Merge tag 'md-3.4-fixes' of git://neil.brown.name/md
[linux-flexiantxendom0-3.2.10.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - track and record media errors, throw out bad devices
40  *  - add a mode to also read unallocated space
41  */
42
43 struct scrub_block;
44 struct scrub_dev;
45
46 #define SCRUB_PAGES_PER_BIO     16      /* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV      16      /* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
49
50 struct scrub_page {
51         struct scrub_block      *sblock;
52         struct page             *page;
53         struct block_device     *bdev;
54         u64                     flags;  /* extent flags */
55         u64                     generation;
56         u64                     logical;
57         u64                     physical;
58         struct {
59                 unsigned int    mirror_num:8;
60                 unsigned int    have_csum:1;
61                 unsigned int    io_error:1;
62         };
63         u8                      csum[BTRFS_CSUM_SIZE];
64 };
65
66 struct scrub_bio {
67         int                     index;
68         struct scrub_dev        *sdev;
69         struct bio              *bio;
70         int                     err;
71         u64                     logical;
72         u64                     physical;
73         struct scrub_page       *pagev[SCRUB_PAGES_PER_BIO];
74         int                     page_count;
75         int                     next_free;
76         struct btrfs_work       work;
77 };
78
79 struct scrub_block {
80         struct scrub_page       pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81         int                     page_count;
82         atomic_t                outstanding_pages;
83         atomic_t                ref_count; /* free mem on transition to zero */
84         struct scrub_dev        *sdev;
85         struct {
86                 unsigned int    header_error:1;
87                 unsigned int    checksum_error:1;
88                 unsigned int    no_io_error_seen:1;
89         };
90 };
91
92 struct scrub_dev {
93         struct scrub_bio        *bios[SCRUB_BIOS_PER_DEV];
94         struct btrfs_device     *dev;
95         int                     first_free;
96         int                     curr;
97         atomic_t                in_flight;
98         atomic_t                fixup_cnt;
99         spinlock_t              list_lock;
100         wait_queue_head_t       list_wait;
101         u16                     csum_size;
102         struct list_head        csum_list;
103         atomic_t                cancel_req;
104         int                     readonly;
105         int                     pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106         u32                     sectorsize;
107         u32                     nodesize;
108         u32                     leafsize;
109         /*
110          * statistics
111          */
112         struct btrfs_scrub_progress stat;
113         spinlock_t              stat_lock;
114 };
115
116 struct scrub_fixup_nodatasum {
117         struct scrub_dev        *sdev;
118         u64                     logical;
119         struct btrfs_root       *root;
120         struct btrfs_work       work;
121         int                     mirror_num;
122 };
123
124 struct scrub_warning {
125         struct btrfs_path       *path;
126         u64                     extent_item_size;
127         char                    *scratch_buf;
128         char                    *msg_buf;
129         const char              *errstr;
130         sector_t                sector;
131         u64                     logical;
132         struct btrfs_device     *dev;
133         int                     msg_bufsize;
134         int                     scratch_bufsize;
135 };
136
137
138 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140                                      struct btrfs_mapping_tree *map_tree,
141                                      u64 length, u64 logical,
142                                      struct scrub_block *sblock);
143 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144                                struct scrub_block *sblock, int is_metadata,
145                                int have_csum, u8 *csum, u64 generation,
146                                u16 csum_size);
147 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148                                          struct scrub_block *sblock,
149                                          int is_metadata, int have_csum,
150                                          const u8 *csum, u64 generation,
151                                          u16 csum_size);
152 static void scrub_complete_bio_end_io(struct bio *bio, int err);
153 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154                                              struct scrub_block *sblock_good,
155                                              int force_write);
156 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157                                             struct scrub_block *sblock_good,
158                                             int page_num, int force_write);
159 static int scrub_checksum_data(struct scrub_block *sblock);
160 static int scrub_checksum_tree_block(struct scrub_block *sblock);
161 static int scrub_checksum_super(struct scrub_block *sblock);
162 static void scrub_block_get(struct scrub_block *sblock);
163 static void scrub_block_put(struct scrub_block *sblock);
164 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165                                  struct scrub_page *spage);
166 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167                        u64 physical, u64 flags, u64 gen, int mirror_num,
168                        u8 *csum, int force);
169 static void scrub_bio_end_io(struct bio *bio, int err);
170 static void scrub_bio_end_io_worker(struct btrfs_work *work);
171 static void scrub_block_complete(struct scrub_block *sblock);
172
173
174 static void scrub_free_csums(struct scrub_dev *sdev)
175 {
176         while (!list_empty(&sdev->csum_list)) {
177                 struct btrfs_ordered_sum *sum;
178                 sum = list_first_entry(&sdev->csum_list,
179                                        struct btrfs_ordered_sum, list);
180                 list_del(&sum->list);
181                 kfree(sum);
182         }
183 }
184
185 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186 {
187         int i;
188
189         if (!sdev)
190                 return;
191
192         /* this can happen when scrub is cancelled */
193         if (sdev->curr != -1) {
194                 struct scrub_bio *sbio = sdev->bios[sdev->curr];
195
196                 for (i = 0; i < sbio->page_count; i++) {
197                         BUG_ON(!sbio->pagev[i]);
198                         BUG_ON(!sbio->pagev[i]->page);
199                         scrub_block_put(sbio->pagev[i]->sblock);
200                 }
201                 bio_put(sbio->bio);
202         }
203
204         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205                 struct scrub_bio *sbio = sdev->bios[i];
206
207                 if (!sbio)
208                         break;
209                 kfree(sbio);
210         }
211
212         scrub_free_csums(sdev);
213         kfree(sdev);
214 }
215
216 static noinline_for_stack
217 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218 {
219         struct scrub_dev *sdev;
220         int             i;
221         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
222         int pages_per_bio;
223
224         pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225                               bio_get_nr_vecs(dev->bdev));
226         sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227         if (!sdev)
228                 goto nomem;
229         sdev->dev = dev;
230         sdev->pages_per_bio = pages_per_bio;
231         sdev->curr = -1;
232         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
233                 struct scrub_bio *sbio;
234
235                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236                 if (!sbio)
237                         goto nomem;
238                 sdev->bios[i] = sbio;
239
240                 sbio->index = i;
241                 sbio->sdev = sdev;
242                 sbio->page_count = 0;
243                 sbio->work.func = scrub_bio_end_io_worker;
244
245                 if (i != SCRUB_BIOS_PER_DEV-1)
246                         sdev->bios[i]->next_free = i + 1;
247                 else
248                         sdev->bios[i]->next_free = -1;
249         }
250         sdev->first_free = 0;
251         sdev->nodesize = dev->dev_root->nodesize;
252         sdev->leafsize = dev->dev_root->leafsize;
253         sdev->sectorsize = dev->dev_root->sectorsize;
254         atomic_set(&sdev->in_flight, 0);
255         atomic_set(&sdev->fixup_cnt, 0);
256         atomic_set(&sdev->cancel_req, 0);
257         sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
258         INIT_LIST_HEAD(&sdev->csum_list);
259
260         spin_lock_init(&sdev->list_lock);
261         spin_lock_init(&sdev->stat_lock);
262         init_waitqueue_head(&sdev->list_wait);
263         return sdev;
264
265 nomem:
266         scrub_free_dev(sdev);
267         return ERR_PTR(-ENOMEM);
268 }
269
270 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271 {
272         u64 isize;
273         u32 nlink;
274         int ret;
275         int i;
276         struct extent_buffer *eb;
277         struct btrfs_inode_item *inode_item;
278         struct scrub_warning *swarn = ctx;
279         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280         struct inode_fs_paths *ipath = NULL;
281         struct btrfs_root *local_root;
282         struct btrfs_key root_key;
283
284         root_key.objectid = root;
285         root_key.type = BTRFS_ROOT_ITEM_KEY;
286         root_key.offset = (u64)-1;
287         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288         if (IS_ERR(local_root)) {
289                 ret = PTR_ERR(local_root);
290                 goto err;
291         }
292
293         ret = inode_item_info(inum, 0, local_root, swarn->path);
294         if (ret) {
295                 btrfs_release_path(swarn->path);
296                 goto err;
297         }
298
299         eb = swarn->path->nodes[0];
300         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301                                         struct btrfs_inode_item);
302         isize = btrfs_inode_size(eb, inode_item);
303         nlink = btrfs_inode_nlink(eb, inode_item);
304         btrfs_release_path(swarn->path);
305
306         ipath = init_ipath(4096, local_root, swarn->path);
307         if (IS_ERR(ipath)) {
308                 ret = PTR_ERR(ipath);
309                 ipath = NULL;
310                 goto err;
311         }
312         ret = paths_from_inode(inum, ipath);
313
314         if (ret < 0)
315                 goto err;
316
317         /*
318          * we deliberately ignore the bit ipath might have been too small to
319          * hold all of the paths here
320          */
321         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322                 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
324                         "length %llu, links %u (path: %s)\n", swarn->errstr,
325                         swarn->logical, swarn->dev->name,
326                         (unsigned long long)swarn->sector, root, inum, offset,
327                         min(isize - offset, (u64)PAGE_SIZE), nlink,
328                         (char *)(unsigned long)ipath->fspath->val[i]);
329
330         free_ipath(ipath);
331         return 0;
332
333 err:
334         printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336                 "resolving failed with ret=%d\n", swarn->errstr,
337                 swarn->logical, swarn->dev->name,
338                 (unsigned long long)swarn->sector, root, inum, offset, ret);
339
340         free_ipath(ipath);
341         return 0;
342 }
343
344 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
345 {
346         struct btrfs_device *dev = sblock->sdev->dev;
347         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348         struct btrfs_path *path;
349         struct btrfs_key found_key;
350         struct extent_buffer *eb;
351         struct btrfs_extent_item *ei;
352         struct scrub_warning swarn;
353         u32 item_size;
354         int ret;
355         u64 ref_root;
356         u8 ref_level;
357         unsigned long ptr = 0;
358         const int bufsize = 4096;
359         u64 extent_item_pos;
360
361         path = btrfs_alloc_path();
362
363         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
365         BUG_ON(sblock->page_count < 1);
366         swarn.sector = (sblock->pagev[0].physical) >> 9;
367         swarn.logical = sblock->pagev[0].logical;
368         swarn.errstr = errstr;
369         swarn.dev = dev;
370         swarn.msg_bufsize = bufsize;
371         swarn.scratch_bufsize = bufsize;
372
373         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374                 goto out;
375
376         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377         if (ret < 0)
378                 goto out;
379
380         extent_item_pos = swarn.logical - found_key.objectid;
381         swarn.extent_item_size = found_key.offset;
382
383         eb = path->nodes[0];
384         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385         item_size = btrfs_item_size_nr(eb, path->slots[0]);
386         btrfs_release_path(path);
387
388         if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389                 do {
390                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391                                                         &ref_root, &ref_level);
392                         printk(KERN_WARNING
393                                 "btrfs: %s at logical %llu on dev %s, "
394                                 "sector %llu: metadata %s (level %d) in tree "
395                                 "%llu\n", errstr, swarn.logical, dev->name,
396                                 (unsigned long long)swarn.sector,
397                                 ref_level ? "node" : "leaf",
398                                 ret < 0 ? -1 : ref_level,
399                                 ret < 0 ? -1 : ref_root);
400                 } while (ret != 1);
401         } else {
402                 swarn.path = path;
403                 iterate_extent_inodes(fs_info, found_key.objectid,
404                                         extent_item_pos, 1,
405                                         scrub_print_warning_inode, &swarn);
406         }
407
408 out:
409         btrfs_free_path(path);
410         kfree(swarn.scratch_buf);
411         kfree(swarn.msg_buf);
412 }
413
414 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415 {
416         struct page *page = NULL;
417         unsigned long index;
418         struct scrub_fixup_nodatasum *fixup = ctx;
419         int ret;
420         int corrected = 0;
421         struct btrfs_key key;
422         struct inode *inode = NULL;
423         u64 end = offset + PAGE_SIZE - 1;
424         struct btrfs_root *local_root;
425
426         key.objectid = root;
427         key.type = BTRFS_ROOT_ITEM_KEY;
428         key.offset = (u64)-1;
429         local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430         if (IS_ERR(local_root))
431                 return PTR_ERR(local_root);
432
433         key.type = BTRFS_INODE_ITEM_KEY;
434         key.objectid = inum;
435         key.offset = 0;
436         inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437         if (IS_ERR(inode))
438                 return PTR_ERR(inode);
439
440         index = offset >> PAGE_CACHE_SHIFT;
441
442         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
443         if (!page) {
444                 ret = -ENOMEM;
445                 goto out;
446         }
447
448         if (PageUptodate(page)) {
449                 struct btrfs_mapping_tree *map_tree;
450                 if (PageDirty(page)) {
451                         /*
452                          * we need to write the data to the defect sector. the
453                          * data that was in that sector is not in memory,
454                          * because the page was modified. we must not write the
455                          * modified page to that sector.
456                          *
457                          * TODO: what could be done here: wait for the delalloc
458                          *       runner to write out that page (might involve
459                          *       COW) and see whether the sector is still
460                          *       referenced afterwards.
461                          *
462                          * For the meantime, we'll treat this error
463                          * incorrectable, although there is a chance that a
464                          * later scrub will find the bad sector again and that
465                          * there's no dirty page in memory, then.
466                          */
467                         ret = -EIO;
468                         goto out;
469                 }
470                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471                 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472                                         fixup->logical, page,
473                                         fixup->mirror_num);
474                 unlock_page(page);
475                 corrected = !ret;
476         } else {
477                 /*
478                  * we need to get good data first. the general readpage path
479                  * will call repair_io_failure for us, we just have to make
480                  * sure we read the bad mirror.
481                  */
482                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483                                         EXTENT_DAMAGED, GFP_NOFS);
484                 if (ret) {
485                         /* set_extent_bits should give proper error */
486                         WARN_ON(ret > 0);
487                         if (ret > 0)
488                                 ret = -EFAULT;
489                         goto out;
490                 }
491
492                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493                                                 btrfs_get_extent,
494                                                 fixup->mirror_num);
495                 wait_on_page_locked(page);
496
497                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498                                                 end, EXTENT_DAMAGED, 0, NULL);
499                 if (!corrected)
500                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501                                                 EXTENT_DAMAGED, GFP_NOFS);
502         }
503
504 out:
505         if (page)
506                 put_page(page);
507         if (inode)
508                 iput(inode);
509
510         if (ret < 0)
511                 return ret;
512
513         if (ret == 0 && corrected) {
514                 /*
515                  * we only need to call readpage for one of the inodes belonging
516                  * to this extent. so make iterate_extent_inodes stop
517                  */
518                 return 1;
519         }
520
521         return -EIO;
522 }
523
524 static void scrub_fixup_nodatasum(struct btrfs_work *work)
525 {
526         int ret;
527         struct scrub_fixup_nodatasum *fixup;
528         struct scrub_dev *sdev;
529         struct btrfs_trans_handle *trans = NULL;
530         struct btrfs_fs_info *fs_info;
531         struct btrfs_path *path;
532         int uncorrectable = 0;
533
534         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535         sdev = fixup->sdev;
536         fs_info = fixup->root->fs_info;
537
538         path = btrfs_alloc_path();
539         if (!path) {
540                 spin_lock(&sdev->stat_lock);
541                 ++sdev->stat.malloc_errors;
542                 spin_unlock(&sdev->stat_lock);
543                 uncorrectable = 1;
544                 goto out;
545         }
546
547         trans = btrfs_join_transaction(fixup->root);
548         if (IS_ERR(trans)) {
549                 uncorrectable = 1;
550                 goto out;
551         }
552
553         /*
554          * the idea is to trigger a regular read through the standard path. we
555          * read a page from the (failed) logical address by specifying the
556          * corresponding copynum of the failed sector. thus, that readpage is
557          * expected to fail.
558          * that is the point where on-the-fly error correction will kick in
559          * (once it's finished) and rewrite the failed sector if a good copy
560          * can be found.
561          */
562         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563                                                 path, scrub_fixup_readpage,
564                                                 fixup);
565         if (ret < 0) {
566                 uncorrectable = 1;
567                 goto out;
568         }
569         WARN_ON(ret != 1);
570
571         spin_lock(&sdev->stat_lock);
572         ++sdev->stat.corrected_errors;
573         spin_unlock(&sdev->stat_lock);
574
575 out:
576         if (trans && !IS_ERR(trans))
577                 btrfs_end_transaction(trans, fixup->root);
578         if (uncorrectable) {
579                 spin_lock(&sdev->stat_lock);
580                 ++sdev->stat.uncorrectable_errors;
581                 spin_unlock(&sdev->stat_lock);
582                 printk_ratelimited(KERN_ERR
583                         "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584                         (unsigned long long)fixup->logical, sdev->dev->name);
585         }
586
587         btrfs_free_path(path);
588         kfree(fixup);
589
590         /* see caller why we're pretending to be paused in the scrub counters */
591         mutex_lock(&fs_info->scrub_lock);
592         atomic_dec(&fs_info->scrubs_running);
593         atomic_dec(&fs_info->scrubs_paused);
594         mutex_unlock(&fs_info->scrub_lock);
595         atomic_dec(&sdev->fixup_cnt);
596         wake_up(&fs_info->scrub_pause_wait);
597         wake_up(&sdev->list_wait);
598 }
599
600 /*
601  * scrub_handle_errored_block gets called when either verification of the
602  * pages failed or the bio failed to read, e.g. with EIO. In the latter
603  * case, this function handles all pages in the bio, even though only one
604  * may be bad.
605  * The goal of this function is to repair the errored block by using the
606  * contents of one of the mirrors.
607  */
608 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
609 {
610         struct scrub_dev *sdev = sblock_to_check->sdev;
611         struct btrfs_fs_info *fs_info;
612         u64 length;
613         u64 logical;
614         u64 generation;
615         unsigned int failed_mirror_index;
616         unsigned int is_metadata;
617         unsigned int have_csum;
618         u8 *csum;
619         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620         struct scrub_block *sblock_bad;
621         int ret;
622         int mirror_index;
623         int page_num;
624         int success;
625         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626                                       DEFAULT_RATELIMIT_BURST);
627
628         BUG_ON(sblock_to_check->page_count < 1);
629         fs_info = sdev->dev->dev_root->fs_info;
630         length = sblock_to_check->page_count * PAGE_SIZE;
631         logical = sblock_to_check->pagev[0].logical;
632         generation = sblock_to_check->pagev[0].generation;
633         BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634         failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635         is_metadata = !(sblock_to_check->pagev[0].flags &
636                         BTRFS_EXTENT_FLAG_DATA);
637         have_csum = sblock_to_check->pagev[0].have_csum;
638         csum = sblock_to_check->pagev[0].csum;
639
640         /*
641          * read all mirrors one after the other. This includes to
642          * re-read the extent or metadata block that failed (that was
643          * the cause that this fixup code is called) another time,
644          * page by page this time in order to know which pages
645          * caused I/O errors and which ones are good (for all mirrors).
646          * It is the goal to handle the situation when more than one
647          * mirror contains I/O errors, but the errors do not
648          * overlap, i.e. the data can be repaired by selecting the
649          * pages from those mirrors without I/O error on the
650          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651          * would be that mirror #1 has an I/O error on the first page,
652          * the second page is good, and mirror #2 has an I/O error on
653          * the second page, but the first page is good.
654          * Then the first page of the first mirror can be repaired by
655          * taking the first page of the second mirror, and the
656          * second page of the second mirror can be repaired by
657          * copying the contents of the 2nd page of the 1st mirror.
658          * One more note: if the pages of one mirror contain I/O
659          * errors, the checksum cannot be verified. In order to get
660          * the best data for repairing, the first attempt is to find
661          * a mirror without I/O errors and with a validated checksum.
662          * Only if this is not possible, the pages are picked from
663          * mirrors with I/O errors without considering the checksum.
664          * If the latter is the case, at the end, the checksum of the
665          * repaired area is verified in order to correctly maintain
666          * the statistics.
667          */
668
669         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670                                      sizeof(*sblocks_for_recheck),
671                                      GFP_NOFS);
672         if (!sblocks_for_recheck) {
673                 spin_lock(&sdev->stat_lock);
674                 sdev->stat.malloc_errors++;
675                 sdev->stat.read_errors++;
676                 sdev->stat.uncorrectable_errors++;
677                 spin_unlock(&sdev->stat_lock);
678                 goto out;
679         }
680
681         /* setup the context, map the logical blocks and alloc the pages */
682         ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683                                         logical, sblocks_for_recheck);
684         if (ret) {
685                 spin_lock(&sdev->stat_lock);
686                 sdev->stat.read_errors++;
687                 sdev->stat.uncorrectable_errors++;
688                 spin_unlock(&sdev->stat_lock);
689                 goto out;
690         }
691         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692         sblock_bad = sblocks_for_recheck + failed_mirror_index;
693
694         /* build and submit the bios for the failed mirror, check checksums */
695         ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696                                   csum, generation, sdev->csum_size);
697         if (ret) {
698                 spin_lock(&sdev->stat_lock);
699                 sdev->stat.read_errors++;
700                 sdev->stat.uncorrectable_errors++;
701                 spin_unlock(&sdev->stat_lock);
702                 goto out;
703         }
704
705         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706             sblock_bad->no_io_error_seen) {
707                 /*
708                  * the error disappeared after reading page by page, or
709                  * the area was part of a huge bio and other parts of the
710                  * bio caused I/O errors, or the block layer merged several
711                  * read requests into one and the error is caused by a
712                  * different bio (usually one of the two latter cases is
713                  * the cause)
714                  */
715                 spin_lock(&sdev->stat_lock);
716                 sdev->stat.unverified_errors++;
717                 spin_unlock(&sdev->stat_lock);
718
719                 goto out;
720         }
721
722         if (!sblock_bad->no_io_error_seen) {
723                 spin_lock(&sdev->stat_lock);
724                 sdev->stat.read_errors++;
725                 spin_unlock(&sdev->stat_lock);
726                 if (__ratelimit(&_rs))
727                         scrub_print_warning("i/o error", sblock_to_check);
728         } else if (sblock_bad->checksum_error) {
729                 spin_lock(&sdev->stat_lock);
730                 sdev->stat.csum_errors++;
731                 spin_unlock(&sdev->stat_lock);
732                 if (__ratelimit(&_rs))
733                         scrub_print_warning("checksum error", sblock_to_check);
734         } else if (sblock_bad->header_error) {
735                 spin_lock(&sdev->stat_lock);
736                 sdev->stat.verify_errors++;
737                 spin_unlock(&sdev->stat_lock);
738                 if (__ratelimit(&_rs))
739                         scrub_print_warning("checksum/header error",
740                                             sblock_to_check);
741         }
742
743         if (sdev->readonly)
744                 goto did_not_correct_error;
745
746         if (!is_metadata && !have_csum) {
747                 struct scrub_fixup_nodatasum *fixup_nodatasum;
748
749                 /*
750                  * !is_metadata and !have_csum, this means that the data
751                  * might not be COW'ed, that it might be modified
752                  * concurrently. The general strategy to work on the
753                  * commit root does not help in the case when COW is not
754                  * used.
755                  */
756                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757                 if (!fixup_nodatasum)
758                         goto did_not_correct_error;
759                 fixup_nodatasum->sdev = sdev;
760                 fixup_nodatasum->logical = logical;
761                 fixup_nodatasum->root = fs_info->extent_root;
762                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
763                 /*
764                  * increment scrubs_running to prevent cancel requests from
765                  * completing as long as a fixup worker is running. we must also
766                  * increment scrubs_paused to prevent deadlocking on pause
767                  * requests used for transactions commits (as the worker uses a
768                  * transaction context). it is safe to regard the fixup worker
769                  * as paused for all matters practical. effectively, we only
770                  * avoid cancellation requests from completing.
771                  */
772                 mutex_lock(&fs_info->scrub_lock);
773                 atomic_inc(&fs_info->scrubs_running);
774                 atomic_inc(&fs_info->scrubs_paused);
775                 mutex_unlock(&fs_info->scrub_lock);
776                 atomic_inc(&sdev->fixup_cnt);
777                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778                 btrfs_queue_worker(&fs_info->scrub_workers,
779                                    &fixup_nodatasum->work);
780                 goto out;
781         }
782
783         /*
784          * now build and submit the bios for the other mirrors, check
785          * checksums
786          */
787         for (mirror_index = 0;
788              mirror_index < BTRFS_MAX_MIRRORS &&
789              sblocks_for_recheck[mirror_index].page_count > 0;
790              mirror_index++) {
791                 if (mirror_index == failed_mirror_index)
792                         continue;
793
794                 /* build and submit the bios, check checksums */
795                 ret = scrub_recheck_block(fs_info,
796                                           sblocks_for_recheck + mirror_index,
797                                           is_metadata, have_csum, csum,
798                                           generation, sdev->csum_size);
799                 if (ret)
800                         goto did_not_correct_error;
801         }
802
803         /*
804          * first try to pick the mirror which is completely without I/O
805          * errors and also does not have a checksum error.
806          * If one is found, and if a checksum is present, the full block
807          * that is known to contain an error is rewritten. Afterwards
808          * the block is known to be corrected.
809          * If a mirror is found which is completely correct, and no
810          * checksum is present, only those pages are rewritten that had
811          * an I/O error in the block to be repaired, since it cannot be
812          * determined, which copy of the other pages is better (and it
813          * could happen otherwise that a correct page would be
814          * overwritten by a bad one).
815          */
816         for (mirror_index = 0;
817              mirror_index < BTRFS_MAX_MIRRORS &&
818              sblocks_for_recheck[mirror_index].page_count > 0;
819              mirror_index++) {
820                 struct scrub_block *sblock_other = sblocks_for_recheck +
821                                                    mirror_index;
822
823                 if (!sblock_other->header_error &&
824                     !sblock_other->checksum_error &&
825                     sblock_other->no_io_error_seen) {
826                         int force_write = is_metadata || have_csum;
827
828                         ret = scrub_repair_block_from_good_copy(sblock_bad,
829                                                                 sblock_other,
830                                                                 force_write);
831                         if (0 == ret)
832                                 goto corrected_error;
833                 }
834         }
835
836         /*
837          * in case of I/O errors in the area that is supposed to be
838          * repaired, continue by picking good copies of those pages.
839          * Select the good pages from mirrors to rewrite bad pages from
840          * the area to fix. Afterwards verify the checksum of the block
841          * that is supposed to be repaired. This verification step is
842          * only done for the purpose of statistic counting and for the
843          * final scrub report, whether errors remain.
844          * A perfect algorithm could make use of the checksum and try
845          * all possible combinations of pages from the different mirrors
846          * until the checksum verification succeeds. For example, when
847          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848          * of mirror #2 is readable but the final checksum test fails,
849          * then the 2nd page of mirror #3 could be tried, whether now
850          * the final checksum succeedes. But this would be a rare
851          * exception and is therefore not implemented. At least it is
852          * avoided that the good copy is overwritten.
853          * A more useful improvement would be to pick the sectors
854          * without I/O error based on sector sizes (512 bytes on legacy
855          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856          * mirror could be repaired by taking 512 byte of a different
857          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858          * area are unreadable.
859          */
860
861         /* can only fix I/O errors from here on */
862         if (sblock_bad->no_io_error_seen)
863                 goto did_not_correct_error;
864
865         success = 1;
866         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867                 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868
869                 if (!page_bad->io_error)
870                         continue;
871
872                 for (mirror_index = 0;
873                      mirror_index < BTRFS_MAX_MIRRORS &&
874                      sblocks_for_recheck[mirror_index].page_count > 0;
875                      mirror_index++) {
876                         struct scrub_block *sblock_other = sblocks_for_recheck +
877                                                            mirror_index;
878                         struct scrub_page *page_other = sblock_other->pagev +
879                                                         page_num;
880
881                         if (!page_other->io_error) {
882                                 ret = scrub_repair_page_from_good_copy(
883                                         sblock_bad, sblock_other, page_num, 0);
884                                 if (0 == ret) {
885                                         page_bad->io_error = 0;
886                                         break; /* succeeded for this page */
887                                 }
888                         }
889                 }
890
891                 if (page_bad->io_error) {
892                         /* did not find a mirror to copy the page from */
893                         success = 0;
894                 }
895         }
896
897         if (success) {
898                 if (is_metadata || have_csum) {
899                         /*
900                          * need to verify the checksum now that all
901                          * sectors on disk are repaired (the write
902                          * request for data to be repaired is on its way).
903                          * Just be lazy and use scrub_recheck_block()
904                          * which re-reads the data before the checksum
905                          * is verified, but most likely the data comes out
906                          * of the page cache.
907                          */
908                         ret = scrub_recheck_block(fs_info, sblock_bad,
909                                                   is_metadata, have_csum, csum,
910                                                   generation, sdev->csum_size);
911                         if (!ret && !sblock_bad->header_error &&
912                             !sblock_bad->checksum_error &&
913                             sblock_bad->no_io_error_seen)
914                                 goto corrected_error;
915                         else
916                                 goto did_not_correct_error;
917                 } else {
918 corrected_error:
919                         spin_lock(&sdev->stat_lock);
920                         sdev->stat.corrected_errors++;
921                         spin_unlock(&sdev->stat_lock);
922                         printk_ratelimited(KERN_ERR
923                                 "btrfs: fixed up error at logical %llu on dev %s\n",
924                                 (unsigned long long)logical, sdev->dev->name);
925                 }
926         } else {
927 did_not_correct_error:
928                 spin_lock(&sdev->stat_lock);
929                 sdev->stat.uncorrectable_errors++;
930                 spin_unlock(&sdev->stat_lock);
931                 printk_ratelimited(KERN_ERR
932                         "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933                         (unsigned long long)logical, sdev->dev->name);
934         }
935
936 out:
937         if (sblocks_for_recheck) {
938                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939                      mirror_index++) {
940                         struct scrub_block *sblock = sblocks_for_recheck +
941                                                      mirror_index;
942                         int page_index;
943
944                         for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945                              page_index++)
946                                 if (sblock->pagev[page_index].page)
947                                         __free_page(
948                                                 sblock->pagev[page_index].page);
949                 }
950                 kfree(sblocks_for_recheck);
951         }
952
953         return 0;
954 }
955
956 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957                                      struct btrfs_mapping_tree *map_tree,
958                                      u64 length, u64 logical,
959                                      struct scrub_block *sblocks_for_recheck)
960 {
961         int page_index;
962         int mirror_index;
963         int ret;
964
965         /*
966          * note: the three members sdev, ref_count and outstanding_pages
967          * are not used (and not set) in the blocks that are used for
968          * the recheck procedure
969          */
970
971         page_index = 0;
972         while (length > 0) {
973                 u64 sublen = min_t(u64, length, PAGE_SIZE);
974                 u64 mapped_length = sublen;
975                 struct btrfs_bio *bbio = NULL;
976
977                 /*
978                  * with a length of PAGE_SIZE, each returned stripe
979                  * represents one mirror
980                  */
981                 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982                                       &bbio, 0);
983                 if (ret || !bbio || mapped_length < sublen) {
984                         kfree(bbio);
985                         return -EIO;
986                 }
987
988                 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990                      mirror_index++) {
991                         struct scrub_block *sblock;
992                         struct scrub_page *page;
993
994                         if (mirror_index >= BTRFS_MAX_MIRRORS)
995                                 continue;
996
997                         sblock = sblocks_for_recheck + mirror_index;
998                         page = sblock->pagev + page_index;
999                         page->logical = logical;
1000                         page->physical = bbio->stripes[mirror_index].physical;
1001                         /* for missing devices, bdev is NULL */
1002                         page->bdev = bbio->stripes[mirror_index].dev->bdev;
1003                         page->mirror_num = mirror_index + 1;
1004                         page->page = alloc_page(GFP_NOFS);
1005                         if (!page->page) {
1006                                 spin_lock(&sdev->stat_lock);
1007                                 sdev->stat.malloc_errors++;
1008                                 spin_unlock(&sdev->stat_lock);
1009                                 return -ENOMEM;
1010                         }
1011                         sblock->page_count++;
1012                 }
1013                 kfree(bbio);
1014                 length -= sublen;
1015                 logical += sublen;
1016                 page_index++;
1017         }
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * this function will check the on disk data for checksum errors, header
1024  * errors and read I/O errors. If any I/O errors happen, the exact pages
1025  * which are errored are marked as being bad. The goal is to enable scrub
1026  * to take those pages that are not errored from all the mirrors so that
1027  * the pages that are errored in the just handled mirror can be repaired.
1028  */
1029 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1030                                struct scrub_block *sblock, int is_metadata,
1031                                int have_csum, u8 *csum, u64 generation,
1032                                u16 csum_size)
1033 {
1034         int page_num;
1035
1036         sblock->no_io_error_seen = 1;
1037         sblock->header_error = 0;
1038         sblock->checksum_error = 0;
1039
1040         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1041                 struct bio *bio;
1042                 int ret;
1043                 struct scrub_page *page = sblock->pagev + page_num;
1044                 DECLARE_COMPLETION_ONSTACK(complete);
1045
1046                 if (page->bdev == NULL) {
1047                         page->io_error = 1;
1048                         sblock->no_io_error_seen = 0;
1049                         continue;
1050                 }
1051
1052                 BUG_ON(!page->page);
1053                 bio = bio_alloc(GFP_NOFS, 1);
1054                 if (!bio)
1055                         return -EIO;
1056                 bio->bi_bdev = page->bdev;
1057                 bio->bi_sector = page->physical >> 9;
1058                 bio->bi_end_io = scrub_complete_bio_end_io;
1059                 bio->bi_private = &complete;
1060
1061                 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1062                 if (PAGE_SIZE != ret) {
1063                         bio_put(bio);
1064                         return -EIO;
1065                 }
1066                 btrfsic_submit_bio(READ, bio);
1067
1068                 /* this will also unplug the queue */
1069                 wait_for_completion(&complete);
1070
1071                 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1072                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1073                         sblock->no_io_error_seen = 0;
1074                 bio_put(bio);
1075         }
1076
1077         if (sblock->no_io_error_seen)
1078                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1079                                              have_csum, csum, generation,
1080                                              csum_size);
1081
1082         return 0;
1083 }
1084
1085 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1086                                          struct scrub_block *sblock,
1087                                          int is_metadata, int have_csum,
1088                                          const u8 *csum, u64 generation,
1089                                          u16 csum_size)
1090 {
1091         int page_num;
1092         u8 calculated_csum[BTRFS_CSUM_SIZE];
1093         u32 crc = ~(u32)0;
1094         struct btrfs_root *root = fs_info->extent_root;
1095         void *mapped_buffer;
1096
1097         BUG_ON(!sblock->pagev[0].page);
1098         if (is_metadata) {
1099                 struct btrfs_header *h;
1100
1101                 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1102                 h = (struct btrfs_header *)mapped_buffer;
1103
1104                 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1105                     generation != le64_to_cpu(h->generation) ||
1106                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1107                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1108                            BTRFS_UUID_SIZE))
1109                         sblock->header_error = 1;
1110                 csum = h->csum;
1111         } else {
1112                 if (!have_csum)
1113                         return;
1114
1115                 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1116         }
1117
1118         for (page_num = 0;;) {
1119                 if (page_num == 0 && is_metadata)
1120                         crc = btrfs_csum_data(root,
1121                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1122                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1123                 else
1124                         crc = btrfs_csum_data(root, mapped_buffer, crc,
1125                                               PAGE_SIZE);
1126
1127                 kunmap_atomic(mapped_buffer);
1128                 page_num++;
1129                 if (page_num >= sblock->page_count)
1130                         break;
1131                 BUG_ON(!sblock->pagev[page_num].page);
1132
1133                 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1134         }
1135
1136         btrfs_csum_final(crc, calculated_csum);
1137         if (memcmp(calculated_csum, csum, csum_size))
1138                 sblock->checksum_error = 1;
1139 }
1140
1141 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1142 {
1143         complete((struct completion *)bio->bi_private);
1144 }
1145
1146 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1147                                              struct scrub_block *sblock_good,
1148                                              int force_write)
1149 {
1150         int page_num;
1151         int ret = 0;
1152
1153         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1154                 int ret_sub;
1155
1156                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1157                                                            sblock_good,
1158                                                            page_num,
1159                                                            force_write);
1160                 if (ret_sub)
1161                         ret = ret_sub;
1162         }
1163
1164         return ret;
1165 }
1166
1167 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1168                                             struct scrub_block *sblock_good,
1169                                             int page_num, int force_write)
1170 {
1171         struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1172         struct scrub_page *page_good = sblock_good->pagev + page_num;
1173
1174         BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1175         BUG_ON(sblock_good->pagev[page_num].page == NULL);
1176         if (force_write || sblock_bad->header_error ||
1177             sblock_bad->checksum_error || page_bad->io_error) {
1178                 struct bio *bio;
1179                 int ret;
1180                 DECLARE_COMPLETION_ONSTACK(complete);
1181
1182                 bio = bio_alloc(GFP_NOFS, 1);
1183                 if (!bio)
1184                         return -EIO;
1185                 bio->bi_bdev = page_bad->bdev;
1186                 bio->bi_sector = page_bad->physical >> 9;
1187                 bio->bi_end_io = scrub_complete_bio_end_io;
1188                 bio->bi_private = &complete;
1189
1190                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1191                 if (PAGE_SIZE != ret) {
1192                         bio_put(bio);
1193                         return -EIO;
1194                 }
1195                 btrfsic_submit_bio(WRITE, bio);
1196
1197                 /* this will also unplug the queue */
1198                 wait_for_completion(&complete);
1199                 bio_put(bio);
1200         }
1201
1202         return 0;
1203 }
1204
1205 static void scrub_checksum(struct scrub_block *sblock)
1206 {
1207         u64 flags;
1208         int ret;
1209
1210         BUG_ON(sblock->page_count < 1);
1211         flags = sblock->pagev[0].flags;
1212         ret = 0;
1213         if (flags & BTRFS_EXTENT_FLAG_DATA)
1214                 ret = scrub_checksum_data(sblock);
1215         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1216                 ret = scrub_checksum_tree_block(sblock);
1217         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1218                 (void)scrub_checksum_super(sblock);
1219         else
1220                 WARN_ON(1);
1221         if (ret)
1222                 scrub_handle_errored_block(sblock);
1223 }
1224
1225 static int scrub_checksum_data(struct scrub_block *sblock)
1226 {
1227         struct scrub_dev *sdev = sblock->sdev;
1228         u8 csum[BTRFS_CSUM_SIZE];
1229         u8 *on_disk_csum;
1230         struct page *page;
1231         void *buffer;
1232         u32 crc = ~(u32)0;
1233         int fail = 0;
1234         struct btrfs_root *root = sdev->dev->dev_root;
1235         u64 len;
1236         int index;
1237
1238         BUG_ON(sblock->page_count < 1);
1239         if (!sblock->pagev[0].have_csum)
1240                 return 0;
1241
1242         on_disk_csum = sblock->pagev[0].csum;
1243         page = sblock->pagev[0].page;
1244         buffer = kmap_atomic(page);
1245
1246         len = sdev->sectorsize;
1247         index = 0;
1248         for (;;) {
1249                 u64 l = min_t(u64, len, PAGE_SIZE);
1250
1251                 crc = btrfs_csum_data(root, buffer, crc, l);
1252                 kunmap_atomic(buffer);
1253                 len -= l;
1254                 if (len == 0)
1255                         break;
1256                 index++;
1257                 BUG_ON(index >= sblock->page_count);
1258                 BUG_ON(!sblock->pagev[index].page);
1259                 page = sblock->pagev[index].page;
1260                 buffer = kmap_atomic(page);
1261         }
1262
1263         btrfs_csum_final(crc, csum);
1264         if (memcmp(csum, on_disk_csum, sdev->csum_size))
1265                 fail = 1;
1266
1267         return fail;
1268 }
1269
1270 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1271 {
1272         struct scrub_dev *sdev = sblock->sdev;
1273         struct btrfs_header *h;
1274         struct btrfs_root *root = sdev->dev->dev_root;
1275         struct btrfs_fs_info *fs_info = root->fs_info;
1276         u8 calculated_csum[BTRFS_CSUM_SIZE];
1277         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1278         struct page *page;
1279         void *mapped_buffer;
1280         u64 mapped_size;
1281         void *p;
1282         u32 crc = ~(u32)0;
1283         int fail = 0;
1284         int crc_fail = 0;
1285         u64 len;
1286         int index;
1287
1288         BUG_ON(sblock->page_count < 1);
1289         page = sblock->pagev[0].page;
1290         mapped_buffer = kmap_atomic(page);
1291         h = (struct btrfs_header *)mapped_buffer;
1292         memcpy(on_disk_csum, h->csum, sdev->csum_size);
1293
1294         /*
1295          * we don't use the getter functions here, as we
1296          * a) don't have an extent buffer and
1297          * b) the page is already kmapped
1298          */
1299
1300         if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1301                 ++fail;
1302
1303         if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1304                 ++fail;
1305
1306         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1307                 ++fail;
1308
1309         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1310                    BTRFS_UUID_SIZE))
1311                 ++fail;
1312
1313         BUG_ON(sdev->nodesize != sdev->leafsize);
1314         len = sdev->nodesize - BTRFS_CSUM_SIZE;
1315         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1316         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1317         index = 0;
1318         for (;;) {
1319                 u64 l = min_t(u64, len, mapped_size);
1320
1321                 crc = btrfs_csum_data(root, p, crc, l);
1322                 kunmap_atomic(mapped_buffer);
1323                 len -= l;
1324                 if (len == 0)
1325                         break;
1326                 index++;
1327                 BUG_ON(index >= sblock->page_count);
1328                 BUG_ON(!sblock->pagev[index].page);
1329                 page = sblock->pagev[index].page;
1330                 mapped_buffer = kmap_atomic(page);
1331                 mapped_size = PAGE_SIZE;
1332                 p = mapped_buffer;
1333         }
1334
1335         btrfs_csum_final(crc, calculated_csum);
1336         if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1337                 ++crc_fail;
1338
1339         return fail || crc_fail;
1340 }
1341
1342 static int scrub_checksum_super(struct scrub_block *sblock)
1343 {
1344         struct btrfs_super_block *s;
1345         struct scrub_dev *sdev = sblock->sdev;
1346         struct btrfs_root *root = sdev->dev->dev_root;
1347         struct btrfs_fs_info *fs_info = root->fs_info;
1348         u8 calculated_csum[BTRFS_CSUM_SIZE];
1349         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1350         struct page *page;
1351         void *mapped_buffer;
1352         u64 mapped_size;
1353         void *p;
1354         u32 crc = ~(u32)0;
1355         int fail = 0;
1356         u64 len;
1357         int index;
1358
1359         BUG_ON(sblock->page_count < 1);
1360         page = sblock->pagev[0].page;
1361         mapped_buffer = kmap_atomic(page);
1362         s = (struct btrfs_super_block *)mapped_buffer;
1363         memcpy(on_disk_csum, s->csum, sdev->csum_size);
1364
1365         if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1366                 ++fail;
1367
1368         if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1369                 ++fail;
1370
1371         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1372                 ++fail;
1373
1374         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1375         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1376         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1377         index = 0;
1378         for (;;) {
1379                 u64 l = min_t(u64, len, mapped_size);
1380
1381                 crc = btrfs_csum_data(root, p, crc, l);
1382                 kunmap_atomic(mapped_buffer);
1383                 len -= l;
1384                 if (len == 0)
1385                         break;
1386                 index++;
1387                 BUG_ON(index >= sblock->page_count);
1388                 BUG_ON(!sblock->pagev[index].page);
1389                 page = sblock->pagev[index].page;
1390                 mapped_buffer = kmap_atomic(page);
1391                 mapped_size = PAGE_SIZE;
1392                 p = mapped_buffer;
1393         }
1394
1395         btrfs_csum_final(crc, calculated_csum);
1396         if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1397                 ++fail;
1398
1399         if (fail) {
1400                 /*
1401                  * if we find an error in a super block, we just report it.
1402                  * They will get written with the next transaction commit
1403                  * anyway
1404                  */
1405                 spin_lock(&sdev->stat_lock);
1406                 ++sdev->stat.super_errors;
1407                 spin_unlock(&sdev->stat_lock);
1408         }
1409
1410         return fail;
1411 }
1412
1413 static void scrub_block_get(struct scrub_block *sblock)
1414 {
1415         atomic_inc(&sblock->ref_count);
1416 }
1417
1418 static void scrub_block_put(struct scrub_block *sblock)
1419 {
1420         if (atomic_dec_and_test(&sblock->ref_count)) {
1421                 int i;
1422
1423                 for (i = 0; i < sblock->page_count; i++)
1424                         if (sblock->pagev[i].page)
1425                                 __free_page(sblock->pagev[i].page);
1426                 kfree(sblock);
1427         }
1428 }
1429
1430 static void scrub_submit(struct scrub_dev *sdev)
1431 {
1432         struct scrub_bio *sbio;
1433
1434         if (sdev->curr == -1)
1435                 return;
1436
1437         sbio = sdev->bios[sdev->curr];
1438         sdev->curr = -1;
1439         atomic_inc(&sdev->in_flight);
1440
1441         btrfsic_submit_bio(READ, sbio->bio);
1442 }
1443
1444 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1445                                  struct scrub_page *spage)
1446 {
1447         struct scrub_block *sblock = spage->sblock;
1448         struct scrub_bio *sbio;
1449         int ret;
1450
1451 again:
1452         /*
1453          * grab a fresh bio or wait for one to become available
1454          */
1455         while (sdev->curr == -1) {
1456                 spin_lock(&sdev->list_lock);
1457                 sdev->curr = sdev->first_free;
1458                 if (sdev->curr != -1) {
1459                         sdev->first_free = sdev->bios[sdev->curr]->next_free;
1460                         sdev->bios[sdev->curr]->next_free = -1;
1461                         sdev->bios[sdev->curr]->page_count = 0;
1462                         spin_unlock(&sdev->list_lock);
1463                 } else {
1464                         spin_unlock(&sdev->list_lock);
1465                         wait_event(sdev->list_wait, sdev->first_free != -1);
1466                 }
1467         }
1468         sbio = sdev->bios[sdev->curr];
1469         if (sbio->page_count == 0) {
1470                 struct bio *bio;
1471
1472                 sbio->physical = spage->physical;
1473                 sbio->logical = spage->logical;
1474                 bio = sbio->bio;
1475                 if (!bio) {
1476                         bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1477                         if (!bio)
1478                                 return -ENOMEM;
1479                         sbio->bio = bio;
1480                 }
1481
1482                 bio->bi_private = sbio;
1483                 bio->bi_end_io = scrub_bio_end_io;
1484                 bio->bi_bdev = sdev->dev->bdev;
1485                 bio->bi_sector = spage->physical >> 9;
1486                 sbio->err = 0;
1487         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1488                    spage->physical ||
1489                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1490                    spage->logical) {
1491                 scrub_submit(sdev);
1492                 goto again;
1493         }
1494
1495         sbio->pagev[sbio->page_count] = spage;
1496         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1497         if (ret != PAGE_SIZE) {
1498                 if (sbio->page_count < 1) {
1499                         bio_put(sbio->bio);
1500                         sbio->bio = NULL;
1501                         return -EIO;
1502                 }
1503                 scrub_submit(sdev);
1504                 goto again;
1505         }
1506
1507         scrub_block_get(sblock); /* one for the added page */
1508         atomic_inc(&sblock->outstanding_pages);
1509         sbio->page_count++;
1510         if (sbio->page_count == sdev->pages_per_bio)
1511                 scrub_submit(sdev);
1512
1513         return 0;
1514 }
1515
1516 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1517                        u64 physical, u64 flags, u64 gen, int mirror_num,
1518                        u8 *csum, int force)
1519 {
1520         struct scrub_block *sblock;
1521         int index;
1522
1523         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1524         if (!sblock) {
1525                 spin_lock(&sdev->stat_lock);
1526                 sdev->stat.malloc_errors++;
1527                 spin_unlock(&sdev->stat_lock);
1528                 return -ENOMEM;
1529         }
1530
1531         /* one ref inside this function, plus one for each page later on */
1532         atomic_set(&sblock->ref_count, 1);
1533         sblock->sdev = sdev;
1534         sblock->no_io_error_seen = 1;
1535
1536         for (index = 0; len > 0; index++) {
1537                 struct scrub_page *spage = sblock->pagev + index;
1538                 u64 l = min_t(u64, len, PAGE_SIZE);
1539
1540                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1541                 spage->page = alloc_page(GFP_NOFS);
1542                 if (!spage->page) {
1543                         spin_lock(&sdev->stat_lock);
1544                         sdev->stat.malloc_errors++;
1545                         spin_unlock(&sdev->stat_lock);
1546                         while (index > 0) {
1547                                 index--;
1548                                 __free_page(sblock->pagev[index].page);
1549                         }
1550                         kfree(sblock);
1551                         return -ENOMEM;
1552                 }
1553                 spage->sblock = sblock;
1554                 spage->bdev = sdev->dev->bdev;
1555                 spage->flags = flags;
1556                 spage->generation = gen;
1557                 spage->logical = logical;
1558                 spage->physical = physical;
1559                 spage->mirror_num = mirror_num;
1560                 if (csum) {
1561                         spage->have_csum = 1;
1562                         memcpy(spage->csum, csum, sdev->csum_size);
1563                 } else {
1564                         spage->have_csum = 0;
1565                 }
1566                 sblock->page_count++;
1567                 len -= l;
1568                 logical += l;
1569                 physical += l;
1570         }
1571
1572         BUG_ON(sblock->page_count == 0);
1573         for (index = 0; index < sblock->page_count; index++) {
1574                 struct scrub_page *spage = sblock->pagev + index;
1575                 int ret;
1576
1577                 ret = scrub_add_page_to_bio(sdev, spage);
1578                 if (ret) {
1579                         scrub_block_put(sblock);
1580                         return ret;
1581                 }
1582         }
1583
1584         if (force)
1585                 scrub_submit(sdev);
1586
1587         /* last one frees, either here or in bio completion for last page */
1588         scrub_block_put(sblock);
1589         return 0;
1590 }
1591
1592 static void scrub_bio_end_io(struct bio *bio, int err)
1593 {
1594         struct scrub_bio *sbio = bio->bi_private;
1595         struct scrub_dev *sdev = sbio->sdev;
1596         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1597
1598         sbio->err = err;
1599         sbio->bio = bio;
1600
1601         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1602 }
1603
1604 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1605 {
1606         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1607         struct scrub_dev *sdev = sbio->sdev;
1608         int i;
1609
1610         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1611         if (sbio->err) {
1612                 for (i = 0; i < sbio->page_count; i++) {
1613                         struct scrub_page *spage = sbio->pagev[i];
1614
1615                         spage->io_error = 1;
1616                         spage->sblock->no_io_error_seen = 0;
1617                 }
1618         }
1619
1620         /* now complete the scrub_block items that have all pages completed */
1621         for (i = 0; i < sbio->page_count; i++) {
1622                 struct scrub_page *spage = sbio->pagev[i];
1623                 struct scrub_block *sblock = spage->sblock;
1624
1625                 if (atomic_dec_and_test(&sblock->outstanding_pages))
1626                         scrub_block_complete(sblock);
1627                 scrub_block_put(sblock);
1628         }
1629
1630         if (sbio->err) {
1631                 /* what is this good for??? */
1632                 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1633                 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1634                 sbio->bio->bi_phys_segments = 0;
1635                 sbio->bio->bi_idx = 0;
1636
1637                 for (i = 0; i < sbio->page_count; i++) {
1638                         struct bio_vec *bi;
1639                         bi = &sbio->bio->bi_io_vec[i];
1640                         bi->bv_offset = 0;
1641                         bi->bv_len = PAGE_SIZE;
1642                 }
1643         }
1644
1645         bio_put(sbio->bio);
1646         sbio->bio = NULL;
1647         spin_lock(&sdev->list_lock);
1648         sbio->next_free = sdev->first_free;
1649         sdev->first_free = sbio->index;
1650         spin_unlock(&sdev->list_lock);
1651         atomic_dec(&sdev->in_flight);
1652         wake_up(&sdev->list_wait);
1653 }
1654
1655 static void scrub_block_complete(struct scrub_block *sblock)
1656 {
1657         if (!sblock->no_io_error_seen)
1658                 scrub_handle_errored_block(sblock);
1659         else
1660                 scrub_checksum(sblock);
1661 }
1662
1663 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1664                            u8 *csum)
1665 {
1666         struct btrfs_ordered_sum *sum = NULL;
1667         int ret = 0;
1668         unsigned long i;
1669         unsigned long num_sectors;
1670
1671         while (!list_empty(&sdev->csum_list)) {
1672                 sum = list_first_entry(&sdev->csum_list,
1673                                        struct btrfs_ordered_sum, list);
1674                 if (sum->bytenr > logical)
1675                         return 0;
1676                 if (sum->bytenr + sum->len > logical)
1677                         break;
1678
1679                 ++sdev->stat.csum_discards;
1680                 list_del(&sum->list);
1681                 kfree(sum);
1682                 sum = NULL;
1683         }
1684         if (!sum)
1685                 return 0;
1686
1687         num_sectors = sum->len / sdev->sectorsize;
1688         for (i = 0; i < num_sectors; ++i) {
1689                 if (sum->sums[i].bytenr == logical) {
1690                         memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1691                         ret = 1;
1692                         break;
1693                 }
1694         }
1695         if (ret && i == num_sectors - 1) {
1696                 list_del(&sum->list);
1697                 kfree(sum);
1698         }
1699         return ret;
1700 }
1701
1702 /* scrub extent tries to collect up to 64 kB for each bio */
1703 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1704                         u64 physical, u64 flags, u64 gen, int mirror_num)
1705 {
1706         int ret;
1707         u8 csum[BTRFS_CSUM_SIZE];
1708         u32 blocksize;
1709
1710         if (flags & BTRFS_EXTENT_FLAG_DATA) {
1711                 blocksize = sdev->sectorsize;
1712                 spin_lock(&sdev->stat_lock);
1713                 sdev->stat.data_extents_scrubbed++;
1714                 sdev->stat.data_bytes_scrubbed += len;
1715                 spin_unlock(&sdev->stat_lock);
1716         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1717                 BUG_ON(sdev->nodesize != sdev->leafsize);
1718                 blocksize = sdev->nodesize;
1719                 spin_lock(&sdev->stat_lock);
1720                 sdev->stat.tree_extents_scrubbed++;
1721                 sdev->stat.tree_bytes_scrubbed += len;
1722                 spin_unlock(&sdev->stat_lock);
1723         } else {
1724                 blocksize = sdev->sectorsize;
1725                 BUG_ON(1);
1726         }
1727
1728         while (len) {
1729                 u64 l = min_t(u64, len, blocksize);
1730                 int have_csum = 0;
1731
1732                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1733                         /* push csums to sbio */
1734                         have_csum = scrub_find_csum(sdev, logical, l, csum);
1735                         if (have_csum == 0)
1736                                 ++sdev->stat.no_csum;
1737                 }
1738                 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1739                                   mirror_num, have_csum ? csum : NULL, 0);
1740                 if (ret)
1741                         return ret;
1742                 len -= l;
1743                 logical += l;
1744                 physical += l;
1745         }
1746         return 0;
1747 }
1748
1749 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1750         struct map_lookup *map, int num, u64 base, u64 length)
1751 {
1752         struct btrfs_path *path;
1753         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1754         struct btrfs_root *root = fs_info->extent_root;
1755         struct btrfs_root *csum_root = fs_info->csum_root;
1756         struct btrfs_extent_item *extent;
1757         struct blk_plug plug;
1758         u64 flags;
1759         int ret;
1760         int slot;
1761         int i;
1762         u64 nstripes;
1763         struct extent_buffer *l;
1764         struct btrfs_key key;
1765         u64 physical;
1766         u64 logical;
1767         u64 generation;
1768         int mirror_num;
1769         struct reada_control *reada1;
1770         struct reada_control *reada2;
1771         struct btrfs_key key_start;
1772         struct btrfs_key key_end;
1773
1774         u64 increment = map->stripe_len;
1775         u64 offset;
1776
1777         nstripes = length;
1778         offset = 0;
1779         do_div(nstripes, map->stripe_len);
1780         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1781                 offset = map->stripe_len * num;
1782                 increment = map->stripe_len * map->num_stripes;
1783                 mirror_num = 1;
1784         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1785                 int factor = map->num_stripes / map->sub_stripes;
1786                 offset = map->stripe_len * (num / map->sub_stripes);
1787                 increment = map->stripe_len * factor;
1788                 mirror_num = num % map->sub_stripes + 1;
1789         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1790                 increment = map->stripe_len;
1791                 mirror_num = num % map->num_stripes + 1;
1792         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1793                 increment = map->stripe_len;
1794                 mirror_num = num % map->num_stripes + 1;
1795         } else {
1796                 increment = map->stripe_len;
1797                 mirror_num = 1;
1798         }
1799
1800         path = btrfs_alloc_path();
1801         if (!path)
1802                 return -ENOMEM;
1803
1804         /*
1805          * work on commit root. The related disk blocks are static as
1806          * long as COW is applied. This means, it is save to rewrite
1807          * them to repair disk errors without any race conditions
1808          */
1809         path->search_commit_root = 1;
1810         path->skip_locking = 1;
1811
1812         /*
1813          * trigger the readahead for extent tree csum tree and wait for
1814          * completion. During readahead, the scrub is officially paused
1815          * to not hold off transaction commits
1816          */
1817         logical = base + offset;
1818
1819         wait_event(sdev->list_wait,
1820                    atomic_read(&sdev->in_flight) == 0);
1821         atomic_inc(&fs_info->scrubs_paused);
1822         wake_up(&fs_info->scrub_pause_wait);
1823
1824         /* FIXME it might be better to start readahead at commit root */
1825         key_start.objectid = logical;
1826         key_start.type = BTRFS_EXTENT_ITEM_KEY;
1827         key_start.offset = (u64)0;
1828         key_end.objectid = base + offset + nstripes * increment;
1829         key_end.type = BTRFS_EXTENT_ITEM_KEY;
1830         key_end.offset = (u64)0;
1831         reada1 = btrfs_reada_add(root, &key_start, &key_end);
1832
1833         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1834         key_start.type = BTRFS_EXTENT_CSUM_KEY;
1835         key_start.offset = logical;
1836         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1837         key_end.type = BTRFS_EXTENT_CSUM_KEY;
1838         key_end.offset = base + offset + nstripes * increment;
1839         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1840
1841         if (!IS_ERR(reada1))
1842                 btrfs_reada_wait(reada1);
1843         if (!IS_ERR(reada2))
1844                 btrfs_reada_wait(reada2);
1845
1846         mutex_lock(&fs_info->scrub_lock);
1847         while (atomic_read(&fs_info->scrub_pause_req)) {
1848                 mutex_unlock(&fs_info->scrub_lock);
1849                 wait_event(fs_info->scrub_pause_wait,
1850                    atomic_read(&fs_info->scrub_pause_req) == 0);
1851                 mutex_lock(&fs_info->scrub_lock);
1852         }
1853         atomic_dec(&fs_info->scrubs_paused);
1854         mutex_unlock(&fs_info->scrub_lock);
1855         wake_up(&fs_info->scrub_pause_wait);
1856
1857         /*
1858          * collect all data csums for the stripe to avoid seeking during
1859          * the scrub. This might currently (crc32) end up to be about 1MB
1860          */
1861         blk_start_plug(&plug);
1862
1863         /*
1864          * now find all extents for each stripe and scrub them
1865          */
1866         logical = base + offset;
1867         physical = map->stripes[num].physical;
1868         ret = 0;
1869         for (i = 0; i < nstripes; ++i) {
1870                 /*
1871                  * canceled?
1872                  */
1873                 if (atomic_read(&fs_info->scrub_cancel_req) ||
1874                     atomic_read(&sdev->cancel_req)) {
1875                         ret = -ECANCELED;
1876                         goto out;
1877                 }
1878                 /*
1879                  * check to see if we have to pause
1880                  */
1881                 if (atomic_read(&fs_info->scrub_pause_req)) {
1882                         /* push queued extents */
1883                         scrub_submit(sdev);
1884                         wait_event(sdev->list_wait,
1885                                    atomic_read(&sdev->in_flight) == 0);
1886                         atomic_inc(&fs_info->scrubs_paused);
1887                         wake_up(&fs_info->scrub_pause_wait);
1888                         mutex_lock(&fs_info->scrub_lock);
1889                         while (atomic_read(&fs_info->scrub_pause_req)) {
1890                                 mutex_unlock(&fs_info->scrub_lock);
1891                                 wait_event(fs_info->scrub_pause_wait,
1892                                    atomic_read(&fs_info->scrub_pause_req) == 0);
1893                                 mutex_lock(&fs_info->scrub_lock);
1894                         }
1895                         atomic_dec(&fs_info->scrubs_paused);
1896                         mutex_unlock(&fs_info->scrub_lock);
1897                         wake_up(&fs_info->scrub_pause_wait);
1898                 }
1899
1900                 ret = btrfs_lookup_csums_range(csum_root, logical,
1901                                                logical + map->stripe_len - 1,
1902                                                &sdev->csum_list, 1);
1903                 if (ret)
1904                         goto out;
1905
1906                 key.objectid = logical;
1907                 key.type = BTRFS_EXTENT_ITEM_KEY;
1908                 key.offset = (u64)0;
1909
1910                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1911                 if (ret < 0)
1912                         goto out;
1913                 if (ret > 0) {
1914                         ret = btrfs_previous_item(root, path, 0,
1915                                                   BTRFS_EXTENT_ITEM_KEY);
1916                         if (ret < 0)
1917                                 goto out;
1918                         if (ret > 0) {
1919                                 /* there's no smaller item, so stick with the
1920                                  * larger one */
1921                                 btrfs_release_path(path);
1922                                 ret = btrfs_search_slot(NULL, root, &key,
1923                                                         path, 0, 0);
1924                                 if (ret < 0)
1925                                         goto out;
1926                         }
1927                 }
1928
1929                 while (1) {
1930                         l = path->nodes[0];
1931                         slot = path->slots[0];
1932                         if (slot >= btrfs_header_nritems(l)) {
1933                                 ret = btrfs_next_leaf(root, path);
1934                                 if (ret == 0)
1935                                         continue;
1936                                 if (ret < 0)
1937                                         goto out;
1938
1939                                 break;
1940                         }
1941                         btrfs_item_key_to_cpu(l, &key, slot);
1942
1943                         if (key.objectid + key.offset <= logical)
1944                                 goto next;
1945
1946                         if (key.objectid >= logical + map->stripe_len)
1947                                 break;
1948
1949                         if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1950                                 goto next;
1951
1952                         extent = btrfs_item_ptr(l, slot,
1953                                                 struct btrfs_extent_item);
1954                         flags = btrfs_extent_flags(l, extent);
1955                         generation = btrfs_extent_generation(l, extent);
1956
1957                         if (key.objectid < logical &&
1958                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1959                                 printk(KERN_ERR
1960                                        "btrfs scrub: tree block %llu spanning "
1961                                        "stripes, ignored. logical=%llu\n",
1962                                        (unsigned long long)key.objectid,
1963                                        (unsigned long long)logical);
1964                                 goto next;
1965                         }
1966
1967                         /*
1968                          * trim extent to this stripe
1969                          */
1970                         if (key.objectid < logical) {
1971                                 key.offset -= logical - key.objectid;
1972                                 key.objectid = logical;
1973                         }
1974                         if (key.objectid + key.offset >
1975                             logical + map->stripe_len) {
1976                                 key.offset = logical + map->stripe_len -
1977                                              key.objectid;
1978                         }
1979
1980                         ret = scrub_extent(sdev, key.objectid, key.offset,
1981                                            key.objectid - logical + physical,
1982                                            flags, generation, mirror_num);
1983                         if (ret)
1984                                 goto out;
1985
1986 next:
1987                         path->slots[0]++;
1988                 }
1989                 btrfs_release_path(path);
1990                 logical += increment;
1991                 physical += map->stripe_len;
1992                 spin_lock(&sdev->stat_lock);
1993                 sdev->stat.last_physical = physical;
1994                 spin_unlock(&sdev->stat_lock);
1995         }
1996         /* push queued extents */
1997         scrub_submit(sdev);
1998
1999 out:
2000         blk_finish_plug(&plug);
2001         btrfs_free_path(path);
2002         return ret < 0 ? ret : 0;
2003 }
2004
2005 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2006         u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2007         u64 dev_offset)
2008 {
2009         struct btrfs_mapping_tree *map_tree =
2010                 &sdev->dev->dev_root->fs_info->mapping_tree;
2011         struct map_lookup *map;
2012         struct extent_map *em;
2013         int i;
2014         int ret = -EINVAL;
2015
2016         read_lock(&map_tree->map_tree.lock);
2017         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2018         read_unlock(&map_tree->map_tree.lock);
2019
2020         if (!em)
2021                 return -EINVAL;
2022
2023         map = (struct map_lookup *)em->bdev;
2024         if (em->start != chunk_offset)
2025                 goto out;
2026
2027         if (em->len < length)
2028                 goto out;
2029
2030         for (i = 0; i < map->num_stripes; ++i) {
2031                 if (map->stripes[i].dev == sdev->dev &&
2032                     map->stripes[i].physical == dev_offset) {
2033                         ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2034                         if (ret)
2035                                 goto out;
2036                 }
2037         }
2038 out:
2039         free_extent_map(em);
2040
2041         return ret;
2042 }
2043
2044 static noinline_for_stack
2045 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2046 {
2047         struct btrfs_dev_extent *dev_extent = NULL;
2048         struct btrfs_path *path;
2049         struct btrfs_root *root = sdev->dev->dev_root;
2050         struct btrfs_fs_info *fs_info = root->fs_info;
2051         u64 length;
2052         u64 chunk_tree;
2053         u64 chunk_objectid;
2054         u64 chunk_offset;
2055         int ret;
2056         int slot;
2057         struct extent_buffer *l;
2058         struct btrfs_key key;
2059         struct btrfs_key found_key;
2060         struct btrfs_block_group_cache *cache;
2061
2062         path = btrfs_alloc_path();
2063         if (!path)
2064                 return -ENOMEM;
2065
2066         path->reada = 2;
2067         path->search_commit_root = 1;
2068         path->skip_locking = 1;
2069
2070         key.objectid = sdev->dev->devid;
2071         key.offset = 0ull;
2072         key.type = BTRFS_DEV_EXTENT_KEY;
2073
2074
2075         while (1) {
2076                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077                 if (ret < 0)
2078                         break;
2079                 if (ret > 0) {
2080                         if (path->slots[0] >=
2081                             btrfs_header_nritems(path->nodes[0])) {
2082                                 ret = btrfs_next_leaf(root, path);
2083                                 if (ret)
2084                                         break;
2085                         }
2086                 }
2087
2088                 l = path->nodes[0];
2089                 slot = path->slots[0];
2090
2091                 btrfs_item_key_to_cpu(l, &found_key, slot);
2092
2093                 if (found_key.objectid != sdev->dev->devid)
2094                         break;
2095
2096                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2097                         break;
2098
2099                 if (found_key.offset >= end)
2100                         break;
2101
2102                 if (found_key.offset < key.offset)
2103                         break;
2104
2105                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2106                 length = btrfs_dev_extent_length(l, dev_extent);
2107
2108                 if (found_key.offset + length <= start) {
2109                         key.offset = found_key.offset + length;
2110                         btrfs_release_path(path);
2111                         continue;
2112                 }
2113
2114                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2115                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2116                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2117
2118                 /*
2119                  * get a reference on the corresponding block group to prevent
2120                  * the chunk from going away while we scrub it
2121                  */
2122                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2123                 if (!cache) {
2124                         ret = -ENOENT;
2125                         break;
2126                 }
2127                 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2128                                   chunk_offset, length, found_key.offset);
2129                 btrfs_put_block_group(cache);
2130                 if (ret)
2131                         break;
2132
2133                 key.offset = found_key.offset + length;
2134                 btrfs_release_path(path);
2135         }
2136
2137         btrfs_free_path(path);
2138
2139         /*
2140          * ret can still be 1 from search_slot or next_leaf,
2141          * that's not an error
2142          */
2143         return ret < 0 ? ret : 0;
2144 }
2145
2146 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2147 {
2148         int     i;
2149         u64     bytenr;
2150         u64     gen;
2151         int     ret;
2152         struct btrfs_device *device = sdev->dev;
2153         struct btrfs_root *root = device->dev_root;
2154
2155         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2156                 return -EIO;
2157
2158         gen = root->fs_info->last_trans_committed;
2159
2160         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2161                 bytenr = btrfs_sb_offset(i);
2162                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2163                         break;
2164
2165                 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2166                                      BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2167                 if (ret)
2168                         return ret;
2169         }
2170         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2171
2172         return 0;
2173 }
2174
2175 /*
2176  * get a reference count on fs_info->scrub_workers. start worker if necessary
2177  */
2178 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2179 {
2180         struct btrfs_fs_info *fs_info = root->fs_info;
2181         int ret = 0;
2182
2183         mutex_lock(&fs_info->scrub_lock);
2184         if (fs_info->scrub_workers_refcnt == 0) {
2185                 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2186                            fs_info->thread_pool_size, &fs_info->generic_worker);
2187                 fs_info->scrub_workers.idle_thresh = 4;
2188                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2189                 if (ret)
2190                         goto out;
2191         }
2192         ++fs_info->scrub_workers_refcnt;
2193 out:
2194         mutex_unlock(&fs_info->scrub_lock);
2195
2196         return ret;
2197 }
2198
2199 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2200 {
2201         struct btrfs_fs_info *fs_info = root->fs_info;
2202
2203         mutex_lock(&fs_info->scrub_lock);
2204         if (--fs_info->scrub_workers_refcnt == 0)
2205                 btrfs_stop_workers(&fs_info->scrub_workers);
2206         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2207         mutex_unlock(&fs_info->scrub_lock);
2208 }
2209
2210
2211 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2212                     struct btrfs_scrub_progress *progress, int readonly)
2213 {
2214         struct scrub_dev *sdev;
2215         struct btrfs_fs_info *fs_info = root->fs_info;
2216         int ret;
2217         struct btrfs_device *dev;
2218
2219         if (btrfs_fs_closing(root->fs_info))
2220                 return -EINVAL;
2221
2222         /*
2223          * check some assumptions
2224          */
2225         if (root->nodesize != root->leafsize) {
2226                 printk(KERN_ERR
2227                        "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2228                        root->nodesize, root->leafsize);
2229                 return -EINVAL;
2230         }
2231
2232         if (root->nodesize > BTRFS_STRIPE_LEN) {
2233                 /*
2234                  * in this case scrub is unable to calculate the checksum
2235                  * the way scrub is implemented. Do not handle this
2236                  * situation at all because it won't ever happen.
2237                  */
2238                 printk(KERN_ERR
2239                        "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2240                        root->nodesize, BTRFS_STRIPE_LEN);
2241                 return -EINVAL;
2242         }
2243
2244         if (root->sectorsize != PAGE_SIZE) {
2245                 /* not supported for data w/o checksums */
2246                 printk(KERN_ERR
2247                        "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2248                        root->sectorsize, (unsigned long long)PAGE_SIZE);
2249                 return -EINVAL;
2250         }
2251
2252         ret = scrub_workers_get(root);
2253         if (ret)
2254                 return ret;
2255
2256         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2257         dev = btrfs_find_device(root, devid, NULL, NULL);
2258         if (!dev || dev->missing) {
2259                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2260                 scrub_workers_put(root);
2261                 return -ENODEV;
2262         }
2263         mutex_lock(&fs_info->scrub_lock);
2264
2265         if (!dev->in_fs_metadata) {
2266                 mutex_unlock(&fs_info->scrub_lock);
2267                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2268                 scrub_workers_put(root);
2269                 return -ENODEV;
2270         }
2271
2272         if (dev->scrub_device) {
2273                 mutex_unlock(&fs_info->scrub_lock);
2274                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2275                 scrub_workers_put(root);
2276                 return -EINPROGRESS;
2277         }
2278         sdev = scrub_setup_dev(dev);
2279         if (IS_ERR(sdev)) {
2280                 mutex_unlock(&fs_info->scrub_lock);
2281                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2282                 scrub_workers_put(root);
2283                 return PTR_ERR(sdev);
2284         }
2285         sdev->readonly = readonly;
2286         dev->scrub_device = sdev;
2287
2288         atomic_inc(&fs_info->scrubs_running);
2289         mutex_unlock(&fs_info->scrub_lock);
2290         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2291
2292         down_read(&fs_info->scrub_super_lock);
2293         ret = scrub_supers(sdev);
2294         up_read(&fs_info->scrub_super_lock);
2295
2296         if (!ret)
2297                 ret = scrub_enumerate_chunks(sdev, start, end);
2298
2299         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2300         atomic_dec(&fs_info->scrubs_running);
2301         wake_up(&fs_info->scrub_pause_wait);
2302
2303         wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2304
2305         if (progress)
2306                 memcpy(progress, &sdev->stat, sizeof(*progress));
2307
2308         mutex_lock(&fs_info->scrub_lock);
2309         dev->scrub_device = NULL;
2310         mutex_unlock(&fs_info->scrub_lock);
2311
2312         scrub_free_dev(sdev);
2313         scrub_workers_put(root);
2314
2315         return ret;
2316 }
2317
2318 void btrfs_scrub_pause(struct btrfs_root *root)
2319 {
2320         struct btrfs_fs_info *fs_info = root->fs_info;
2321
2322         mutex_lock(&fs_info->scrub_lock);
2323         atomic_inc(&fs_info->scrub_pause_req);
2324         while (atomic_read(&fs_info->scrubs_paused) !=
2325                atomic_read(&fs_info->scrubs_running)) {
2326                 mutex_unlock(&fs_info->scrub_lock);
2327                 wait_event(fs_info->scrub_pause_wait,
2328                            atomic_read(&fs_info->scrubs_paused) ==
2329                            atomic_read(&fs_info->scrubs_running));
2330                 mutex_lock(&fs_info->scrub_lock);
2331         }
2332         mutex_unlock(&fs_info->scrub_lock);
2333 }
2334
2335 void btrfs_scrub_continue(struct btrfs_root *root)
2336 {
2337         struct btrfs_fs_info *fs_info = root->fs_info;
2338
2339         atomic_dec(&fs_info->scrub_pause_req);
2340         wake_up(&fs_info->scrub_pause_wait);
2341 }
2342
2343 void btrfs_scrub_pause_super(struct btrfs_root *root)
2344 {
2345         down_write(&root->fs_info->scrub_super_lock);
2346 }
2347
2348 void btrfs_scrub_continue_super(struct btrfs_root *root)
2349 {
2350         up_write(&root->fs_info->scrub_super_lock);
2351 }
2352
2353 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2354 {
2355
2356         mutex_lock(&fs_info->scrub_lock);
2357         if (!atomic_read(&fs_info->scrubs_running)) {
2358                 mutex_unlock(&fs_info->scrub_lock);
2359                 return -ENOTCONN;
2360         }
2361
2362         atomic_inc(&fs_info->scrub_cancel_req);
2363         while (atomic_read(&fs_info->scrubs_running)) {
2364                 mutex_unlock(&fs_info->scrub_lock);
2365                 wait_event(fs_info->scrub_pause_wait,
2366                            atomic_read(&fs_info->scrubs_running) == 0);
2367                 mutex_lock(&fs_info->scrub_lock);
2368         }
2369         atomic_dec(&fs_info->scrub_cancel_req);
2370         mutex_unlock(&fs_info->scrub_lock);
2371
2372         return 0;
2373 }
2374
2375 int btrfs_scrub_cancel(struct btrfs_root *root)
2376 {
2377         return __btrfs_scrub_cancel(root->fs_info);
2378 }
2379
2380 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2381 {
2382         struct btrfs_fs_info *fs_info = root->fs_info;
2383         struct scrub_dev *sdev;
2384
2385         mutex_lock(&fs_info->scrub_lock);
2386         sdev = dev->scrub_device;
2387         if (!sdev) {
2388                 mutex_unlock(&fs_info->scrub_lock);
2389                 return -ENOTCONN;
2390         }
2391         atomic_inc(&sdev->cancel_req);
2392         while (dev->scrub_device) {
2393                 mutex_unlock(&fs_info->scrub_lock);
2394                 wait_event(fs_info->scrub_pause_wait,
2395                            dev->scrub_device == NULL);
2396                 mutex_lock(&fs_info->scrub_lock);
2397         }
2398         mutex_unlock(&fs_info->scrub_lock);
2399
2400         return 0;
2401 }
2402
2403 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2404 {
2405         struct btrfs_fs_info *fs_info = root->fs_info;
2406         struct btrfs_device *dev;
2407         int ret;
2408
2409         /*
2410          * we have to hold the device_list_mutex here so the device
2411          * does not go away in cancel_dev. FIXME: find a better solution
2412          */
2413         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2414         dev = btrfs_find_device(root, devid, NULL, NULL);
2415         if (!dev) {
2416                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2417                 return -ENODEV;
2418         }
2419         ret = btrfs_scrub_cancel_dev(root, dev);
2420         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2421
2422         return ret;
2423 }
2424
2425 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2426                          struct btrfs_scrub_progress *progress)
2427 {
2428         struct btrfs_device *dev;
2429         struct scrub_dev *sdev = NULL;
2430
2431         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2432         dev = btrfs_find_device(root, devid, NULL, NULL);
2433         if (dev)
2434                 sdev = dev->scrub_device;
2435         if (sdev)
2436                 memcpy(progress, &sdev->stat, sizeof(*progress));
2437         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2438
2439         return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2440 }