Merge tag 'md-3.4-fixes' of git://neil.brown.name/md
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac                    = e1000_vfadapt,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac                    = e1000_vfadapt_i350,
77         .flags                  = 0,
78         .pba                    = 10,
79         .init_ops               = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]              = &igbvf_vf_info,
84         [board_i350_vf]         = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         if (status & E1000_RXD_STAT_VP) {
111                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
112                 if (test_bit(vid, adapter->active_vlans))
113                         __vlan_hwaccel_put_tag(skb, vid);
114         }
115         netif_receive_skb(skb);
116 }
117
118 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
119                                          u32 status_err, struct sk_buff *skb)
120 {
121         skb_checksum_none_assert(skb);
122
123         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
124         if ((status_err & E1000_RXD_STAT_IXSM) ||
125             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
126                 return;
127
128         /* TCP/UDP checksum error bit is set */
129         if (status_err &
130             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
131                 /* let the stack verify checksum errors */
132                 adapter->hw_csum_err++;
133                 return;
134         }
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
138                 skb->ip_summed = CHECKSUM_UNNECESSARY;
139
140         adapter->hw_csum_good++;
141 }
142
143 /**
144  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
145  * @rx_ring: address of ring structure to repopulate
146  * @cleaned_count: number of buffers to repopulate
147  **/
148 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
149                                    int cleaned_count)
150 {
151         struct igbvf_adapter *adapter = rx_ring->adapter;
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         union e1000_adv_rx_desc *rx_desc;
155         struct igbvf_buffer *buffer_info;
156         struct sk_buff *skb;
157         unsigned int i;
158         int bufsz;
159
160         i = rx_ring->next_to_use;
161         buffer_info = &rx_ring->buffer_info[i];
162
163         if (adapter->rx_ps_hdr_size)
164                 bufsz = adapter->rx_ps_hdr_size;
165         else
166                 bufsz = adapter->rx_buffer_len;
167
168         while (cleaned_count--) {
169                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
170
171                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
172                         if (!buffer_info->page) {
173                                 buffer_info->page = alloc_page(GFP_ATOMIC);
174                                 if (!buffer_info->page) {
175                                         adapter->alloc_rx_buff_failed++;
176                                         goto no_buffers;
177                                 }
178                                 buffer_info->page_offset = 0;
179                         } else {
180                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
181                         }
182                         buffer_info->page_dma =
183                                 dma_map_page(&pdev->dev, buffer_info->page,
184                                              buffer_info->page_offset,
185                                              PAGE_SIZE / 2,
186                                              DMA_FROM_DEVICE);
187                 }
188
189                 if (!buffer_info->skb) {
190                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
191                         if (!skb) {
192                                 adapter->alloc_rx_buff_failed++;
193                                 goto no_buffers;
194                         }
195
196                         buffer_info->skb = skb;
197                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
198                                                           bufsz,
199                                                           DMA_FROM_DEVICE);
200                 }
201                 /* Refresh the desc even if buffer_addrs didn't change because
202                  * each write-back erases this info. */
203                 if (adapter->rx_ps_hdr_size) {
204                         rx_desc->read.pkt_addr =
205                              cpu_to_le64(buffer_info->page_dma);
206                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
207                 } else {
208                         rx_desc->read.pkt_addr =
209                              cpu_to_le64(buffer_info->dma);
210                         rx_desc->read.hdr_addr = 0;
211                 }
212
213                 i++;
214                 if (i == rx_ring->count)
215                         i = 0;
216                 buffer_info = &rx_ring->buffer_info[i];
217         }
218
219 no_buffers:
220         if (rx_ring->next_to_use != i) {
221                 rx_ring->next_to_use = i;
222                 if (i == 0)
223                         i = (rx_ring->count - 1);
224                 else
225                         i--;
226
227                 /* Force memory writes to complete before letting h/w
228                  * know there are new descriptors to fetch.  (Only
229                  * applicable for weak-ordered memory model archs,
230                  * such as IA-64). */
231                 wmb();
232                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
233         }
234 }
235
236 /**
237  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
238  * @adapter: board private structure
239  *
240  * the return value indicates whether actual cleaning was done, there
241  * is no guarantee that everything was cleaned
242  **/
243 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
244                                int *work_done, int work_to_do)
245 {
246         struct igbvf_ring *rx_ring = adapter->rx_ring;
247         struct net_device *netdev = adapter->netdev;
248         struct pci_dev *pdev = adapter->pdev;
249         union e1000_adv_rx_desc *rx_desc, *next_rxd;
250         struct igbvf_buffer *buffer_info, *next_buffer;
251         struct sk_buff *skb;
252         bool cleaned = false;
253         int cleaned_count = 0;
254         unsigned int total_bytes = 0, total_packets = 0;
255         unsigned int i;
256         u32 length, hlen, staterr;
257
258         i = rx_ring->next_to_clean;
259         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
260         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
261
262         while (staterr & E1000_RXD_STAT_DD) {
263                 if (*work_done >= work_to_do)
264                         break;
265                 (*work_done)++;
266                 rmb(); /* read descriptor and rx_buffer_info after status DD */
267
268                 buffer_info = &rx_ring->buffer_info[i];
269
270                 /* HW will not DMA in data larger than the given buffer, even
271                  * if it parses the (NFS, of course) header to be larger.  In
272                  * that case, it fills the header buffer and spills the rest
273                  * into the page.
274                  */
275                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
276                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
277                 if (hlen > adapter->rx_ps_hdr_size)
278                         hlen = adapter->rx_ps_hdr_size;
279
280                 length = le16_to_cpu(rx_desc->wb.upper.length);
281                 cleaned = true;
282                 cleaned_count++;
283
284                 skb = buffer_info->skb;
285                 prefetch(skb->data - NET_IP_ALIGN);
286                 buffer_info->skb = NULL;
287                 if (!adapter->rx_ps_hdr_size) {
288                         dma_unmap_single(&pdev->dev, buffer_info->dma,
289                                          adapter->rx_buffer_len,
290                                          DMA_FROM_DEVICE);
291                         buffer_info->dma = 0;
292                         skb_put(skb, length);
293                         goto send_up;
294                 }
295
296                 if (!skb_shinfo(skb)->nr_frags) {
297                         dma_unmap_single(&pdev->dev, buffer_info->dma,
298                                          adapter->rx_ps_hdr_size,
299                                          DMA_FROM_DEVICE);
300                         skb_put(skb, hlen);
301                 }
302
303                 if (length) {
304                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
305                                        PAGE_SIZE / 2,
306                                        DMA_FROM_DEVICE);
307                         buffer_info->page_dma = 0;
308
309                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
310                                            buffer_info->page,
311                                            buffer_info->page_offset,
312                                            length);
313
314                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
315                             (page_count(buffer_info->page) != 1))
316                                 buffer_info->page = NULL;
317                         else
318                                 get_page(buffer_info->page);
319
320                         skb->len += length;
321                         skb->data_len += length;
322                         skb->truesize += PAGE_SIZE / 2;
323                 }
324 send_up:
325                 i++;
326                 if (i == rx_ring->count)
327                         i = 0;
328                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
329                 prefetch(next_rxd);
330                 next_buffer = &rx_ring->buffer_info[i];
331
332                 if (!(staterr & E1000_RXD_STAT_EOP)) {
333                         buffer_info->skb = next_buffer->skb;
334                         buffer_info->dma = next_buffer->dma;
335                         next_buffer->skb = skb;
336                         next_buffer->dma = 0;
337                         goto next_desc;
338                 }
339
340                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
341                         dev_kfree_skb_irq(skb);
342                         goto next_desc;
343                 }
344
345                 total_bytes += skb->len;
346                 total_packets++;
347
348                 igbvf_rx_checksum_adv(adapter, staterr, skb);
349
350                 skb->protocol = eth_type_trans(skb, netdev);
351
352                 igbvf_receive_skb(adapter, netdev, skb, staterr,
353                                   rx_desc->wb.upper.vlan);
354
355 next_desc:
356                 rx_desc->wb.upper.status_error = 0;
357
358                 /* return some buffers to hardware, one at a time is too slow */
359                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
360                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
361                         cleaned_count = 0;
362                 }
363
364                 /* use prefetched values */
365                 rx_desc = next_rxd;
366                 buffer_info = next_buffer;
367
368                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
369         }
370
371         rx_ring->next_to_clean = i;
372         cleaned_count = igbvf_desc_unused(rx_ring);
373
374         if (cleaned_count)
375                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
376
377         adapter->total_rx_packets += total_packets;
378         adapter->total_rx_bytes += total_bytes;
379         adapter->net_stats.rx_bytes += total_bytes;
380         adapter->net_stats.rx_packets += total_packets;
381         return cleaned;
382 }
383
384 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
385                             struct igbvf_buffer *buffer_info)
386 {
387         if (buffer_info->dma) {
388                 if (buffer_info->mapped_as_page)
389                         dma_unmap_page(&adapter->pdev->dev,
390                                        buffer_info->dma,
391                                        buffer_info->length,
392                                        DMA_TO_DEVICE);
393                 else
394                         dma_unmap_single(&adapter->pdev->dev,
395                                          buffer_info->dma,
396                                          buffer_info->length,
397                                          DMA_TO_DEVICE);
398                 buffer_info->dma = 0;
399         }
400         if (buffer_info->skb) {
401                 dev_kfree_skb_any(buffer_info->skb);
402                 buffer_info->skb = NULL;
403         }
404         buffer_info->time_stamp = 0;
405 }
406
407 /**
408  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
409  * @adapter: board private structure
410  *
411  * Return 0 on success, negative on failure
412  **/
413 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
414                              struct igbvf_ring *tx_ring)
415 {
416         struct pci_dev *pdev = adapter->pdev;
417         int size;
418
419         size = sizeof(struct igbvf_buffer) * tx_ring->count;
420         tx_ring->buffer_info = vzalloc(size);
421         if (!tx_ring->buffer_info)
422                 goto err;
423
424         /* round up to nearest 4K */
425         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
426         tx_ring->size = ALIGN(tx_ring->size, 4096);
427
428         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
429                                            &tx_ring->dma, GFP_KERNEL);
430
431         if (!tx_ring->desc)
432                 goto err;
433
434         tx_ring->adapter = adapter;
435         tx_ring->next_to_use = 0;
436         tx_ring->next_to_clean = 0;
437
438         return 0;
439 err:
440         vfree(tx_ring->buffer_info);
441         dev_err(&adapter->pdev->dev,
442                 "Unable to allocate memory for the transmit descriptor ring\n");
443         return -ENOMEM;
444 }
445
446 /**
447  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @adapter: board private structure
449  *
450  * Returns 0 on success, negative on failure
451  **/
452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453                              struct igbvf_ring *rx_ring)
454 {
455         struct pci_dev *pdev = adapter->pdev;
456         int size, desc_len;
457
458         size = sizeof(struct igbvf_buffer) * rx_ring->count;
459         rx_ring->buffer_info = vzalloc(size);
460         if (!rx_ring->buffer_info)
461                 goto err;
462
463         desc_len = sizeof(union e1000_adv_rx_desc);
464
465         /* Round up to nearest 4K */
466         rx_ring->size = rx_ring->count * desc_len;
467         rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470                                            &rx_ring->dma, GFP_KERNEL);
471
472         if (!rx_ring->desc)
473                 goto err;
474
475         rx_ring->next_to_clean = 0;
476         rx_ring->next_to_use = 0;
477
478         rx_ring->adapter = adapter;
479
480         return 0;
481
482 err:
483         vfree(rx_ring->buffer_info);
484         rx_ring->buffer_info = NULL;
485         dev_err(&adapter->pdev->dev,
486                 "Unable to allocate memory for the receive descriptor ring\n");
487         return -ENOMEM;
488 }
489
490 /**
491  * igbvf_clean_tx_ring - Free Tx Buffers
492  * @tx_ring: ring to be cleaned
493  **/
494 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
495 {
496         struct igbvf_adapter *adapter = tx_ring->adapter;
497         struct igbvf_buffer *buffer_info;
498         unsigned long size;
499         unsigned int i;
500
501         if (!tx_ring->buffer_info)
502                 return;
503
504         /* Free all the Tx ring sk_buffs */
505         for (i = 0; i < tx_ring->count; i++) {
506                 buffer_info = &tx_ring->buffer_info[i];
507                 igbvf_put_txbuf(adapter, buffer_info);
508         }
509
510         size = sizeof(struct igbvf_buffer) * tx_ring->count;
511         memset(tx_ring->buffer_info, 0, size);
512
513         /* Zero out the descriptor ring */
514         memset(tx_ring->desc, 0, tx_ring->size);
515
516         tx_ring->next_to_use = 0;
517         tx_ring->next_to_clean = 0;
518
519         writel(0, adapter->hw.hw_addr + tx_ring->head);
520         writel(0, adapter->hw.hw_addr + tx_ring->tail);
521 }
522
523 /**
524  * igbvf_free_tx_resources - Free Tx Resources per Queue
525  * @tx_ring: ring to free resources from
526  *
527  * Free all transmit software resources
528  **/
529 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
530 {
531         struct pci_dev *pdev = tx_ring->adapter->pdev;
532
533         igbvf_clean_tx_ring(tx_ring);
534
535         vfree(tx_ring->buffer_info);
536         tx_ring->buffer_info = NULL;
537
538         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
539                           tx_ring->dma);
540
541         tx_ring->desc = NULL;
542 }
543
544 /**
545  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
546  * @adapter: board private structure
547  **/
548 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
549 {
550         struct igbvf_adapter *adapter = rx_ring->adapter;
551         struct igbvf_buffer *buffer_info;
552         struct pci_dev *pdev = adapter->pdev;
553         unsigned long size;
554         unsigned int i;
555
556         if (!rx_ring->buffer_info)
557                 return;
558
559         /* Free all the Rx ring sk_buffs */
560         for (i = 0; i < rx_ring->count; i++) {
561                 buffer_info = &rx_ring->buffer_info[i];
562                 if (buffer_info->dma) {
563                         if (adapter->rx_ps_hdr_size){
564                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
565                                                  adapter->rx_ps_hdr_size,
566                                                  DMA_FROM_DEVICE);
567                         } else {
568                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
569                                                  adapter->rx_buffer_len,
570                                                  DMA_FROM_DEVICE);
571                         }
572                         buffer_info->dma = 0;
573                 }
574
575                 if (buffer_info->skb) {
576                         dev_kfree_skb(buffer_info->skb);
577                         buffer_info->skb = NULL;
578                 }
579
580                 if (buffer_info->page) {
581                         if (buffer_info->page_dma)
582                                 dma_unmap_page(&pdev->dev,
583                                                buffer_info->page_dma,
584                                                PAGE_SIZE / 2,
585                                                DMA_FROM_DEVICE);
586                         put_page(buffer_info->page);
587                         buffer_info->page = NULL;
588                         buffer_info->page_dma = 0;
589                         buffer_info->page_offset = 0;
590                 }
591         }
592
593         size = sizeof(struct igbvf_buffer) * rx_ring->count;
594         memset(rx_ring->buffer_info, 0, size);
595
596         /* Zero out the descriptor ring */
597         memset(rx_ring->desc, 0, rx_ring->size);
598
599         rx_ring->next_to_clean = 0;
600         rx_ring->next_to_use = 0;
601
602         writel(0, adapter->hw.hw_addr + rx_ring->head);
603         writel(0, adapter->hw.hw_addr + rx_ring->tail);
604 }
605
606 /**
607  * igbvf_free_rx_resources - Free Rx Resources
608  * @rx_ring: ring to clean the resources from
609  *
610  * Free all receive software resources
611  **/
612
613 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
614 {
615         struct pci_dev *pdev = rx_ring->adapter->pdev;
616
617         igbvf_clean_rx_ring(rx_ring);
618
619         vfree(rx_ring->buffer_info);
620         rx_ring->buffer_info = NULL;
621
622         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
623                           rx_ring->dma);
624         rx_ring->desc = NULL;
625 }
626
627 /**
628  * igbvf_update_itr - update the dynamic ITR value based on statistics
629  * @adapter: pointer to adapter
630  * @itr_setting: current adapter->itr
631  * @packets: the number of packets during this measurement interval
632  * @bytes: the number of bytes during this measurement interval
633  *
634  *      Stores a new ITR value based on packets and byte
635  *      counts during the last interrupt.  The advantage of per interrupt
636  *      computation is faster updates and more accurate ITR for the current
637  *      traffic pattern.  Constants in this function were computed
638  *      based on theoretical maximum wire speed and thresholds were set based
639  *      on testing data as well as attempting to minimize response time
640  *      while increasing bulk throughput.
641  **/
642 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
643                                            enum latency_range itr_setting,
644                                            int packets, int bytes)
645 {
646         enum latency_range retval = itr_setting;
647
648         if (packets == 0)
649                 goto update_itr_done;
650
651         switch (itr_setting) {
652         case lowest_latency:
653                 /* handle TSO and jumbo frames */
654                 if (bytes/packets > 8000)
655                         retval = bulk_latency;
656                 else if ((packets < 5) && (bytes > 512))
657                         retval = low_latency;
658                 break;
659         case low_latency:  /* 50 usec aka 20000 ints/s */
660                 if (bytes > 10000) {
661                         /* this if handles the TSO accounting */
662                         if (bytes/packets > 8000)
663                                 retval = bulk_latency;
664                         else if ((packets < 10) || ((bytes/packets) > 1200))
665                                 retval = bulk_latency;
666                         else if ((packets > 35))
667                                 retval = lowest_latency;
668                 } else if (bytes/packets > 2000) {
669                         retval = bulk_latency;
670                 } else if (packets <= 2 && bytes < 512) {
671                         retval = lowest_latency;
672                 }
673                 break;
674         case bulk_latency: /* 250 usec aka 4000 ints/s */
675                 if (bytes > 25000) {
676                         if (packets > 35)
677                                 retval = low_latency;
678                 } else if (bytes < 6000) {
679                         retval = low_latency;
680                 }
681                 break;
682         default:
683                 break;
684         }
685
686 update_itr_done:
687         return retval;
688 }
689
690 static int igbvf_range_to_itr(enum latency_range current_range)
691 {
692         int new_itr;
693
694         switch (current_range) {
695         /* counts and packets in update_itr are dependent on these numbers */
696         case lowest_latency:
697                 new_itr = IGBVF_70K_ITR;
698                 break;
699         case low_latency:
700                 new_itr = IGBVF_20K_ITR;
701                 break;
702         case bulk_latency:
703                 new_itr = IGBVF_4K_ITR;
704                 break;
705         default:
706                 new_itr = IGBVF_START_ITR;
707                 break;
708         }
709         return new_itr;
710 }
711
712 static void igbvf_set_itr(struct igbvf_adapter *adapter)
713 {
714         u32 new_itr;
715
716         adapter->tx_ring->itr_range =
717                         igbvf_update_itr(adapter,
718                                          adapter->tx_ring->itr_val,
719                                          adapter->total_tx_packets,
720                                          adapter->total_tx_bytes);
721
722         /* conservative mode (itr 3) eliminates the lowest_latency setting */
723         if (adapter->requested_itr == 3 &&
724             adapter->tx_ring->itr_range == lowest_latency)
725                 adapter->tx_ring->itr_range = low_latency;
726
727         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
728
729
730         if (new_itr != adapter->tx_ring->itr_val) {
731                 u32 current_itr = adapter->tx_ring->itr_val;
732                 /*
733                  * this attempts to bias the interrupt rate towards Bulk
734                  * by adding intermediate steps when interrupt rate is
735                  * increasing
736                  */
737                 new_itr = new_itr > current_itr ?
738                              min(current_itr + (new_itr >> 2), new_itr) :
739                              new_itr;
740                 adapter->tx_ring->itr_val = new_itr;
741
742                 adapter->tx_ring->set_itr = 1;
743         }
744
745         adapter->rx_ring->itr_range =
746                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747                                          adapter->total_rx_packets,
748                                          adapter->total_rx_bytes);
749         if (adapter->requested_itr == 3 &&
750             adapter->rx_ring->itr_range == lowest_latency)
751                 adapter->rx_ring->itr_range = low_latency;
752
753         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755         if (new_itr != adapter->rx_ring->itr_val) {
756                 u32 current_itr = adapter->rx_ring->itr_val;
757                 new_itr = new_itr > current_itr ?
758                              min(current_itr + (new_itr >> 2), new_itr) :
759                              new_itr;
760                 adapter->rx_ring->itr_val = new_itr;
761
762                 adapter->rx_ring->set_itr = 1;
763         }
764 }
765
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @adapter: board private structure
769  * returns true if ring is completely cleaned
770  **/
771 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
772 {
773         struct igbvf_adapter *adapter = tx_ring->adapter;
774         struct net_device *netdev = adapter->netdev;
775         struct igbvf_buffer *buffer_info;
776         struct sk_buff *skb;
777         union e1000_adv_tx_desc *tx_desc, *eop_desc;
778         unsigned int total_bytes = 0, total_packets = 0;
779         unsigned int i, eop, count = 0;
780         bool cleaned = false;
781
782         i = tx_ring->next_to_clean;
783         eop = tx_ring->buffer_info[i].next_to_watch;
784         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
785
786         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
787                (count < tx_ring->count)) {
788                 rmb();  /* read buffer_info after eop_desc status */
789                 for (cleaned = false; !cleaned; count++) {
790                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
791                         buffer_info = &tx_ring->buffer_info[i];
792                         cleaned = (i == eop);
793                         skb = buffer_info->skb;
794
795                         if (skb) {
796                                 unsigned int segs, bytecount;
797
798                                 /* gso_segs is currently only valid for tcp */
799                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
800                                 /* multiply data chunks by size of headers */
801                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
802                                             skb->len;
803                                 total_packets += segs;
804                                 total_bytes += bytecount;
805                         }
806
807                         igbvf_put_txbuf(adapter, buffer_info);
808                         tx_desc->wb.status = 0;
809
810                         i++;
811                         if (i == tx_ring->count)
812                                 i = 0;
813                 }
814                 eop = tx_ring->buffer_info[i].next_to_watch;
815                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
816         }
817
818         tx_ring->next_to_clean = i;
819
820         if (unlikely(count &&
821                      netif_carrier_ok(netdev) &&
822                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
823                 /* Make sure that anybody stopping the queue after this
824                  * sees the new next_to_clean.
825                  */
826                 smp_mb();
827                 if (netif_queue_stopped(netdev) &&
828                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
829                         netif_wake_queue(netdev);
830                         ++adapter->restart_queue;
831                 }
832         }
833
834         adapter->net_stats.tx_bytes += total_bytes;
835         adapter->net_stats.tx_packets += total_packets;
836         return count < tx_ring->count;
837 }
838
839 static irqreturn_t igbvf_msix_other(int irq, void *data)
840 {
841         struct net_device *netdev = data;
842         struct igbvf_adapter *adapter = netdev_priv(netdev);
843         struct e1000_hw *hw = &adapter->hw;
844
845         adapter->int_counter1++;
846
847         netif_carrier_off(netdev);
848         hw->mac.get_link_status = 1;
849         if (!test_bit(__IGBVF_DOWN, &adapter->state))
850                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
851
852         ew32(EIMS, adapter->eims_other);
853
854         return IRQ_HANDLED;
855 }
856
857 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
858 {
859         struct net_device *netdev = data;
860         struct igbvf_adapter *adapter = netdev_priv(netdev);
861         struct e1000_hw *hw = &adapter->hw;
862         struct igbvf_ring *tx_ring = adapter->tx_ring;
863
864         if (tx_ring->set_itr) {
865                 writel(tx_ring->itr_val,
866                        adapter->hw.hw_addr + tx_ring->itr_register);
867                 adapter->tx_ring->set_itr = 0;
868         }
869
870         adapter->total_tx_bytes = 0;
871         adapter->total_tx_packets = 0;
872
873         /* auto mask will automatically reenable the interrupt when we write
874          * EICS */
875         if (!igbvf_clean_tx_irq(tx_ring))
876                 /* Ring was not completely cleaned, so fire another interrupt */
877                 ew32(EICS, tx_ring->eims_value);
878         else
879                 ew32(EIMS, tx_ring->eims_value);
880
881         return IRQ_HANDLED;
882 }
883
884 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
885 {
886         struct net_device *netdev = data;
887         struct igbvf_adapter *adapter = netdev_priv(netdev);
888
889         adapter->int_counter0++;
890
891         /* Write the ITR value calculated at the end of the
892          * previous interrupt.
893          */
894         if (adapter->rx_ring->set_itr) {
895                 writel(adapter->rx_ring->itr_val,
896                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
897                 adapter->rx_ring->set_itr = 0;
898         }
899
900         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
901                 adapter->total_rx_bytes = 0;
902                 adapter->total_rx_packets = 0;
903                 __napi_schedule(&adapter->rx_ring->napi);
904         }
905
906         return IRQ_HANDLED;
907 }
908
909 #define IGBVF_NO_QUEUE -1
910
911 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
912                                 int tx_queue, int msix_vector)
913 {
914         struct e1000_hw *hw = &adapter->hw;
915         u32 ivar, index;
916
917         /* 82576 uses a table-based method for assigning vectors.
918            Each queue has a single entry in the table to which we write
919            a vector number along with a "valid" bit.  Sadly, the layout
920            of the table is somewhat counterintuitive. */
921         if (rx_queue > IGBVF_NO_QUEUE) {
922                 index = (rx_queue >> 1);
923                 ivar = array_er32(IVAR0, index);
924                 if (rx_queue & 0x1) {
925                         /* vector goes into third byte of register */
926                         ivar = ivar & 0xFF00FFFF;
927                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
928                 } else {
929                         /* vector goes into low byte of register */
930                         ivar = ivar & 0xFFFFFF00;
931                         ivar |= msix_vector | E1000_IVAR_VALID;
932                 }
933                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
934                 array_ew32(IVAR0, index, ivar);
935         }
936         if (tx_queue > IGBVF_NO_QUEUE) {
937                 index = (tx_queue >> 1);
938                 ivar = array_er32(IVAR0, index);
939                 if (tx_queue & 0x1) {
940                         /* vector goes into high byte of register */
941                         ivar = ivar & 0x00FFFFFF;
942                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
943                 } else {
944                         /* vector goes into second byte of register */
945                         ivar = ivar & 0xFFFF00FF;
946                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
947                 }
948                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
949                 array_ew32(IVAR0, index, ivar);
950         }
951 }
952
953 /**
954  * igbvf_configure_msix - Configure MSI-X hardware
955  *
956  * igbvf_configure_msix sets up the hardware to properly
957  * generate MSI-X interrupts.
958  **/
959 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
960 {
961         u32 tmp;
962         struct e1000_hw *hw = &adapter->hw;
963         struct igbvf_ring *tx_ring = adapter->tx_ring;
964         struct igbvf_ring *rx_ring = adapter->rx_ring;
965         int vector = 0;
966
967         adapter->eims_enable_mask = 0;
968
969         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
970         adapter->eims_enable_mask |= tx_ring->eims_value;
971         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
972         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
973         adapter->eims_enable_mask |= rx_ring->eims_value;
974         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
975
976         /* set vector for other causes, i.e. link changes */
977
978         tmp = (vector++ | E1000_IVAR_VALID);
979
980         ew32(IVAR_MISC, tmp);
981
982         adapter->eims_enable_mask = (1 << (vector)) - 1;
983         adapter->eims_other = 1 << (vector - 1);
984         e1e_flush();
985 }
986
987 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
988 {
989         if (adapter->msix_entries) {
990                 pci_disable_msix(adapter->pdev);
991                 kfree(adapter->msix_entries);
992                 adapter->msix_entries = NULL;
993         }
994 }
995
996 /**
997  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
998  *
999  * Attempt to configure interrupts using the best available
1000  * capabilities of the hardware and kernel.
1001  **/
1002 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1003 {
1004         int err = -ENOMEM;
1005         int i;
1006
1007         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1008         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1009                                         GFP_KERNEL);
1010         if (adapter->msix_entries) {
1011                 for (i = 0; i < 3; i++)
1012                         adapter->msix_entries[i].entry = i;
1013
1014                 err = pci_enable_msix(adapter->pdev,
1015                                       adapter->msix_entries, 3);
1016         }
1017
1018         if (err) {
1019                 /* MSI-X failed */
1020                 dev_err(&adapter->pdev->dev,
1021                         "Failed to initialize MSI-X interrupts.\n");
1022                 igbvf_reset_interrupt_capability(adapter);
1023         }
1024 }
1025
1026 /**
1027  * igbvf_request_msix - Initialize MSI-X interrupts
1028  *
1029  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1030  * kernel.
1031  **/
1032 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1033 {
1034         struct net_device *netdev = adapter->netdev;
1035         int err = 0, vector = 0;
1036
1037         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1038                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1039                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1040         } else {
1041                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1042                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1043         }
1044
1045         err = request_irq(adapter->msix_entries[vector].vector,
1046                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1047                           netdev);
1048         if (err)
1049                 goto out;
1050
1051         adapter->tx_ring->itr_register = E1000_EITR(vector);
1052         adapter->tx_ring->itr_val = adapter->current_itr;
1053         vector++;
1054
1055         err = request_irq(adapter->msix_entries[vector].vector,
1056                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1057                           netdev);
1058         if (err)
1059                 goto out;
1060
1061         adapter->rx_ring->itr_register = E1000_EITR(vector);
1062         adapter->rx_ring->itr_val = adapter->current_itr;
1063         vector++;
1064
1065         err = request_irq(adapter->msix_entries[vector].vector,
1066                           igbvf_msix_other, 0, netdev->name, netdev);
1067         if (err)
1068                 goto out;
1069
1070         igbvf_configure_msix(adapter);
1071         return 0;
1072 out:
1073         return err;
1074 }
1075
1076 /**
1077  * igbvf_alloc_queues - Allocate memory for all rings
1078  * @adapter: board private structure to initialize
1079  **/
1080 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1081 {
1082         struct net_device *netdev = adapter->netdev;
1083
1084         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1085         if (!adapter->tx_ring)
1086                 return -ENOMEM;
1087
1088         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1089         if (!adapter->rx_ring) {
1090                 kfree(adapter->tx_ring);
1091                 return -ENOMEM;
1092         }
1093
1094         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1095
1096         return 0;
1097 }
1098
1099 /**
1100  * igbvf_request_irq - initialize interrupts
1101  *
1102  * Attempts to configure interrupts using the best available
1103  * capabilities of the hardware and kernel.
1104  **/
1105 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1106 {
1107         int err = -1;
1108
1109         /* igbvf supports msi-x only */
1110         if (adapter->msix_entries)
1111                 err = igbvf_request_msix(adapter);
1112
1113         if (!err)
1114                 return err;
1115
1116         dev_err(&adapter->pdev->dev,
1117                 "Unable to allocate interrupt, Error: %d\n", err);
1118
1119         return err;
1120 }
1121
1122 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1123 {
1124         struct net_device *netdev = adapter->netdev;
1125         int vector;
1126
1127         if (adapter->msix_entries) {
1128                 for (vector = 0; vector < 3; vector++)
1129                         free_irq(adapter->msix_entries[vector].vector, netdev);
1130         }
1131 }
1132
1133 /**
1134  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1135  **/
1136 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1137 {
1138         struct e1000_hw *hw = &adapter->hw;
1139
1140         ew32(EIMC, ~0);
1141
1142         if (adapter->msix_entries)
1143                 ew32(EIAC, 0);
1144 }
1145
1146 /**
1147  * igbvf_irq_enable - Enable default interrupt generation settings
1148  **/
1149 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1150 {
1151         struct e1000_hw *hw = &adapter->hw;
1152
1153         ew32(EIAC, adapter->eims_enable_mask);
1154         ew32(EIAM, adapter->eims_enable_mask);
1155         ew32(EIMS, adapter->eims_enable_mask);
1156 }
1157
1158 /**
1159  * igbvf_poll - NAPI Rx polling callback
1160  * @napi: struct associated with this polling callback
1161  * @budget: amount of packets driver is allowed to process this poll
1162  **/
1163 static int igbvf_poll(struct napi_struct *napi, int budget)
1164 {
1165         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1166         struct igbvf_adapter *adapter = rx_ring->adapter;
1167         struct e1000_hw *hw = &adapter->hw;
1168         int work_done = 0;
1169
1170         igbvf_clean_rx_irq(adapter, &work_done, budget);
1171
1172         /* If not enough Rx work done, exit the polling mode */
1173         if (work_done < budget) {
1174                 napi_complete(napi);
1175
1176                 if (adapter->requested_itr & 3)
1177                         igbvf_set_itr(adapter);
1178
1179                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1180                         ew32(EIMS, adapter->rx_ring->eims_value);
1181         }
1182
1183         return work_done;
1184 }
1185
1186 /**
1187  * igbvf_set_rlpml - set receive large packet maximum length
1188  * @adapter: board private structure
1189  *
1190  * Configure the maximum size of packets that will be received
1191  */
1192 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1193 {
1194         int max_frame_size;
1195         struct e1000_hw *hw = &adapter->hw;
1196
1197         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1198         e1000_rlpml_set_vf(hw, max_frame_size);
1199 }
1200
1201 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1202 {
1203         struct igbvf_adapter *adapter = netdev_priv(netdev);
1204         struct e1000_hw *hw = &adapter->hw;
1205
1206         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1207                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1208                 return -EINVAL;
1209         }
1210         set_bit(vid, adapter->active_vlans);
1211         return 0;
1212 }
1213
1214 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1215 {
1216         struct igbvf_adapter *adapter = netdev_priv(netdev);
1217         struct e1000_hw *hw = &adapter->hw;
1218
1219         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1220                 dev_err(&adapter->pdev->dev,
1221                         "Failed to remove vlan id %d\n", vid);
1222                 return -EINVAL;
1223         }
1224         clear_bit(vid, adapter->active_vlans);
1225         return 0;
1226 }
1227
1228 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1229 {
1230         u16 vid;
1231
1232         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1233                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1234 }
1235
1236 /**
1237  * igbvf_configure_tx - Configure Transmit Unit after Reset
1238  * @adapter: board private structure
1239  *
1240  * Configure the Tx unit of the MAC after a reset.
1241  **/
1242 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1243 {
1244         struct e1000_hw *hw = &adapter->hw;
1245         struct igbvf_ring *tx_ring = adapter->tx_ring;
1246         u64 tdba;
1247         u32 txdctl, dca_txctrl;
1248
1249         /* disable transmits */
1250         txdctl = er32(TXDCTL(0));
1251         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1252         e1e_flush();
1253         msleep(10);
1254
1255         /* Setup the HW Tx Head and Tail descriptor pointers */
1256         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1257         tdba = tx_ring->dma;
1258         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1259         ew32(TDBAH(0), (tdba >> 32));
1260         ew32(TDH(0), 0);
1261         ew32(TDT(0), 0);
1262         tx_ring->head = E1000_TDH(0);
1263         tx_ring->tail = E1000_TDT(0);
1264
1265         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1266          * MUST be delivered in order or it will completely screw up
1267          * our bookeeping.
1268          */
1269         dca_txctrl = er32(DCA_TXCTRL(0));
1270         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1271         ew32(DCA_TXCTRL(0), dca_txctrl);
1272
1273         /* enable transmits */
1274         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1275         ew32(TXDCTL(0), txdctl);
1276
1277         /* Setup Transmit Descriptor Settings for eop descriptor */
1278         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1279
1280         /* enable Report Status bit */
1281         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1282 }
1283
1284 /**
1285  * igbvf_setup_srrctl - configure the receive control registers
1286  * @adapter: Board private structure
1287  **/
1288 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1289 {
1290         struct e1000_hw *hw = &adapter->hw;
1291         u32 srrctl = 0;
1292
1293         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1294                     E1000_SRRCTL_BSIZEHDR_MASK |
1295                     E1000_SRRCTL_BSIZEPKT_MASK);
1296
1297         /* Enable queue drop to avoid head of line blocking */
1298         srrctl |= E1000_SRRCTL_DROP_EN;
1299
1300         /* Setup buffer sizes */
1301         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1302                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1303
1304         if (adapter->rx_buffer_len < 2048) {
1305                 adapter->rx_ps_hdr_size = 0;
1306                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1307         } else {
1308                 adapter->rx_ps_hdr_size = 128;
1309                 srrctl |= adapter->rx_ps_hdr_size <<
1310                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1311                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1312         }
1313
1314         ew32(SRRCTL(0), srrctl);
1315 }
1316
1317 /**
1318  * igbvf_configure_rx - Configure Receive Unit after Reset
1319  * @adapter: board private structure
1320  *
1321  * Configure the Rx unit of the MAC after a reset.
1322  **/
1323 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1324 {
1325         struct e1000_hw *hw = &adapter->hw;
1326         struct igbvf_ring *rx_ring = adapter->rx_ring;
1327         u64 rdba;
1328         u32 rdlen, rxdctl;
1329
1330         /* disable receives */
1331         rxdctl = er32(RXDCTL(0));
1332         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1333         e1e_flush();
1334         msleep(10);
1335
1336         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1337
1338         /*
1339          * Setup the HW Rx Head and Tail Descriptor Pointers and
1340          * the Base and Length of the Rx Descriptor Ring
1341          */
1342         rdba = rx_ring->dma;
1343         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1344         ew32(RDBAH(0), (rdba >> 32));
1345         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1346         rx_ring->head = E1000_RDH(0);
1347         rx_ring->tail = E1000_RDT(0);
1348         ew32(RDH(0), 0);
1349         ew32(RDT(0), 0);
1350
1351         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1352         rxdctl &= 0xFFF00000;
1353         rxdctl |= IGBVF_RX_PTHRESH;
1354         rxdctl |= IGBVF_RX_HTHRESH << 8;
1355         rxdctl |= IGBVF_RX_WTHRESH << 16;
1356
1357         igbvf_set_rlpml(adapter);
1358
1359         /* enable receives */
1360         ew32(RXDCTL(0), rxdctl);
1361 }
1362
1363 /**
1364  * igbvf_set_multi - Multicast and Promiscuous mode set
1365  * @netdev: network interface device structure
1366  *
1367  * The set_multi entry point is called whenever the multicast address
1368  * list or the network interface flags are updated.  This routine is
1369  * responsible for configuring the hardware for proper multicast,
1370  * promiscuous mode, and all-multi behavior.
1371  **/
1372 static void igbvf_set_multi(struct net_device *netdev)
1373 {
1374         struct igbvf_adapter *adapter = netdev_priv(netdev);
1375         struct e1000_hw *hw = &adapter->hw;
1376         struct netdev_hw_addr *ha;
1377         u8  *mta_list = NULL;
1378         int i;
1379
1380         if (!netdev_mc_empty(netdev)) {
1381                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1382                 if (!mta_list) {
1383                         dev_err(&adapter->pdev->dev,
1384                                 "failed to allocate multicast filter list\n");
1385                         return;
1386                 }
1387         }
1388
1389         /* prepare a packed array of only addresses. */
1390         i = 0;
1391         netdev_for_each_mc_addr(ha, netdev)
1392                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1393
1394         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1395         kfree(mta_list);
1396 }
1397
1398 /**
1399  * igbvf_configure - configure the hardware for Rx and Tx
1400  * @adapter: private board structure
1401  **/
1402 static void igbvf_configure(struct igbvf_adapter *adapter)
1403 {
1404         igbvf_set_multi(adapter->netdev);
1405
1406         igbvf_restore_vlan(adapter);
1407
1408         igbvf_configure_tx(adapter);
1409         igbvf_setup_srrctl(adapter);
1410         igbvf_configure_rx(adapter);
1411         igbvf_alloc_rx_buffers(adapter->rx_ring,
1412                                igbvf_desc_unused(adapter->rx_ring));
1413 }
1414
1415 /* igbvf_reset - bring the hardware into a known good state
1416  *
1417  * This function boots the hardware and enables some settings that
1418  * require a configuration cycle of the hardware - those cannot be
1419  * set/changed during runtime. After reset the device needs to be
1420  * properly configured for Rx, Tx etc.
1421  */
1422 static void igbvf_reset(struct igbvf_adapter *adapter)
1423 {
1424         struct e1000_mac_info *mac = &adapter->hw.mac;
1425         struct net_device *netdev = adapter->netdev;
1426         struct e1000_hw *hw = &adapter->hw;
1427
1428         /* Allow time for pending master requests to run */
1429         if (mac->ops.reset_hw(hw))
1430                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1431
1432         mac->ops.init_hw(hw);
1433
1434         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1435                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1436                        netdev->addr_len);
1437                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1438                        netdev->addr_len);
1439         }
1440
1441         adapter->last_reset = jiffies;
1442 }
1443
1444 int igbvf_up(struct igbvf_adapter *adapter)
1445 {
1446         struct e1000_hw *hw = &adapter->hw;
1447
1448         /* hardware has been reset, we need to reload some things */
1449         igbvf_configure(adapter);
1450
1451         clear_bit(__IGBVF_DOWN, &adapter->state);
1452
1453         napi_enable(&adapter->rx_ring->napi);
1454         if (adapter->msix_entries)
1455                 igbvf_configure_msix(adapter);
1456
1457         /* Clear any pending interrupts. */
1458         er32(EICR);
1459         igbvf_irq_enable(adapter);
1460
1461         /* start the watchdog */
1462         hw->mac.get_link_status = 1;
1463         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1464
1465
1466         return 0;
1467 }
1468
1469 void igbvf_down(struct igbvf_adapter *adapter)
1470 {
1471         struct net_device *netdev = adapter->netdev;
1472         struct e1000_hw *hw = &adapter->hw;
1473         u32 rxdctl, txdctl;
1474
1475         /*
1476          * signal that we're down so the interrupt handler does not
1477          * reschedule our watchdog timer
1478          */
1479         set_bit(__IGBVF_DOWN, &adapter->state);
1480
1481         /* disable receives in the hardware */
1482         rxdctl = er32(RXDCTL(0));
1483         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1484
1485         netif_stop_queue(netdev);
1486
1487         /* disable transmits in the hardware */
1488         txdctl = er32(TXDCTL(0));
1489         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1490
1491         /* flush both disables and wait for them to finish */
1492         e1e_flush();
1493         msleep(10);
1494
1495         napi_disable(&adapter->rx_ring->napi);
1496
1497         igbvf_irq_disable(adapter);
1498
1499         del_timer_sync(&adapter->watchdog_timer);
1500
1501         netif_carrier_off(netdev);
1502
1503         /* record the stats before reset*/
1504         igbvf_update_stats(adapter);
1505
1506         adapter->link_speed = 0;
1507         adapter->link_duplex = 0;
1508
1509         igbvf_reset(adapter);
1510         igbvf_clean_tx_ring(adapter->tx_ring);
1511         igbvf_clean_rx_ring(adapter->rx_ring);
1512 }
1513
1514 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1515 {
1516         might_sleep();
1517         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1518                 msleep(1);
1519         igbvf_down(adapter);
1520         igbvf_up(adapter);
1521         clear_bit(__IGBVF_RESETTING, &adapter->state);
1522 }
1523
1524 /**
1525  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1526  * @adapter: board private structure to initialize
1527  *
1528  * igbvf_sw_init initializes the Adapter private data structure.
1529  * Fields are initialized based on PCI device information and
1530  * OS network device settings (MTU size).
1531  **/
1532 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1533 {
1534         struct net_device *netdev = adapter->netdev;
1535         s32 rc;
1536
1537         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1538         adapter->rx_ps_hdr_size = 0;
1539         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1540         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1541
1542         adapter->tx_int_delay = 8;
1543         adapter->tx_abs_int_delay = 32;
1544         adapter->rx_int_delay = 0;
1545         adapter->rx_abs_int_delay = 8;
1546         adapter->requested_itr = 3;
1547         adapter->current_itr = IGBVF_START_ITR;
1548
1549         /* Set various function pointers */
1550         adapter->ei->init_ops(&adapter->hw);
1551
1552         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1553         if (rc)
1554                 return rc;
1555
1556         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1557         if (rc)
1558                 return rc;
1559
1560         igbvf_set_interrupt_capability(adapter);
1561
1562         if (igbvf_alloc_queues(adapter))
1563                 return -ENOMEM;
1564
1565         spin_lock_init(&adapter->tx_queue_lock);
1566
1567         /* Explicitly disable IRQ since the NIC can be in any state. */
1568         igbvf_irq_disable(adapter);
1569
1570         spin_lock_init(&adapter->stats_lock);
1571
1572         set_bit(__IGBVF_DOWN, &adapter->state);
1573         return 0;
1574 }
1575
1576 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1577 {
1578         struct e1000_hw *hw = &adapter->hw;
1579
1580         adapter->stats.last_gprc = er32(VFGPRC);
1581         adapter->stats.last_gorc = er32(VFGORC);
1582         adapter->stats.last_gptc = er32(VFGPTC);
1583         adapter->stats.last_gotc = er32(VFGOTC);
1584         adapter->stats.last_mprc = er32(VFMPRC);
1585         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1586         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1587         adapter->stats.last_gorlbc = er32(VFGORLBC);
1588         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1589
1590         adapter->stats.base_gprc = er32(VFGPRC);
1591         adapter->stats.base_gorc = er32(VFGORC);
1592         adapter->stats.base_gptc = er32(VFGPTC);
1593         adapter->stats.base_gotc = er32(VFGOTC);
1594         adapter->stats.base_mprc = er32(VFMPRC);
1595         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1596         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1597         adapter->stats.base_gorlbc = er32(VFGORLBC);
1598         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1599 }
1600
1601 /**
1602  * igbvf_open - Called when a network interface is made active
1603  * @netdev: network interface device structure
1604  *
1605  * Returns 0 on success, negative value on failure
1606  *
1607  * The open entry point is called when a network interface is made
1608  * active by the system (IFF_UP).  At this point all resources needed
1609  * for transmit and receive operations are allocated, the interrupt
1610  * handler is registered with the OS, the watchdog timer is started,
1611  * and the stack is notified that the interface is ready.
1612  **/
1613 static int igbvf_open(struct net_device *netdev)
1614 {
1615         struct igbvf_adapter *adapter = netdev_priv(netdev);
1616         struct e1000_hw *hw = &adapter->hw;
1617         int err;
1618
1619         /* disallow open during test */
1620         if (test_bit(__IGBVF_TESTING, &adapter->state))
1621                 return -EBUSY;
1622
1623         /* allocate transmit descriptors */
1624         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1625         if (err)
1626                 goto err_setup_tx;
1627
1628         /* allocate receive descriptors */
1629         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1630         if (err)
1631                 goto err_setup_rx;
1632
1633         /*
1634          * before we allocate an interrupt, we must be ready to handle it.
1635          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1636          * as soon as we call pci_request_irq, so we have to setup our
1637          * clean_rx handler before we do so.
1638          */
1639         igbvf_configure(adapter);
1640
1641         err = igbvf_request_irq(adapter);
1642         if (err)
1643                 goto err_req_irq;
1644
1645         /* From here on the code is the same as igbvf_up() */
1646         clear_bit(__IGBVF_DOWN, &adapter->state);
1647
1648         napi_enable(&adapter->rx_ring->napi);
1649
1650         /* clear any pending interrupts */
1651         er32(EICR);
1652
1653         igbvf_irq_enable(adapter);
1654
1655         /* start the watchdog */
1656         hw->mac.get_link_status = 1;
1657         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1658
1659         return 0;
1660
1661 err_req_irq:
1662         igbvf_free_rx_resources(adapter->rx_ring);
1663 err_setup_rx:
1664         igbvf_free_tx_resources(adapter->tx_ring);
1665 err_setup_tx:
1666         igbvf_reset(adapter);
1667
1668         return err;
1669 }
1670
1671 /**
1672  * igbvf_close - Disables a network interface
1673  * @netdev: network interface device structure
1674  *
1675  * Returns 0, this is not allowed to fail
1676  *
1677  * The close entry point is called when an interface is de-activated
1678  * by the OS.  The hardware is still under the drivers control, but
1679  * needs to be disabled.  A global MAC reset is issued to stop the
1680  * hardware, and all transmit and receive resources are freed.
1681  **/
1682 static int igbvf_close(struct net_device *netdev)
1683 {
1684         struct igbvf_adapter *adapter = netdev_priv(netdev);
1685
1686         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1687         igbvf_down(adapter);
1688
1689         igbvf_free_irq(adapter);
1690
1691         igbvf_free_tx_resources(adapter->tx_ring);
1692         igbvf_free_rx_resources(adapter->rx_ring);
1693
1694         return 0;
1695 }
1696 /**
1697  * igbvf_set_mac - Change the Ethernet Address of the NIC
1698  * @netdev: network interface device structure
1699  * @p: pointer to an address structure
1700  *
1701  * Returns 0 on success, negative on failure
1702  **/
1703 static int igbvf_set_mac(struct net_device *netdev, void *p)
1704 {
1705         struct igbvf_adapter *adapter = netdev_priv(netdev);
1706         struct e1000_hw *hw = &adapter->hw;
1707         struct sockaddr *addr = p;
1708
1709         if (!is_valid_ether_addr(addr->sa_data))
1710                 return -EADDRNOTAVAIL;
1711
1712         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1713
1714         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1715
1716         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1717                 return -EADDRNOTAVAIL;
1718
1719         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1720         netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1721
1722         return 0;
1723 }
1724
1725 #define UPDATE_VF_COUNTER(reg, name)                                    \
1726         {                                                               \
1727                 u32 current_counter = er32(reg);                        \
1728                 if (current_counter < adapter->stats.last_##name)       \
1729                         adapter->stats.name += 0x100000000LL;           \
1730                 adapter->stats.last_##name = current_counter;           \
1731                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1732                 adapter->stats.name |= current_counter;                 \
1733         }
1734
1735 /**
1736  * igbvf_update_stats - Update the board statistics counters
1737  * @adapter: board private structure
1738 **/
1739 void igbvf_update_stats(struct igbvf_adapter *adapter)
1740 {
1741         struct e1000_hw *hw = &adapter->hw;
1742         struct pci_dev *pdev = adapter->pdev;
1743
1744         /*
1745          * Prevent stats update while adapter is being reset, link is down
1746          * or if the pci connection is down.
1747          */
1748         if (adapter->link_speed == 0)
1749                 return;
1750
1751         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1752                 return;
1753
1754         if (pci_channel_offline(pdev))
1755                 return;
1756
1757         UPDATE_VF_COUNTER(VFGPRC, gprc);
1758         UPDATE_VF_COUNTER(VFGORC, gorc);
1759         UPDATE_VF_COUNTER(VFGPTC, gptc);
1760         UPDATE_VF_COUNTER(VFGOTC, gotc);
1761         UPDATE_VF_COUNTER(VFMPRC, mprc);
1762         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1763         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1764         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1765         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1766
1767         /* Fill out the OS statistics structure */
1768         adapter->net_stats.multicast = adapter->stats.mprc;
1769 }
1770
1771 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1772 {
1773         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1774                  adapter->link_speed,
1775                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1776 }
1777
1778 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1779 {
1780         struct e1000_hw *hw = &adapter->hw;
1781         s32 ret_val = E1000_SUCCESS;
1782         bool link_active;
1783
1784         /* If interface is down, stay link down */
1785         if (test_bit(__IGBVF_DOWN, &adapter->state))
1786                 return false;
1787
1788         ret_val = hw->mac.ops.check_for_link(hw);
1789         link_active = !hw->mac.get_link_status;
1790
1791         /* if check for link returns error we will need to reset */
1792         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1793                 schedule_work(&adapter->reset_task);
1794
1795         return link_active;
1796 }
1797
1798 /**
1799  * igbvf_watchdog - Timer Call-back
1800  * @data: pointer to adapter cast into an unsigned long
1801  **/
1802 static void igbvf_watchdog(unsigned long data)
1803 {
1804         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1805
1806         /* Do the rest outside of interrupt context */
1807         schedule_work(&adapter->watchdog_task);
1808 }
1809
1810 static void igbvf_watchdog_task(struct work_struct *work)
1811 {
1812         struct igbvf_adapter *adapter = container_of(work,
1813                                                      struct igbvf_adapter,
1814                                                      watchdog_task);
1815         struct net_device *netdev = adapter->netdev;
1816         struct e1000_mac_info *mac = &adapter->hw.mac;
1817         struct igbvf_ring *tx_ring = adapter->tx_ring;
1818         struct e1000_hw *hw = &adapter->hw;
1819         u32 link;
1820         int tx_pending = 0;
1821
1822         link = igbvf_has_link(adapter);
1823
1824         if (link) {
1825                 if (!netif_carrier_ok(netdev)) {
1826                         mac->ops.get_link_up_info(&adapter->hw,
1827                                                   &adapter->link_speed,
1828                                                   &adapter->link_duplex);
1829                         igbvf_print_link_info(adapter);
1830
1831                         netif_carrier_on(netdev);
1832                         netif_wake_queue(netdev);
1833                 }
1834         } else {
1835                 if (netif_carrier_ok(netdev)) {
1836                         adapter->link_speed = 0;
1837                         adapter->link_duplex = 0;
1838                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1839                         netif_carrier_off(netdev);
1840                         netif_stop_queue(netdev);
1841                 }
1842         }
1843
1844         if (netif_carrier_ok(netdev)) {
1845                 igbvf_update_stats(adapter);
1846         } else {
1847                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1848                               tx_ring->count);
1849                 if (tx_pending) {
1850                         /*
1851                          * We've lost link, so the controller stops DMA,
1852                          * but we've got queued Tx work that's never going
1853                          * to get done, so reset controller to flush Tx.
1854                          * (Do the reset outside of interrupt context).
1855                          */
1856                         adapter->tx_timeout_count++;
1857                         schedule_work(&adapter->reset_task);
1858                 }
1859         }
1860
1861         /* Cause software interrupt to ensure Rx ring is cleaned */
1862         ew32(EICS, adapter->rx_ring->eims_value);
1863
1864         /* Reset the timer */
1865         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1866                 mod_timer(&adapter->watchdog_timer,
1867                           round_jiffies(jiffies + (2 * HZ)));
1868 }
1869
1870 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1871 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1872 #define IGBVF_TX_FLAGS_TSO              0x00000004
1873 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1874 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1875 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1876
1877 static int igbvf_tso(struct igbvf_adapter *adapter,
1878                      struct igbvf_ring *tx_ring,
1879                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1880 {
1881         struct e1000_adv_tx_context_desc *context_desc;
1882         unsigned int i;
1883         int err;
1884         struct igbvf_buffer *buffer_info;
1885         u32 info = 0, tu_cmd = 0;
1886         u32 mss_l4len_idx, l4len;
1887         *hdr_len = 0;
1888
1889         if (skb_header_cloned(skb)) {
1890                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1891                 if (err) {
1892                         dev_err(&adapter->pdev->dev,
1893                                 "igbvf_tso returning an error\n");
1894                         return err;
1895                 }
1896         }
1897
1898         l4len = tcp_hdrlen(skb);
1899         *hdr_len += l4len;
1900
1901         if (skb->protocol == htons(ETH_P_IP)) {
1902                 struct iphdr *iph = ip_hdr(skb);
1903                 iph->tot_len = 0;
1904                 iph->check = 0;
1905                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1906                                                          iph->daddr, 0,
1907                                                          IPPROTO_TCP,
1908                                                          0);
1909         } else if (skb_is_gso_v6(skb)) {
1910                 ipv6_hdr(skb)->payload_len = 0;
1911                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1912                                                        &ipv6_hdr(skb)->daddr,
1913                                                        0, IPPROTO_TCP, 0);
1914         }
1915
1916         i = tx_ring->next_to_use;
1917
1918         buffer_info = &tx_ring->buffer_info[i];
1919         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1920         /* VLAN MACLEN IPLEN */
1921         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1922                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1923         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1924         *hdr_len += skb_network_offset(skb);
1925         info |= (skb_transport_header(skb) - skb_network_header(skb));
1926         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1927         context_desc->vlan_macip_lens = cpu_to_le32(info);
1928
1929         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1930         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1931
1932         if (skb->protocol == htons(ETH_P_IP))
1933                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1934         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1935
1936         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1937
1938         /* MSS L4LEN IDX */
1939         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1940         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1941
1942         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1943         context_desc->seqnum_seed = 0;
1944
1945         buffer_info->time_stamp = jiffies;
1946         buffer_info->next_to_watch = i;
1947         buffer_info->dma = 0;
1948         i++;
1949         if (i == tx_ring->count)
1950                 i = 0;
1951
1952         tx_ring->next_to_use = i;
1953
1954         return true;
1955 }
1956
1957 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1958                                  struct igbvf_ring *tx_ring,
1959                                  struct sk_buff *skb, u32 tx_flags)
1960 {
1961         struct e1000_adv_tx_context_desc *context_desc;
1962         unsigned int i;
1963         struct igbvf_buffer *buffer_info;
1964         u32 info = 0, tu_cmd = 0;
1965
1966         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1967             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1968                 i = tx_ring->next_to_use;
1969                 buffer_info = &tx_ring->buffer_info[i];
1970                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1971
1972                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1973                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1974
1975                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1976                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1977                         info |= (skb_transport_header(skb) -
1978                                  skb_network_header(skb));
1979
1980
1981                 context_desc->vlan_macip_lens = cpu_to_le32(info);
1982
1983                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1984
1985                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1986                         switch (skb->protocol) {
1987                         case __constant_htons(ETH_P_IP):
1988                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1989                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1990                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1991                                 break;
1992                         case __constant_htons(ETH_P_IPV6):
1993                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1994                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1995                                 break;
1996                         default:
1997                                 break;
1998                         }
1999                 }
2000
2001                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2002                 context_desc->seqnum_seed = 0;
2003                 context_desc->mss_l4len_idx = 0;
2004
2005                 buffer_info->time_stamp = jiffies;
2006                 buffer_info->next_to_watch = i;
2007                 buffer_info->dma = 0;
2008                 i++;
2009                 if (i == tx_ring->count)
2010                         i = 0;
2011                 tx_ring->next_to_use = i;
2012
2013                 return true;
2014         }
2015
2016         return false;
2017 }
2018
2019 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2020 {
2021         struct igbvf_adapter *adapter = netdev_priv(netdev);
2022
2023         /* there is enough descriptors then we don't need to worry  */
2024         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2025                 return 0;
2026
2027         netif_stop_queue(netdev);
2028
2029         smp_mb();
2030
2031         /* We need to check again just in case room has been made available */
2032         if (igbvf_desc_unused(adapter->tx_ring) < size)
2033                 return -EBUSY;
2034
2035         netif_wake_queue(netdev);
2036
2037         ++adapter->restart_queue;
2038         return 0;
2039 }
2040
2041 #define IGBVF_MAX_TXD_PWR       16
2042 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2043
2044 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2045                                    struct igbvf_ring *tx_ring,
2046                                    struct sk_buff *skb,
2047                                    unsigned int first)
2048 {
2049         struct igbvf_buffer *buffer_info;
2050         struct pci_dev *pdev = adapter->pdev;
2051         unsigned int len = skb_headlen(skb);
2052         unsigned int count = 0, i;
2053         unsigned int f;
2054
2055         i = tx_ring->next_to_use;
2056
2057         buffer_info = &tx_ring->buffer_info[i];
2058         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2059         buffer_info->length = len;
2060         /* set time_stamp *before* dma to help avoid a possible race */
2061         buffer_info->time_stamp = jiffies;
2062         buffer_info->next_to_watch = i;
2063         buffer_info->mapped_as_page = false;
2064         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2065                                           DMA_TO_DEVICE);
2066         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067                 goto dma_error;
2068
2069
2070         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2071                 const struct skb_frag_struct *frag;
2072
2073                 count++;
2074                 i++;
2075                 if (i == tx_ring->count)
2076                         i = 0;
2077
2078                 frag = &skb_shinfo(skb)->frags[f];
2079                 len = skb_frag_size(frag);
2080
2081                 buffer_info = &tx_ring->buffer_info[i];
2082                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2083                 buffer_info->length = len;
2084                 buffer_info->time_stamp = jiffies;
2085                 buffer_info->next_to_watch = i;
2086                 buffer_info->mapped_as_page = true;
2087                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2088                                                 DMA_TO_DEVICE);
2089                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2090                         goto dma_error;
2091         }
2092
2093         tx_ring->buffer_info[i].skb = skb;
2094         tx_ring->buffer_info[first].next_to_watch = i;
2095
2096         return ++count;
2097
2098 dma_error:
2099         dev_err(&pdev->dev, "TX DMA map failed\n");
2100
2101         /* clear timestamp and dma mappings for failed buffer_info mapping */
2102         buffer_info->dma = 0;
2103         buffer_info->time_stamp = 0;
2104         buffer_info->length = 0;
2105         buffer_info->next_to_watch = 0;
2106         buffer_info->mapped_as_page = false;
2107         if (count)
2108                 count--;
2109
2110         /* clear timestamp and dma mappings for remaining portion of packet */
2111         while (count--) {
2112                 if (i==0)
2113                         i += tx_ring->count;
2114                 i--;
2115                 buffer_info = &tx_ring->buffer_info[i];
2116                 igbvf_put_txbuf(adapter, buffer_info);
2117         }
2118
2119         return 0;
2120 }
2121
2122 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2123                                       struct igbvf_ring *tx_ring,
2124                                       int tx_flags, int count, u32 paylen,
2125                                       u8 hdr_len)
2126 {
2127         union e1000_adv_tx_desc *tx_desc = NULL;
2128         struct igbvf_buffer *buffer_info;
2129         u32 olinfo_status = 0, cmd_type_len;
2130         unsigned int i;
2131
2132         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2133                         E1000_ADVTXD_DCMD_DEXT);
2134
2135         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2136                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2137
2138         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2139                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2140
2141                 /* insert tcp checksum */
2142                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2143
2144                 /* insert ip checksum */
2145                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2146                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2147
2148         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2149                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2150         }
2151
2152         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2153
2154         i = tx_ring->next_to_use;
2155         while (count--) {
2156                 buffer_info = &tx_ring->buffer_info[i];
2157                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2158                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2159                 tx_desc->read.cmd_type_len =
2160                          cpu_to_le32(cmd_type_len | buffer_info->length);
2161                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2162                 i++;
2163                 if (i == tx_ring->count)
2164                         i = 0;
2165         }
2166
2167         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2168         /* Force memory writes to complete before letting h/w
2169          * know there are new descriptors to fetch.  (Only
2170          * applicable for weak-ordered memory model archs,
2171          * such as IA-64). */
2172         wmb();
2173
2174         tx_ring->next_to_use = i;
2175         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2176         /* we need this if more than one processor can write to our tail
2177          * at a time, it syncronizes IO on IA64/Altix systems */
2178         mmiowb();
2179 }
2180
2181 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2182                                              struct net_device *netdev,
2183                                              struct igbvf_ring *tx_ring)
2184 {
2185         struct igbvf_adapter *adapter = netdev_priv(netdev);
2186         unsigned int first, tx_flags = 0;
2187         u8 hdr_len = 0;
2188         int count = 0;
2189         int tso = 0;
2190
2191         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2192                 dev_kfree_skb_any(skb);
2193                 return NETDEV_TX_OK;
2194         }
2195
2196         if (skb->len <= 0) {
2197                 dev_kfree_skb_any(skb);
2198                 return NETDEV_TX_OK;
2199         }
2200
2201         /*
2202          * need: count + 4 desc gap to keep tail from touching
2203          *       + 2 desc gap to keep tail from touching head,
2204          *       + 1 desc for skb->data,
2205          *       + 1 desc for context descriptor,
2206          * head, otherwise try next time
2207          */
2208         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2209                 /* this is a hard error */
2210                 return NETDEV_TX_BUSY;
2211         }
2212
2213         if (vlan_tx_tag_present(skb)) {
2214                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2215                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2216         }
2217
2218         if (skb->protocol == htons(ETH_P_IP))
2219                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2220
2221         first = tx_ring->next_to_use;
2222
2223         tso = skb_is_gso(skb) ?
2224                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2225         if (unlikely(tso < 0)) {
2226                 dev_kfree_skb_any(skb);
2227                 return NETDEV_TX_OK;
2228         }
2229
2230         if (tso)
2231                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2232         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2233                  (skb->ip_summed == CHECKSUM_PARTIAL))
2234                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2235
2236         /*
2237          * count reflects descriptors mapped, if 0 then mapping error
2238          * has occurred and we need to rewind the descriptor queue
2239          */
2240         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2241
2242         if (count) {
2243                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2244                                    skb->len, hdr_len);
2245                 /* Make sure there is space in the ring for the next send. */
2246                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2247         } else {
2248                 dev_kfree_skb_any(skb);
2249                 tx_ring->buffer_info[first].time_stamp = 0;
2250                 tx_ring->next_to_use = first;
2251         }
2252
2253         return NETDEV_TX_OK;
2254 }
2255
2256 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2257                                     struct net_device *netdev)
2258 {
2259         struct igbvf_adapter *adapter = netdev_priv(netdev);
2260         struct igbvf_ring *tx_ring;
2261
2262         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2263                 dev_kfree_skb_any(skb);
2264                 return NETDEV_TX_OK;
2265         }
2266
2267         tx_ring = &adapter->tx_ring[0];
2268
2269         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2270 }
2271
2272 /**
2273  * igbvf_tx_timeout - Respond to a Tx Hang
2274  * @netdev: network interface device structure
2275  **/
2276 static void igbvf_tx_timeout(struct net_device *netdev)
2277 {
2278         struct igbvf_adapter *adapter = netdev_priv(netdev);
2279
2280         /* Do the reset outside of interrupt context */
2281         adapter->tx_timeout_count++;
2282         schedule_work(&adapter->reset_task);
2283 }
2284
2285 static void igbvf_reset_task(struct work_struct *work)
2286 {
2287         struct igbvf_adapter *adapter;
2288         adapter = container_of(work, struct igbvf_adapter, reset_task);
2289
2290         igbvf_reinit_locked(adapter);
2291 }
2292
2293 /**
2294  * igbvf_get_stats - Get System Network Statistics
2295  * @netdev: network interface device structure
2296  *
2297  * Returns the address of the device statistics structure.
2298  * The statistics are actually updated from the timer callback.
2299  **/
2300 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2301 {
2302         struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304         /* only return the current stats */
2305         return &adapter->net_stats;
2306 }
2307
2308 /**
2309  * igbvf_change_mtu - Change the Maximum Transfer Unit
2310  * @netdev: network interface device structure
2311  * @new_mtu: new value for maximum frame size
2312  *
2313  * Returns 0 on success, negative on failure
2314  **/
2315 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2316 {
2317         struct igbvf_adapter *adapter = netdev_priv(netdev);
2318         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2319
2320         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2321                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2322                 return -EINVAL;
2323         }
2324
2325 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2326         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2327                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2328                 return -EINVAL;
2329         }
2330
2331         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2332                 msleep(1);
2333         /* igbvf_down has a dependency on max_frame_size */
2334         adapter->max_frame_size = max_frame;
2335         if (netif_running(netdev))
2336                 igbvf_down(adapter);
2337
2338         /*
2339          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2340          * means we reserve 2 more, this pushes us to allocate from the next
2341          * larger slab size.
2342          * i.e. RXBUFFER_2048 --> size-4096 slab
2343          * However with the new *_jumbo_rx* routines, jumbo receives will use
2344          * fragmented skbs
2345          */
2346
2347         if (max_frame <= 1024)
2348                 adapter->rx_buffer_len = 1024;
2349         else if (max_frame <= 2048)
2350                 adapter->rx_buffer_len = 2048;
2351         else
2352 #if (PAGE_SIZE / 2) > 16384
2353                 adapter->rx_buffer_len = 16384;
2354 #else
2355                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2356 #endif
2357
2358
2359         /* adjust allocation if LPE protects us, and we aren't using SBP */
2360         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2361              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2362                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2363                                          ETH_FCS_LEN;
2364
2365         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2366                  netdev->mtu, new_mtu);
2367         netdev->mtu = new_mtu;
2368
2369         if (netif_running(netdev))
2370                 igbvf_up(adapter);
2371         else
2372                 igbvf_reset(adapter);
2373
2374         clear_bit(__IGBVF_RESETTING, &adapter->state);
2375
2376         return 0;
2377 }
2378
2379 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2380 {
2381         switch (cmd) {
2382         default:
2383                 return -EOPNOTSUPP;
2384         }
2385 }
2386
2387 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2388 {
2389         struct net_device *netdev = pci_get_drvdata(pdev);
2390         struct igbvf_adapter *adapter = netdev_priv(netdev);
2391 #ifdef CONFIG_PM
2392         int retval = 0;
2393 #endif
2394
2395         netif_device_detach(netdev);
2396
2397         if (netif_running(netdev)) {
2398                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2399                 igbvf_down(adapter);
2400                 igbvf_free_irq(adapter);
2401         }
2402
2403 #ifdef CONFIG_PM
2404         retval = pci_save_state(pdev);
2405         if (retval)
2406                 return retval;
2407 #endif
2408
2409         pci_disable_device(pdev);
2410
2411         return 0;
2412 }
2413
2414 #ifdef CONFIG_PM
2415 static int igbvf_resume(struct pci_dev *pdev)
2416 {
2417         struct net_device *netdev = pci_get_drvdata(pdev);
2418         struct igbvf_adapter *adapter = netdev_priv(netdev);
2419         u32 err;
2420
2421         pci_restore_state(pdev);
2422         err = pci_enable_device_mem(pdev);
2423         if (err) {
2424                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2425                 return err;
2426         }
2427
2428         pci_set_master(pdev);
2429
2430         if (netif_running(netdev)) {
2431                 err = igbvf_request_irq(adapter);
2432                 if (err)
2433                         return err;
2434         }
2435
2436         igbvf_reset(adapter);
2437
2438         if (netif_running(netdev))
2439                 igbvf_up(adapter);
2440
2441         netif_device_attach(netdev);
2442
2443         return 0;
2444 }
2445 #endif
2446
2447 static void igbvf_shutdown(struct pci_dev *pdev)
2448 {
2449         igbvf_suspend(pdev, PMSG_SUSPEND);
2450 }
2451
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 /*
2454  * Polling 'interrupt' - used by things like netconsole to send skbs
2455  * without having to re-enable interrupts. It's not called while
2456  * the interrupt routine is executing.
2457  */
2458 static void igbvf_netpoll(struct net_device *netdev)
2459 {
2460         struct igbvf_adapter *adapter = netdev_priv(netdev);
2461
2462         disable_irq(adapter->pdev->irq);
2463
2464         igbvf_clean_tx_irq(adapter->tx_ring);
2465
2466         enable_irq(adapter->pdev->irq);
2467 }
2468 #endif
2469
2470 /**
2471  * igbvf_io_error_detected - called when PCI error is detected
2472  * @pdev: Pointer to PCI device
2473  * @state: The current pci connection state
2474  *
2475  * This function is called after a PCI bus error affecting
2476  * this device has been detected.
2477  */
2478 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2479                                                 pci_channel_state_t state)
2480 {
2481         struct net_device *netdev = pci_get_drvdata(pdev);
2482         struct igbvf_adapter *adapter = netdev_priv(netdev);
2483
2484         netif_device_detach(netdev);
2485
2486         if (state == pci_channel_io_perm_failure)
2487                 return PCI_ERS_RESULT_DISCONNECT;
2488
2489         if (netif_running(netdev))
2490                 igbvf_down(adapter);
2491         pci_disable_device(pdev);
2492
2493         /* Request a slot slot reset. */
2494         return PCI_ERS_RESULT_NEED_RESET;
2495 }
2496
2497 /**
2498  * igbvf_io_slot_reset - called after the pci bus has been reset.
2499  * @pdev: Pointer to PCI device
2500  *
2501  * Restart the card from scratch, as if from a cold-boot. Implementation
2502  * resembles the first-half of the igbvf_resume routine.
2503  */
2504 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2505 {
2506         struct net_device *netdev = pci_get_drvdata(pdev);
2507         struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509         if (pci_enable_device_mem(pdev)) {
2510                 dev_err(&pdev->dev,
2511                         "Cannot re-enable PCI device after reset.\n");
2512                 return PCI_ERS_RESULT_DISCONNECT;
2513         }
2514         pci_set_master(pdev);
2515
2516         igbvf_reset(adapter);
2517
2518         return PCI_ERS_RESULT_RECOVERED;
2519 }
2520
2521 /**
2522  * igbvf_io_resume - called when traffic can start flowing again.
2523  * @pdev: Pointer to PCI device
2524  *
2525  * This callback is called when the error recovery driver tells us that
2526  * its OK to resume normal operation. Implementation resembles the
2527  * second-half of the igbvf_resume routine.
2528  */
2529 static void igbvf_io_resume(struct pci_dev *pdev)
2530 {
2531         struct net_device *netdev = pci_get_drvdata(pdev);
2532         struct igbvf_adapter *adapter = netdev_priv(netdev);
2533
2534         if (netif_running(netdev)) {
2535                 if (igbvf_up(adapter)) {
2536                         dev_err(&pdev->dev,
2537                                 "can't bring device back up after reset\n");
2538                         return;
2539                 }
2540         }
2541
2542         netif_device_attach(netdev);
2543 }
2544
2545 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2546 {
2547         struct e1000_hw *hw = &adapter->hw;
2548         struct net_device *netdev = adapter->netdev;
2549         struct pci_dev *pdev = adapter->pdev;
2550
2551         if (hw->mac.type == e1000_vfadapt_i350)
2552                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2553         else
2554                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2555         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2556 }
2557
2558 static int igbvf_set_features(struct net_device *netdev,
2559         netdev_features_t features)
2560 {
2561         struct igbvf_adapter *adapter = netdev_priv(netdev);
2562
2563         if (features & NETIF_F_RXCSUM)
2564                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2565         else
2566                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2567
2568         return 0;
2569 }
2570
2571 static const struct net_device_ops igbvf_netdev_ops = {
2572         .ndo_open                       = igbvf_open,
2573         .ndo_stop                       = igbvf_close,
2574         .ndo_start_xmit                 = igbvf_xmit_frame,
2575         .ndo_get_stats                  = igbvf_get_stats,
2576         .ndo_set_rx_mode                = igbvf_set_multi,
2577         .ndo_set_mac_address            = igbvf_set_mac,
2578         .ndo_change_mtu                 = igbvf_change_mtu,
2579         .ndo_do_ioctl                   = igbvf_ioctl,
2580         .ndo_tx_timeout                 = igbvf_tx_timeout,
2581         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2582         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2583 #ifdef CONFIG_NET_POLL_CONTROLLER
2584         .ndo_poll_controller            = igbvf_netpoll,
2585 #endif
2586         .ndo_set_features               = igbvf_set_features,
2587 };
2588
2589 /**
2590  * igbvf_probe - Device Initialization Routine
2591  * @pdev: PCI device information struct
2592  * @ent: entry in igbvf_pci_tbl
2593  *
2594  * Returns 0 on success, negative on failure
2595  *
2596  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2597  * The OS initialization, configuring of the adapter private structure,
2598  * and a hardware reset occur.
2599  **/
2600 static int __devinit igbvf_probe(struct pci_dev *pdev,
2601                                  const struct pci_device_id *ent)
2602 {
2603         struct net_device *netdev;
2604         struct igbvf_adapter *adapter;
2605         struct e1000_hw *hw;
2606         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2607
2608         static int cards_found;
2609         int err, pci_using_dac;
2610
2611         err = pci_enable_device_mem(pdev);
2612         if (err)
2613                 return err;
2614
2615         pci_using_dac = 0;
2616         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2617         if (!err) {
2618                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2619                 if (!err)
2620                         pci_using_dac = 1;
2621         } else {
2622                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2623                 if (err) {
2624                         err = dma_set_coherent_mask(&pdev->dev,
2625                                                     DMA_BIT_MASK(32));
2626                         if (err) {
2627                                 dev_err(&pdev->dev, "No usable DMA "
2628                                         "configuration, aborting\n");
2629                                 goto err_dma;
2630                         }
2631                 }
2632         }
2633
2634         err = pci_request_regions(pdev, igbvf_driver_name);
2635         if (err)
2636                 goto err_pci_reg;
2637
2638         pci_set_master(pdev);
2639
2640         err = -ENOMEM;
2641         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2642         if (!netdev)
2643                 goto err_alloc_etherdev;
2644
2645         SET_NETDEV_DEV(netdev, &pdev->dev);
2646
2647         pci_set_drvdata(pdev, netdev);
2648         adapter = netdev_priv(netdev);
2649         hw = &adapter->hw;
2650         adapter->netdev = netdev;
2651         adapter->pdev = pdev;
2652         adapter->ei = ei;
2653         adapter->pba = ei->pba;
2654         adapter->flags = ei->flags;
2655         adapter->hw.back = adapter;
2656         adapter->hw.mac.type = ei->mac;
2657         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2658
2659         /* PCI config space info */
2660
2661         hw->vendor_id = pdev->vendor;
2662         hw->device_id = pdev->device;
2663         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2664         hw->subsystem_device_id = pdev->subsystem_device;
2665         hw->revision_id = pdev->revision;
2666
2667         err = -EIO;
2668         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2669                                       pci_resource_len(pdev, 0));
2670
2671         if (!adapter->hw.hw_addr)
2672                 goto err_ioremap;
2673
2674         if (ei->get_variants) {
2675                 err = ei->get_variants(adapter);
2676                 if (err)
2677                         goto err_ioremap;
2678         }
2679
2680         /* setup adapter struct */
2681         err = igbvf_sw_init(adapter);
2682         if (err)
2683                 goto err_sw_init;
2684
2685         /* construct the net_device struct */
2686         netdev->netdev_ops = &igbvf_netdev_ops;
2687
2688         igbvf_set_ethtool_ops(netdev);
2689         netdev->watchdog_timeo = 5 * HZ;
2690         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2691
2692         adapter->bd_number = cards_found++;
2693
2694         netdev->hw_features = NETIF_F_SG |
2695                            NETIF_F_IP_CSUM |
2696                            NETIF_F_IPV6_CSUM |
2697                            NETIF_F_TSO |
2698                            NETIF_F_TSO6 |
2699                            NETIF_F_RXCSUM;
2700
2701         netdev->features = netdev->hw_features |
2702                            NETIF_F_HW_VLAN_TX |
2703                            NETIF_F_HW_VLAN_RX |
2704                            NETIF_F_HW_VLAN_FILTER;
2705
2706         if (pci_using_dac)
2707                 netdev->features |= NETIF_F_HIGHDMA;
2708
2709         netdev->vlan_features |= NETIF_F_TSO;
2710         netdev->vlan_features |= NETIF_F_TSO6;
2711         netdev->vlan_features |= NETIF_F_IP_CSUM;
2712         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2713         netdev->vlan_features |= NETIF_F_SG;
2714
2715         /*reset the controller to put the device in a known good state */
2716         err = hw->mac.ops.reset_hw(hw);
2717         if (err) {
2718                 dev_info(&pdev->dev,
2719                          "PF still in reset state, assigning new address."
2720                          " Is the PF interface up?\n");
2721                 eth_hw_addr_random(netdev);
2722                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2723                         netdev->addr_len);
2724         } else {
2725                 err = hw->mac.ops.read_mac_addr(hw);
2726                 if (err) {
2727                         dev_err(&pdev->dev, "Error reading MAC address\n");
2728                         goto err_hw_init;
2729                 }
2730                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2731                         netdev->addr_len);
2732         }
2733
2734         if (!is_valid_ether_addr(netdev->dev_addr)) {
2735                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2736                         netdev->dev_addr);
2737                 err = -EIO;
2738                 goto err_hw_init;
2739         }
2740
2741         memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2742
2743         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2744                     (unsigned long) adapter);
2745
2746         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2747         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2748
2749         /* ring size defaults */
2750         adapter->rx_ring->count = 1024;
2751         adapter->tx_ring->count = 1024;
2752
2753         /* reset the hardware with the new settings */
2754         igbvf_reset(adapter);
2755
2756         strcpy(netdev->name, "eth%d");
2757         err = register_netdev(netdev);
2758         if (err)
2759                 goto err_hw_init;
2760
2761         /* tell the stack to leave us alone until igbvf_open() is called */
2762         netif_carrier_off(netdev);
2763         netif_stop_queue(netdev);
2764
2765         igbvf_print_device_info(adapter);
2766
2767         igbvf_initialize_last_counter_stats(adapter);
2768
2769         return 0;
2770
2771 err_hw_init:
2772         kfree(adapter->tx_ring);
2773         kfree(adapter->rx_ring);
2774 err_sw_init:
2775         igbvf_reset_interrupt_capability(adapter);
2776         iounmap(adapter->hw.hw_addr);
2777 err_ioremap:
2778         free_netdev(netdev);
2779 err_alloc_etherdev:
2780         pci_release_regions(pdev);
2781 err_pci_reg:
2782 err_dma:
2783         pci_disable_device(pdev);
2784         return err;
2785 }
2786
2787 /**
2788  * igbvf_remove - Device Removal Routine
2789  * @pdev: PCI device information struct
2790  *
2791  * igbvf_remove is called by the PCI subsystem to alert the driver
2792  * that it should release a PCI device.  The could be caused by a
2793  * Hot-Plug event, or because the driver is going to be removed from
2794  * memory.
2795  **/
2796 static void __devexit igbvf_remove(struct pci_dev *pdev)
2797 {
2798         struct net_device *netdev = pci_get_drvdata(pdev);
2799         struct igbvf_adapter *adapter = netdev_priv(netdev);
2800         struct e1000_hw *hw = &adapter->hw;
2801
2802         /*
2803          * The watchdog timer may be rescheduled, so explicitly
2804          * disable it from being rescheduled.
2805          */
2806         set_bit(__IGBVF_DOWN, &adapter->state);
2807         del_timer_sync(&adapter->watchdog_timer);
2808
2809         cancel_work_sync(&adapter->reset_task);
2810         cancel_work_sync(&adapter->watchdog_task);
2811
2812         unregister_netdev(netdev);
2813
2814         igbvf_reset_interrupt_capability(adapter);
2815
2816         /*
2817          * it is important to delete the napi struct prior to freeing the
2818          * rx ring so that you do not end up with null pointer refs
2819          */
2820         netif_napi_del(&adapter->rx_ring->napi);
2821         kfree(adapter->tx_ring);
2822         kfree(adapter->rx_ring);
2823
2824         iounmap(hw->hw_addr);
2825         if (hw->flash_address)
2826                 iounmap(hw->flash_address);
2827         pci_release_regions(pdev);
2828
2829         free_netdev(netdev);
2830
2831         pci_disable_device(pdev);
2832 }
2833
2834 /* PCI Error Recovery (ERS) */
2835 static struct pci_error_handlers igbvf_err_handler = {
2836         .error_detected = igbvf_io_error_detected,
2837         .slot_reset = igbvf_io_slot_reset,
2838         .resume = igbvf_io_resume,
2839 };
2840
2841 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2842         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2844         { } /* terminate list */
2845 };
2846 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2847
2848 /* PCI Device API Driver */
2849 static struct pci_driver igbvf_driver = {
2850         .name     = igbvf_driver_name,
2851         .id_table = igbvf_pci_tbl,
2852         .probe    = igbvf_probe,
2853         .remove   = __devexit_p(igbvf_remove),
2854 #ifdef CONFIG_PM
2855         /* Power Management Hooks */
2856         .suspend  = igbvf_suspend,
2857         .resume   = igbvf_resume,
2858 #endif
2859         .shutdown = igbvf_shutdown,
2860         .err_handler = &igbvf_err_handler
2861 };
2862
2863 /**
2864  * igbvf_init_module - Driver Registration Routine
2865  *
2866  * igbvf_init_module is the first routine called when the driver is
2867  * loaded. All it does is register with the PCI subsystem.
2868  **/
2869 static int __init igbvf_init_module(void)
2870 {
2871         int ret;
2872         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2873         pr_info("%s\n", igbvf_copyright);
2874
2875         ret = pci_register_driver(&igbvf_driver);
2876
2877         return ret;
2878 }
2879 module_init(igbvf_init_module);
2880
2881 /**
2882  * igbvf_exit_module - Driver Exit Cleanup Routine
2883  *
2884  * igbvf_exit_module is called just before the driver is removed
2885  * from memory.
2886  **/
2887 static void __exit igbvf_exit_module(void)
2888 {
2889         pci_unregister_driver(&igbvf_driver);
2890 }
2891 module_exit(igbvf_exit_module);
2892
2893
2894 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2895 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2896 MODULE_LICENSE("GPL");
2897 MODULE_VERSION(DRV_VERSION);
2898
2899 /* netdev.c */