3332d5bce31796b228a630edc69e0a15e019ff4c
[linux-flexiantxendom0-3.2.10.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53         do { \
54                 printk(KERN_DEBUG pr_fmt(format), ##args);      \
55         } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65
66 static struct device_type reg_device_type = {
67         .uevent = reg_device_uevent,
68 };
69
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84
85 static inline void assert_reg_lock(void)
86 {
87         lockdep_assert_held(&reg_mutex);
88 }
89
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100
101 struct reg_beacon {
102         struct list_head list;
103         struct ieee80211_channel chan;
104 };
105
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108
109 /* We keep a static world regulatory domain in case of the absence of CRDA */
110 static const struct ieee80211_regdomain world_regdom = {
111         .n_reg_rules = 5,
112         .alpha2 =  "00",
113         .reg_rules = {
114                 /* IEEE 802.11b/g, channels 1..11 */
115                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
116                 /* IEEE 802.11b/g, channels 12..13. No HT40
117                  * channel fits here. */
118                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121                 /* IEEE 802.11 channel 14 - Only JP enables
122                  * this and for 802.11b only */
123                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
124                         NL80211_RRF_PASSIVE_SCAN |
125                         NL80211_RRF_NO_IBSS |
126                         NL80211_RRF_NO_OFDM),
127                 /* IEEE 802.11a, channel 36..48 */
128                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131
132                 /* NB: 5260 MHz - 5700 MHz requies DFS */
133
134                 /* IEEE 802.11a, channel 149..165 */
135                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
136                         NL80211_RRF_PASSIVE_SCAN |
137                         NL80211_RRF_NO_IBSS),
138         }
139 };
140
141 static const struct ieee80211_regdomain *cfg80211_world_regdom =
142         &world_regdom;
143
144 static char *ieee80211_regdom = "00";
145 static char user_alpha2[2];
146
147 module_param(ieee80211_regdom, charp, 0444);
148 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
149
150 static void reset_regdomains(void)
151 {
152         /* avoid freeing static information or freeing something twice */
153         if (cfg80211_regdomain == cfg80211_world_regdom)
154                 cfg80211_regdomain = NULL;
155         if (cfg80211_world_regdom == &world_regdom)
156                 cfg80211_world_regdom = NULL;
157         if (cfg80211_regdomain == &world_regdom)
158                 cfg80211_regdomain = NULL;
159
160         kfree(cfg80211_regdomain);
161         kfree(cfg80211_world_regdom);
162
163         cfg80211_world_regdom = &world_regdom;
164         cfg80211_regdomain = NULL;
165 }
166
167 /*
168  * Dynamic world regulatory domain requested by the wireless
169  * core upon initialization
170  */
171 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
172 {
173         BUG_ON(!last_request);
174
175         reset_regdomains();
176
177         cfg80211_world_regdom = rd;
178         cfg80211_regdomain = rd;
179 }
180
181 bool is_world_regdom(const char *alpha2)
182 {
183         if (!alpha2)
184                 return false;
185         if (alpha2[0] == '0' && alpha2[1] == '0')
186                 return true;
187         return false;
188 }
189
190 static bool is_alpha2_set(const char *alpha2)
191 {
192         if (!alpha2)
193                 return false;
194         if (alpha2[0] != 0 && alpha2[1] != 0)
195                 return true;
196         return false;
197 }
198
199 static bool is_unknown_alpha2(const char *alpha2)
200 {
201         if (!alpha2)
202                 return false;
203         /*
204          * Special case where regulatory domain was built by driver
205          * but a specific alpha2 cannot be determined
206          */
207         if (alpha2[0] == '9' && alpha2[1] == '9')
208                 return true;
209         return false;
210 }
211
212 static bool is_intersected_alpha2(const char *alpha2)
213 {
214         if (!alpha2)
215                 return false;
216         /*
217          * Special case where regulatory domain is the
218          * result of an intersection between two regulatory domain
219          * structures
220          */
221         if (alpha2[0] == '9' && alpha2[1] == '8')
222                 return true;
223         return false;
224 }
225
226 static bool is_an_alpha2(const char *alpha2)
227 {
228         if (!alpha2)
229                 return false;
230         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
231                 return true;
232         return false;
233 }
234
235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 {
237         if (!alpha2_x || !alpha2_y)
238                 return false;
239         if (alpha2_x[0] == alpha2_y[0] &&
240                 alpha2_x[1] == alpha2_y[1])
241                 return true;
242         return false;
243 }
244
245 static bool regdom_changes(const char *alpha2)
246 {
247         assert_cfg80211_lock();
248
249         if (!cfg80211_regdomain)
250                 return true;
251         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
252                 return false;
253         return true;
254 }
255
256 /*
257  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
258  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
259  * has ever been issued.
260  */
261 static bool is_user_regdom_saved(void)
262 {
263         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
264                 return false;
265
266         /* This would indicate a mistake on the design */
267         if (WARN((!is_world_regdom(user_alpha2) &&
268                   !is_an_alpha2(user_alpha2)),
269                  "Unexpected user alpha2: %c%c\n",
270                  user_alpha2[0],
271                  user_alpha2[1]))
272                 return false;
273
274         return true;
275 }
276
277 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
278                          const struct ieee80211_regdomain *src_regd)
279 {
280         struct ieee80211_regdomain *regd;
281         int size_of_regd = 0;
282         unsigned int i;
283
284         size_of_regd = sizeof(struct ieee80211_regdomain) +
285           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
286
287         regd = kzalloc(size_of_regd, GFP_KERNEL);
288         if (!regd)
289                 return -ENOMEM;
290
291         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
292
293         for (i = 0; i < src_regd->n_reg_rules; i++)
294                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
295                         sizeof(struct ieee80211_reg_rule));
296
297         *dst_regd = regd;
298         return 0;
299 }
300
301 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
302 struct reg_regdb_search_request {
303         char alpha2[2];
304         struct list_head list;
305 };
306
307 static LIST_HEAD(reg_regdb_search_list);
308 static DEFINE_MUTEX(reg_regdb_search_mutex);
309
310 static void reg_regdb_search(struct work_struct *work)
311 {
312         struct reg_regdb_search_request *request;
313         const struct ieee80211_regdomain *curdom, *regdom;
314         int i, r;
315
316         mutex_lock(&reg_regdb_search_mutex);
317         while (!list_empty(&reg_regdb_search_list)) {
318                 request = list_first_entry(&reg_regdb_search_list,
319                                            struct reg_regdb_search_request,
320                                            list);
321                 list_del(&request->list);
322
323                 for (i=0; i<reg_regdb_size; i++) {
324                         curdom = reg_regdb[i];
325
326                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
327                                 r = reg_copy_regd(&regdom, curdom);
328                                 if (r)
329                                         break;
330                                 mutex_lock(&cfg80211_mutex);
331                                 set_regdom(regdom);
332                                 mutex_unlock(&cfg80211_mutex);
333                                 break;
334                         }
335                 }
336
337                 kfree(request);
338         }
339         mutex_unlock(&reg_regdb_search_mutex);
340 }
341
342 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
343
344 static void reg_regdb_query(const char *alpha2)
345 {
346         struct reg_regdb_search_request *request;
347
348         if (!alpha2)
349                 return;
350
351         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
352         if (!request)
353                 return;
354
355         memcpy(request->alpha2, alpha2, 2);
356
357         mutex_lock(&reg_regdb_search_mutex);
358         list_add_tail(&request->list, &reg_regdb_search_list);
359         mutex_unlock(&reg_regdb_search_mutex);
360
361         schedule_work(&reg_regdb_work);
362 }
363 #else
364 static inline void reg_regdb_query(const char *alpha2) {}
365 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
366
367 /*
368  * This lets us keep regulatory code which is updated on a regulatory
369  * basis in userspace. Country information is filled in by
370  * reg_device_uevent
371  */
372 static int call_crda(const char *alpha2)
373 {
374         if (!is_world_regdom((char *) alpha2))
375                 pr_info("Calling CRDA for country: %c%c\n",
376                         alpha2[0], alpha2[1]);
377         else
378                 pr_info("Calling CRDA to update world regulatory domain\n");
379
380         /* query internal regulatory database (if it exists) */
381         reg_regdb_query(alpha2);
382
383         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
384 }
385
386 /* Used by nl80211 before kmalloc'ing our regulatory domain */
387 bool reg_is_valid_request(const char *alpha2)
388 {
389         assert_cfg80211_lock();
390
391         if (!last_request)
392                 return false;
393
394         return alpha2_equal(last_request->alpha2, alpha2);
395 }
396
397 /* Sanity check on a regulatory rule */
398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399 {
400         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401         u32 freq_diff;
402
403         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404                 return false;
405
406         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
407                 return false;
408
409         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
410
411         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
412                         freq_range->max_bandwidth_khz > freq_diff)
413                 return false;
414
415         return true;
416 }
417
418 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419 {
420         const struct ieee80211_reg_rule *reg_rule = NULL;
421         unsigned int i;
422
423         if (!rd->n_reg_rules)
424                 return false;
425
426         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
427                 return false;
428
429         for (i = 0; i < rd->n_reg_rules; i++) {
430                 reg_rule = &rd->reg_rules[i];
431                 if (!is_valid_reg_rule(reg_rule))
432                         return false;
433         }
434
435         return true;
436 }
437
438 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
439                             u32 center_freq_khz,
440                             u32 bw_khz)
441 {
442         u32 start_freq_khz, end_freq_khz;
443
444         start_freq_khz = center_freq_khz - (bw_khz/2);
445         end_freq_khz = center_freq_khz + (bw_khz/2);
446
447         if (start_freq_khz >= freq_range->start_freq_khz &&
448             end_freq_khz <= freq_range->end_freq_khz)
449                 return true;
450
451         return false;
452 }
453
454 /**
455  * freq_in_rule_band - tells us if a frequency is in a frequency band
456  * @freq_range: frequency rule we want to query
457  * @freq_khz: frequency we are inquiring about
458  *
459  * This lets us know if a specific frequency rule is or is not relevant to
460  * a specific frequency's band. Bands are device specific and artificial
461  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
462  * safe for now to assume that a frequency rule should not be part of a
463  * frequency's band if the start freq or end freq are off by more than 2 GHz.
464  * This resolution can be lowered and should be considered as we add
465  * regulatory rule support for other "bands".
466  **/
467 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
468         u32 freq_khz)
469 {
470 #define ONE_GHZ_IN_KHZ  1000000
471         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
472                 return true;
473         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         return false;
476 #undef ONE_GHZ_IN_KHZ
477 }
478
479 /*
480  * Helper for regdom_intersect(), this does the real
481  * mathematical intersection fun
482  */
483 static int reg_rules_intersect(
484         const struct ieee80211_reg_rule *rule1,
485         const struct ieee80211_reg_rule *rule2,
486         struct ieee80211_reg_rule *intersected_rule)
487 {
488         const struct ieee80211_freq_range *freq_range1, *freq_range2;
489         struct ieee80211_freq_range *freq_range;
490         const struct ieee80211_power_rule *power_rule1, *power_rule2;
491         struct ieee80211_power_rule *power_rule;
492         u32 freq_diff;
493
494         freq_range1 = &rule1->freq_range;
495         freq_range2 = &rule2->freq_range;
496         freq_range = &intersected_rule->freq_range;
497
498         power_rule1 = &rule1->power_rule;
499         power_rule2 = &rule2->power_rule;
500         power_rule = &intersected_rule->power_rule;
501
502         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
503                 freq_range2->start_freq_khz);
504         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
505                 freq_range2->end_freq_khz);
506         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
507                 freq_range2->max_bandwidth_khz);
508
509         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
510         if (freq_range->max_bandwidth_khz > freq_diff)
511                 freq_range->max_bandwidth_khz = freq_diff;
512
513         power_rule->max_eirp = min(power_rule1->max_eirp,
514                 power_rule2->max_eirp);
515         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
516                 power_rule2->max_antenna_gain);
517
518         intersected_rule->flags = (rule1->flags | rule2->flags);
519
520         if (!is_valid_reg_rule(intersected_rule))
521                 return -EINVAL;
522
523         return 0;
524 }
525
526 /**
527  * regdom_intersect - do the intersection between two regulatory domains
528  * @rd1: first regulatory domain
529  * @rd2: second regulatory domain
530  *
531  * Use this function to get the intersection between two regulatory domains.
532  * Once completed we will mark the alpha2 for the rd as intersected, "98",
533  * as no one single alpha2 can represent this regulatory domain.
534  *
535  * Returns a pointer to the regulatory domain structure which will hold the
536  * resulting intersection of rules between rd1 and rd2. We will
537  * kzalloc() this structure for you.
538  */
539 static struct ieee80211_regdomain *regdom_intersect(
540         const struct ieee80211_regdomain *rd1,
541         const struct ieee80211_regdomain *rd2)
542 {
543         int r, size_of_regd;
544         unsigned int x, y;
545         unsigned int num_rules = 0, rule_idx = 0;
546         const struct ieee80211_reg_rule *rule1, *rule2;
547         struct ieee80211_reg_rule *intersected_rule;
548         struct ieee80211_regdomain *rd;
549         /* This is just a dummy holder to help us count */
550         struct ieee80211_reg_rule irule;
551
552         /* Uses the stack temporarily for counter arithmetic */
553         intersected_rule = &irule;
554
555         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
556
557         if (!rd1 || !rd2)
558                 return NULL;
559
560         /*
561          * First we get a count of the rules we'll need, then we actually
562          * build them. This is to so we can malloc() and free() a
563          * regdomain once. The reason we use reg_rules_intersect() here
564          * is it will return -EINVAL if the rule computed makes no sense.
565          * All rules that do check out OK are valid.
566          */
567
568         for (x = 0; x < rd1->n_reg_rules; x++) {
569                 rule1 = &rd1->reg_rules[x];
570                 for (y = 0; y < rd2->n_reg_rules; y++) {
571                         rule2 = &rd2->reg_rules[y];
572                         if (!reg_rules_intersect(rule1, rule2,
573                                         intersected_rule))
574                                 num_rules++;
575                         memset(intersected_rule, 0,
576                                         sizeof(struct ieee80211_reg_rule));
577                 }
578         }
579
580         if (!num_rules)
581                 return NULL;
582
583         size_of_regd = sizeof(struct ieee80211_regdomain) +
584                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
585
586         rd = kzalloc(size_of_regd, GFP_KERNEL);
587         if (!rd)
588                 return NULL;
589
590         for (x = 0; x < rd1->n_reg_rules; x++) {
591                 rule1 = &rd1->reg_rules[x];
592                 for (y = 0; y < rd2->n_reg_rules; y++) {
593                         rule2 = &rd2->reg_rules[y];
594                         /*
595                          * This time around instead of using the stack lets
596                          * write to the target rule directly saving ourselves
597                          * a memcpy()
598                          */
599                         intersected_rule = &rd->reg_rules[rule_idx];
600                         r = reg_rules_intersect(rule1, rule2,
601                                 intersected_rule);
602                         /*
603                          * No need to memset here the intersected rule here as
604                          * we're not using the stack anymore
605                          */
606                         if (r)
607                                 continue;
608                         rule_idx++;
609                 }
610         }
611
612         if (rule_idx != num_rules) {
613                 kfree(rd);
614                 return NULL;
615         }
616
617         rd->n_reg_rules = num_rules;
618         rd->alpha2[0] = '9';
619         rd->alpha2[1] = '8';
620
621         return rd;
622 }
623
624 /*
625  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
626  * want to just have the channel structure use these
627  */
628 static u32 map_regdom_flags(u32 rd_flags)
629 {
630         u32 channel_flags = 0;
631         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
632                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
633         if (rd_flags & NL80211_RRF_NO_IBSS)
634                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
635         if (rd_flags & NL80211_RRF_DFS)
636                 channel_flags |= IEEE80211_CHAN_RADAR;
637         return channel_flags;
638 }
639
640 static int freq_reg_info_regd(struct wiphy *wiphy,
641                               u32 center_freq,
642                               u32 desired_bw_khz,
643                               const struct ieee80211_reg_rule **reg_rule,
644                               const struct ieee80211_regdomain *custom_regd)
645 {
646         int i;
647         bool band_rule_found = false;
648         const struct ieee80211_regdomain *regd;
649         bool bw_fits = false;
650
651         if (!desired_bw_khz)
652                 desired_bw_khz = MHZ_TO_KHZ(20);
653
654         regd = custom_regd ? custom_regd : cfg80211_regdomain;
655
656         /*
657          * Follow the driver's regulatory domain, if present, unless a country
658          * IE has been processed or a user wants to help complaince further
659          */
660         if (!custom_regd &&
661             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
662             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
663             wiphy->regd)
664                 regd = wiphy->regd;
665
666         if (!regd)
667                 return -EINVAL;
668
669         for (i = 0; i < regd->n_reg_rules; i++) {
670                 const struct ieee80211_reg_rule *rr;
671                 const struct ieee80211_freq_range *fr = NULL;
672                 const struct ieee80211_power_rule *pr = NULL;
673
674                 rr = &regd->reg_rules[i];
675                 fr = &rr->freq_range;
676                 pr = &rr->power_rule;
677
678                 /*
679                  * We only need to know if one frequency rule was
680                  * was in center_freq's band, that's enough, so lets
681                  * not overwrite it once found
682                  */
683                 if (!band_rule_found)
684                         band_rule_found = freq_in_rule_band(fr, center_freq);
685
686                 bw_fits = reg_does_bw_fit(fr,
687                                           center_freq,
688                                           desired_bw_khz);
689
690                 if (band_rule_found && bw_fits) {
691                         *reg_rule = rr;
692                         return 0;
693                 }
694         }
695
696         if (!band_rule_found)
697                 return -ERANGE;
698
699         return -EINVAL;
700 }
701
702 int freq_reg_info(struct wiphy *wiphy,
703                   u32 center_freq,
704                   u32 desired_bw_khz,
705                   const struct ieee80211_reg_rule **reg_rule)
706 {
707         assert_cfg80211_lock();
708         return freq_reg_info_regd(wiphy,
709                                   center_freq,
710                                   desired_bw_khz,
711                                   reg_rule,
712                                   NULL);
713 }
714 EXPORT_SYMBOL(freq_reg_info);
715
716 #ifdef CONFIG_CFG80211_REG_DEBUG
717 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
718 {
719         switch (initiator) {
720         case NL80211_REGDOM_SET_BY_CORE:
721                 return "Set by core";
722         case NL80211_REGDOM_SET_BY_USER:
723                 return "Set by user";
724         case NL80211_REGDOM_SET_BY_DRIVER:
725                 return "Set by driver";
726         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
727                 return "Set by country IE";
728         default:
729                 WARN_ON(1);
730                 return "Set by bug";
731         }
732 }
733
734 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
735                                     u32 desired_bw_khz,
736                                     const struct ieee80211_reg_rule *reg_rule)
737 {
738         const struct ieee80211_power_rule *power_rule;
739         const struct ieee80211_freq_range *freq_range;
740         char max_antenna_gain[32];
741
742         power_rule = &reg_rule->power_rule;
743         freq_range = &reg_rule->freq_range;
744
745         if (!power_rule->max_antenna_gain)
746                 snprintf(max_antenna_gain, 32, "N/A");
747         else
748                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
749
750         REG_DBG_PRINT("Updating information on frequency %d MHz "
751                       "for a %d MHz width channel with regulatory rule:\n",
752                       chan->center_freq,
753                       KHZ_TO_MHZ(desired_bw_khz));
754
755         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
756                       freq_range->start_freq_khz,
757                       freq_range->end_freq_khz,
758                       max_antenna_gain,
759                       power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763                                     u32 desired_bw_khz,
764                                     const struct ieee80211_reg_rule *reg_rule)
765 {
766         return;
767 }
768 #endif
769
770 /*
771  * Note that right now we assume the desired channel bandwidth
772  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773  * per channel, the primary and the extension channel). To support
774  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775  * new ieee80211_channel.target_bw and re run the regulatory check
776  * on the wiphy with the target_bw specified. Then we can simply use
777  * that below for the desired_bw_khz below.
778  */
779 static void handle_channel(struct wiphy *wiphy,
780                            enum nl80211_reg_initiator initiator,
781                            enum ieee80211_band band,
782                            unsigned int chan_idx)
783 {
784         int r;
785         u32 flags, bw_flags = 0;
786         u32 desired_bw_khz = MHZ_TO_KHZ(20);
787         const struct ieee80211_reg_rule *reg_rule = NULL;
788         const struct ieee80211_power_rule *power_rule = NULL;
789         const struct ieee80211_freq_range *freq_range = NULL;
790         struct ieee80211_supported_band *sband;
791         struct ieee80211_channel *chan;
792         struct wiphy *request_wiphy = NULL;
793
794         assert_cfg80211_lock();
795
796         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797
798         sband = wiphy->bands[band];
799         BUG_ON(chan_idx >= sband->n_channels);
800         chan = &sband->channels[chan_idx];
801
802         flags = chan->orig_flags;
803
804         r = freq_reg_info(wiphy,
805                           MHZ_TO_KHZ(chan->center_freq),
806                           desired_bw_khz,
807                           &reg_rule);
808
809         if (r) {
810                 /*
811                  * We will disable all channels that do not match our
812                  * recieved regulatory rule unless the hint is coming
813                  * from a Country IE and the Country IE had no information
814                  * about a band. The IEEE 802.11 spec allows for an AP
815                  * to send only a subset of the regulatory rules allowed,
816                  * so an AP in the US that only supports 2.4 GHz may only send
817                  * a country IE with information for the 2.4 GHz band
818                  * while 5 GHz is still supported.
819                  */
820                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821                     r == -ERANGE)
822                         return;
823
824                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825                 chan->flags = IEEE80211_CHAN_DISABLED;
826                 return;
827         }
828
829         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830
831         power_rule = &reg_rule->power_rule;
832         freq_range = &reg_rule->freq_range;
833
834         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835                 bw_flags = IEEE80211_CHAN_NO_HT40;
836
837         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838             request_wiphy && request_wiphy == wiphy &&
839             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840                 /*
841                  * This gaurantees the driver's requested regulatory domain
842                  * will always be used as a base for further regulatory
843                  * settings
844                  */
845                 chan->flags = chan->orig_flags =
846                         map_regdom_flags(reg_rule->flags) | bw_flags;
847                 chan->max_antenna_gain = chan->orig_mag =
848                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849                 chan->max_power = chan->orig_mpwr =
850                         (int) MBM_TO_DBM(power_rule->max_eirp);
851                 return;
852         }
853
854         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
855         chan->max_antenna_gain = min(chan->orig_mag,
856                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
857         if (chan->orig_mpwr)
858                 chan->max_power = min(chan->orig_mpwr,
859                         (int) MBM_TO_DBM(power_rule->max_eirp));
860         else
861                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
862 }
863
864 static void handle_band(struct wiphy *wiphy,
865                         enum ieee80211_band band,
866                         enum nl80211_reg_initiator initiator)
867 {
868         unsigned int i;
869         struct ieee80211_supported_band *sband;
870
871         BUG_ON(!wiphy->bands[band]);
872         sband = wiphy->bands[band];
873
874         for (i = 0; i < sband->n_channels; i++)
875                 handle_channel(wiphy, initiator, band, i);
876 }
877
878 static bool ignore_reg_update(struct wiphy *wiphy,
879                               enum nl80211_reg_initiator initiator)
880 {
881         if (!last_request) {
882                 REG_DBG_PRINT("Ignoring regulatory request %s since "
883                               "last_request is not set\n",
884                               reg_initiator_name(initiator));
885                 return true;
886         }
887
888         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
889             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
890                 REG_DBG_PRINT("Ignoring regulatory request %s "
891                               "since the driver uses its own custom "
892                               "regulatory domain ",
893                               reg_initiator_name(initiator));
894                 return true;
895         }
896
897         /*
898          * wiphy->regd will be set once the device has its own
899          * desired regulatory domain set
900          */
901         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
902             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903             !is_world_regdom(last_request->alpha2)) {
904                 REG_DBG_PRINT("Ignoring regulatory request %s "
905                               "since the driver requires its own regulaotry "
906                               "domain to be set first",
907                               reg_initiator_name(initiator));
908                 return true;
909         }
910
911         return false;
912 }
913
914 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
915 {
916         struct cfg80211_registered_device *rdev;
917
918         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
919                 wiphy_update_regulatory(&rdev->wiphy, initiator);
920 }
921
922 static void handle_reg_beacon(struct wiphy *wiphy,
923                               unsigned int chan_idx,
924                               struct reg_beacon *reg_beacon)
925 {
926         struct ieee80211_supported_band *sband;
927         struct ieee80211_channel *chan;
928         bool channel_changed = false;
929         struct ieee80211_channel chan_before;
930
931         assert_cfg80211_lock();
932
933         sband = wiphy->bands[reg_beacon->chan.band];
934         chan = &sband->channels[chan_idx];
935
936         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
937                 return;
938
939         if (chan->beacon_found)
940                 return;
941
942         chan->beacon_found = true;
943
944         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
945                 return;
946
947         chan_before.center_freq = chan->center_freq;
948         chan_before.flags = chan->flags;
949
950         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
951                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
952                 channel_changed = true;
953         }
954
955         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
956                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
957                 channel_changed = true;
958         }
959
960         if (channel_changed)
961                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
962 }
963
964 /*
965  * Called when a scan on a wiphy finds a beacon on
966  * new channel
967  */
968 static void wiphy_update_new_beacon(struct wiphy *wiphy,
969                                     struct reg_beacon *reg_beacon)
970 {
971         unsigned int i;
972         struct ieee80211_supported_band *sband;
973
974         assert_cfg80211_lock();
975
976         if (!wiphy->bands[reg_beacon->chan.band])
977                 return;
978
979         sband = wiphy->bands[reg_beacon->chan.band];
980
981         for (i = 0; i < sband->n_channels; i++)
982                 handle_reg_beacon(wiphy, i, reg_beacon);
983 }
984
985 /*
986  * Called upon reg changes or a new wiphy is added
987  */
988 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
989 {
990         unsigned int i;
991         struct ieee80211_supported_band *sband;
992         struct reg_beacon *reg_beacon;
993
994         assert_cfg80211_lock();
995
996         if (list_empty(&reg_beacon_list))
997                 return;
998
999         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1000                 if (!wiphy->bands[reg_beacon->chan.band])
1001                         continue;
1002                 sband = wiphy->bands[reg_beacon->chan.band];
1003                 for (i = 0; i < sband->n_channels; i++)
1004                         handle_reg_beacon(wiphy, i, reg_beacon);
1005         }
1006 }
1007
1008 static bool reg_is_world_roaming(struct wiphy *wiphy)
1009 {
1010         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1011             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1012                 return true;
1013         if (last_request &&
1014             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1015             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1016                 return true;
1017         return false;
1018 }
1019
1020 /* Reap the advantages of previously found beacons */
1021 static void reg_process_beacons(struct wiphy *wiphy)
1022 {
1023         /*
1024          * Means we are just firing up cfg80211, so no beacons would
1025          * have been processed yet.
1026          */
1027         if (!last_request)
1028                 return;
1029         if (!reg_is_world_roaming(wiphy))
1030                 return;
1031         wiphy_update_beacon_reg(wiphy);
1032 }
1033
1034 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1035 {
1036         if (!chan)
1037                 return true;
1038         if (chan->flags & IEEE80211_CHAN_DISABLED)
1039                 return true;
1040         /* This would happen when regulatory rules disallow HT40 completely */
1041         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1042                 return true;
1043         return false;
1044 }
1045
1046 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1047                                          enum ieee80211_band band,
1048                                          unsigned int chan_idx)
1049 {
1050         struct ieee80211_supported_band *sband;
1051         struct ieee80211_channel *channel;
1052         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1053         unsigned int i;
1054
1055         assert_cfg80211_lock();
1056
1057         sband = wiphy->bands[band];
1058         BUG_ON(chan_idx >= sband->n_channels);
1059         channel = &sband->channels[chan_idx];
1060
1061         if (is_ht40_not_allowed(channel)) {
1062                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1063                 return;
1064         }
1065
1066         /*
1067          * We need to ensure the extension channels exist to
1068          * be able to use HT40- or HT40+, this finds them (or not)
1069          */
1070         for (i = 0; i < sband->n_channels; i++) {
1071                 struct ieee80211_channel *c = &sband->channels[i];
1072                 if (c->center_freq == (channel->center_freq - 20))
1073                         channel_before = c;
1074                 if (c->center_freq == (channel->center_freq + 20))
1075                         channel_after = c;
1076         }
1077
1078         /*
1079          * Please note that this assumes target bandwidth is 20 MHz,
1080          * if that ever changes we also need to change the below logic
1081          * to include that as well.
1082          */
1083         if (is_ht40_not_allowed(channel_before))
1084                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1085         else
1086                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1087
1088         if (is_ht40_not_allowed(channel_after))
1089                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1090         else
1091                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1092 }
1093
1094 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1095                                       enum ieee80211_band band)
1096 {
1097         unsigned int i;
1098         struct ieee80211_supported_band *sband;
1099
1100         BUG_ON(!wiphy->bands[band]);
1101         sband = wiphy->bands[band];
1102
1103         for (i = 0; i < sband->n_channels; i++)
1104                 reg_process_ht_flags_channel(wiphy, band, i);
1105 }
1106
1107 static void reg_process_ht_flags(struct wiphy *wiphy)
1108 {
1109         enum ieee80211_band band;
1110
1111         if (!wiphy)
1112                 return;
1113
1114         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1115                 if (wiphy->bands[band])
1116                         reg_process_ht_flags_band(wiphy, band);
1117         }
1118
1119 }
1120
1121 void wiphy_update_regulatory(struct wiphy *wiphy,
1122                              enum nl80211_reg_initiator initiator)
1123 {
1124         enum ieee80211_band band;
1125
1126         if (ignore_reg_update(wiphy, initiator))
1127                 goto out;
1128         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129                 if (wiphy->bands[band])
1130                         handle_band(wiphy, band, initiator);
1131         }
1132 out:
1133         reg_process_beacons(wiphy);
1134         reg_process_ht_flags(wiphy);
1135         if (wiphy->reg_notifier)
1136                 wiphy->reg_notifier(wiphy, last_request);
1137 }
1138
1139 static void handle_channel_custom(struct wiphy *wiphy,
1140                                   enum ieee80211_band band,
1141                                   unsigned int chan_idx,
1142                                   const struct ieee80211_regdomain *regd)
1143 {
1144         int r;
1145         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1146         u32 bw_flags = 0;
1147         const struct ieee80211_reg_rule *reg_rule = NULL;
1148         const struct ieee80211_power_rule *power_rule = NULL;
1149         const struct ieee80211_freq_range *freq_range = NULL;
1150         struct ieee80211_supported_band *sband;
1151         struct ieee80211_channel *chan;
1152
1153         assert_reg_lock();
1154
1155         sband = wiphy->bands[band];
1156         BUG_ON(chan_idx >= sband->n_channels);
1157         chan = &sband->channels[chan_idx];
1158
1159         r = freq_reg_info_regd(wiphy,
1160                                MHZ_TO_KHZ(chan->center_freq),
1161                                desired_bw_khz,
1162                                &reg_rule,
1163                                regd);
1164
1165         if (r) {
1166                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167                               "regd has no rule that fits a %d MHz "
1168                               "wide channel\n",
1169                               chan->center_freq,
1170                               KHZ_TO_MHZ(desired_bw_khz));
1171                 chan->flags = IEEE80211_CHAN_DISABLED;
1172                 return;
1173         }
1174
1175         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1176
1177         power_rule = &reg_rule->power_rule;
1178         freq_range = &reg_rule->freq_range;
1179
1180         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1181                 bw_flags = IEEE80211_CHAN_NO_HT40;
1182
1183         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1184         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1185         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1186 }
1187
1188 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1189                                const struct ieee80211_regdomain *regd)
1190 {
1191         unsigned int i;
1192         struct ieee80211_supported_band *sband;
1193
1194         BUG_ON(!wiphy->bands[band]);
1195         sband = wiphy->bands[band];
1196
1197         for (i = 0; i < sband->n_channels; i++)
1198                 handle_channel_custom(wiphy, band, i, regd);
1199 }
1200
1201 /* Used by drivers prior to wiphy registration */
1202 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1203                                    const struct ieee80211_regdomain *regd)
1204 {
1205         enum ieee80211_band band;
1206         unsigned int bands_set = 0;
1207
1208         mutex_lock(&reg_mutex);
1209         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1210                 if (!wiphy->bands[band])
1211                         continue;
1212                 handle_band_custom(wiphy, band, regd);
1213                 bands_set++;
1214         }
1215         mutex_unlock(&reg_mutex);
1216
1217         /*
1218          * no point in calling this if it won't have any effect
1219          * on your device's supportd bands.
1220          */
1221         WARN_ON(!bands_set);
1222 }
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1224
1225 /*
1226  * Return value which can be used by ignore_request() to indicate
1227  * it has been determined we should intersect two regulatory domains
1228  */
1229 #define REG_INTERSECT   1
1230
1231 /* This has the logic which determines when a new request
1232  * should be ignored. */
1233 static int ignore_request(struct wiphy *wiphy,
1234                           struct regulatory_request *pending_request)
1235 {
1236         struct wiphy *last_wiphy = NULL;
1237
1238         assert_cfg80211_lock();
1239
1240         /* All initial requests are respected */
1241         if (!last_request)
1242                 return 0;
1243
1244         switch (pending_request->initiator) {
1245         case NL80211_REGDOM_SET_BY_CORE:
1246                 return 0;
1247         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1248
1249                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1250
1251                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1252                         return -EINVAL;
1253                 if (last_request->initiator ==
1254                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1255                         if (last_wiphy != wiphy) {
1256                                 /*
1257                                  * Two cards with two APs claiming different
1258                                  * Country IE alpha2s. We could
1259                                  * intersect them, but that seems unlikely
1260                                  * to be correct. Reject second one for now.
1261                                  */
1262                                 if (regdom_changes(pending_request->alpha2))
1263                                         return -EOPNOTSUPP;
1264                                 return -EALREADY;
1265                         }
1266                         /*
1267                          * Two consecutive Country IE hints on the same wiphy.
1268                          * This should be picked up early by the driver/stack
1269                          */
1270                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1271                                 return 0;
1272                         return -EALREADY;
1273                 }
1274                 return 0;
1275         case NL80211_REGDOM_SET_BY_DRIVER:
1276                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1277                         if (regdom_changes(pending_request->alpha2))
1278                                 return 0;
1279                         return -EALREADY;
1280                 }
1281
1282                 /*
1283                  * This would happen if you unplug and plug your card
1284                  * back in or if you add a new device for which the previously
1285                  * loaded card also agrees on the regulatory domain.
1286                  */
1287                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288                     !regdom_changes(pending_request->alpha2))
1289                         return -EALREADY;
1290
1291                 return REG_INTERSECT;
1292         case NL80211_REGDOM_SET_BY_USER:
1293                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1294                         return REG_INTERSECT;
1295                 /*
1296                  * If the user knows better the user should set the regdom
1297                  * to their country before the IE is picked up
1298                  */
1299                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1300                           last_request->intersect)
1301                         return -EOPNOTSUPP;
1302                 /*
1303                  * Process user requests only after previous user/driver/core
1304                  * requests have been processed
1305                  */
1306                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1307                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1308                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1309                         if (regdom_changes(last_request->alpha2))
1310                                 return -EAGAIN;
1311                 }
1312
1313                 if (!regdom_changes(pending_request->alpha2))
1314                         return -EALREADY;
1315
1316                 return 0;
1317         }
1318
1319         return -EINVAL;
1320 }
1321
1322 static void reg_set_request_processed(void)
1323 {
1324         bool need_more_processing = false;
1325
1326         last_request->processed = true;
1327
1328         spin_lock(&reg_requests_lock);
1329         if (!list_empty(&reg_requests_list))
1330                 need_more_processing = true;
1331         spin_unlock(&reg_requests_lock);
1332
1333         if (need_more_processing)
1334                 schedule_work(&reg_work);
1335 }
1336
1337 /**
1338  * __regulatory_hint - hint to the wireless core a regulatory domain
1339  * @wiphy: if the hint comes from country information from an AP, this
1340  *      is required to be set to the wiphy that received the information
1341  * @pending_request: the regulatory request currently being processed
1342  *
1343  * The Wireless subsystem can use this function to hint to the wireless core
1344  * what it believes should be the current regulatory domain.
1345  *
1346  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1347  * already been set or other standard error codes.
1348  *
1349  * Caller must hold &cfg80211_mutex and &reg_mutex
1350  */
1351 static int __regulatory_hint(struct wiphy *wiphy,
1352                              struct regulatory_request *pending_request)
1353 {
1354         bool intersect = false;
1355         int r = 0;
1356
1357         assert_cfg80211_lock();
1358
1359         r = ignore_request(wiphy, pending_request);
1360
1361         if (r == REG_INTERSECT) {
1362                 if (pending_request->initiator ==
1363                     NL80211_REGDOM_SET_BY_DRIVER) {
1364                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1365                         if (r) {
1366                                 kfree(pending_request);
1367                                 return r;
1368                         }
1369                 }
1370                 intersect = true;
1371         } else if (r) {
1372                 /*
1373                  * If the regulatory domain being requested by the
1374                  * driver has already been set just copy it to the
1375                  * wiphy
1376                  */
1377                 if (r == -EALREADY &&
1378                     pending_request->initiator ==
1379                     NL80211_REGDOM_SET_BY_DRIVER) {
1380                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1381                         if (r) {
1382                                 kfree(pending_request);
1383                                 return r;
1384                         }
1385                         r = -EALREADY;
1386                         goto new_request;
1387                 }
1388                 kfree(pending_request);
1389                 return r;
1390         }
1391
1392 new_request:
1393         kfree(last_request);
1394
1395         last_request = pending_request;
1396         last_request->intersect = intersect;
1397
1398         pending_request = NULL;
1399
1400         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1401                 user_alpha2[0] = last_request->alpha2[0];
1402                 user_alpha2[1] = last_request->alpha2[1];
1403         }
1404
1405         /* When r == REG_INTERSECT we do need to call CRDA */
1406         if (r < 0) {
1407                 /*
1408                  * Since CRDA will not be called in this case as we already
1409                  * have applied the requested regulatory domain before we just
1410                  * inform userspace we have processed the request
1411                  */
1412                 if (r == -EALREADY) {
1413                         nl80211_send_reg_change_event(last_request);
1414                         reg_set_request_processed();
1415                 }
1416                 return r;
1417         }
1418
1419         return call_crda(last_request->alpha2);
1420 }
1421
1422 /* This processes *all* regulatory hints */
1423 static void reg_process_hint(struct regulatory_request *reg_request)
1424 {
1425         int r = 0;
1426         struct wiphy *wiphy = NULL;
1427         enum nl80211_reg_initiator initiator = reg_request->initiator;
1428
1429         BUG_ON(!reg_request->alpha2);
1430
1431         if (wiphy_idx_valid(reg_request->wiphy_idx))
1432                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1433
1434         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435             !wiphy) {
1436                 kfree(reg_request);
1437                 return;
1438         }
1439
1440         r = __regulatory_hint(wiphy, reg_request);
1441         /* This is required so that the orig_* parameters are saved */
1442         if (r == -EALREADY && wiphy &&
1443             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1444                 wiphy_update_regulatory(wiphy, initiator);
1445 }
1446
1447 /*
1448  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1449  * Regulatory hints come on a first come first serve basis and we
1450  * must process each one atomically.
1451  */
1452 static void reg_process_pending_hints(void)
1453 {
1454         struct regulatory_request *reg_request;
1455
1456         mutex_lock(&cfg80211_mutex);
1457         mutex_lock(&reg_mutex);
1458
1459         /* When last_request->processed becomes true this will be rescheduled */
1460         if (last_request && !last_request->processed) {
1461                 REG_DBG_PRINT("Pending regulatory request, waiting "
1462                               "for it to be processed...");
1463                 goto out;
1464         }
1465
1466         spin_lock(&reg_requests_lock);
1467
1468         if (list_empty(&reg_requests_list)) {
1469                 spin_unlock(&reg_requests_lock);
1470                 goto out;
1471         }
1472
1473         reg_request = list_first_entry(&reg_requests_list,
1474                                        struct regulatory_request,
1475                                        list);
1476         list_del_init(&reg_request->list);
1477
1478         spin_unlock(&reg_requests_lock);
1479
1480         reg_process_hint(reg_request);
1481
1482 out:
1483         mutex_unlock(&reg_mutex);
1484         mutex_unlock(&cfg80211_mutex);
1485 }
1486
1487 /* Processes beacon hints -- this has nothing to do with country IEs */
1488 static void reg_process_pending_beacon_hints(void)
1489 {
1490         struct cfg80211_registered_device *rdev;
1491         struct reg_beacon *pending_beacon, *tmp;
1492
1493         /*
1494          * No need to hold the reg_mutex here as we just touch wiphys
1495          * and do not read or access regulatory variables.
1496          */
1497         mutex_lock(&cfg80211_mutex);
1498
1499         /* This goes through the _pending_ beacon list */
1500         spin_lock_bh(&reg_pending_beacons_lock);
1501
1502         if (list_empty(&reg_pending_beacons)) {
1503                 spin_unlock_bh(&reg_pending_beacons_lock);
1504                 goto out;
1505         }
1506
1507         list_for_each_entry_safe(pending_beacon, tmp,
1508                                  &reg_pending_beacons, list) {
1509
1510                 list_del_init(&pending_beacon->list);
1511
1512                 /* Applies the beacon hint to current wiphys */
1513                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1514                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1515
1516                 /* Remembers the beacon hint for new wiphys or reg changes */
1517                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1518         }
1519
1520         spin_unlock_bh(&reg_pending_beacons_lock);
1521 out:
1522         mutex_unlock(&cfg80211_mutex);
1523 }
1524
1525 static void reg_todo(struct work_struct *work)
1526 {
1527         reg_process_pending_hints();
1528         reg_process_pending_beacon_hints();
1529 }
1530
1531 static void queue_regulatory_request(struct regulatory_request *request)
1532 {
1533         if (isalpha(request->alpha2[0]))
1534                 request->alpha2[0] = toupper(request->alpha2[0]);
1535         if (isalpha(request->alpha2[1]))
1536                 request->alpha2[1] = toupper(request->alpha2[1]);
1537
1538         spin_lock(&reg_requests_lock);
1539         list_add_tail(&request->list, &reg_requests_list);
1540         spin_unlock(&reg_requests_lock);
1541
1542         schedule_work(&reg_work);
1543 }
1544
1545 /*
1546  * Core regulatory hint -- happens during cfg80211_init()
1547  * and when we restore regulatory settings.
1548  */
1549 static int regulatory_hint_core(const char *alpha2)
1550 {
1551         struct regulatory_request *request;
1552
1553         kfree(last_request);
1554         last_request = NULL;
1555
1556         request = kzalloc(sizeof(struct regulatory_request),
1557                           GFP_KERNEL);
1558         if (!request)
1559                 return -ENOMEM;
1560
1561         request->alpha2[0] = alpha2[0];
1562         request->alpha2[1] = alpha2[1];
1563         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1564
1565         queue_regulatory_request(request);
1566
1567         return 0;
1568 }
1569
1570 /* User hints */
1571 int regulatory_hint_user(const char *alpha2)
1572 {
1573         struct regulatory_request *request;
1574
1575         BUG_ON(!alpha2);
1576
1577         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1578         if (!request)
1579                 return -ENOMEM;
1580
1581         request->wiphy_idx = WIPHY_IDX_STALE;
1582         request->alpha2[0] = alpha2[0];
1583         request->alpha2[1] = alpha2[1];
1584         request->initiator = NL80211_REGDOM_SET_BY_USER;
1585
1586         queue_regulatory_request(request);
1587
1588         return 0;
1589 }
1590
1591 /* Driver hints */
1592 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1593 {
1594         struct regulatory_request *request;
1595
1596         BUG_ON(!alpha2);
1597         BUG_ON(!wiphy);
1598
1599         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1600         if (!request)
1601                 return -ENOMEM;
1602
1603         request->wiphy_idx = get_wiphy_idx(wiphy);
1604
1605         /* Must have registered wiphy first */
1606         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1607
1608         request->alpha2[0] = alpha2[0];
1609         request->alpha2[1] = alpha2[1];
1610         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1611
1612         queue_regulatory_request(request);
1613
1614         return 0;
1615 }
1616 EXPORT_SYMBOL(regulatory_hint);
1617
1618 /*
1619  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1620  * therefore cannot iterate over the rdev list here.
1621  */
1622 void regulatory_hint_11d(struct wiphy *wiphy,
1623                          enum ieee80211_band band,
1624                          u8 *country_ie,
1625                          u8 country_ie_len)
1626 {
1627         char alpha2[2];
1628         enum environment_cap env = ENVIRON_ANY;
1629         struct regulatory_request *request;
1630
1631         mutex_lock(&reg_mutex);
1632
1633         if (unlikely(!last_request))
1634                 goto out;
1635
1636         /* IE len must be evenly divisible by 2 */
1637         if (country_ie_len & 0x01)
1638                 goto out;
1639
1640         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1641                 goto out;
1642
1643         alpha2[0] = country_ie[0];
1644         alpha2[1] = country_ie[1];
1645
1646         if (country_ie[2] == 'I')
1647                 env = ENVIRON_INDOOR;
1648         else if (country_ie[2] == 'O')
1649                 env = ENVIRON_OUTDOOR;
1650
1651         /*
1652          * We will run this only upon a successful connection on cfg80211.
1653          * We leave conflict resolution to the workqueue, where can hold
1654          * cfg80211_mutex.
1655          */
1656         if (likely(last_request->initiator ==
1657             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1658             wiphy_idx_valid(last_request->wiphy_idx)))
1659                 goto out;
1660
1661         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1662         if (!request)
1663                 goto out;
1664
1665         request->wiphy_idx = get_wiphy_idx(wiphy);
1666         request->alpha2[0] = alpha2[0];
1667         request->alpha2[1] = alpha2[1];
1668         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1669         request->country_ie_env = env;
1670
1671         mutex_unlock(&reg_mutex);
1672
1673         queue_regulatory_request(request);
1674
1675         return;
1676
1677 out:
1678         mutex_unlock(&reg_mutex);
1679 }
1680
1681 static void restore_alpha2(char *alpha2, bool reset_user)
1682 {
1683         /* indicates there is no alpha2 to consider for restoration */
1684         alpha2[0] = '9';
1685         alpha2[1] = '7';
1686
1687         /* The user setting has precedence over the module parameter */
1688         if (is_user_regdom_saved()) {
1689                 /* Unless we're asked to ignore it and reset it */
1690                 if (reset_user) {
1691                         REG_DBG_PRINT("Restoring regulatory settings "
1692                                "including user preference\n");
1693                         user_alpha2[0] = '9';
1694                         user_alpha2[1] = '7';
1695
1696                         /*
1697                          * If we're ignoring user settings, we still need to
1698                          * check the module parameter to ensure we put things
1699                          * back as they were for a full restore.
1700                          */
1701                         if (!is_world_regdom(ieee80211_regdom)) {
1702                                 REG_DBG_PRINT("Keeping preference on "
1703                                        "module parameter ieee80211_regdom: %c%c\n",
1704                                        ieee80211_regdom[0],
1705                                        ieee80211_regdom[1]);
1706                                 alpha2[0] = ieee80211_regdom[0];
1707                                 alpha2[1] = ieee80211_regdom[1];
1708                         }
1709                 } else {
1710                         REG_DBG_PRINT("Restoring regulatory settings "
1711                                "while preserving user preference for: %c%c\n",
1712                                user_alpha2[0],
1713                                user_alpha2[1]);
1714                         alpha2[0] = user_alpha2[0];
1715                         alpha2[1] = user_alpha2[1];
1716                 }
1717         } else if (!is_world_regdom(ieee80211_regdom)) {
1718                 REG_DBG_PRINT("Keeping preference on "
1719                        "module parameter ieee80211_regdom: %c%c\n",
1720                        ieee80211_regdom[0],
1721                        ieee80211_regdom[1]);
1722                 alpha2[0] = ieee80211_regdom[0];
1723                 alpha2[1] = ieee80211_regdom[1];
1724         } else
1725                 REG_DBG_PRINT("Restoring regulatory settings\n");
1726 }
1727
1728 /*
1729  * Restoring regulatory settings involves ingoring any
1730  * possibly stale country IE information and user regulatory
1731  * settings if so desired, this includes any beacon hints
1732  * learned as we could have traveled outside to another country
1733  * after disconnection. To restore regulatory settings we do
1734  * exactly what we did at bootup:
1735  *
1736  *   - send a core regulatory hint
1737  *   - send a user regulatory hint if applicable
1738  *
1739  * Device drivers that send a regulatory hint for a specific country
1740  * keep their own regulatory domain on wiphy->regd so that does does
1741  * not need to be remembered.
1742  */
1743 static void restore_regulatory_settings(bool reset_user)
1744 {
1745         char alpha2[2];
1746         struct reg_beacon *reg_beacon, *btmp;
1747
1748         mutex_lock(&cfg80211_mutex);
1749         mutex_lock(&reg_mutex);
1750
1751         reset_regdomains();
1752         restore_alpha2(alpha2, reset_user);
1753
1754         /* Clear beacon hints */
1755         spin_lock_bh(&reg_pending_beacons_lock);
1756         if (!list_empty(&reg_pending_beacons)) {
1757                 list_for_each_entry_safe(reg_beacon, btmp,
1758                                          &reg_pending_beacons, list) {
1759                         list_del(&reg_beacon->list);
1760                         kfree(reg_beacon);
1761                 }
1762         }
1763         spin_unlock_bh(&reg_pending_beacons_lock);
1764
1765         if (!list_empty(&reg_beacon_list)) {
1766                 list_for_each_entry_safe(reg_beacon, btmp,
1767                                          &reg_beacon_list, list) {
1768                         list_del(&reg_beacon->list);
1769                         kfree(reg_beacon);
1770                 }
1771         }
1772
1773         /* First restore to the basic regulatory settings */
1774         cfg80211_regdomain = cfg80211_world_regdom;
1775
1776         mutex_unlock(&reg_mutex);
1777         mutex_unlock(&cfg80211_mutex);
1778
1779         regulatory_hint_core(cfg80211_regdomain->alpha2);
1780
1781         /*
1782          * This restores the ieee80211_regdom module parameter
1783          * preference or the last user requested regulatory
1784          * settings, user regulatory settings takes precedence.
1785          */
1786         if (is_an_alpha2(alpha2))
1787                 regulatory_hint_user(user_alpha2);
1788 }
1789
1790
1791 void regulatory_hint_disconnect(void)
1792 {
1793         REG_DBG_PRINT("All devices are disconnected, going to "
1794                       "restore regulatory settings\n");
1795         restore_regulatory_settings(false);
1796 }
1797
1798 static bool freq_is_chan_12_13_14(u16 freq)
1799 {
1800         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1801             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1802             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1803                 return true;
1804         return false;
1805 }
1806
1807 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1808                                  struct ieee80211_channel *beacon_chan,
1809                                  gfp_t gfp)
1810 {
1811         struct reg_beacon *reg_beacon;
1812
1813         if (likely((beacon_chan->beacon_found ||
1814             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1815             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1816              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1817                 return 0;
1818
1819         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1820         if (!reg_beacon)
1821                 return -ENOMEM;
1822
1823         REG_DBG_PRINT("Found new beacon on "
1824                       "frequency: %d MHz (Ch %d) on %s\n",
1825                       beacon_chan->center_freq,
1826                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1827                       wiphy_name(wiphy));
1828
1829         memcpy(&reg_beacon->chan, beacon_chan,
1830                 sizeof(struct ieee80211_channel));
1831
1832
1833         /*
1834          * Since we can be called from BH or and non-BH context
1835          * we must use spin_lock_bh()
1836          */
1837         spin_lock_bh(&reg_pending_beacons_lock);
1838         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1839         spin_unlock_bh(&reg_pending_beacons_lock);
1840
1841         schedule_work(&reg_work);
1842
1843         return 0;
1844 }
1845
1846 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1847 {
1848         unsigned int i;
1849         const struct ieee80211_reg_rule *reg_rule = NULL;
1850         const struct ieee80211_freq_range *freq_range = NULL;
1851         const struct ieee80211_power_rule *power_rule = NULL;
1852
1853         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1854
1855         for (i = 0; i < rd->n_reg_rules; i++) {
1856                 reg_rule = &rd->reg_rules[i];
1857                 freq_range = &reg_rule->freq_range;
1858                 power_rule = &reg_rule->power_rule;
1859
1860                 /*
1861                  * There may not be documentation for max antenna gain
1862                  * in certain regions
1863                  */
1864                 if (power_rule->max_antenna_gain)
1865                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1866                                 freq_range->start_freq_khz,
1867                                 freq_range->end_freq_khz,
1868                                 freq_range->max_bandwidth_khz,
1869                                 power_rule->max_antenna_gain,
1870                                 power_rule->max_eirp);
1871                 else
1872                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1873                                 freq_range->start_freq_khz,
1874                                 freq_range->end_freq_khz,
1875                                 freq_range->max_bandwidth_khz,
1876                                 power_rule->max_eirp);
1877         }
1878 }
1879
1880 static void print_regdomain(const struct ieee80211_regdomain *rd)
1881 {
1882
1883         if (is_intersected_alpha2(rd->alpha2)) {
1884
1885                 if (last_request->initiator ==
1886                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1887                         struct cfg80211_registered_device *rdev;
1888                         rdev = cfg80211_rdev_by_wiphy_idx(
1889                                 last_request->wiphy_idx);
1890                         if (rdev) {
1891                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1892                                         rdev->country_ie_alpha2[0],
1893                                         rdev->country_ie_alpha2[1]);
1894                         } else
1895                                 pr_info("Current regulatory domain intersected:\n");
1896                 } else
1897                         pr_info("Current regulatory domain intersected:\n");
1898         } else if (is_world_regdom(rd->alpha2))
1899                 pr_info("World regulatory domain updated:\n");
1900         else {
1901                 if (is_unknown_alpha2(rd->alpha2))
1902                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1903                 else
1904                         pr_info("Regulatory domain changed to country: %c%c\n",
1905                                 rd->alpha2[0], rd->alpha2[1]);
1906         }
1907         print_rd_rules(rd);
1908 }
1909
1910 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1911 {
1912         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1913         print_rd_rules(rd);
1914 }
1915
1916 /* Takes ownership of rd only if it doesn't fail */
1917 static int __set_regdom(const struct ieee80211_regdomain *rd)
1918 {
1919         const struct ieee80211_regdomain *intersected_rd = NULL;
1920         struct cfg80211_registered_device *rdev = NULL;
1921         struct wiphy *request_wiphy;
1922         /* Some basic sanity checks first */
1923
1924         if (is_world_regdom(rd->alpha2)) {
1925                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1926                         return -EINVAL;
1927                 update_world_regdomain(rd);
1928                 return 0;
1929         }
1930
1931         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1932                         !is_unknown_alpha2(rd->alpha2))
1933                 return -EINVAL;
1934
1935         if (!last_request)
1936                 return -EINVAL;
1937
1938         /*
1939          * Lets only bother proceeding on the same alpha2 if the current
1940          * rd is non static (it means CRDA was present and was used last)
1941          * and the pending request came in from a country IE
1942          */
1943         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1944                 /*
1945                  * If someone else asked us to change the rd lets only bother
1946                  * checking if the alpha2 changes if CRDA was already called
1947                  */
1948                 if (!regdom_changes(rd->alpha2))
1949                         return -EINVAL;
1950         }
1951
1952         /*
1953          * Now lets set the regulatory domain, update all driver channels
1954          * and finally inform them of what we have done, in case they want
1955          * to review or adjust their own settings based on their own
1956          * internal EEPROM data
1957          */
1958
1959         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1960                 return -EINVAL;
1961
1962         if (!is_valid_rd(rd)) {
1963                 pr_err("Invalid regulatory domain detected:\n");
1964                 print_regdomain_info(rd);
1965                 return -EINVAL;
1966         }
1967
1968         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1969
1970         if (!last_request->intersect) {
1971                 int r;
1972
1973                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974                         reset_regdomains();
1975                         cfg80211_regdomain = rd;
1976                         return 0;
1977                 }
1978
1979                 /*
1980                  * For a driver hint, lets copy the regulatory domain the
1981                  * driver wanted to the wiphy to deal with conflicts
1982                  */
1983
1984                 /*
1985                  * Userspace could have sent two replies with only
1986                  * one kernel request.
1987                  */
1988                 if (request_wiphy->regd)
1989                         return -EALREADY;
1990
1991                 r = reg_copy_regd(&request_wiphy->regd, rd);
1992                 if (r)
1993                         return r;
1994
1995                 reset_regdomains();
1996                 cfg80211_regdomain = rd;
1997                 return 0;
1998         }
1999
2000         /* Intersection requires a bit more work */
2001
2002         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003
2004                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2005                 if (!intersected_rd)
2006                         return -EINVAL;
2007
2008                 /*
2009                  * We can trash what CRDA provided now.
2010                  * However if a driver requested this specific regulatory
2011                  * domain we keep it for its private use
2012                  */
2013                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2014                         request_wiphy->regd = rd;
2015                 else
2016                         kfree(rd);
2017
2018                 rd = NULL;
2019
2020                 reset_regdomains();
2021                 cfg80211_regdomain = intersected_rd;
2022
2023                 return 0;
2024         }
2025
2026         if (!intersected_rd)
2027                 return -EINVAL;
2028
2029         rdev = wiphy_to_dev(request_wiphy);
2030
2031         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2032         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2033         rdev->env = last_request->country_ie_env;
2034
2035         BUG_ON(intersected_rd == rd);
2036
2037         kfree(rd);
2038         rd = NULL;
2039
2040         reset_regdomains();
2041         cfg80211_regdomain = intersected_rd;
2042
2043         return 0;
2044 }
2045
2046
2047 /*
2048  * Use this call to set the current regulatory domain. Conflicts with
2049  * multiple drivers can be ironed out later. Caller must've already
2050  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2051  */
2052 int set_regdom(const struct ieee80211_regdomain *rd)
2053 {
2054         int r;
2055
2056         assert_cfg80211_lock();
2057
2058         mutex_lock(&reg_mutex);
2059
2060         /* Note that this doesn't update the wiphys, this is done below */
2061         r = __set_regdom(rd);
2062         if (r) {
2063                 kfree(rd);
2064                 mutex_unlock(&reg_mutex);
2065                 return r;
2066         }
2067
2068         /* This would make this whole thing pointless */
2069         if (!last_request->intersect)
2070                 BUG_ON(rd != cfg80211_regdomain);
2071
2072         /* update all wiphys now with the new established regulatory domain */
2073         update_all_wiphy_regulatory(last_request->initiator);
2074
2075         print_regdomain(cfg80211_regdomain);
2076
2077         nl80211_send_reg_change_event(last_request);
2078
2079         reg_set_request_processed();
2080
2081         mutex_unlock(&reg_mutex);
2082
2083         return r;
2084 }
2085
2086 #ifdef CONFIG_HOTPLUG
2087 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2088 {
2089         if (last_request && !last_request->processed) {
2090                 if (add_uevent_var(env, "COUNTRY=%c%c",
2091                                    last_request->alpha2[0],
2092                                    last_request->alpha2[1]))
2093                         return -ENOMEM;
2094         }
2095
2096         return 0;
2097 }
2098 #else
2099 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2100 {
2101         return -ENODEV;
2102 }
2103 #endif /* CONFIG_HOTPLUG */
2104
2105 /* Caller must hold cfg80211_mutex */
2106 void reg_device_remove(struct wiphy *wiphy)
2107 {
2108         struct wiphy *request_wiphy = NULL;
2109
2110         assert_cfg80211_lock();
2111
2112         mutex_lock(&reg_mutex);
2113
2114         kfree(wiphy->regd);
2115
2116         if (last_request)
2117                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2118
2119         if (!request_wiphy || request_wiphy != wiphy)
2120                 goto out;
2121
2122         last_request->wiphy_idx = WIPHY_IDX_STALE;
2123         last_request->country_ie_env = ENVIRON_ANY;
2124 out:
2125         mutex_unlock(&reg_mutex);
2126 }
2127
2128 int __init regulatory_init(void)
2129 {
2130         int err = 0;
2131
2132         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2133         if (IS_ERR(reg_pdev))
2134                 return PTR_ERR(reg_pdev);
2135
2136         reg_pdev->dev.type = &reg_device_type;
2137
2138         spin_lock_init(&reg_requests_lock);
2139         spin_lock_init(&reg_pending_beacons_lock);
2140
2141         cfg80211_regdomain = cfg80211_world_regdom;
2142
2143         user_alpha2[0] = '9';
2144         user_alpha2[1] = '7';
2145
2146         /* We always try to get an update for the static regdomain */
2147         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2148         if (err) {
2149                 if (err == -ENOMEM)
2150                         return err;
2151                 /*
2152                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2153                  * memory which is handled and propagated appropriately above
2154                  * but it can also fail during a netlink_broadcast() or during
2155                  * early boot for call_usermodehelper(). For now treat these
2156                  * errors as non-fatal.
2157                  */
2158                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2159 #ifdef CONFIG_CFG80211_REG_DEBUG
2160                 /* We want to find out exactly why when debugging */
2161                 WARN_ON(err);
2162 #endif
2163         }
2164
2165         /*
2166          * Finally, if the user set the module parameter treat it
2167          * as a user hint.
2168          */
2169         if (!is_world_regdom(ieee80211_regdom))
2170                 regulatory_hint_user(ieee80211_regdom);
2171
2172         return 0;
2173 }
2174
2175 void /* __init_or_exit */ regulatory_exit(void)
2176 {
2177         struct regulatory_request *reg_request, *tmp;
2178         struct reg_beacon *reg_beacon, *btmp;
2179
2180         cancel_work_sync(&reg_work);
2181
2182         mutex_lock(&cfg80211_mutex);
2183         mutex_lock(&reg_mutex);
2184
2185         reset_regdomains();
2186
2187         kfree(last_request);
2188
2189         platform_device_unregister(reg_pdev);
2190
2191         spin_lock_bh(&reg_pending_beacons_lock);
2192         if (!list_empty(&reg_pending_beacons)) {
2193                 list_for_each_entry_safe(reg_beacon, btmp,
2194                                          &reg_pending_beacons, list) {
2195                         list_del(&reg_beacon->list);
2196                         kfree(reg_beacon);
2197                 }
2198         }
2199         spin_unlock_bh(&reg_pending_beacons_lock);
2200
2201         if (!list_empty(&reg_beacon_list)) {
2202                 list_for_each_entry_safe(reg_beacon, btmp,
2203                                          &reg_beacon_list, list) {
2204                         list_del(&reg_beacon->list);
2205                         kfree(reg_beacon);
2206                 }
2207         }
2208
2209         spin_lock(&reg_requests_lock);
2210         if (!list_empty(&reg_requests_list)) {
2211                 list_for_each_entry_safe(reg_request, tmp,
2212                                          &reg_requests_list, list) {
2213                         list_del(&reg_request->list);
2214                         kfree(reg_request);
2215                 }
2216         }
2217         spin_unlock(&reg_requests_lock);
2218
2219         mutex_unlock(&reg_mutex);
2220         mutex_unlock(&cfg80211_mutex);
2221 }