swap: do not send discards as barriers
[linux-flexiantxendom0-3.2.10.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static bool swap_for_hibernation;
51
52 static const char Bad_file[] = "Bad swap file entry ";
53 static const char Unused_file[] = "Unused swap file entry ";
54 static const char Bad_offset[] = "Bad swap offset entry ";
55 static const char Unused_offset[] = "Unused swap offset entry ";
56
57 static struct swap_list_t swap_list = {-1, -1};
58
59 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60
61 static DEFINE_MUTEX(swapon_mutex);
62
63 static inline unsigned char swap_count(unsigned char ent)
64 {
65         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
66 }
67
68 /* returns 1 if swap entry is freed */
69 static int
70 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
71 {
72         swp_entry_t entry = swp_entry(si->type, offset);
73         struct page *page;
74         int ret = 0;
75
76         page = find_get_page(&swapper_space, entry.val);
77         if (!page)
78                 return 0;
79         /*
80          * This function is called from scan_swap_map() and it's called
81          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
82          * We have to use trylock for avoiding deadlock. This is a special
83          * case and you should use try_to_free_swap() with explicit lock_page()
84          * in usual operations.
85          */
86         if (trylock_page(page)) {
87                 ret = try_to_free_swap(page);
88                 unlock_page(page);
89         }
90         page_cache_release(page);
91         return ret;
92 }
93
94 /*
95  * We need this because the bdev->unplug_fn can sleep and we cannot
96  * hold swap_lock while calling the unplug_fn. And swap_lock
97  * cannot be turned into a mutex.
98  */
99 static DECLARE_RWSEM(swap_unplug_sem);
100
101 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
102 {
103         swp_entry_t entry;
104
105         down_read(&swap_unplug_sem);
106         entry.val = page_private(page);
107         if (PageSwapCache(page)) {
108                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
109                 struct backing_dev_info *bdi;
110
111                 /*
112                  * If the page is removed from swapcache from under us (with a
113                  * racy try_to_unuse/swapoff) we need an additional reference
114                  * count to avoid reading garbage from page_private(page) above.
115                  * If the WARN_ON triggers during a swapoff it maybe the race
116                  * condition and it's harmless. However if it triggers without
117                  * swapoff it signals a problem.
118                  */
119                 WARN_ON(page_count(page) <= 1);
120
121                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
122                 blk_run_backing_dev(bdi, page);
123         }
124         up_read(&swap_unplug_sem);
125 }
126
127 /*
128  * swapon tell device that all the old swap contents can be discarded,
129  * to allow the swap device to optimize its wear-levelling.
130  */
131 static int discard_swap(struct swap_info_struct *si)
132 {
133         struct swap_extent *se;
134         sector_t start_block;
135         sector_t nr_blocks;
136         int err = 0;
137
138         /* Do not discard the swap header page! */
139         se = &si->first_swap_extent;
140         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142         if (nr_blocks) {
143                 err = blkdev_issue_discard(si->bdev, start_block,
144                                 nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
145                 if (err)
146                         return err;
147                 cond_resched();
148         }
149
150         list_for_each_entry(se, &si->first_swap_extent.list, list) {
151                 start_block = se->start_block << (PAGE_SHIFT - 9);
152                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153
154                 err = blkdev_issue_discard(si->bdev, start_block,
155                                 nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
156                 if (err)
157                         break;
158
159                 cond_resched();
160         }
161         return err;             /* That will often be -EOPNOTSUPP */
162 }
163
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169                                  pgoff_t start_page, pgoff_t nr_pages)
170 {
171         struct swap_extent *se = si->curr_swap_extent;
172         int found_extent = 0;
173
174         while (nr_pages) {
175                 struct list_head *lh;
176
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT))
195                                 break;
196                 }
197
198                 lh = se->list.next;
199                 se = list_entry(lh, struct swap_extent, list);
200         }
201 }
202
203 static int wait_for_discard(void *word)
204 {
205         schedule();
206         return 0;
207 }
208
209 #define SWAPFILE_CLUSTER        256
210 #define LATENCY_LIMIT           256
211
212 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
213                                           unsigned char usage)
214 {
215         unsigned long offset;
216         unsigned long scan_base;
217         unsigned long last_in_cluster = 0;
218         int latency_ration = LATENCY_LIMIT;
219         int found_free_cluster = 0;
220
221         /*
222          * We try to cluster swap pages by allocating them sequentially
223          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
224          * way, however, we resort to first-free allocation, starting
225          * a new cluster.  This prevents us from scattering swap pages
226          * all over the entire swap partition, so that we reduce
227          * overall disk seek times between swap pages.  -- sct
228          * But we do now try to find an empty cluster.  -Andrea
229          * And we let swap pages go all over an SSD partition.  Hugh
230          */
231
232         si->flags += SWP_SCANNING;
233         scan_base = offset = si->cluster_next;
234
235         if (unlikely(!si->cluster_nr--)) {
236                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
237                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
238                         goto checks;
239                 }
240                 if (si->flags & SWP_DISCARDABLE) {
241                         /*
242                          * Start range check on racing allocations, in case
243                          * they overlap the cluster we eventually decide on
244                          * (we scan without swap_lock to allow preemption).
245                          * It's hardly conceivable that cluster_nr could be
246                          * wrapped during our scan, but don't depend on it.
247                          */
248                         if (si->lowest_alloc)
249                                 goto checks;
250                         si->lowest_alloc = si->max;
251                         si->highest_alloc = 0;
252                 }
253                 spin_unlock(&swap_lock);
254
255                 /*
256                  * If seek is expensive, start searching for new cluster from
257                  * start of partition, to minimize the span of allocated swap.
258                  * But if seek is cheap, search from our current position, so
259                  * that swap is allocated from all over the partition: if the
260                  * Flash Translation Layer only remaps within limited zones,
261                  * we don't want to wear out the first zone too quickly.
262                  */
263                 if (!(si->flags & SWP_SOLIDSTATE))
264                         scan_base = offset = si->lowest_bit;
265                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
266
267                 /* Locate the first empty (unaligned) cluster */
268                 for (; last_in_cluster <= si->highest_bit; offset++) {
269                         if (si->swap_map[offset])
270                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
271                         else if (offset == last_in_cluster) {
272                                 spin_lock(&swap_lock);
273                                 offset -= SWAPFILE_CLUSTER - 1;
274                                 si->cluster_next = offset;
275                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
276                                 found_free_cluster = 1;
277                                 goto checks;
278                         }
279                         if (unlikely(--latency_ration < 0)) {
280                                 cond_resched();
281                                 latency_ration = LATENCY_LIMIT;
282                         }
283                 }
284
285                 offset = si->lowest_bit;
286                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
287
288                 /* Locate the first empty (unaligned) cluster */
289                 for (; last_in_cluster < scan_base; offset++) {
290                         if (si->swap_map[offset])
291                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
292                         else if (offset == last_in_cluster) {
293                                 spin_lock(&swap_lock);
294                                 offset -= SWAPFILE_CLUSTER - 1;
295                                 si->cluster_next = offset;
296                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
297                                 found_free_cluster = 1;
298                                 goto checks;
299                         }
300                         if (unlikely(--latency_ration < 0)) {
301                                 cond_resched();
302                                 latency_ration = LATENCY_LIMIT;
303                         }
304                 }
305
306                 offset = scan_base;
307                 spin_lock(&swap_lock);
308                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
309                 si->lowest_alloc = 0;
310         }
311
312 checks:
313         if (!(si->flags & SWP_WRITEOK))
314                 goto no_page;
315         if (!si->highest_bit)
316                 goto no_page;
317         if (offset > si->highest_bit)
318                 scan_base = offset = si->lowest_bit;
319
320         /* reuse swap entry of cache-only swap if not hibernation. */
321         if (vm_swap_full()
322                 && usage == SWAP_HAS_CACHE
323                 && si->swap_map[offset] == SWAP_HAS_CACHE) {
324                 int swap_was_freed;
325                 spin_unlock(&swap_lock);
326                 swap_was_freed = __try_to_reclaim_swap(si, offset);
327                 spin_lock(&swap_lock);
328                 /* entry was freed successfully, try to use this again */
329                 if (swap_was_freed)
330                         goto checks;
331                 goto scan; /* check next one */
332         }
333
334         if (si->swap_map[offset])
335                 goto scan;
336
337         if (offset == si->lowest_bit)
338                 si->lowest_bit++;
339         if (offset == si->highest_bit)
340                 si->highest_bit--;
341         si->inuse_pages++;
342         if (si->inuse_pages == si->pages) {
343                 si->lowest_bit = si->max;
344                 si->highest_bit = 0;
345         }
346         si->swap_map[offset] = usage;
347         si->cluster_next = offset + 1;
348         si->flags -= SWP_SCANNING;
349
350         if (si->lowest_alloc) {
351                 /*
352                  * Only set when SWP_DISCARDABLE, and there's a scan
353                  * for a free cluster in progress or just completed.
354                  */
355                 if (found_free_cluster) {
356                         /*
357                          * To optimize wear-levelling, discard the
358                          * old data of the cluster, taking care not to
359                          * discard any of its pages that have already
360                          * been allocated by racing tasks (offset has
361                          * already stepped over any at the beginning).
362                          */
363                         if (offset < si->highest_alloc &&
364                             si->lowest_alloc <= last_in_cluster)
365                                 last_in_cluster = si->lowest_alloc - 1;
366                         si->flags |= SWP_DISCARDING;
367                         spin_unlock(&swap_lock);
368
369                         if (offset < last_in_cluster)
370                                 discard_swap_cluster(si, offset,
371                                         last_in_cluster - offset + 1);
372
373                         spin_lock(&swap_lock);
374                         si->lowest_alloc = 0;
375                         si->flags &= ~SWP_DISCARDING;
376
377                         smp_mb();       /* wake_up_bit advises this */
378                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
379
380                 } else if (si->flags & SWP_DISCARDING) {
381                         /*
382                          * Delay using pages allocated by racing tasks
383                          * until the whole discard has been issued. We
384                          * could defer that delay until swap_writepage,
385                          * but it's easier to keep this self-contained.
386                          */
387                         spin_unlock(&swap_lock);
388                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
389                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
390                         spin_lock(&swap_lock);
391                 } else {
392                         /*
393                          * Note pages allocated by racing tasks while
394                          * scan for a free cluster is in progress, so
395                          * that its final discard can exclude them.
396                          */
397                         if (offset < si->lowest_alloc)
398                                 si->lowest_alloc = offset;
399                         if (offset > si->highest_alloc)
400                                 si->highest_alloc = offset;
401                 }
402         }
403         return offset;
404
405 scan:
406         spin_unlock(&swap_lock);
407         while (++offset <= si->highest_bit) {
408                 if (!si->swap_map[offset]) {
409                         spin_lock(&swap_lock);
410                         goto checks;
411                 }
412                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
413                         spin_lock(&swap_lock);
414                         goto checks;
415                 }
416                 if (unlikely(--latency_ration < 0)) {
417                         cond_resched();
418                         latency_ration = LATENCY_LIMIT;
419                 }
420         }
421         offset = si->lowest_bit;
422         while (++offset < scan_base) {
423                 if (!si->swap_map[offset]) {
424                         spin_lock(&swap_lock);
425                         goto checks;
426                 }
427                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
428                         spin_lock(&swap_lock);
429                         goto checks;
430                 }
431                 if (unlikely(--latency_ration < 0)) {
432                         cond_resched();
433                         latency_ration = LATENCY_LIMIT;
434                 }
435         }
436         spin_lock(&swap_lock);
437
438 no_page:
439         si->flags -= SWP_SCANNING;
440         return 0;
441 }
442
443 swp_entry_t get_swap_page(void)
444 {
445         struct swap_info_struct *si;
446         pgoff_t offset;
447         int type, next;
448         int wrapped = 0;
449
450         spin_lock(&swap_lock);
451         if (nr_swap_pages <= 0)
452                 goto noswap;
453         if (swap_for_hibernation)
454                 goto noswap;
455         nr_swap_pages--;
456
457         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
458                 si = swap_info[type];
459                 next = si->next;
460                 if (next < 0 ||
461                     (!wrapped && si->prio != swap_info[next]->prio)) {
462                         next = swap_list.head;
463                         wrapped++;
464                 }
465
466                 if (!si->highest_bit)
467                         continue;
468                 if (!(si->flags & SWP_WRITEOK))
469                         continue;
470
471                 swap_list.next = next;
472                 /* This is called for allocating swap entry for cache */
473                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
474                 if (offset) {
475                         spin_unlock(&swap_lock);
476                         return swp_entry(type, offset);
477                 }
478                 next = swap_list.next;
479         }
480
481         nr_swap_pages++;
482 noswap:
483         spin_unlock(&swap_lock);
484         return (swp_entry_t) {0};
485 }
486
487 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
488 {
489         struct swap_info_struct *p;
490         unsigned long offset, type;
491
492         if (!entry.val)
493                 goto out;
494         type = swp_type(entry);
495         if (type >= nr_swapfiles)
496                 goto bad_nofile;
497         p = swap_info[type];
498         if (!(p->flags & SWP_USED))
499                 goto bad_device;
500         offset = swp_offset(entry);
501         if (offset >= p->max)
502                 goto bad_offset;
503         if (!p->swap_map[offset])
504                 goto bad_free;
505         spin_lock(&swap_lock);
506         return p;
507
508 bad_free:
509         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
510         goto out;
511 bad_offset:
512         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
513         goto out;
514 bad_device:
515         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
516         goto out;
517 bad_nofile:
518         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
519 out:
520         return NULL;
521 }
522
523 static unsigned char swap_entry_free(struct swap_info_struct *p,
524                                      swp_entry_t entry, unsigned char usage)
525 {
526         unsigned long offset = swp_offset(entry);
527         unsigned char count;
528         unsigned char has_cache;
529
530         count = p->swap_map[offset];
531         has_cache = count & SWAP_HAS_CACHE;
532         count &= ~SWAP_HAS_CACHE;
533
534         if (usage == SWAP_HAS_CACHE) {
535                 VM_BUG_ON(!has_cache);
536                 has_cache = 0;
537         } else if (count == SWAP_MAP_SHMEM) {
538                 /*
539                  * Or we could insist on shmem.c using a special
540                  * swap_shmem_free() and free_shmem_swap_and_cache()...
541                  */
542                 count = 0;
543         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
544                 if (count == COUNT_CONTINUED) {
545                         if (swap_count_continued(p, offset, count))
546                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
547                         else
548                                 count = SWAP_MAP_MAX;
549                 } else
550                         count--;
551         }
552
553         if (!count)
554                 mem_cgroup_uncharge_swap(entry);
555
556         usage = count | has_cache;
557         p->swap_map[offset] = usage;
558
559         /* free if no reference */
560         if (!usage) {
561                 struct gendisk *disk = p->bdev->bd_disk;
562                 if (offset < p->lowest_bit)
563                         p->lowest_bit = offset;
564                 if (offset > p->highest_bit)
565                         p->highest_bit = offset;
566                 if (swap_list.next >= 0 &&
567                     p->prio > swap_info[swap_list.next]->prio)
568                         swap_list.next = p->type;
569                 nr_swap_pages++;
570                 p->inuse_pages--;
571                 if ((p->flags & SWP_BLKDEV) &&
572                                 disk->fops->swap_slot_free_notify)
573                         disk->fops->swap_slot_free_notify(p->bdev, offset);
574         }
575
576         return usage;
577 }
578
579 /*
580  * Caller has made sure that the swapdevice corresponding to entry
581  * is still around or has not been recycled.
582  */
583 void swap_free(swp_entry_t entry)
584 {
585         struct swap_info_struct *p;
586
587         p = swap_info_get(entry);
588         if (p) {
589                 swap_entry_free(p, entry, 1);
590                 spin_unlock(&swap_lock);
591         }
592 }
593
594 /*
595  * Called after dropping swapcache to decrease refcnt to swap entries.
596  */
597 void swapcache_free(swp_entry_t entry, struct page *page)
598 {
599         struct swap_info_struct *p;
600         unsigned char count;
601
602         p = swap_info_get(entry);
603         if (p) {
604                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
605                 if (page)
606                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
607                 spin_unlock(&swap_lock);
608         }
609 }
610
611 /*
612  * How many references to page are currently swapped out?
613  * This does not give an exact answer when swap count is continued,
614  * but does include the high COUNT_CONTINUED flag to allow for that.
615  */
616 static inline int page_swapcount(struct page *page)
617 {
618         int count = 0;
619         struct swap_info_struct *p;
620         swp_entry_t entry;
621
622         entry.val = page_private(page);
623         p = swap_info_get(entry);
624         if (p) {
625                 count = swap_count(p->swap_map[swp_offset(entry)]);
626                 spin_unlock(&swap_lock);
627         }
628         return count;
629 }
630
631 /*
632  * We can write to an anon page without COW if there are no other references
633  * to it.  And as a side-effect, free up its swap: because the old content
634  * on disk will never be read, and seeking back there to write new content
635  * later would only waste time away from clustering.
636  */
637 int reuse_swap_page(struct page *page)
638 {
639         int count;
640
641         VM_BUG_ON(!PageLocked(page));
642         if (unlikely(PageKsm(page)))
643                 return 0;
644         count = page_mapcount(page);
645         if (count <= 1 && PageSwapCache(page)) {
646                 count += page_swapcount(page);
647                 if (count == 1 && !PageWriteback(page)) {
648                         delete_from_swap_cache(page);
649                         SetPageDirty(page);
650                 }
651         }
652         return count <= 1;
653 }
654
655 /*
656  * If swap is getting full, or if there are no more mappings of this page,
657  * then try_to_free_swap is called to free its swap space.
658  */
659 int try_to_free_swap(struct page *page)
660 {
661         VM_BUG_ON(!PageLocked(page));
662
663         if (!PageSwapCache(page))
664                 return 0;
665         if (PageWriteback(page))
666                 return 0;
667         if (page_swapcount(page))
668                 return 0;
669
670         delete_from_swap_cache(page);
671         SetPageDirty(page);
672         return 1;
673 }
674
675 /*
676  * Free the swap entry like above, but also try to
677  * free the page cache entry if it is the last user.
678  */
679 int free_swap_and_cache(swp_entry_t entry)
680 {
681         struct swap_info_struct *p;
682         struct page *page = NULL;
683
684         if (non_swap_entry(entry))
685                 return 1;
686
687         p = swap_info_get(entry);
688         if (p) {
689                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
690                         page = find_get_page(&swapper_space, entry.val);
691                         if (page && !trylock_page(page)) {
692                                 page_cache_release(page);
693                                 page = NULL;
694                         }
695                 }
696                 spin_unlock(&swap_lock);
697         }
698         if (page) {
699                 /*
700                  * Not mapped elsewhere, or swap space full? Free it!
701                  * Also recheck PageSwapCache now page is locked (above).
702                  */
703                 if (PageSwapCache(page) && !PageWriteback(page) &&
704                                 (!page_mapped(page) || vm_swap_full())) {
705                         delete_from_swap_cache(page);
706                         SetPageDirty(page);
707                 }
708                 unlock_page(page);
709                 page_cache_release(page);
710         }
711         return p != NULL;
712 }
713
714 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
715 /**
716  * mem_cgroup_count_swap_user - count the user of a swap entry
717  * @ent: the swap entry to be checked
718  * @pagep: the pointer for the swap cache page of the entry to be stored
719  *
720  * Returns the number of the user of the swap entry. The number is valid only
721  * for swaps of anonymous pages.
722  * If the entry is found on swap cache, the page is stored to pagep with
723  * refcount of it being incremented.
724  */
725 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
726 {
727         struct page *page;
728         struct swap_info_struct *p;
729         int count = 0;
730
731         page = find_get_page(&swapper_space, ent.val);
732         if (page)
733                 count += page_mapcount(page);
734         p = swap_info_get(ent);
735         if (p) {
736                 count += swap_count(p->swap_map[swp_offset(ent)]);
737                 spin_unlock(&swap_lock);
738         }
739
740         *pagep = page;
741         return count;
742 }
743 #endif
744
745 #ifdef CONFIG_HIBERNATION
746
747 static pgoff_t hibernation_offset[MAX_SWAPFILES];
748 /*
749  * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
750  * saved swap_map[] image to the disk will be an incomplete because it's
751  * changing without synchronization with hibernation snap shot.
752  * At resume, we just make swap_for_hibernation=false. We can forget
753  * used maps easily.
754  */
755 void hibernation_freeze_swap(void)
756 {
757         int i;
758
759         spin_lock(&swap_lock);
760
761         printk(KERN_INFO "PM: Freeze Swap\n");
762         swap_for_hibernation = true;
763         for (i = 0; i < MAX_SWAPFILES; i++)
764                 hibernation_offset[i] = 1;
765         spin_unlock(&swap_lock);
766 }
767
768 void hibernation_thaw_swap(void)
769 {
770         spin_lock(&swap_lock);
771         if (swap_for_hibernation) {
772                 printk(KERN_INFO "PM: Thaw Swap\n");
773                 swap_for_hibernation = false;
774         }
775         spin_unlock(&swap_lock);
776 }
777
778 /*
779  * Because updateing swap_map[] can make not-saved-status-change,
780  * we use our own easy allocator.
781  * Please see kernel/power/swap.c, Used swaps are recorded into
782  * RB-tree.
783  */
784 swp_entry_t get_swap_for_hibernation(int type)
785 {
786         pgoff_t off;
787         swp_entry_t val = {0};
788         struct swap_info_struct *si;
789
790         spin_lock(&swap_lock);
791
792         si = swap_info[type];
793         if (!si || !(si->flags & SWP_WRITEOK))
794                 goto done;
795
796         for (off = hibernation_offset[type]; off < si->max; ++off) {
797                 if (!si->swap_map[off])
798                         break;
799         }
800         if (off < si->max) {
801                 val = swp_entry(type, off);
802                 hibernation_offset[type] = off + 1;
803         }
804 done:
805         spin_unlock(&swap_lock);
806         return val;
807 }
808
809 void swap_free_for_hibernation(swp_entry_t ent)
810 {
811         /* Nothing to do */
812 }
813
814 /*
815  * Find the swap type that corresponds to given device (if any).
816  *
817  * @offset - number of the PAGE_SIZE-sized block of the device, starting
818  * from 0, in which the swap header is expected to be located.
819  *
820  * This is needed for the suspend to disk (aka swsusp).
821  */
822 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
823 {
824         struct block_device *bdev = NULL;
825         int type;
826
827         if (device)
828                 bdev = bdget(device);
829
830         spin_lock(&swap_lock);
831         for (type = 0; type < nr_swapfiles; type++) {
832                 struct swap_info_struct *sis = swap_info[type];
833
834                 if (!(sis->flags & SWP_WRITEOK))
835                         continue;
836
837                 if (!bdev) {
838                         if (bdev_p)
839                                 *bdev_p = bdgrab(sis->bdev);
840
841                         spin_unlock(&swap_lock);
842                         return type;
843                 }
844                 if (bdev == sis->bdev) {
845                         struct swap_extent *se = &sis->first_swap_extent;
846
847                         if (se->start_block == offset) {
848                                 if (bdev_p)
849                                         *bdev_p = bdgrab(sis->bdev);
850
851                                 spin_unlock(&swap_lock);
852                                 bdput(bdev);
853                                 return type;
854                         }
855                 }
856         }
857         spin_unlock(&swap_lock);
858         if (bdev)
859                 bdput(bdev);
860
861         return -ENODEV;
862 }
863
864 /*
865  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
866  * corresponding to given index in swap_info (swap type).
867  */
868 sector_t swapdev_block(int type, pgoff_t offset)
869 {
870         struct block_device *bdev;
871
872         if ((unsigned int)type >= nr_swapfiles)
873                 return 0;
874         if (!(swap_info[type]->flags & SWP_WRITEOK))
875                 return 0;
876         return map_swap_entry(swp_entry(type, offset), &bdev);
877 }
878
879 /*
880  * Return either the total number of swap pages of given type, or the number
881  * of free pages of that type (depending on @free)
882  *
883  * This is needed for software suspend
884  */
885 unsigned int count_swap_pages(int type, int free)
886 {
887         unsigned int n = 0;
888
889         spin_lock(&swap_lock);
890         if ((unsigned int)type < nr_swapfiles) {
891                 struct swap_info_struct *sis = swap_info[type];
892
893                 if (sis->flags & SWP_WRITEOK) {
894                         n = sis->pages;
895                         if (free)
896                                 n -= sis->inuse_pages;
897                 }
898         }
899         spin_unlock(&swap_lock);
900         return n;
901 }
902 #endif /* CONFIG_HIBERNATION */
903
904 /*
905  * No need to decide whether this PTE shares the swap entry with others,
906  * just let do_wp_page work it out if a write is requested later - to
907  * force COW, vm_page_prot omits write permission from any private vma.
908  */
909 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
910                 unsigned long addr, swp_entry_t entry, struct page *page)
911 {
912         struct mem_cgroup *ptr = NULL;
913         spinlock_t *ptl;
914         pte_t *pte;
915         int ret = 1;
916
917         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
918                 ret = -ENOMEM;
919                 goto out_nolock;
920         }
921
922         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
923         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
924                 if (ret > 0)
925                         mem_cgroup_cancel_charge_swapin(ptr);
926                 ret = 0;
927                 goto out;
928         }
929
930         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
931         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
932         get_page(page);
933         set_pte_at(vma->vm_mm, addr, pte,
934                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
935         page_add_anon_rmap(page, vma, addr);
936         mem_cgroup_commit_charge_swapin(page, ptr);
937         swap_free(entry);
938         /*
939          * Move the page to the active list so it is not
940          * immediately swapped out again after swapon.
941          */
942         activate_page(page);
943 out:
944         pte_unmap_unlock(pte, ptl);
945 out_nolock:
946         return ret;
947 }
948
949 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
950                                 unsigned long addr, unsigned long end,
951                                 swp_entry_t entry, struct page *page)
952 {
953         pte_t swp_pte = swp_entry_to_pte(entry);
954         pte_t *pte;
955         int ret = 0;
956
957         /*
958          * We don't actually need pte lock while scanning for swp_pte: since
959          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
960          * page table while we're scanning; though it could get zapped, and on
961          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
962          * of unmatched parts which look like swp_pte, so unuse_pte must
963          * recheck under pte lock.  Scanning without pte lock lets it be
964          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
965          */
966         pte = pte_offset_map(pmd, addr);
967         do {
968                 /*
969                  * swapoff spends a _lot_ of time in this loop!
970                  * Test inline before going to call unuse_pte.
971                  */
972                 if (unlikely(pte_same(*pte, swp_pte))) {
973                         pte_unmap(pte);
974                         ret = unuse_pte(vma, pmd, addr, entry, page);
975                         if (ret)
976                                 goto out;
977                         pte = pte_offset_map(pmd, addr);
978                 }
979         } while (pte++, addr += PAGE_SIZE, addr != end);
980         pte_unmap(pte - 1);
981 out:
982         return ret;
983 }
984
985 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
986                                 unsigned long addr, unsigned long end,
987                                 swp_entry_t entry, struct page *page)
988 {
989         pmd_t *pmd;
990         unsigned long next;
991         int ret;
992
993         pmd = pmd_offset(pud, addr);
994         do {
995                 next = pmd_addr_end(addr, end);
996                 if (pmd_none_or_clear_bad(pmd))
997                         continue;
998                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
999                 if (ret)
1000                         return ret;
1001         } while (pmd++, addr = next, addr != end);
1002         return 0;
1003 }
1004
1005 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1006                                 unsigned long addr, unsigned long end,
1007                                 swp_entry_t entry, struct page *page)
1008 {
1009         pud_t *pud;
1010         unsigned long next;
1011         int ret;
1012
1013         pud = pud_offset(pgd, addr);
1014         do {
1015                 next = pud_addr_end(addr, end);
1016                 if (pud_none_or_clear_bad(pud))
1017                         continue;
1018                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1019                 if (ret)
1020                         return ret;
1021         } while (pud++, addr = next, addr != end);
1022         return 0;
1023 }
1024
1025 static int unuse_vma(struct vm_area_struct *vma,
1026                                 swp_entry_t entry, struct page *page)
1027 {
1028         pgd_t *pgd;
1029         unsigned long addr, end, next;
1030         int ret;
1031
1032         if (page_anon_vma(page)) {
1033                 addr = page_address_in_vma(page, vma);
1034                 if (addr == -EFAULT)
1035                         return 0;
1036                 else
1037                         end = addr + PAGE_SIZE;
1038         } else {
1039                 addr = vma->vm_start;
1040                 end = vma->vm_end;
1041         }
1042
1043         pgd = pgd_offset(vma->vm_mm, addr);
1044         do {
1045                 next = pgd_addr_end(addr, end);
1046                 if (pgd_none_or_clear_bad(pgd))
1047                         continue;
1048                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1049                 if (ret)
1050                         return ret;
1051         } while (pgd++, addr = next, addr != end);
1052         return 0;
1053 }
1054
1055 static int unuse_mm(struct mm_struct *mm,
1056                                 swp_entry_t entry, struct page *page)
1057 {
1058         struct vm_area_struct *vma;
1059         int ret = 0;
1060
1061         if (!down_read_trylock(&mm->mmap_sem)) {
1062                 /*
1063                  * Activate page so shrink_inactive_list is unlikely to unmap
1064                  * its ptes while lock is dropped, so swapoff can make progress.
1065                  */
1066                 activate_page(page);
1067                 unlock_page(page);
1068                 down_read(&mm->mmap_sem);
1069                 lock_page(page);
1070         }
1071         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1072                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1073                         break;
1074         }
1075         up_read(&mm->mmap_sem);
1076         return (ret < 0)? ret: 0;
1077 }
1078
1079 /*
1080  * Scan swap_map from current position to next entry still in use.
1081  * Recycle to start on reaching the end, returning 0 when empty.
1082  */
1083 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1084                                         unsigned int prev)
1085 {
1086         unsigned int max = si->max;
1087         unsigned int i = prev;
1088         unsigned char count;
1089
1090         /*
1091          * No need for swap_lock here: we're just looking
1092          * for whether an entry is in use, not modifying it; false
1093          * hits are okay, and sys_swapoff() has already prevented new
1094          * allocations from this area (while holding swap_lock).
1095          */
1096         for (;;) {
1097                 if (++i >= max) {
1098                         if (!prev) {
1099                                 i = 0;
1100                                 break;
1101                         }
1102                         /*
1103                          * No entries in use at top of swap_map,
1104                          * loop back to start and recheck there.
1105                          */
1106                         max = prev + 1;
1107                         prev = 0;
1108                         i = 1;
1109                 }
1110                 count = si->swap_map[i];
1111                 if (count && swap_count(count) != SWAP_MAP_BAD)
1112                         break;
1113         }
1114         return i;
1115 }
1116
1117 /*
1118  * We completely avoid races by reading each swap page in advance,
1119  * and then search for the process using it.  All the necessary
1120  * page table adjustments can then be made atomically.
1121  */
1122 static int try_to_unuse(unsigned int type)
1123 {
1124         struct swap_info_struct *si = swap_info[type];
1125         struct mm_struct *start_mm;
1126         unsigned char *swap_map;
1127         unsigned char swcount;
1128         struct page *page;
1129         swp_entry_t entry;
1130         unsigned int i = 0;
1131         int retval = 0;
1132
1133         /*
1134          * When searching mms for an entry, a good strategy is to
1135          * start at the first mm we freed the previous entry from
1136          * (though actually we don't notice whether we or coincidence
1137          * freed the entry).  Initialize this start_mm with a hold.
1138          *
1139          * A simpler strategy would be to start at the last mm we
1140          * freed the previous entry from; but that would take less
1141          * advantage of mmlist ordering, which clusters forked mms
1142          * together, child after parent.  If we race with dup_mmap(), we
1143          * prefer to resolve parent before child, lest we miss entries
1144          * duplicated after we scanned child: using last mm would invert
1145          * that.
1146          */
1147         start_mm = &init_mm;
1148         atomic_inc(&init_mm.mm_users);
1149
1150         /*
1151          * Keep on scanning until all entries have gone.  Usually,
1152          * one pass through swap_map is enough, but not necessarily:
1153          * there are races when an instance of an entry might be missed.
1154          */
1155         while ((i = find_next_to_unuse(si, i)) != 0) {
1156                 if (signal_pending(current)) {
1157                         retval = -EINTR;
1158                         break;
1159                 }
1160
1161                 /*
1162                  * Get a page for the entry, using the existing swap
1163                  * cache page if there is one.  Otherwise, get a clean
1164                  * page and read the swap into it.
1165                  */
1166                 swap_map = &si->swap_map[i];
1167                 entry = swp_entry(type, i);
1168                 page = read_swap_cache_async(entry,
1169                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1170                 if (!page) {
1171                         /*
1172                          * Either swap_duplicate() failed because entry
1173                          * has been freed independently, and will not be
1174                          * reused since sys_swapoff() already disabled
1175                          * allocation from here, or alloc_page() failed.
1176                          */
1177                         if (!*swap_map)
1178                                 continue;
1179                         retval = -ENOMEM;
1180                         break;
1181                 }
1182
1183                 /*
1184                  * Don't hold on to start_mm if it looks like exiting.
1185                  */
1186                 if (atomic_read(&start_mm->mm_users) == 1) {
1187                         mmput(start_mm);
1188                         start_mm = &init_mm;
1189                         atomic_inc(&init_mm.mm_users);
1190                 }
1191
1192                 /*
1193                  * Wait for and lock page.  When do_swap_page races with
1194                  * try_to_unuse, do_swap_page can handle the fault much
1195                  * faster than try_to_unuse can locate the entry.  This
1196                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1197                  * defer to do_swap_page in such a case - in some tests,
1198                  * do_swap_page and try_to_unuse repeatedly compete.
1199                  */
1200                 wait_on_page_locked(page);
1201                 wait_on_page_writeback(page);
1202                 lock_page(page);
1203                 wait_on_page_writeback(page);
1204
1205                 /*
1206                  * Remove all references to entry.
1207                  */
1208                 swcount = *swap_map;
1209                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1210                         retval = shmem_unuse(entry, page);
1211                         /* page has already been unlocked and released */
1212                         if (retval < 0)
1213                                 break;
1214                         continue;
1215                 }
1216                 if (swap_count(swcount) && start_mm != &init_mm)
1217                         retval = unuse_mm(start_mm, entry, page);
1218
1219                 if (swap_count(*swap_map)) {
1220                         int set_start_mm = (*swap_map >= swcount);
1221                         struct list_head *p = &start_mm->mmlist;
1222                         struct mm_struct *new_start_mm = start_mm;
1223                         struct mm_struct *prev_mm = start_mm;
1224                         struct mm_struct *mm;
1225
1226                         atomic_inc(&new_start_mm->mm_users);
1227                         atomic_inc(&prev_mm->mm_users);
1228                         spin_lock(&mmlist_lock);
1229                         while (swap_count(*swap_map) && !retval &&
1230                                         (p = p->next) != &start_mm->mmlist) {
1231                                 mm = list_entry(p, struct mm_struct, mmlist);
1232                                 if (!atomic_inc_not_zero(&mm->mm_users))
1233                                         continue;
1234                                 spin_unlock(&mmlist_lock);
1235                                 mmput(prev_mm);
1236                                 prev_mm = mm;
1237
1238                                 cond_resched();
1239
1240                                 swcount = *swap_map;
1241                                 if (!swap_count(swcount)) /* any usage ? */
1242                                         ;
1243                                 else if (mm == &init_mm)
1244                                         set_start_mm = 1;
1245                                 else
1246                                         retval = unuse_mm(mm, entry, page);
1247
1248                                 if (set_start_mm && *swap_map < swcount) {
1249                                         mmput(new_start_mm);
1250                                         atomic_inc(&mm->mm_users);
1251                                         new_start_mm = mm;
1252                                         set_start_mm = 0;
1253                                 }
1254                                 spin_lock(&mmlist_lock);
1255                         }
1256                         spin_unlock(&mmlist_lock);
1257                         mmput(prev_mm);
1258                         mmput(start_mm);
1259                         start_mm = new_start_mm;
1260                 }
1261                 if (retval) {
1262                         unlock_page(page);
1263                         page_cache_release(page);
1264                         break;
1265                 }
1266
1267                 /*
1268                  * If a reference remains (rare), we would like to leave
1269                  * the page in the swap cache; but try_to_unmap could
1270                  * then re-duplicate the entry once we drop page lock,
1271                  * so we might loop indefinitely; also, that page could
1272                  * not be swapped out to other storage meanwhile.  So:
1273                  * delete from cache even if there's another reference,
1274                  * after ensuring that the data has been saved to disk -
1275                  * since if the reference remains (rarer), it will be
1276                  * read from disk into another page.  Splitting into two
1277                  * pages would be incorrect if swap supported "shared
1278                  * private" pages, but they are handled by tmpfs files.
1279                  *
1280                  * Given how unuse_vma() targets one particular offset
1281                  * in an anon_vma, once the anon_vma has been determined,
1282                  * this splitting happens to be just what is needed to
1283                  * handle where KSM pages have been swapped out: re-reading
1284                  * is unnecessarily slow, but we can fix that later on.
1285                  */
1286                 if (swap_count(*swap_map) &&
1287                      PageDirty(page) && PageSwapCache(page)) {
1288                         struct writeback_control wbc = {
1289                                 .sync_mode = WB_SYNC_NONE,
1290                         };
1291
1292                         swap_writepage(page, &wbc);
1293                         lock_page(page);
1294                         wait_on_page_writeback(page);
1295                 }
1296
1297                 /*
1298                  * It is conceivable that a racing task removed this page from
1299                  * swap cache just before we acquired the page lock at the top,
1300                  * or while we dropped it in unuse_mm().  The page might even
1301                  * be back in swap cache on another swap area: that we must not
1302                  * delete, since it may not have been written out to swap yet.
1303                  */
1304                 if (PageSwapCache(page) &&
1305                     likely(page_private(page) == entry.val))
1306                         delete_from_swap_cache(page);
1307
1308                 /*
1309                  * So we could skip searching mms once swap count went
1310                  * to 1, we did not mark any present ptes as dirty: must
1311                  * mark page dirty so shrink_page_list will preserve it.
1312                  */
1313                 SetPageDirty(page);
1314                 unlock_page(page);
1315                 page_cache_release(page);
1316
1317                 /*
1318                  * Make sure that we aren't completely killing
1319                  * interactive performance.
1320                  */
1321                 cond_resched();
1322         }
1323
1324         mmput(start_mm);
1325         return retval;
1326 }
1327
1328 /*
1329  * After a successful try_to_unuse, if no swap is now in use, we know
1330  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1331  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1332  * added to the mmlist just after page_duplicate - before would be racy.
1333  */
1334 static void drain_mmlist(void)
1335 {
1336         struct list_head *p, *next;
1337         unsigned int type;
1338
1339         for (type = 0; type < nr_swapfiles; type++)
1340                 if (swap_info[type]->inuse_pages)
1341                         return;
1342         spin_lock(&mmlist_lock);
1343         list_for_each_safe(p, next, &init_mm.mmlist)
1344                 list_del_init(p);
1345         spin_unlock(&mmlist_lock);
1346 }
1347
1348 /*
1349  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1350  * corresponds to page offset for the specified swap entry.
1351  * Note that the type of this function is sector_t, but it returns page offset
1352  * into the bdev, not sector offset.
1353  */
1354 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1355 {
1356         struct swap_info_struct *sis;
1357         struct swap_extent *start_se;
1358         struct swap_extent *se;
1359         pgoff_t offset;
1360
1361         sis = swap_info[swp_type(entry)];
1362         *bdev = sis->bdev;
1363
1364         offset = swp_offset(entry);
1365         start_se = sis->curr_swap_extent;
1366         se = start_se;
1367
1368         for ( ; ; ) {
1369                 struct list_head *lh;
1370
1371                 if (se->start_page <= offset &&
1372                                 offset < (se->start_page + se->nr_pages)) {
1373                         return se->start_block + (offset - se->start_page);
1374                 }
1375                 lh = se->list.next;
1376                 se = list_entry(lh, struct swap_extent, list);
1377                 sis->curr_swap_extent = se;
1378                 BUG_ON(se == start_se);         /* It *must* be present */
1379         }
1380 }
1381
1382 /*
1383  * Returns the page offset into bdev for the specified page's swap entry.
1384  */
1385 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1386 {
1387         swp_entry_t entry;
1388         entry.val = page_private(page);
1389         return map_swap_entry(entry, bdev);
1390 }
1391
1392 /*
1393  * Free all of a swapdev's extent information
1394  */
1395 static void destroy_swap_extents(struct swap_info_struct *sis)
1396 {
1397         while (!list_empty(&sis->first_swap_extent.list)) {
1398                 struct swap_extent *se;
1399
1400                 se = list_entry(sis->first_swap_extent.list.next,
1401                                 struct swap_extent, list);
1402                 list_del(&se->list);
1403                 kfree(se);
1404         }
1405 }
1406
1407 /*
1408  * Add a block range (and the corresponding page range) into this swapdev's
1409  * extent list.  The extent list is kept sorted in page order.
1410  *
1411  * This function rather assumes that it is called in ascending page order.
1412  */
1413 static int
1414 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1415                 unsigned long nr_pages, sector_t start_block)
1416 {
1417         struct swap_extent *se;
1418         struct swap_extent *new_se;
1419         struct list_head *lh;
1420
1421         if (start_page == 0) {
1422                 se = &sis->first_swap_extent;
1423                 sis->curr_swap_extent = se;
1424                 se->start_page = 0;
1425                 se->nr_pages = nr_pages;
1426                 se->start_block = start_block;
1427                 return 1;
1428         } else {
1429                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1430                 se = list_entry(lh, struct swap_extent, list);
1431                 BUG_ON(se->start_page + se->nr_pages != start_page);
1432                 if (se->start_block + se->nr_pages == start_block) {
1433                         /* Merge it */
1434                         se->nr_pages += nr_pages;
1435                         return 0;
1436                 }
1437         }
1438
1439         /*
1440          * No merge.  Insert a new extent, preserving ordering.
1441          */
1442         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1443         if (new_se == NULL)
1444                 return -ENOMEM;
1445         new_se->start_page = start_page;
1446         new_se->nr_pages = nr_pages;
1447         new_se->start_block = start_block;
1448
1449         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1450         return 1;
1451 }
1452
1453 /*
1454  * A `swap extent' is a simple thing which maps a contiguous range of pages
1455  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1456  * is built at swapon time and is then used at swap_writepage/swap_readpage
1457  * time for locating where on disk a page belongs.
1458  *
1459  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1460  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1461  * swap files identically.
1462  *
1463  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1464  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1465  * swapfiles are handled *identically* after swapon time.
1466  *
1467  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1468  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1469  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1470  * requirements, they are simply tossed out - we will never use those blocks
1471  * for swapping.
1472  *
1473  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1474  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1475  * which will scribble on the fs.
1476  *
1477  * The amount of disk space which a single swap extent represents varies.
1478  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1479  * extents in the list.  To avoid much list walking, we cache the previous
1480  * search location in `curr_swap_extent', and start new searches from there.
1481  * This is extremely effective.  The average number of iterations in
1482  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1483  */
1484 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1485 {
1486         struct inode *inode;
1487         unsigned blocks_per_page;
1488         unsigned long page_no;
1489         unsigned blkbits;
1490         sector_t probe_block;
1491         sector_t last_block;
1492         sector_t lowest_block = -1;
1493         sector_t highest_block = 0;
1494         int nr_extents = 0;
1495         int ret;
1496
1497         inode = sis->swap_file->f_mapping->host;
1498         if (S_ISBLK(inode->i_mode)) {
1499                 ret = add_swap_extent(sis, 0, sis->max, 0);
1500                 *span = sis->pages;
1501                 goto out;
1502         }
1503
1504         blkbits = inode->i_blkbits;
1505         blocks_per_page = PAGE_SIZE >> blkbits;
1506
1507         /*
1508          * Map all the blocks into the extent list.  This code doesn't try
1509          * to be very smart.
1510          */
1511         probe_block = 0;
1512         page_no = 0;
1513         last_block = i_size_read(inode) >> blkbits;
1514         while ((probe_block + blocks_per_page) <= last_block &&
1515                         page_no < sis->max) {
1516                 unsigned block_in_page;
1517                 sector_t first_block;
1518
1519                 first_block = bmap(inode, probe_block);
1520                 if (first_block == 0)
1521                         goto bad_bmap;
1522
1523                 /*
1524                  * It must be PAGE_SIZE aligned on-disk
1525                  */
1526                 if (first_block & (blocks_per_page - 1)) {
1527                         probe_block++;
1528                         goto reprobe;
1529                 }
1530
1531                 for (block_in_page = 1; block_in_page < blocks_per_page;
1532                                         block_in_page++) {
1533                         sector_t block;
1534
1535                         block = bmap(inode, probe_block + block_in_page);
1536                         if (block == 0)
1537                                 goto bad_bmap;
1538                         if (block != first_block + block_in_page) {
1539                                 /* Discontiguity */
1540                                 probe_block++;
1541                                 goto reprobe;
1542                         }
1543                 }
1544
1545                 first_block >>= (PAGE_SHIFT - blkbits);
1546                 if (page_no) {  /* exclude the header page */
1547                         if (first_block < lowest_block)
1548                                 lowest_block = first_block;
1549                         if (first_block > highest_block)
1550                                 highest_block = first_block;
1551                 }
1552
1553                 /*
1554                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1555                  */
1556                 ret = add_swap_extent(sis, page_no, 1, first_block);
1557                 if (ret < 0)
1558                         goto out;
1559                 nr_extents += ret;
1560                 page_no++;
1561                 probe_block += blocks_per_page;
1562 reprobe:
1563                 continue;
1564         }
1565         ret = nr_extents;
1566         *span = 1 + highest_block - lowest_block;
1567         if (page_no == 0)
1568                 page_no = 1;    /* force Empty message */
1569         sis->max = page_no;
1570         sis->pages = page_no - 1;
1571         sis->highest_bit = page_no - 1;
1572 out:
1573         return ret;
1574 bad_bmap:
1575         printk(KERN_ERR "swapon: swapfile has holes\n");
1576         ret = -EINVAL;
1577         goto out;
1578 }
1579
1580 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1581 {
1582         struct swap_info_struct *p = NULL;
1583         unsigned char *swap_map;
1584         struct file *swap_file, *victim;
1585         struct address_space *mapping;
1586         struct inode *inode;
1587         char *pathname;
1588         int i, type, prev;
1589         int err;
1590
1591         if (!capable(CAP_SYS_ADMIN))
1592                 return -EPERM;
1593
1594         pathname = getname(specialfile);
1595         err = PTR_ERR(pathname);
1596         if (IS_ERR(pathname))
1597                 goto out;
1598
1599         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1600         putname(pathname);
1601         err = PTR_ERR(victim);
1602         if (IS_ERR(victim))
1603                 goto out;
1604
1605         mapping = victim->f_mapping;
1606         prev = -1;
1607         spin_lock(&swap_lock);
1608         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1609                 p = swap_info[type];
1610                 if (p->flags & SWP_WRITEOK) {
1611                         if (p->swap_file->f_mapping == mapping)
1612                                 break;
1613                 }
1614                 prev = type;
1615         }
1616         if (type < 0) {
1617                 err = -EINVAL;
1618                 spin_unlock(&swap_lock);
1619                 goto out_dput;
1620         }
1621         if (!security_vm_enough_memory(p->pages))
1622                 vm_unacct_memory(p->pages);
1623         else {
1624                 err = -ENOMEM;
1625                 spin_unlock(&swap_lock);
1626                 goto out_dput;
1627         }
1628         if (prev < 0)
1629                 swap_list.head = p->next;
1630         else
1631                 swap_info[prev]->next = p->next;
1632         if (type == swap_list.next) {
1633                 /* just pick something that's safe... */
1634                 swap_list.next = swap_list.head;
1635         }
1636         if (p->prio < 0) {
1637                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1638                         swap_info[i]->prio = p->prio--;
1639                 least_priority++;
1640         }
1641         nr_swap_pages -= p->pages;
1642         total_swap_pages -= p->pages;
1643         p->flags &= ~SWP_WRITEOK;
1644         spin_unlock(&swap_lock);
1645
1646         current->flags |= PF_OOM_ORIGIN;
1647         err = try_to_unuse(type);
1648         current->flags &= ~PF_OOM_ORIGIN;
1649
1650         if (err) {
1651                 /* re-insert swap space back into swap_list */
1652                 spin_lock(&swap_lock);
1653                 if (p->prio < 0)
1654                         p->prio = --least_priority;
1655                 prev = -1;
1656                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1657                         if (p->prio >= swap_info[i]->prio)
1658                                 break;
1659                         prev = i;
1660                 }
1661                 p->next = i;
1662                 if (prev < 0)
1663                         swap_list.head = swap_list.next = type;
1664                 else
1665                         swap_info[prev]->next = type;
1666                 nr_swap_pages += p->pages;
1667                 total_swap_pages += p->pages;
1668                 p->flags |= SWP_WRITEOK;
1669                 spin_unlock(&swap_lock);
1670                 goto out_dput;
1671         }
1672
1673         /* wait for any unplug function to finish */
1674         down_write(&swap_unplug_sem);
1675         up_write(&swap_unplug_sem);
1676
1677         destroy_swap_extents(p);
1678         if (p->flags & SWP_CONTINUED)
1679                 free_swap_count_continuations(p);
1680
1681         mutex_lock(&swapon_mutex);
1682         spin_lock(&swap_lock);
1683         drain_mmlist();
1684
1685         /* wait for anyone still in scan_swap_map */
1686         p->highest_bit = 0;             /* cuts scans short */
1687         while (p->flags >= SWP_SCANNING) {
1688                 spin_unlock(&swap_lock);
1689                 schedule_timeout_uninterruptible(1);
1690                 spin_lock(&swap_lock);
1691         }
1692
1693         swap_file = p->swap_file;
1694         p->swap_file = NULL;
1695         p->max = 0;
1696         swap_map = p->swap_map;
1697         p->swap_map = NULL;
1698         p->flags = 0;
1699         spin_unlock(&swap_lock);
1700         mutex_unlock(&swapon_mutex);
1701         vfree(swap_map);
1702         /* Destroy swap account informatin */
1703         swap_cgroup_swapoff(type);
1704
1705         inode = mapping->host;
1706         if (S_ISBLK(inode->i_mode)) {
1707                 struct block_device *bdev = I_BDEV(inode);
1708                 set_blocksize(bdev, p->old_block_size);
1709                 bd_release(bdev);
1710         } else {
1711                 mutex_lock(&inode->i_mutex);
1712                 inode->i_flags &= ~S_SWAPFILE;
1713                 mutex_unlock(&inode->i_mutex);
1714         }
1715         filp_close(swap_file, NULL);
1716         err = 0;
1717
1718 out_dput:
1719         filp_close(victim, NULL);
1720 out:
1721         return err;
1722 }
1723
1724 #ifdef CONFIG_PROC_FS
1725 /* iterator */
1726 static void *swap_start(struct seq_file *swap, loff_t *pos)
1727 {
1728         struct swap_info_struct *si;
1729         int type;
1730         loff_t l = *pos;
1731
1732         mutex_lock(&swapon_mutex);
1733
1734         if (!l)
1735                 return SEQ_START_TOKEN;
1736
1737         for (type = 0; type < nr_swapfiles; type++) {
1738                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1739                 si = swap_info[type];
1740                 if (!(si->flags & SWP_USED) || !si->swap_map)
1741                         continue;
1742                 if (!--l)
1743                         return si;
1744         }
1745
1746         return NULL;
1747 }
1748
1749 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1750 {
1751         struct swap_info_struct *si = v;
1752         int type;
1753
1754         if (v == SEQ_START_TOKEN)
1755                 type = 0;
1756         else
1757                 type = si->type + 1;
1758
1759         for (; type < nr_swapfiles; type++) {
1760                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1761                 si = swap_info[type];
1762                 if (!(si->flags & SWP_USED) || !si->swap_map)
1763                         continue;
1764                 ++*pos;
1765                 return si;
1766         }
1767
1768         return NULL;
1769 }
1770
1771 static void swap_stop(struct seq_file *swap, void *v)
1772 {
1773         mutex_unlock(&swapon_mutex);
1774 }
1775
1776 static int swap_show(struct seq_file *swap, void *v)
1777 {
1778         struct swap_info_struct *si = v;
1779         struct file *file;
1780         int len;
1781
1782         if (si == SEQ_START_TOKEN) {
1783                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1784                 return 0;
1785         }
1786
1787         file = si->swap_file;
1788         len = seq_path(swap, &file->f_path, " \t\n\\");
1789         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1790                         len < 40 ? 40 - len : 1, " ",
1791                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1792                                 "partition" : "file\t",
1793                         si->pages << (PAGE_SHIFT - 10),
1794                         si->inuse_pages << (PAGE_SHIFT - 10),
1795                         si->prio);
1796         return 0;
1797 }
1798
1799 static const struct seq_operations swaps_op = {
1800         .start =        swap_start,
1801         .next =         swap_next,
1802         .stop =         swap_stop,
1803         .show =         swap_show
1804 };
1805
1806 static int swaps_open(struct inode *inode, struct file *file)
1807 {
1808         return seq_open(file, &swaps_op);
1809 }
1810
1811 static const struct file_operations proc_swaps_operations = {
1812         .open           = swaps_open,
1813         .read           = seq_read,
1814         .llseek         = seq_lseek,
1815         .release        = seq_release,
1816 };
1817
1818 static int __init procswaps_init(void)
1819 {
1820         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1821         return 0;
1822 }
1823 __initcall(procswaps_init);
1824 #endif /* CONFIG_PROC_FS */
1825
1826 #ifdef MAX_SWAPFILES_CHECK
1827 static int __init max_swapfiles_check(void)
1828 {
1829         MAX_SWAPFILES_CHECK();
1830         return 0;
1831 }
1832 late_initcall(max_swapfiles_check);
1833 #endif
1834
1835 /*
1836  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1837  *
1838  * The swapon system call
1839  */
1840 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1841 {
1842         struct swap_info_struct *p;
1843         char *name = NULL;
1844         struct block_device *bdev = NULL;
1845         struct file *swap_file = NULL;
1846         struct address_space *mapping;
1847         unsigned int type;
1848         int i, prev;
1849         int error;
1850         union swap_header *swap_header;
1851         unsigned int nr_good_pages;
1852         int nr_extents = 0;
1853         sector_t span;
1854         unsigned long maxpages;
1855         unsigned long swapfilepages;
1856         unsigned char *swap_map = NULL;
1857         struct page *page = NULL;
1858         struct inode *inode = NULL;
1859         int did_down = 0;
1860
1861         if (!capable(CAP_SYS_ADMIN))
1862                 return -EPERM;
1863
1864         p = kzalloc(sizeof(*p), GFP_KERNEL);
1865         if (!p)
1866                 return -ENOMEM;
1867
1868         spin_lock(&swap_lock);
1869         for (type = 0; type < nr_swapfiles; type++) {
1870                 if (!(swap_info[type]->flags & SWP_USED))
1871                         break;
1872         }
1873         error = -EPERM;
1874         if (type >= MAX_SWAPFILES) {
1875                 spin_unlock(&swap_lock);
1876                 kfree(p);
1877                 goto out;
1878         }
1879         if (type >= nr_swapfiles) {
1880                 p->type = type;
1881                 swap_info[type] = p;
1882                 /*
1883                  * Write swap_info[type] before nr_swapfiles, in case a
1884                  * racing procfs swap_start() or swap_next() is reading them.
1885                  * (We never shrink nr_swapfiles, we never free this entry.)
1886                  */
1887                 smp_wmb();
1888                 nr_swapfiles++;
1889         } else {
1890                 kfree(p);
1891                 p = swap_info[type];
1892                 /*
1893                  * Do not memset this entry: a racing procfs swap_next()
1894                  * would be relying on p->type to remain valid.
1895                  */
1896         }
1897         INIT_LIST_HEAD(&p->first_swap_extent.list);
1898         p->flags = SWP_USED;
1899         p->next = -1;
1900         spin_unlock(&swap_lock);
1901
1902         name = getname(specialfile);
1903         error = PTR_ERR(name);
1904         if (IS_ERR(name)) {
1905                 name = NULL;
1906                 goto bad_swap_2;
1907         }
1908         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1909         error = PTR_ERR(swap_file);
1910         if (IS_ERR(swap_file)) {
1911                 swap_file = NULL;
1912                 goto bad_swap_2;
1913         }
1914
1915         p->swap_file = swap_file;
1916         mapping = swap_file->f_mapping;
1917         inode = mapping->host;
1918
1919         error = -EBUSY;
1920         for (i = 0; i < nr_swapfiles; i++) {
1921                 struct swap_info_struct *q = swap_info[i];
1922
1923                 if (i == type || !q->swap_file)
1924                         continue;
1925                 if (mapping == q->swap_file->f_mapping)
1926                         goto bad_swap;
1927         }
1928
1929         error = -EINVAL;
1930         if (S_ISBLK(inode->i_mode)) {
1931                 bdev = I_BDEV(inode);
1932                 error = bd_claim(bdev, sys_swapon);
1933                 if (error < 0) {
1934                         bdev = NULL;
1935                         error = -EINVAL;
1936                         goto bad_swap;
1937                 }
1938                 p->old_block_size = block_size(bdev);
1939                 error = set_blocksize(bdev, PAGE_SIZE);
1940                 if (error < 0)
1941                         goto bad_swap;
1942                 p->bdev = bdev;
1943                 p->flags |= SWP_BLKDEV;
1944         } else if (S_ISREG(inode->i_mode)) {
1945                 p->bdev = inode->i_sb->s_bdev;
1946                 mutex_lock(&inode->i_mutex);
1947                 did_down = 1;
1948                 if (IS_SWAPFILE(inode)) {
1949                         error = -EBUSY;
1950                         goto bad_swap;
1951                 }
1952         } else {
1953                 goto bad_swap;
1954         }
1955
1956         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1957
1958         /*
1959          * Read the swap header.
1960          */
1961         if (!mapping->a_ops->readpage) {
1962                 error = -EINVAL;
1963                 goto bad_swap;
1964         }
1965         page = read_mapping_page(mapping, 0, swap_file);
1966         if (IS_ERR(page)) {
1967                 error = PTR_ERR(page);
1968                 goto bad_swap;
1969         }
1970         swap_header = kmap(page);
1971
1972         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1973                 printk(KERN_ERR "Unable to find swap-space signature\n");
1974                 error = -EINVAL;
1975                 goto bad_swap;
1976         }
1977
1978         /* swap partition endianess hack... */
1979         if (swab32(swap_header->info.version) == 1) {
1980                 swab32s(&swap_header->info.version);
1981                 swab32s(&swap_header->info.last_page);
1982                 swab32s(&swap_header->info.nr_badpages);
1983                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1984                         swab32s(&swap_header->info.badpages[i]);
1985         }
1986         /* Check the swap header's sub-version */
1987         if (swap_header->info.version != 1) {
1988                 printk(KERN_WARNING
1989                        "Unable to handle swap header version %d\n",
1990                        swap_header->info.version);
1991                 error = -EINVAL;
1992                 goto bad_swap;
1993         }
1994
1995         p->lowest_bit  = 1;
1996         p->cluster_next = 1;
1997         p->cluster_nr = 0;
1998
1999         /*
2000          * Find out how many pages are allowed for a single swap
2001          * device. There are two limiting factors: 1) the number of
2002          * bits for the swap offset in the swp_entry_t type and
2003          * 2) the number of bits in the a swap pte as defined by
2004          * the different architectures. In order to find the
2005          * largest possible bit mask a swap entry with swap type 0
2006          * and swap offset ~0UL is created, encoded to a swap pte,
2007          * decoded to a swp_entry_t again and finally the swap
2008          * offset is extracted. This will mask all the bits from
2009          * the initial ~0UL mask that can't be encoded in either
2010          * the swp_entry_t or the architecture definition of a
2011          * swap pte.
2012          */
2013         maxpages = swp_offset(pte_to_swp_entry(
2014                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2015         if (maxpages > swap_header->info.last_page) {
2016                 maxpages = swap_header->info.last_page + 1;
2017                 /* p->max is an unsigned int: don't overflow it */
2018                 if ((unsigned int)maxpages == 0)
2019                         maxpages = UINT_MAX;
2020         }
2021         p->highest_bit = maxpages - 1;
2022
2023         error = -EINVAL;
2024         if (!maxpages)
2025                 goto bad_swap;
2026         if (swapfilepages && maxpages > swapfilepages) {
2027                 printk(KERN_WARNING
2028                        "Swap area shorter than signature indicates\n");
2029                 goto bad_swap;
2030         }
2031         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2032                 goto bad_swap;
2033         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2034                 goto bad_swap;
2035
2036         /* OK, set up the swap map and apply the bad block list */
2037         swap_map = vmalloc(maxpages);
2038         if (!swap_map) {
2039                 error = -ENOMEM;
2040                 goto bad_swap;
2041         }
2042
2043         memset(swap_map, 0, maxpages);
2044         nr_good_pages = maxpages - 1;   /* omit header page */
2045
2046         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2047                 unsigned int page_nr = swap_header->info.badpages[i];
2048                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2049                         error = -EINVAL;
2050                         goto bad_swap;
2051                 }
2052                 if (page_nr < maxpages) {
2053                         swap_map[page_nr] = SWAP_MAP_BAD;
2054                         nr_good_pages--;
2055                 }
2056         }
2057
2058         error = swap_cgroup_swapon(type, maxpages);
2059         if (error)
2060                 goto bad_swap;
2061
2062         if (nr_good_pages) {
2063                 swap_map[0] = SWAP_MAP_BAD;
2064                 p->max = maxpages;
2065                 p->pages = nr_good_pages;
2066                 nr_extents = setup_swap_extents(p, &span);
2067                 if (nr_extents < 0) {
2068                         error = nr_extents;
2069                         goto bad_swap;
2070                 }
2071                 nr_good_pages = p->pages;
2072         }
2073         if (!nr_good_pages) {
2074                 printk(KERN_WARNING "Empty swap-file\n");
2075                 error = -EINVAL;
2076                 goto bad_swap;
2077         }
2078
2079         if (p->bdev) {
2080                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2081                         p->flags |= SWP_SOLIDSTATE;
2082                         p->cluster_next = 1 + (random32() % p->highest_bit);
2083                 }
2084                 if (discard_swap(p) == 0)
2085                         p->flags |= SWP_DISCARDABLE;
2086         }
2087
2088         mutex_lock(&swapon_mutex);
2089         spin_lock(&swap_lock);
2090         if (swap_flags & SWAP_FLAG_PREFER)
2091                 p->prio =
2092                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2093         else
2094                 p->prio = --least_priority;
2095         p->swap_map = swap_map;
2096         p->flags |= SWP_WRITEOK;
2097         nr_swap_pages += nr_good_pages;
2098         total_swap_pages += nr_good_pages;
2099
2100         printk(KERN_INFO "Adding %uk swap on %s.  "
2101                         "Priority:%d extents:%d across:%lluk %s%s\n",
2102                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2103                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2104                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2105                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2106
2107         /* insert swap space into swap_list: */
2108         prev = -1;
2109         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2110                 if (p->prio >= swap_info[i]->prio)
2111                         break;
2112                 prev = i;
2113         }
2114         p->next = i;
2115         if (prev < 0)
2116                 swap_list.head = swap_list.next = type;
2117         else
2118                 swap_info[prev]->next = type;
2119         spin_unlock(&swap_lock);
2120         mutex_unlock(&swapon_mutex);
2121         error = 0;
2122         goto out;
2123 bad_swap:
2124         if (bdev) {
2125                 set_blocksize(bdev, p->old_block_size);
2126                 bd_release(bdev);
2127         }
2128         destroy_swap_extents(p);
2129         swap_cgroup_swapoff(type);
2130 bad_swap_2:
2131         spin_lock(&swap_lock);
2132         p->swap_file = NULL;
2133         p->flags = 0;
2134         spin_unlock(&swap_lock);
2135         vfree(swap_map);
2136         if (swap_file)
2137                 filp_close(swap_file, NULL);
2138 out:
2139         if (page && !IS_ERR(page)) {
2140                 kunmap(page);
2141                 page_cache_release(page);
2142         }
2143         if (name)
2144                 putname(name);
2145         if (did_down) {
2146                 if (!error)
2147                         inode->i_flags |= S_SWAPFILE;
2148                 mutex_unlock(&inode->i_mutex);
2149         }
2150         return error;
2151 }
2152
2153 void si_swapinfo(struct sysinfo *val)
2154 {
2155         unsigned int type;
2156         unsigned long nr_to_be_unused = 0;
2157
2158         spin_lock(&swap_lock);
2159         for (type = 0; type < nr_swapfiles; type++) {
2160                 struct swap_info_struct *si = swap_info[type];
2161
2162                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2163                         nr_to_be_unused += si->inuse_pages;
2164         }
2165         val->freeswap = nr_swap_pages + nr_to_be_unused;
2166         val->totalswap = total_swap_pages + nr_to_be_unused;
2167         spin_unlock(&swap_lock);
2168 }
2169
2170 /*
2171  * Verify that a swap entry is valid and increment its swap map count.
2172  *
2173  * Returns error code in following case.
2174  * - success -> 0
2175  * - swp_entry is invalid -> EINVAL
2176  * - swp_entry is migration entry -> EINVAL
2177  * - swap-cache reference is requested but there is already one. -> EEXIST
2178  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2179  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2180  */
2181 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2182 {
2183         struct swap_info_struct *p;
2184         unsigned long offset, type;
2185         unsigned char count;
2186         unsigned char has_cache;
2187         int err = -EINVAL;
2188
2189         if (non_swap_entry(entry))
2190                 goto out;
2191
2192         type = swp_type(entry);
2193         if (type >= nr_swapfiles)
2194                 goto bad_file;
2195         p = swap_info[type];
2196         offset = swp_offset(entry);
2197
2198         spin_lock(&swap_lock);
2199         if (unlikely(offset >= p->max))
2200                 goto unlock_out;
2201
2202         count = p->swap_map[offset];
2203         has_cache = count & SWAP_HAS_CACHE;
2204         count &= ~SWAP_HAS_CACHE;
2205         err = 0;
2206
2207         if (usage == SWAP_HAS_CACHE) {
2208
2209                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2210                 if (!has_cache && count)
2211                         has_cache = SWAP_HAS_CACHE;
2212                 else if (has_cache)             /* someone else added cache */
2213                         err = -EEXIST;
2214                 else                            /* no users remaining */
2215                         err = -ENOENT;
2216
2217         } else if (count || has_cache) {
2218
2219                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2220                         count += usage;
2221                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2222                         err = -EINVAL;
2223                 else if (swap_count_continued(p, offset, count))
2224                         count = COUNT_CONTINUED;
2225                 else
2226                         err = -ENOMEM;
2227         } else
2228                 err = -ENOENT;                  /* unused swap entry */
2229
2230         p->swap_map[offset] = count | has_cache;
2231
2232 unlock_out:
2233         spin_unlock(&swap_lock);
2234 out:
2235         return err;
2236
2237 bad_file:
2238         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2239         goto out;
2240 }
2241
2242 /*
2243  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2244  * (in which case its reference count is never incremented).
2245  */
2246 void swap_shmem_alloc(swp_entry_t entry)
2247 {
2248         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2249 }
2250
2251 /*
2252  * Increase reference count of swap entry by 1.
2253  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2254  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2255  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2256  * might occur if a page table entry has got corrupted.
2257  */
2258 int swap_duplicate(swp_entry_t entry)
2259 {
2260         int err = 0;
2261
2262         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2263                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2264         return err;
2265 }
2266
2267 /*
2268  * @entry: swap entry for which we allocate swap cache.
2269  *
2270  * Called when allocating swap cache for existing swap entry,
2271  * This can return error codes. Returns 0 at success.
2272  * -EBUSY means there is a swap cache.
2273  * Note: return code is different from swap_duplicate().
2274  */
2275 int swapcache_prepare(swp_entry_t entry)
2276 {
2277         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2278 }
2279
2280 /*
2281  * swap_lock prevents swap_map being freed. Don't grab an extra
2282  * reference on the swaphandle, it doesn't matter if it becomes unused.
2283  */
2284 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2285 {
2286         struct swap_info_struct *si;
2287         int our_page_cluster = page_cluster;
2288         pgoff_t target, toff;
2289         pgoff_t base, end;
2290         int nr_pages = 0;
2291
2292         if (!our_page_cluster)  /* no readahead */
2293                 return 0;
2294
2295         si = swap_info[swp_type(entry)];
2296         target = swp_offset(entry);
2297         base = (target >> our_page_cluster) << our_page_cluster;
2298         end = base + (1 << our_page_cluster);
2299         if (!base)              /* first page is swap header */
2300                 base++;
2301
2302         spin_lock(&swap_lock);
2303         if (end > si->max)      /* don't go beyond end of map */
2304                 end = si->max;
2305
2306         /* Count contiguous allocated slots above our target */
2307         for (toff = target; ++toff < end; nr_pages++) {
2308                 /* Don't read in free or bad pages */
2309                 if (!si->swap_map[toff])
2310                         break;
2311                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2312                         break;
2313         }
2314         /* Count contiguous allocated slots below our target */
2315         for (toff = target; --toff >= base; nr_pages++) {
2316                 /* Don't read in free or bad pages */
2317                 if (!si->swap_map[toff])
2318                         break;
2319                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2320                         break;
2321         }
2322         spin_unlock(&swap_lock);
2323
2324         /*
2325          * Indicate starting offset, and return number of pages to get:
2326          * if only 1, say 0, since there's then no readahead to be done.
2327          */
2328         *offset = ++toff;
2329         return nr_pages? ++nr_pages: 0;
2330 }
2331
2332 /*
2333  * add_swap_count_continuation - called when a swap count is duplicated
2334  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2335  * page of the original vmalloc'ed swap_map, to hold the continuation count
2336  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2337  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2338  *
2339  * These continuation pages are seldom referenced: the common paths all work
2340  * on the original swap_map, only referring to a continuation page when the
2341  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2342  *
2343  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2344  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2345  * can be called after dropping locks.
2346  */
2347 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2348 {
2349         struct swap_info_struct *si;
2350         struct page *head;
2351         struct page *page;
2352         struct page *list_page;
2353         pgoff_t offset;
2354         unsigned char count;
2355
2356         /*
2357          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2358          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2359          */
2360         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2361
2362         si = swap_info_get(entry);
2363         if (!si) {
2364                 /*
2365                  * An acceptable race has occurred since the failing
2366                  * __swap_duplicate(): the swap entry has been freed,
2367                  * perhaps even the whole swap_map cleared for swapoff.
2368                  */
2369                 goto outer;
2370         }
2371
2372         offset = swp_offset(entry);
2373         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2374
2375         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2376                 /*
2377                  * The higher the swap count, the more likely it is that tasks
2378                  * will race to add swap count continuation: we need to avoid
2379                  * over-provisioning.
2380                  */
2381                 goto out;
2382         }
2383
2384         if (!page) {
2385                 spin_unlock(&swap_lock);
2386                 return -ENOMEM;
2387         }
2388
2389         /*
2390          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2391          * no architecture is using highmem pages for kernel pagetables: so it
2392          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2393          */
2394         head = vmalloc_to_page(si->swap_map + offset);
2395         offset &= ~PAGE_MASK;
2396
2397         /*
2398          * Page allocation does not initialize the page's lru field,
2399          * but it does always reset its private field.
2400          */
2401         if (!page_private(head)) {
2402                 BUG_ON(count & COUNT_CONTINUED);
2403                 INIT_LIST_HEAD(&head->lru);
2404                 set_page_private(head, SWP_CONTINUED);
2405                 si->flags |= SWP_CONTINUED;
2406         }
2407
2408         list_for_each_entry(list_page, &head->lru, lru) {
2409                 unsigned char *map;
2410
2411                 /*
2412                  * If the previous map said no continuation, but we've found
2413                  * a continuation page, free our allocation and use this one.
2414                  */
2415                 if (!(count & COUNT_CONTINUED))
2416                         goto out;
2417
2418                 map = kmap_atomic(list_page, KM_USER0) + offset;
2419                 count = *map;
2420                 kunmap_atomic(map, KM_USER0);
2421
2422                 /*
2423                  * If this continuation count now has some space in it,
2424                  * free our allocation and use this one.
2425                  */
2426                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2427                         goto out;
2428         }
2429
2430         list_add_tail(&page->lru, &head->lru);
2431         page = NULL;                    /* now it's attached, don't free it */
2432 out:
2433         spin_unlock(&swap_lock);
2434 outer:
2435         if (page)
2436                 __free_page(page);
2437         return 0;
2438 }
2439
2440 /*
2441  * swap_count_continued - when the original swap_map count is incremented
2442  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2443  * into, carry if so, or else fail until a new continuation page is allocated;
2444  * when the original swap_map count is decremented from 0 with continuation,
2445  * borrow from the continuation and report whether it still holds more.
2446  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2447  */
2448 static bool swap_count_continued(struct swap_info_struct *si,
2449                                  pgoff_t offset, unsigned char count)
2450 {
2451         struct page *head;
2452         struct page *page;
2453         unsigned char *map;
2454
2455         head = vmalloc_to_page(si->swap_map + offset);
2456         if (page_private(head) != SWP_CONTINUED) {
2457                 BUG_ON(count & COUNT_CONTINUED);
2458                 return false;           /* need to add count continuation */
2459         }
2460
2461         offset &= ~PAGE_MASK;
2462         page = list_entry(head->lru.next, struct page, lru);
2463         map = kmap_atomic(page, KM_USER0) + offset;
2464
2465         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2466                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2467
2468         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2469                 /*
2470                  * Think of how you add 1 to 999
2471                  */
2472                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2473                         kunmap_atomic(map, KM_USER0);
2474                         page = list_entry(page->lru.next, struct page, lru);
2475                         BUG_ON(page == head);
2476                         map = kmap_atomic(page, KM_USER0) + offset;
2477                 }
2478                 if (*map == SWAP_CONT_MAX) {
2479                         kunmap_atomic(map, KM_USER0);
2480                         page = list_entry(page->lru.next, struct page, lru);
2481                         if (page == head)
2482                                 return false;   /* add count continuation */
2483                         map = kmap_atomic(page, KM_USER0) + offset;
2484 init_map:               *map = 0;               /* we didn't zero the page */
2485                 }
2486                 *map += 1;
2487                 kunmap_atomic(map, KM_USER0);
2488                 page = list_entry(page->lru.prev, struct page, lru);
2489                 while (page != head) {
2490                         map = kmap_atomic(page, KM_USER0) + offset;
2491                         *map = COUNT_CONTINUED;
2492                         kunmap_atomic(map, KM_USER0);
2493                         page = list_entry(page->lru.prev, struct page, lru);
2494                 }
2495                 return true;                    /* incremented */
2496
2497         } else {                                /* decrementing */
2498                 /*
2499                  * Think of how you subtract 1 from 1000
2500                  */
2501                 BUG_ON(count != COUNT_CONTINUED);
2502                 while (*map == COUNT_CONTINUED) {
2503                         kunmap_atomic(map, KM_USER0);
2504                         page = list_entry(page->lru.next, struct page, lru);
2505                         BUG_ON(page == head);
2506                         map = kmap_atomic(page, KM_USER0) + offset;
2507                 }
2508                 BUG_ON(*map == 0);
2509                 *map -= 1;
2510                 if (*map == 0)
2511                         count = 0;
2512                 kunmap_atomic(map, KM_USER0);
2513                 page = list_entry(page->lru.prev, struct page, lru);
2514                 while (page != head) {
2515                         map = kmap_atomic(page, KM_USER0) + offset;
2516                         *map = SWAP_CONT_MAX | count;
2517                         count = COUNT_CONTINUED;
2518                         kunmap_atomic(map, KM_USER0);
2519                         page = list_entry(page->lru.prev, struct page, lru);
2520                 }
2521                 return count == COUNT_CONTINUED;
2522         }
2523 }
2524
2525 /*
2526  * free_swap_count_continuations - swapoff free all the continuation pages
2527  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2528  */
2529 static void free_swap_count_continuations(struct swap_info_struct *si)
2530 {
2531         pgoff_t offset;
2532
2533         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2534                 struct page *head;
2535                 head = vmalloc_to_page(si->swap_map + offset);
2536                 if (page_private(head)) {
2537                         struct list_head *this, *next;
2538                         list_for_each_safe(this, next, &head->lru) {
2539                                 struct page *page;
2540                                 page = list_entry(this, struct page, lru);
2541                                 list_del(this);
2542                                 __free_page(page);
2543                         }
2544                 }
2545         }
2546 }