -EINVAL;
1471
1472                         /* Query before enabling in case configuration
1473                          * dependent.  */
1474                         ret = _regulator_get_enable_time(rdev);
1475                         if (ret >= 0) {
1476                                 delay = ret;
1477                         } else {
1478                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1479                                            ret);
1480                                 delay = 0;
1481                         }
1482
1483                         trace_regulator_enable(rdev_get_name(rdev));
1484
1485                         /* Allow the regulator to ramp; it would be useful
1486                          * to extend this for bulk operations so that the
1487                          * regulators can ramp together.  */
1488                         ret = rdev->desc->ops->enable(rdev);
1489                         if (ret < 0)
1490                                 return ret;
1491
1492                         trace_regulator_enable_delay(rdev_get_name(rdev));
1493
1494                         if (delay >= 1000) {
1495                                 mdelay(delay / 1000);
1496                                 udelay(delay % 1000);
1497                         } else if (delay) {
1498                                 udelay(delay);
1499                         }
1500
1501                         trace_regulator_enable_complete(rdev_get_name(rdev));
1502
1503                 } else if (ret < 0) {
1504                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1505                         return ret;
1506                 }
1507                 /* Fallthrough on positive return values - already enabled */
1508         }
1509
1510         rdev->use_count++;
1511
1512         return 0;
1513 }
1514
1515 /**
1516  * regulator_enable - enable regulator output
1517  * @regulator: regulator source
1518  *
1519  * Request that the regulator be enabled with the regulator output at
1520  * the predefined voltage or current value.  Calls to regulator_enable()
1521  * must be balanced with calls to regulator_disable().
1522  *
1523  * NOTE: the output value can be set by other drivers, boot loader or may be
1524  * hardwired in the regulator.
1525  */
1526 int regulator_enable(struct regulator *regulator)
1527 {
1528         struct regulator_dev *rdev = regulator->rdev;
1529         int ret = 0;
1530
1531         if (rdev->supply) {
1532                 ret = regulator_enable(rdev->supply);
1533                 if (ret != 0)
1534                         return ret;
1535         }
1536
1537         mutex_lock(&rdev->mutex);
1538         ret = _regulator_enable(rdev);
1539         mutex_unlock(&rdev->mutex);
1540
1541         if (ret != 0 && rdev->supply)
1542                 regulator_disable(rdev->supply);
1543
1544         return ret;
1545 }
1546 EXPORT_SYMBOL_GPL(regulator_enable);
1547
1548 /* locks held by regulator_disable() */
1549 static int _regulator_disable(struct regulator_dev *rdev)
1550 {
1551         int ret = 0;
1552
1553         if (WARN(rdev->use_count <= 0,
1554                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1555                 return -EIO;
1556
1557         /* are we the last user and permitted to disable ? */
1558         if (rdev->use_count == 1 &&
1559             (rdev->constraints && !rdev->constraints->always_on)) {
1560
1561                 /* we are last user */
1562                 if (_regulator_can_change_status(rdev) &&
1563                     rdev->desc->ops->disable) {
1564                         trace_regulator_disable(rdev_get_name(rdev));
1565
1566                         ret = rdev->desc->ops->disable(rdev);
1567                         if (ret < 0) {
1568                                 rdev_err(rdev, "failed to disable\n");
1569                                 return ret;
1570                         }
1571
1572                         trace_regulator_disable_complete(rdev_get_name(rdev));
1573
1574                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1575                                              NULL);
1576                 }
1577
1578                 rdev->use_count = 0;
1579         } else if (rdev->use_count > 1) {
1580
1581                 if (rdev->constraints &&
1582                         (rdev->constraints->valid_ops_mask &
1583                         REGULATOR_CHANGE_DRMS))
1584                         drms_uA_update(rdev);
1585
1586                 rdev->use_count--;
1587         }
1588
1589         return ret;
1590 }
1591
1592 /**
1593  * regulator_disable - disable regulator output
1594  * @regulator: regulator source
1595  *
1596  * Disable the regulator output voltage or current.  Calls to
1597  * regulator_enable() must be balanced with calls to
1598  * regulator_disable().
1599  *
1600  * NOTE: this will only disable the regulator output if no other consumer
1601  * devices have it enabled, the regulator device supports disabling and
1602  * machine constraints permit this operation.
1603  */
1604 int regulator_disable(struct regulator *regulator)
1605 {
1606         struct regulator_dev *rdev = regulator->rdev;
1607         int ret = 0;
1608
1609         mutex_lock(&rdev->mutex);
1610         ret = _regulator_disable(rdev);
1611         mutex_unlock(&rdev->mutex);
1612
1613         if (ret == 0 && rdev->supply)
1614                 regulator_disable(rdev->supply);
1615
1616         return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(regulator_disable);
1619
1620 /* locks held by regulator_force_disable() */
1621 static int _regulator_force_disable(struct regulator_dev *rdev)
1622 {
1623         int ret = 0;
1624
1625         /* force disable */
1626         if (rdev->desc->ops->disable) {
1627                 /* ah well, who wants to live forever... */
1628                 ret = rdev->desc->ops->disable(rdev);
1629                 if (ret < 0) {
1630                         rdev_err(rdev, "failed to force disable\n");
1631                         return ret;
1632                 }
1633                 /* notify other consumers that power has been forced off */
1634                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1635                         REGULATOR_EVENT_DISABLE, NULL);
1636         }
1637
1638         return ret;
1639 }
1640
1641 /**
1642  * regulator_force_disable - force disable regulator output
1643  * @regulator: regulator source
1644  *
1645  * Forcibly disable the regulator output voltage or current.
1646  * NOTE: this *will* disable the regulator output even if other consumer
1647  * devices have it enabled. This should be used for situations when device
1648  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1649  */
1650 int regulator_force_disable(struct regulator *regulator)
1651 {
1652         struct regulator_dev *rdev = regulator->rdev;
1653         int ret;
1654
1655         mutex_lock(&rdev->mutex);
1656         regulator->uA_load = 0;
1657         ret = _regulator_force_disable(regulator->rdev);
1658         mutex_unlock(&rdev->mutex);
1659
1660         if (rdev->supply)
1661                 while (rdev->open_count--)
1662                         regulator_disable(rdev->supply);
1663
1664         return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_force_disable);
1667
1668 static void regulator_disable_work(struct work_struct *work)
1669 {
1670         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1671                                                   disable_work.work);
1672         int count, i, ret;
1673
1674         mutex_lock(&rdev->mutex);
1675
1676         BUG_ON(!rdev->deferred_disables);
1677
1678         count = rdev->deferred_disables;
1679         rdev->deferred_disables = 0;
1680
1681         for (i = 0; i < count; i++) {
1682                 ret = _regulator_disable(rdev);
1683                 if (ret != 0)
1684                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1685         }
1686
1687         mutex_unlock(&rdev->mutex);
1688
1689         if (rdev->supply) {
1690                 for (i = 0; i < count; i++) {
1691                         ret = regulator_disable(rdev->supply);
1692                         if (ret != 0) {
1693                                 rdev_err(rdev,
1694                                          "Supply disable failed: %d\n", ret);
1695                         }
1696                 }
1697         }
1698 }
1699
1700 /**
1701  * regulator_disable_deferred - disable regulator output with delay
1702  * @regulator: regulator source
1703  * @ms: miliseconds until the regulator is disabled
1704  *
1705  * Execute regulator_disable() on the regulator after a delay.  This
1706  * is intended for use with devices that require some time to quiesce.
1707  *
1708  * NOTE: this will only disable the regulator output if no other consumer
1709  * devices have it enabled, the regulator device supports disabling and
1710  * machine constraints permit this operation.
1711  */
1712 int regulator_disable_deferred(struct regulator *regulator, int ms)
1713 {
1714         struct regulator_dev *rdev = regulator->rdev;
1715         int ret;
1716
1717         mutex_lock(&rdev->mutex);
1718         rdev->deferred_disables++;
1719         mutex_unlock(&rdev->mutex);
1720
1721         ret = schedule_delayed_work(&rdev->disable_work,
1722                                     msecs_to_jiffies(ms));
1723         if (ret < 0)
1724                 return ret;
1725         else
1726                 return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1729
1730 static int _regulator_is_enabled(struct regulator_dev *rdev)
1731 {
1732         /* If we don't know then assume that the regulator is always on */
1733         if (!rdev->desc->ops->is_enabled)
1734                 return 1;
1735
1736         return rdev->desc->ops->is_enabled(rdev);
1737 }
1738
1739 /**
1740  * regulator_is_enabled - is the regulator output enabled
1741  * @regulator: regulator source
1742  *
1743  * Returns positive if the regulator driver backing the source/client
1744  * has requested that the device be enabled, zero if it hasn't, else a
1745  * negative errno code.
1746  *
1747  * Note that the device backing this regulator handle can have multiple
1748  * users, so it might be enabled even if regulator_enable() was never
1749  * called for this particular source.
1750  */
1751 int regulator_is_enabled(struct regulator *regulator)
1752 {
1753         int ret;
1754
1755         mutex_lock(&regulator->rdev->mutex);
1756         ret = _regulator_is_enabled(regulator->rdev);
1757         mutex_unlock(&regulator->rdev->mutex);
1758
1759         return ret;
1760 }
1761 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1762
1763 /**
1764  * regulator_count_voltages - count regulator_list_voltage() selectors
1765  * @regulator: regulator source
1766  *
1767  * Returns number of selectors, or negative errno.  Selectors are
1768  * numbered starting at zero, and typically correspond to bitfields
1769  * in hardware registers.
1770  */
1771 int regulator_count_voltages(struct regulator *regulator)
1772 {
1773         struct regulator_dev    *rdev = regulator->rdev;
1774
1775         return rdev->desc->n_voltages ? : -EINVAL;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1778
1779 /**
1780  * regulator_list_voltage - enumerate supported voltages
1781  * @regulator: regulator source
1782  * @selector: identify voltage to list
1783  * Context: can sleep
1784  *
1785  * Returns a voltage that can be passed to @regulator_set_voltage(),
1786  * zero if this selector code can't be used on this system, or a
1787  * negative errno.
1788  */
1789 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1790 {
1791         struct regulator_dev    *rdev = regulator->rdev;
1792         struct regulator_ops    *ops = rdev->desc->ops;
1793         int                     ret;
1794
1795         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1796                 return -EINVAL;
1797
1798         mutex_lock(&rdev->mutex);
1799         ret = ops->list_voltage(rdev, selector);
1800         mutex_unlock(&rdev->mutex);
1801
1802         if (ret > 0) {
1803                 if (ret < rdev->constraints->min_uV)
1804                         ret = 0;
1805                 else if (ret > rdev->constraints->max_uV)
1806                         ret = 0;
1807         }
1808
1809         return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1812
1813 /**
1814  * regulator_is_supported_voltage - check if a voltage range can be supported
1815  *
1816  * @regulator: Regulator to check.
1817  * @min_uV: Minimum required voltage in uV.
1818  * @max_uV: Maximum required voltage in uV.
1819  *
1820  * Returns a boolean or a negative error code.
1821  */
1822 int regulator_is_supported_voltage(struct regulator *regulator,
1823                                    int min_uV, int max_uV)
1824 {
1825         int i, voltages, ret;
1826
1827         ret = regulator_count_voltages(regulator);
1828         if (ret < 0)
1829                 return ret;
1830         voltages = ret;
1831
1832         for (i = 0; i < voltages; i++) {
1833                 ret = regulator_list_voltage(regulator, i);
1834
1835                 if (ret >= min_uV && ret <= max_uV)
1836                         return 1;
1837         }
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1842
1843 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1844                                      int min_uV, int max_uV)
1845 {
1846         int ret;
1847         int delay = 0;
1848         unsigned int selector;
1849
1850         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1851
1852         min_uV += rdev->constraints->uV_offset;
1853         max_uV += rdev->constraints->uV_offset;
1854
1855         if (rdev->desc->ops->set_voltage) {
1856                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1857                                                    &selector);
1858
1859                 if (rdev->desc->ops->list_voltage)
1860                         selector = rdev->desc->ops->list_voltage(rdev,
1861                                                                  selector);
1862                 else
1863                         selector = -1;
1864         } else if (rdev->desc->ops->set_voltage_sel) {
1865                 int best_val = INT_MAX;
1866                 int i;
1867
1868                 selector = 0;
1869
1870                 /* Find the smallest voltage that falls within the specified
1871                  * range.
1872                  */
1873                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1874                         ret = rdev->desc->ops->list_voltage(rdev, i);
1875                         if (ret < 0)
1876                                 continue;
1877
1878                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1879                                 best_val = ret;
1880                                 selector = i;
1881                         }
1882                 }
1883
1884                 /*
1885                  * If we can't obtain the old selector there is not enough
1886                  * info to call set_voltage_time_sel().
1887                  */
1888                 if (rdev->desc->ops->set_voltage_time_sel &&
1889                     rdev->desc->ops->get_voltage_sel) {
1890                         unsigned int old_selector = 0;
1891
1892                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1893                         if (ret < 0)
1894                                 return ret;
1895                         old_selector = ret;
1896                         ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1897                                                 old_selector, selector);
1898                         if (ret < 0)
1899                                 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
1900                         else
1901                                 delay = ret;
1902                 }
1903
1904                 if (best_val != INT_MAX) {
1905                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1906                         selector = best_val;
1907                 } else {
1908                         ret = -EINVAL;
1909                 }
1910         } else {
1911                 ret = -EINVAL;
1912         }
1913
1914         /* Insert any necessary delays */
1915         if (delay >= 1000) {
1916                 mdelay(delay / 1000);
1917                 udelay(delay % 1000);
1918         } else if (delay) {
1919                 udelay(delay);
1920         }
1921
1922         if (ret == 0)
1923                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1924                                      NULL);
1925
1926         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1927
1928         return ret;
1929 }
1930
1931 /**
1932  * regulator_set_voltage - set regulator output voltage
1933  * @regulator: regulator source
1934  * @min_uV: Minimum required voltage in uV
1935  * @max_uV: Maximum acceptable voltage in uV
1936  *
1937  * Sets a voltage regulator to the desired output voltage. This can be set
1938  * during any regulator state. IOW, regulator can be disabled or enabled.
1939  *
1940  * If the regulator is enabled then the voltage will change to the new value
1941  * immediately otherwise if the regulator is disabled the regulator will
1942  * output at the new voltage when enabled.
1943  *
1944  * NOTE: If the regulator is shared between several devices then the lowest
1945  * request voltage that meets the system constraints will be used.
1946  * Regulator system constraints must be set for this regulator before
1947  * calling this function otherwise this call will fail.
1948  */
1949 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1950 {
1951         struct regulator_dev *rdev = regulator->rdev;
1952         int ret = 0;
1953
1954         mutex_lock(&rdev->mutex);
1955
1956         /* If we're setting the same range as last time the change
1957          * should be a noop (some cpufreq implementations use the same
1958          * voltage for multiple frequencies, for example).
1959          */
1960         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1961                 goto out;
1962
1963         /* sanity check */
1964         if (!rdev->desc->ops->set_voltage &&
1965             !rdev->desc->ops->set_voltage_sel) {
1966                 ret = -EINVAL;
1967                 goto out;
1968         }
1969
1970         /* constraints check */
1971         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1972         if (ret < 0)
1973                 goto out;
1974         regulator->min_uV = min_uV;
1975         regulator->max_uV = max_uV;
1976
1977         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1978         if (ret < 0)
1979                 goto out;
1980
1981         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1982
1983 out:
1984         mutex_unlock(&rdev->mutex);
1985         return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1988
1989 /**
1990  * regulator_set_voltage_time - get raise/fall time
1991  * @regulator: regulator source
1992  * @old_uV: starting voltage in microvolts
1993  * @new_uV: target voltage in microvolts
1994  *
1995  * Provided with the starting and ending voltage, this function attempts to
1996  * calculate the time in microseconds required to rise or fall to this new
1997  * voltage.
1998  */
1999 int regulator_set_voltage_time(struct regulator *regulator,
2000                                int old_uV, int new_uV)
2001 {
2002         struct regulator_dev    *rdev = regulator->rdev;
2003         struct regulator_ops    *ops = rdev->desc->ops;
2004         int old_sel = -1;
2005         int new_sel = -1;
2006         int voltage;
2007         int i;
2008
2009         /* Currently requires operations to do this */
2010         if (!ops->list_voltage || !ops->set_voltage_time_sel
2011             || !rdev->desc->n_voltages)
2012                 return -EINVAL;
2013
2014         for (i = 0; i < rdev->desc->n_voltages; i++) {
2015                 /* We only look for exact voltage matches here */
2016                 voltage = regulator_list_voltage(regulator, i);
2017                 if (voltage < 0)
2018                         return -EINVAL;
2019                 if (voltage == 0)
2020                         continue;
2021                 if (voltage == old_uV)
2022                         old_sel = i;
2023                 if (voltage == new_uV)
2024                         new_sel = i;
2025         }
2026
2027         if (old_sel < 0 || new_sel < 0)
2028                 return -EINVAL;
2029
2030         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2033
2034 /**
2035  * regulator_sync_voltage - re-apply last regulator output voltage
2036  * @regulator: regulator source
2037  *
2038  * Re-apply the last configured voltage.  This is intended to be used
2039  * where some external control source the consumer is cooperating with
2040  * has caused the configured voltage to change.
2041  */
2042 int regulator_sync_voltage(struct regulator *regulator)
2043 {
2044         struct regulator_dev *rdev = regulator->rdev;
2045         int ret, min_uV, max_uV;
2046
2047         mutex_lock(&rdev->mutex);
2048
2049         if (!rdev->desc->ops->set_voltage &&
2050             !rdev->desc->ops->set_voltage_sel) {
2051                 ret = -EINVAL;
2052                 goto out;
2053         }
2054
2055         /* This is only going to work if we've had a voltage configured. */
2056         if (!regulator->min_uV && !regulator->max_uV) {
2057                 ret = -EINVAL;
2058                 goto out;
2059         }
2060
2061         min_uV = regulator->min_uV;
2062         max_uV = regulator->max_uV;
2063
2064         /* This should be a paranoia check... */
2065         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2066         if (ret < 0)
2067                 goto out;
2068
2069         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2070         if (ret < 0)
2071                 goto out;
2072
2073         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2074
2075 out:
2076         mutex_unlock(&rdev->mutex);
2077         return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2080
2081 static int _regulator_get_voltage(struct regulator_dev *rdev)
2082 {
2083         int sel, ret;
2084
2085         if (rdev->desc->ops->get_voltage_sel) {
2086                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2087                 if (sel < 0)
2088                         return sel;
2089                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2090         } else if (rdev->desc->ops->get_voltage) {
2091                 ret = rdev->desc->ops->get_voltage(rdev);
2092         } else {
2093                 return -EINVAL;
2094         }
2095
2096         if (ret < 0)
2097                 return ret;
2098         return ret - rdev->constraints->uV_offset;
2099 }
2100
2101 /**
2102  * regulator_get_voltage - get regulator output voltage
2103  * @regulator: regulator source
2104  *
2105  * This returns the current regulator voltage in uV.
2106  *
2107  * NOTE: If the regulator is disabled it will return the voltage value. This
2108  * function should not be used to determine regulator state.
2109  */
2110 int regulator_get_voltage(struct regulator *regulator)
2111 {
2112         int ret;
2113
2114         mutex_lock(&regulator->rdev->mutex);
2115
2116         ret = _regulator_get_voltage(regulator->rdev);
2117
2118         mutex_unlock(&regulator->rdev->mutex);
2119
2120         return ret;
2121 }
2122 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2123
2124 /**
2125  * regulator_set_current_limit - set regulator output current limit
2126  * @regulator: regulator source
2127  * @min_uA: Minimuum supported current in uA
2128  * @max_uA: Maximum supported current in uA
2129  *
2130  * Sets current sink to the desired output current. This can be set during
2131  * any regulator state. IOW, regulator can be disabled or enabled.
2132  *
2133  * If the regulator is enabled then the current will change to the new value
2134  * immediately otherwise if the regulator is disabled the regulator will
2135  * output at the new current when enabled.
2136  *
2137  * NOTE: Regulator system constraints must be set for this regulator before
2138  * calling this function otherwise this call will fail.
2139  */
2140 int regulator_set_current_limit(struct regulator *regulator,
2141                                int min_uA, int max_uA)
2142 {
2143         struct regulator_dev *rdev = regulator->rdev;
2144         int ret;
2145
2146         mutex_lock(&rdev->mutex);
2147
2148         /* sanity check */
2149         if (!rdev->desc->ops->set_current_limit) {
2150                 ret = -EINVAL;
2151                 goto out;
2152         }
2153
2154         /* constraints check */
2155         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2156         if (ret < 0)
2157                 goto out;
2158
2159         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2160 out:
2161         mutex_unlock(&rdev->mutex);
2162         return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2165
2166 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2167 {
2168         int ret;
2169
2170         mutex_lock(&rdev->mutex);
2171
2172         /* sanity check */
2173         if (!rdev->desc->ops->get_current_limit) {
2174                 ret = -EINVAL;
2175                 goto out;
2176         }
2177
2178         ret = rdev->desc->ops->get_current_limit(rdev);
2179 out:
2180         mutex_unlock(&rdev->mutex);
2181         return ret;
2182 }
2183
2184 /**
2185  * regulator_get_current_limit - get regulator output current
2186  * @regulator: regulator source
2187  *
2188  * This returns the current supplied by the specified current sink in uA.
2189  *
2190  * NOTE: If the regulator is disabled it will return the current value. This
2191  * function should not be used to determine regulator state.
2192  */
2193 int regulator_get_current_limit(struct regulator *regulator)
2194 {
2195         return _regulator_get_current_limit(regulator->rdev);
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2198
2199 /**
2200  * regulator_set_mode - set regulator operating mode
2201  * @regulator: regulator source
2202  * @mode: operating mode - one of the REGULATOR_MODE constants
2203  *
2204  * Set regulator operating mode to increase regulator efficiency or improve
2205  * regulation performance.
2206  *
2207  * NOTE: Regulator system constraints must be set for this regulator before
2208  * calling this function otherwise this call will fail.
2209  */
2210 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2211 {
2212         struct regulator_dev *rdev = regulator->rdev;
2213         int ret;
2214         int regulator_curr_mode;
2215
2216         mutex_lock(&rdev->mutex);
2217
2218         /* sanity check */
2219         if (!rdev->desc->ops->set_mode) {
2220                 ret = -EINVAL;
2221                 goto out;
2222         }
2223
2224         /* return if the same mode is requested */
2225         if (rdev->desc->ops->get_mode) {
2226                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2227                 if (regulator_curr_mode == mode) {
2228                         ret = 0;
2229                         goto out;
2230                 }
2231         }
2232
2233         /* constraints check */
2234         ret = regulator_mode_constrain(rdev, &mode);
2235         if (ret < 0)
2236                 goto out;
2237
2238         ret = rdev->desc->ops->set_mode(rdev, mode);
2239 out:
2240         mutex_unlock(&rdev->mutex);
2241         return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(regulator_set_mode);
2244
2245 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2246 {
2247         int ret;
2248
2249         mutex_lock(&rdev->mutex);
2250
2251         /* sanity check */
2252         if (!rdev->desc->ops->get_mode) {
2253                 ret = -EINVAL;
2254                 goto out;
2255         }
2256
2257         ret = rdev->desc->ops->get_mode(rdev);
2258 out:
2259         mutex_unlock(&rdev->mutex);
2260         return ret;
2261 }
2262
2263 /**
2264  * regulator_get_mode - get regulator operating mode
2265  * @regulator: regulator source
2266  *
2267  * Get the current regulator operating mode.
2268  */
2269 unsigned int regulator_get_mode(struct regulator *regulator)
2270 {
2271         return _regulator_get_mode(regulator->rdev);
2272 }
2273 EXPORT_SYMBOL_GPL(regulator_get_mode);
2274
2275 /**
2276  * regulator_set_optimum_mode - set regulator optimum operating mode
2277  * @regulator: regulator source
2278  * @uA_load: load current
2279  *
2280  * Notifies the regulator core of a new device load. This is then used by
2281  * DRMS (if enabled by constraints) to set the most efficient regulator
2282  * operating mode for the new regulator loading.
2283  *
2284  * Consumer devices notify their supply regulator of the maximum power
2285  * they will require (can be taken from device datasheet in the power
2286  * consumption tables) when they change operational status and hence power
2287  * state. Examples of operational state changes that can affect power
2288  * consumption are :-
2289  *
2290  *    o Device is opened / closed.
2291  *    o Device I/O is about to begin or has just finished.
2292  *    o Device is idling in between work.
2293  *
2294  * This information is also exported via sysfs to userspace.
2295  *
2296  * DRMS will sum the total requested load on the regulator and change
2297  * to the most efficient operating mode if platform constraints allow.
2298  *
2299  * Returns the new regulator mode or error.
2300  */
2301 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2302 {
2303         struct regulator_dev *rdev = regulator->rdev;
2304         struct regulator *consumer;
2305         int ret, output_uV, input_uV, total_uA_load = 0;
2306         unsigned int mode;
2307
2308         mutex_lock(&rdev->mutex);
2309
2310         /*
2311          * first check to see if we can set modes at all, otherwise just
2312          * tell the consumer everything is OK.
2313          */
2314         regulator->uA_load = uA_load;
2315         ret = regulator_check_drms(rdev);
2316         if (ret < 0) {
2317                 ret = 0;
2318                 goto out;
2319         }
2320
2321         if (!rdev->desc->ops->get_optimum_mode)
2322                 goto out;
2323
2324         /*
2325          * we can actually do this so any errors are indicators of
2326          * potential real failure.
2327          */
2328         ret = -EINVAL;
2329
2330         /* get output voltage */
2331         output_uV = _regulator_get_voltage(rdev);
2332         if (output_uV <= 0) {
2333                 rdev_err(rdev, "invalid output voltage found\n");
2334                 goto out;
2335         }
2336
2337         /* get input voltage */
2338         input_uV = 0;
2339         if (rdev->supply)
2340                 input_uV = regulator_get_voltage(rdev->supply);
2341         if (input_uV <= 0)
2342                 input_uV = rdev->constraints->input_uV;
2343         if (input_uV <= 0) {
2344                 rdev_err(rdev, "invalid input voltage found\n");
2345                 goto out;
2346         }
2347
2348         /* calc total requested load for this regulator */
2349         list_for_each_entry(consumer, &rdev->consumer_list, list)
2350                 total_uA_load += consumer->uA_load;
2351
2352         mode = rdev->desc->ops->get_optimum_mode(rdev,
2353                                                  input_uV, output_uV,
2354                                                  total_uA_load);
2355         ret = regulator_mode_constrain(rdev, &mode);
2356         if (ret < 0) {
2357                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2358                          total_uA_load, input_uV, output_uV);
2359                 goto out;
2360         }
2361
2362         ret = rdev->desc->ops->set_mode(rdev, mode);
2363         if (ret < 0) {
2364                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2365                 goto out;
2366         }
2367         ret = mode;
2368 out:
2369         mutex_unlock(&rdev->mutex);
2370         return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2373
2374 /**
2375  * regulator_register_notifier - register regulator event notifier
2376  * @regulator: regulator source
2377  * @nb: notifier block
2378  *
2379  * Register notifier block to receive regulator events.
2380  */
2381 int regulator_register_notifier(struct regulator *regulator,
2382                               struct notifier_block *nb)
2383 {
2384         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2385                                                 nb);
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2388
2389 /**
2390  * regulator_unregister_notifier - unregister regulator event notifier
2391  * @regulator: regulator source
2392  * @nb: notifier block
2393  *
2394  * Unregister regulator event notifier block.
2395  */
2396 int regulator_unregister_notifier(struct regulator *regulator,
2397                                 struct notifier_block *nb)
2398 {
2399         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2400                                                   nb);
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2403
2404 /* notify regulator consumers and downstream regulator consumers.
2405  * Note mutex must be held by caller.
2406  */
2407 static void _notifier_call_chain(struct regulator_dev *rdev,
2408                                   unsigned long event, void *data)
2409 {
2410         /* call rdev chain first */
2411         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2412 }
2413
2414 /**
2415  * regulator_bulk_get - get multiple regulator consumers
2416  *
2417  * @dev:           Device to supply
2418  * @num_consumers: Number of consumers to register
2419  * @consumers:     Configuration of consumers; clients are stored here.
2420  *
2421  * @return 0 on success, an errno on failure.
2422  *
2423  * This helper function allows drivers to get several regulator
2424  * consumers in one operation.  If any of the regulators cannot be
2425  * acquired then any regulators that were allocated will be freed
2426  * before returning to the caller.
2427  */
2428 int regulator_bulk_get(struct device *dev, int num_consumers,
2429                        struct regulator_bulk_data *consumers)
2430 {
2431         int i;
2432         int ret;
2433
2434         for (i = 0; i < num_consumers; i++)
2435                 consumers[i].consumer = NULL;
2436
2437         for (i = 0; i < num_consumers; i++) {
2438                 consumers[i].consumer = regulator_get(dev,
2439                                                       consumers[i].supply);
2440                 if (IS_ERR(consumers[i].consumer)) {
2441                         ret = PTR_ERR(consumers[i].consumer);
2442                         dev_err(dev, "Failed to get supply '%s': %d\n",
2443                                 consumers[i].supply, ret);
2444                         consumers[i].consumer = NULL;
2445                         goto err;
2446                 }
2447         }
2448
2449         return 0;
2450
2451 err:
2452         while (--i >= 0)
2453                 regulator_put(consumers[i].consumer);
2454
2455         return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2458
2459 /**
2460  * devm_regulator_bulk_get - managed get multiple regulator consumers
2461  *
2462  * @dev:           Device to supply
2463  * @num_consumers: Number of consumers to register
2464  * @consumers:     Configuration of consumers; clients are stored here.
2465  *
2466  * @return 0 on success, an errno on failure.
2467  *
2468  * This helper function allows drivers to get several regulator
2469  * consumers in one operation with management, the regulators will
2470  * automatically be freed when the device is unbound.  If any of the
2471  * regulators cannot be acquired then any regulators that were
2472  * allocated will be freed before returning to the caller.
2473  */
2474 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2475                             struct regulator_bulk_data *consumers)
2476 {
2477         int i;
2478         int ret;
2479
2480         for (i = 0; i < num_consumers; i++)
2481                 consumers[i].consumer = NULL;
2482
2483         for (i = 0; i < num_consumers; i++) {
2484                 consumers[i].consumer = devm_regulator_get(dev,
2485                                                            consumers[i].supply);
2486                 if (IS_ERR(consumers[i].consumer)) {
2487                         ret = PTR_ERR(consumers[i].consumer);
2488                         dev_err(dev, "Failed to get supply '%s': %d\n",
2489                                 consumers[i].supply, ret);
2490                         consumers[i].consumer = NULL;
2491                         goto err;
2492                 }
2493         }
2494
2495         return 0;
2496
2497 err:
2498         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2499                 devm_regulator_put(consumers[i].consumer);
2500
2501         return ret;
2502 }
2503 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2504
2505 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2506 {
2507         struct regulator_bulk_data *bulk = data;
2508
2509         bulk->ret = regulator_enable(bulk->consumer);
2510 }
2511
2512 /**
2513  * regulator_bulk_enable - enable multiple regulator consumers
2514  *
2515  * @num_consumers: Number of consumers
2516  * @consumers:     Consumer data; clients are stored here.
2517  * @return         0 on success, an errno on failure
2518  *
2519  * This convenience API allows consumers to enable multiple regulator
2520  * clients in a single API call.  If any consumers cannot be enabled
2521  * then any others that were enabled will be disabled again prior to
2522  * return.
2523  */
2524 int regulator_bulk_enable(int num_consumers,
2525                           struct regulator_bulk_data *consumers)
2526 {
2527         LIST_HEAD(async_domain);
2528         int i;
2529         int ret = 0;
2530
2531         for (i = 0; i < num_consumers; i++)
2532                 async_schedule_domain(regulator_bulk_enable_async,
2533                                       &consumers[i], &async_domain);
2534
2535         async_synchronize_full_domain(&async_domain);
2536
2537         /* If any consumer failed we need to unwind any that succeeded */
2538         for (i = 0; i < num_consumers; i++) {
2539                 if (consumers[i].ret != 0) {
2540                         ret = consumers[i].ret;
2541                         goto err;
2542                 }
2543         }
2544
2545         return 0;
2546
2547 err:
2548         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2549         while (--i >= 0)
2550                 regulator_disable(consumers[i].consumer);
2551
2552         return ret;
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2555
2556 /**
2557  * regulator_bulk_disable - disable multiple regulator consumers
2558  *
2559  * @num_consumers: Number of consumers
2560  * @consumers:     Consumer data; clients are stored here.
2561  * @return         0 on success, an errno on failure
2562  *
2563  * This convenience API allows consumers to disable multiple regulator
2564  * clients in a single API call.  If any consumers cannot be disabled
2565  * then any others that were disabled will be enabled again prior to
2566  * return.
2567  */
2568 int regulator_bulk_disable(int num_consumers,
2569                            struct regulator_bulk_data *consumers)
2570 {
2571         int i;
2572         int ret;
2573
2574         for (i = num_consumers - 1; i >= 0; --i) {
2575                 ret = regulator_disable(consumers[i].consumer);
2576                 if (ret != 0)
2577                         goto err;
2578         }
2579
2580         return 0;
2581
2582 err:
2583         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2584         for (++i; i < num_consumers; ++i)
2585                 regulator_enable(consumers[i].consumer);
2586
2587         return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2590
2591 /**
2592  * regulator_bulk_force_disable - force disable multiple regulator consumers
2593  *
2594  * @num_consumers: Number of consumers
2595  * @consumers:     Consumer data; clients are stored here.
2596  * @return         0 on success, an errno on failure
2597  *
2598  * This convenience API allows consumers to forcibly disable multiple regulator
2599  * clients in a single API call.
2600  * NOTE: This should be used for situations when device damage will
2601  * likely occur if the regulators are not disabled (e.g. over temp).
2602  * Although regulator_force_disable function call for some consumers can
2603  * return error numbers, the function is called for all consumers.
2604  */
2605 int regulator_bulk_force_disable(int num_consumers,
2606                            struct regulator_bulk_data *consumers)
2607 {
2608         int i;
2609         int ret;
2610
2611         for (i = 0; i < num_consumers; i++)
2612                 consumers[i].ret =
2613                             regulator_force_disable(consumers[i].consumer);
2614
2615         for (i = 0; i < num_consumers; i++) {
2616                 if (consumers[i].ret != 0) {
2617                         ret = consumers[i].ret;
2618                         goto out;
2619                 }
2620         }
2621
2622         return 0;
2623 out:
2624         return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2627
2628 /**
2629  * regulator_bulk_free - free multiple regulator consumers
2630  *
2631  * @num_consumers: Number of consumers
2632  * @consumers:     Consumer data; clients are stored here.
2633  *
2634  * This convenience API allows consumers to free multiple regulator
2635  * clients in a single API call.
2636  */
2637 void regulator_bulk_free(int num_consumers,
2638                          struct regulator_bulk_data *consumers)
2639 {
2640         int i;
2641
2642         for (i = 0; i < num_consumers; i++) {
2643                 regulator_put(consumers[i].consumer);
2644                 consumers[i].consumer = NULL;
2645         }
2646 }
2647 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2648
2649 /**
2650  * regulator_notifier_call_chain - call regulator event notifier
2651  * @rdev: regulator source
2652  * @event: notifier block
2653  * @data: callback-specific data.
2654  *
2655  * Called by regulator drivers to notify clients a regulator event has
2656  * occurred. We also notify regulator clients downstream.
2657  * Note lock must be held by caller.
2658  */
2659 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2660                                   unsigned long event, void *data)
2661 {
2662         _notifier_call_chain(rdev, event, data);
2663         return NOTIFY_DONE;
2664
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2667
2668 /**
2669  * regulator_mode_to_status - convert a regulator mode into a status
2670  *
2671  * @mode: Mode to convert
2672  *
2673  * Convert a regulator mode into a status.
2674  */
2675 int regulator_mode_to_status(unsigned int mode)
2676 {
2677         switch (mode) {
2678         case REGULATOR_MODE_FAST:
2679                 return REGULATOR_STATUS_FAST;
2680         case REGULATOR_MODE_NORMAL:
2681                 return REGULATOR_STATUS_NORMAL;
2682         case REGULATOR_MODE_IDLE:
2683                 return REGULATOR_STATUS_IDLE;
2684         case REGULATOR_STATUS_STANDBY:
2685                 return REGULATOR_STATUS_STANDBY;
2686         default:
2687                 return 0;
2688         }
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2691
2692 /*
2693  * To avoid cluttering sysfs (and memory) with useless state, only
2694  * create attributes that can be meaningfully displayed.
2695  */
2696 static int add_regulator_attributes(struct regulator_dev *rdev)
2697 {
2698         struct device           *dev = &rdev->dev;
2699         struct regulator_ops    *ops = rdev->desc->ops;
2700         int                     status = 0;
2701
2702         /* some attributes need specific methods to be displayed */
2703         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2704             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2705                 status = device_create_file(dev, &dev_attr_microvolts);
2706                 if (status < 0)
2707                         return status;
2708         }
2709         if (ops->get_current_limit) {
2710                 status = device_create_file(dev, &dev_attr_microamps);
2711                 if (status < 0)
2712                         return status;
2713         }
2714         if (ops->get_mode) {
2715                 status = device_create_file(dev, &dev_attr_opmode);
2716                 if (status < 0)
2717                         return status;
2718         }
2719         if (ops->is_enabled) {
2720                 status = device_create_file(dev, &dev_attr_state);
2721                 if (status < 0)
2722                         return status;
2723         }
2724         if (ops->get_status) {
2725                 status = device_create_file(dev, &dev_attr_status);
2726                 if (status < 0)
2727                         return status;
2728         }
2729
2730         /* some attributes are type-specific */
2731         if (rdev->desc->type == REGULATOR_CURRENT) {
2732                 status = device_create_file(dev, &dev_attr_requested_microamps);
2733                 if (status < 0)
2734                         return status;
2735         }
2736
2737         /* all the other attributes exist to support constraints;
2738          * don't show them if there are no constraints, or if the
2739          * relevant supporting methods are missing.
2740          */
2741         if (!rdev->constraints)
2742                 return status;
2743
2744         /* constraints need specific supporting methods */
2745         if (ops->set_voltage || ops->set_voltage_sel) {
2746                 status = device_create_file(dev, &dev_attr_min_microvolts);
2747                 if (status < 0)
2748                         return status;
2749                 status = device_create_file(dev, &dev_attr_max_microvolts);
2750                 if (status < 0)
2751                         return status;
2752         }
2753         if (ops->set_current_limit) {
2754                 status = device_create_file(dev, &dev_attr_min_microamps);
2755                 if (status < 0)
2756                         return status;
2757                 status = device_create_file(dev, &dev_attr_max_microamps);
2758                 if (status < 0)
2759                         return status;
2760         }
2761
2762         /* suspend mode constraints need multiple supporting methods */
2763         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2764                 return status;
2765
2766         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2767         if (status < 0)
2768                 return status;
2769         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2770         if (status < 0)
2771                 return status;
2772         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2773         if (status < 0)
2774                 return status;
2775
2776         if (ops->set_suspend_voltage) {
2777                 status = device_create_file(dev,
2778                                 &dev_attr_suspend_standby_microvolts);
2779                 if (status < 0)
2780                         return status;
2781                 status = device_create_file(dev,
2782                                 &dev_attr_suspend_mem_microvolts);
2783                 if (status < 0)
2784                         return status;
2785                 status = device_create_file(dev,
2786                                 &dev_attr_suspend_disk_microvolts);
2787                 if (status < 0)
2788                         return status;
2789         }
2790
2791         if (ops->set_suspend_mode) {
2792                 status = device_create_file(dev,
2793                                 &dev_attr_suspend_standby_mode);
2794                 if (status < 0)
2795                         return status;
2796                 status = device_create_file(dev,
2797                                 &dev_attr_suspend_mem_mode);
2798                 if (status < 0)
2799                         return status;
2800                 status = device_create_file(dev,
2801                                 &dev_attr_suspend_disk_mode);
2802                 if (status < 0)
2803                         return status;
2804         }
2805
2806         return status;
2807 }
2808
2809 static void rdev_init_debugfs(struct regulator_dev *rdev)
2810 {
2811         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2812         if (!rdev->debugfs) {
2813                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2814                 return;
2815         }
2816
2817         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2818                            &rdev->use_count);
2819         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2820                            &rdev->open_count);
2821 }
2822
2823 /**
2824  * regulator_register - register regulator
2825  * @regulator_desc: regulator to register
2826  * @dev: struct device for the regulator
2827  * @init_data: platform provided init data, passed through by driver
2828  * @driver_data: private regulator data
2829  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2830  *           NULL).
2831  *
2832  * Called by regulator drivers to register a regulator.
2833  * Returns 0 on success.
2834  */
2835 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2836         struct device *dev, const struct regulator_init_data *init_data,
2837         void *driver_data, struct device_node *of_node)
2838 {
2839         const struct regulation_constraints *constraints = NULL;
2840         static atomic_t regulator_no = ATOMIC_INIT(0);
2841         struct regulator_dev *rdev;
2842         int ret, i;
2843         const char *supply = NULL;
2844
2845         if (regulator_desc == NULL)
2846                 return ERR_PTR(-EINVAL);
2847
2848         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2849                 return ERR_PTR(-EINVAL);
2850
2851         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2852             regulator_desc->type != REGULATOR_CURRENT)
2853                 return ERR_PTR(-EINVAL);
2854
2855         /* Only one of each should be implemented */
2856         WARN_ON(regulator_desc->ops->get_voltage &&
2857                 regulator_desc->ops->get_voltage_sel);
2858         WARN_ON(regulator_desc->ops->set_voltage &&
2859                 regulator_desc->ops->set_voltage_sel);
2860
2861         /* If we're using selectors we must implement list_voltage. */
2862         if (regulator_desc->ops->get_voltage_sel &&
2863             !regulator_desc->ops->list_voltage) {
2864                 return ERR_PTR(-EINVAL);
2865         }
2866         if (regulator_desc->ops->set_voltage_sel &&
2867             !regulator_desc->ops->list_voltage) {
2868                 return ERR_PTR(-EINVAL);
2869         }
2870
2871         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2872         if (rdev == NULL)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         mutex_lock(&regulator_list_mutex);
2876
2877         mutex_init(&rdev->mutex);
2878         rdev->reg_data = driver_data;
2879         rdev->owner = regulator_desc->owner;
2880         rdev->desc = regulator_desc;
2881         INIT_LIST_HEAD(&rdev->consumer_list);
2882         INIT_LIST_HEAD(&rdev->list);
2883         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2884         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2885
2886         /* preform any regulator specific init */
2887         if (init_data && init_data->regulator_init) {
2888                 ret = init_data->regulator_init(rdev->reg_data);
2889                 if (ret < 0)
2890                         goto clean;
2891         }
2892
2893         /* register with sysfs */
2894         rdev->dev.class = &regulator_class;
2895         rdev->dev.of_node = of_node;
2896         rdev->dev.parent = dev;
2897         dev_set_name(&rdev->dev, "regulator.%d",
2898                      atomic_inc_return(&regulator_no) - 1);
2899         ret = device_register(&rdev->dev);
2900         if (ret != 0) {
2901                 put_device(&rdev->dev);
2902                 goto clean;
2903         }
2904
2905         dev_set_drvdata(&rdev->dev, rdev);
2906
2907         /* set regulator constraints */
2908         if (init_data)
2909                 constraints = &init_data->constraints;
2910
2911         ret = set_machine_constraints(rdev, constraints);
2912         if (ret < 0)
2913                 goto scrub;
2914
2915         /* add attributes supported by this regulator */
2916         ret = add_regulator_attributes(rdev);
2917         if (ret < 0)
2918                 goto scrub;
2919
2920         if (init_data && init_data->supply_regulator)
2921                 supply = init_data->supply_regulator;
2922         else if (regulator_desc->supply_name)
2923                 supply = regulator_desc->supply_name;
2924
2925         if (supply) {
2926                 struct regulator_dev *r;
2927
2928                 r = regulator_dev_lookup(dev, supply);
2929
2930                 if (!r) {
2931                         dev_err(dev, "Failed to find supply %s\n", supply);
2932                         ret = -EPROBE_DEFER;
2933                         goto scrub;
2934                 }
2935
2936                 ret = set_supply(rdev, r);
2937                 if (ret < 0)
2938                         goto scrub;
2939
2940                 /* Enable supply if rail is enabled */
2941                 if (rdev->desc->ops->is_enabled &&
2942                                 rdev->desc->ops->is_enabled(rdev)) {
2943                         ret = regulator_enable(rdev->supply);
2944                         if (ret < 0)
2945                                 goto scrub;
2946                 }
2947         }
2948
2949         /* add consumers devices */
2950         if (init_data) {
2951                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2952                         ret = set_consumer_device_supply(rdev,
2953                                 init_data->consumer_supplies[i].dev_name,
2954                                 init_data->consumer_supplies[i].supply);
2955                         if (ret < 0) {
2956                                 dev_err(dev, "Failed to set supply %s\n",
2957                                         init_data->consumer_supplies[i].supply);
2958                                 goto unset_supplies;
2959                         }
2960                 }
2961         }
2962
2963         list_add(&rdev->list, &regulator_list);
2964
2965         rdev_init_debugfs(rdev);
2966 out:
2967         mutex_unlock(&regulator_list_mutex);
2968         return rdev;
2969
2970 unset_supplies:
2971         unset_regulator_supplies(rdev);
2972
2973 scrub:
2974         kfree(rdev->constraints);
2975         device_unregister(&rdev->dev);
2976         /* device core frees rdev */
2977         rdev = ERR_PTR(ret);
2978         goto out;
2979
2980 clean:
2981         kfree(rdev);
2982         rdev = ERR_PTR(ret);
2983         goto out;
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_register);
2986
2987 /**
2988  * regulator_unregister - unregister regulator
2989  * @rdev: regulator to unregister
2990  *
2991  * Called by regulator drivers to unregister a regulator.
2992  */
2993 void regulator_unregister(struct regulator_dev *rdev)
2994 {
2995         if (rdev == NULL)
2996                 return;
2997
2998         if (rdev->supply)
2999                 regulator_put(rdev->supply);
3000         mutex_lock(&regulator_list_mutex);
3001         debugfs_remove_recursive(rdev->debugfs);
3002         flush_work_sync(&rdev->disable_work.work);
3003         WARN_ON(rdev->open_count);
3004         unset_regulator_supplies(rdev);
3005         list_del(&rdev->list);
3006         kfree(rdev->constraints);
3007         device_unregister(&rdev->dev);
3008         mutex_unlock(&regulator_list_mutex);
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_unregister);
3011
3012 /**
3013  * regulator_suspend_prepare - prepare regulators for system wide suspend
3014  * @state: system suspend state
3015  *
3016  * Configure each regulator with it's suspend operating parameters for state.
3017  * This will usually be called by machine suspend code prior to supending.
3018  */
3019 int regulator_suspend_prepare(suspend_state_t state)
3020 {
3021         struct regulator_dev *rdev;
3022         int ret = 0;
3023
3024         /* ON is handled by regulator active state */
3025         if (state == PM_SUSPEND_ON)
3026                 return -EINVAL;
3027
3028         mutex_lock(&regulator_list_mutex);
3029         list_for_each_entry(rdev, &regulator_list, list) {
3030
3031                 mutex_lock(&rdev->mutex);
3032                 ret = suspend_prepare(rdev, state);
3033                 mutex_unlock(&rdev->mutex);
3034
3035                 if (ret < 0) {
3036                         rdev_err(rdev, "failed to prepare\n");
3037                         goto out;
3038                 }
3039         }
3040 out:
3041         mutex_unlock(&regulator_list_mutex);
3042         return ret;
3043 }
3044 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3045
3046 /**
3047  * regulator_suspend_finish - resume regulators from system wide suspend
3048  *
3049  * Turn on regulators that might be turned off by regulator_suspend_prepare
3050  * and that should be turned on according to the regulators properties.
3051  */
3052 int regulator_suspend_finish(void)
3053 {
3054         struct regulator_dev *rdev;
3055         int ret = 0, error;
3056
3057         mutex_lock(&regulator_list_mutex);
3058         list_for_each_entry(rdev, &regulator_list, list) {
3059                 struct regulator_ops *ops = rdev->desc->ops;
3060
3061                 mutex_lock(&rdev->mutex);
3062                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3063                                 ops->enable) {
3064                         error = ops->enable(rdev);
3065                         if (error)
3066                                 ret = error;
3067                 } else {
3068                         if (!has_full_constraints)
3069                                 goto unlock;
3070                         if (!ops->disable)
3071                                 goto unlock;
3072                         if (ops->is_enabled && !ops->is_enabled(rdev))
3073                                 goto unlock;
3074
3075                         error = ops->disable(rdev);
3076                         if (error)
3077                                 ret = error;
3078                 }
3079 unlock:
3080                 mutex_unlock(&rdev->mutex);
3081         }
3082         mutex_unlock(&regulator_list_mutex);
3083         return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3086
3087 /**
3088  * regulator_has_full_constraints - the system has fully specified constraints
3089  *
3090  * Calling this function will cause the regulator API to disable all
3091  * regulators which have a zero use count and don't have an always_on
3092  * constraint in a late_initcall.
3093  *
3094  * The intention is that this will become the default behaviour in a
3095  * future kernel release so users are encouraged to use this facility
3096  * now.
3097  */
3098 void regulator_has_full_constraints(void)
3099 {
3100         has_full_constraints = 1;
3101 }
3102 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3103
3104 /**
3105  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3106  *
3107  * Calling this function will cause the regulator API to provide a
3108  * dummy regulator to consumers if no physical regulator is found,
3109  * allowing most consumers to proceed as though a regulator were
3110  * configured.  This allows systems such as those with software
3111  * controllable regulators for the CPU core only to be brought up more
3112  * readily.
3113  */
3114 void regulator_use_dummy_regulator(void)
3115 {
3116         board_wants_dummy_regulator = true;
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3119
3120 /**
3121  * rdev_get_drvdata - get rdev regulator driver data
3122  * @rdev: regulator
3123  *
3124  * Get rdev regulator driver private data. This call can be used in the
3125  * regulator driver context.
3126  */
3127 void *rdev_get_drvdata(struct regulator_dev *rdev)
3128 {
3129         return rdev->reg_data;
3130 }
3131 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3132
3133 /**
3134  * regulator_get_drvdata - get regulator driver data
3135  * @regulator: regulator
3136  *
3137  * Get regulator driver private data. This call can be used in the consumer
3138  * driver context when non API regulator specific functions need to be called.
3139  */
3140 void *regulator_get_drvdata(struct regulator *regulator)
3141 {
3142         return regulator->rdev->reg_data;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3145
3146 /**
3147  * regulator_set_drvdata - set regulator driver data
3148  * @regulator: regulator
3149  * @data: data
3150  */
3151 void regulator_set_drvdata(struct regulator *regulator, void *data)
3152 {
3153         regulator->rdev->reg_data = data;
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3156
3157 /**
3158  * regulator_get_id - get regulator ID
3159  * @rdev: regulator
3160  */
3161 int rdev_get_id(struct regulator_dev *rdev)
3162 {
3163         return rdev->desc->id;
3164 }
3165 EXPORT_SYMBOL_GPL(rdev_get_id);
3166
3167 struct device *rdev_get_dev(struct regulator_dev *rdev)
3168 {
3169         return &rdev->dev;
3170 }
3171 EXPORT_SYMBOL_GPL(rdev_get_dev);
3172
3173 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3174 {
3175         return reg_init_data->driver_data;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3178
3179 #ifdef CONFIG_DEBUG_FS
3180 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3181                                     size_t count, loff_t *ppos)
3182 {
3183         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3184         ssize_t len, ret = 0;
3185         struct regulator_map *map;
3186
3187         if (!buf)
3188                 return -ENOMEM;
3189
3190         list_for_each_entry(map, &regulator_map_list, list) {
3191                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3192                                "%s -> %s.%s\n",
3193                                rdev_get_name(map->regulator), map->dev_name,
3194                                map->supply);
3195                 if (len >= 0)
3196                         ret += len;
3197                 if (ret > PAGE_SIZE) {
3198                         ret = PAGE_SIZE;
3199                         break;
3200                 }
3201         }
3202
3203         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3204
3205         kfree(buf);
3206
3207         return ret;
3208 }
3209 #endif
3210
3211 static const struct file_operations supply_map_fops = {
3212 #ifdef CONFIG_DEBUG_FS
3213         .read = supply_map_read_file,
3214         .llseek = default_llseek,
3215 #endif
3216 };
3217
3218 static int __init regulator_init(void)
3219 {
3220         int ret;
3221
3222         ret = class_register(&regulator_class);
3223
3224         debugfs_root = debugfs_create_dir("regulator", NULL);
3225         if (!debugfs_root)
3226                 pr_warn("regulator: Failed to create debugfs directory\n");
3227
3228         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3229                             &supply_map_fops);
3230
3231         regulator_dummy_init();
3232
3233         return ret;
3234 }
3235
3236 /* init early to allow our consumers to complete system booting */
3237 core_initcall(regulator_init);
3238
3239 static int __init regulator_init_complete(void)
3240 {
3241         struct regulator_dev *rdev;
3242         struct regulator_ops *ops;
3243         struct regulation_constraints *c;
3244         int enabled, ret;
3245
3246         mutex_lock(&regulator_list_mutex);
3247
3248         /* If we have a full configuration then disable any regulators
3249          * which are not in use or always_on.  This will become the
3250          * default behaviour in the future.
3251          */
3252         list_for_each_entry(rdev, &regulator_list, list) {
3253                 ops = rdev->desc->ops;
3254                 c = rdev->constraints;
3255
3256                 if (!ops->disable || (c && c->always_on))
3257                         continue;
3258
3259                 mutex_lock(&rdev->mutex);
3260
3261                 if (rdev->use_count)
3262                         goto unlock;
3263
3264                 /* If we can't read the status assume it's on. */
3265                 if (ops->is_enabled)
3266                         enabled = ops->is_enabled(rdev);
3267                 else
3268                         enabled = 1;
3269
3270                 if (!enabled)
3271                         goto unlock;
3272
3273                 if (has_full_constraints) {
3274                         /* We log since this may kill the system if it
3275                          * goes wrong. */
3276                         rdev_info(rdev, "disabling\n");
3277                         ret = ops->disable(rdev);
3278                         if (ret != 0) {
3279                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3280                         }
3281                 } else {
3282                         /* The intention is that in future we will
3283                          * assume that full constraints are provided
3284                          * so warn even if we aren't going to do
3285                          * anything here.
3286                          */
3287                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3288                 }
3289
3290 unlock:
3291                 mutex_unlock(&rdev->mutex);
3292         }
3293
3294         mutex_unlock(&regulator_list_mutex);
3295
3296         return 0;
3297 }
3298 late_initcall(regulator_init_complete);