2c7cf2f9c837263504b139e44137ac027724bd0e
[linux-flexiantxendom0-3.2.10.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34
35 #include "mm.h"
36
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48
49 #define CPOLICY_UNCACHED        0
50 #define CPOLICY_BUFFERED        1
51 #define CPOLICY_WRITETHROUGH    2
52 #define CPOLICY_WRITEBACK       3
53 #define CPOLICY_WRITEALLOC      4
54
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62
63 struct cachepolicy {
64         const char      policy[16];
65         unsigned int    cr_mask;
66         pmdval_t        pmd;
67         pteval_t        pte;
68 };
69
70 static struct cachepolicy cache_policies[] __initdata = {
71         {
72                 .policy         = "uncached",
73                 .cr_mask        = CR_W|CR_C,
74                 .pmd            = PMD_SECT_UNCACHED,
75                 .pte            = L_PTE_MT_UNCACHED,
76         }, {
77                 .policy         = "buffered",
78                 .cr_mask        = CR_C,
79                 .pmd            = PMD_SECT_BUFFERED,
80                 .pte            = L_PTE_MT_BUFFERABLE,
81         }, {
82                 .policy         = "writethrough",
83                 .cr_mask        = 0,
84                 .pmd            = PMD_SECT_WT,
85                 .pte            = L_PTE_MT_WRITETHROUGH,
86         }, {
87                 .policy         = "writeback",
88                 .cr_mask        = 0,
89                 .pmd            = PMD_SECT_WB,
90                 .pte            = L_PTE_MT_WRITEBACK,
91         }, {
92                 .policy         = "writealloc",
93                 .cr_mask        = 0,
94                 .pmd            = PMD_SECT_WBWA,
95                 .pte            = L_PTE_MT_WRITEALLOC,
96         }
97 };
98
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110                 int len = strlen(cache_policies[i].policy);
111
112                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113                         cachepolicy = i;
114                         cr_alignment &= ~cache_policies[i].cr_mask;
115                         cr_no_alignment &= ~cache_policies[i].cr_mask;
116                         break;
117                 }
118         }
119         if (i == ARRAY_SIZE(cache_policies))
120                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121         /*
122          * This restriction is partly to do with the way we boot; it is
123          * unpredictable to have memory mapped using two different sets of
124          * memory attributes (shared, type, and cache attribs).  We can not
125          * change these attributes once the initial assembly has setup the
126          * page tables.
127          */
128         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130                 cachepolicy = CPOLICY_WRITEBACK;
131         }
132         flush_cache_all();
133         set_cr(cr_alignment);
134         return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137
138 static int __init early_nocache(char *__unused)
139 {
140         char *p = "buffered";
141         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142         early_cachepolicy(p);
143         return 0;
144 }
145 early_param("nocache", early_nocache);
146
147 static int __init early_nowrite(char *__unused)
148 {
149         char *p = "uncached";
150         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151         early_cachepolicy(p);
152         return 0;
153 }
154 early_param("nowb", early_nowrite);
155
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159         if (memcmp(p, "on", 2) == 0)
160                 ecc_mask = PMD_PROTECTION;
161         else if (memcmp(p, "off", 3) == 0)
162                 ecc_mask = 0;
163         return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167
168 static int __init noalign_setup(char *__unused)
169 {
170         cr_alignment &= ~CR_A;
171         cr_no_alignment &= ~CR_A;
172         set_cr(cr_alignment);
173         return 1;
174 }
175 __setup("noalign", noalign_setup);
176
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180         unsigned long flags;
181
182         mask &= ~CR_A;
183
184         set &= mask;
185
186         local_irq_save(flags);
187
188         cr_no_alignment = (cr_no_alignment & ~mask) | set;
189         cr_alignment = (cr_alignment & ~mask) | set;
190
191         set_cr((get_cr() & ~mask) | set);
192
193         local_irq_restore(flags);
194 }
195 #endif
196
197 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200 static struct mem_type mem_types[] = {
201         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
202                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203                                   L_PTE_SHARED,
204                 .prot_l1        = PMD_TYPE_TABLE,
205                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
206                 .domain         = DOMAIN_IO,
207         },
208         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210                 .prot_l1        = PMD_TYPE_TABLE,
211                 .prot_sect      = PROT_SECT_DEVICE,
212                 .domain         = DOMAIN_IO,
213         },
214         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
215                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216                 .prot_l1        = PMD_TYPE_TABLE,
217                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
218                 .domain         = DOMAIN_IO,
219         },      
220         [MT_DEVICE_WC] = {      /* ioremap_wc */
221                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222                 .prot_l1        = PMD_TYPE_TABLE,
223                 .prot_sect      = PROT_SECT_DEVICE,
224                 .domain         = DOMAIN_IO,
225         },
226         [MT_UNCACHED] = {
227                 .prot_pte       = PROT_PTE_DEVICE,
228                 .prot_l1        = PMD_TYPE_TABLE,
229                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain         = DOMAIN_IO,
231         },
232         [MT_CACHECLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234                 .domain    = DOMAIN_KERNEL,
235         },
236 #ifndef CONFIG_ARM_LPAE
237         [MT_MINICLEAN] = {
238                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239                 .domain    = DOMAIN_KERNEL,
240         },
241 #endif
242         [MT_LOW_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_RDONLY,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_HIGH_VECTORS] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250                                 L_PTE_USER | L_PTE_RDONLY,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .domain    = DOMAIN_USER,
253         },
254         [MT_MEMORY] = {
255                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256                 .prot_l1   = PMD_TYPE_TABLE,
257                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258                 .domain    = DOMAIN_KERNEL,
259         },
260         [MT_ROM] = {
261                 .prot_sect = PMD_TYPE_SECT,
262                 .domain    = DOMAIN_KERNEL,
263         },
264         [MT_MEMORY_NONCACHED] = {
265                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266                                 L_PTE_MT_BUFFERABLE,
267                 .prot_l1   = PMD_TYPE_TABLE,
268                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269                 .domain    = DOMAIN_KERNEL,
270         },
271         [MT_MEMORY_DTCM] = {
272                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273                                 L_PTE_XN,
274                 .prot_l1   = PMD_TYPE_TABLE,
275                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276                 .domain    = DOMAIN_KERNEL,
277         },
278         [MT_MEMORY_ITCM] = {
279                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280                 .prot_l1   = PMD_TYPE_TABLE,
281                 .domain    = DOMAIN_KERNEL,
282         },
283         [MT_MEMORY_SO] = {
284                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285                                 L_PTE_MT_UNCACHED,
286                 .prot_l1   = PMD_TYPE_TABLE,
287                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
289                 .domain    = DOMAIN_KERNEL,
290         },
291 };
292
293 const struct mem_type *get_mem_type(unsigned int type)
294 {
295         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
296 }
297 EXPORT_SYMBOL(get_mem_type);
298
299 /*
300  * Adjust the PMD section entries according to the CPU in use.
301  */
302 static void __init build_mem_type_table(void)
303 {
304         struct cachepolicy *cp;
305         unsigned int cr = get_cr();
306         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
307         int cpu_arch = cpu_architecture();
308         int i;
309
310         if (cpu_arch < CPU_ARCH_ARMv6) {
311 #if defined(CONFIG_CPU_DCACHE_DISABLE)
312                 if (cachepolicy > CPOLICY_BUFFERED)
313                         cachepolicy = CPOLICY_BUFFERED;
314 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
315                 if (cachepolicy > CPOLICY_WRITETHROUGH)
316                         cachepolicy = CPOLICY_WRITETHROUGH;
317 #endif
318         }
319         if (cpu_arch < CPU_ARCH_ARMv5) {
320                 if (cachepolicy >= CPOLICY_WRITEALLOC)
321                         cachepolicy = CPOLICY_WRITEBACK;
322                 ecc_mask = 0;
323         }
324         if (is_smp())
325                 cachepolicy = CPOLICY_WRITEALLOC;
326
327         /*
328          * Strip out features not present on earlier architectures.
329          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
330          * without extended page tables don't have the 'Shared' bit.
331          */
332         if (cpu_arch < CPU_ARCH_ARMv5)
333                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
335         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
336                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
337                         mem_types[i].prot_sect &= ~PMD_SECT_S;
338
339         /*
340          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
341          * "update-able on write" bit on ARM610).  However, Xscale and
342          * Xscale3 require this bit to be cleared.
343          */
344         if (cpu_is_xscale() || cpu_is_xsc3()) {
345                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
346                         mem_types[i].prot_sect &= ~PMD_BIT4;
347                         mem_types[i].prot_l1 &= ~PMD_BIT4;
348                 }
349         } else if (cpu_arch < CPU_ARCH_ARMv6) {
350                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351                         if (mem_types[i].prot_l1)
352                                 mem_types[i].prot_l1 |= PMD_BIT4;
353                         if (mem_types[i].prot_sect)
354                                 mem_types[i].prot_sect |= PMD_BIT4;
355                 }
356         }
357
358         /*
359          * Mark the device areas according to the CPU/architecture.
360          */
361         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
362                 if (!cpu_is_xsc3()) {
363                         /*
364                          * Mark device regions on ARMv6+ as execute-never
365                          * to prevent speculative instruction fetches.
366                          */
367                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
368                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
369                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
370                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
371                 }
372                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
373                         /*
374                          * For ARMv7 with TEX remapping,
375                          * - shared device is SXCB=1100
376                          * - nonshared device is SXCB=0100
377                          * - write combine device mem is SXCB=0001
378                          * (Uncached Normal memory)
379                          */
380                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
381                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
382                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
383                 } else if (cpu_is_xsc3()) {
384                         /*
385                          * For Xscale3,
386                          * - shared device is TEXCB=00101
387                          * - nonshared device is TEXCB=01000
388                          * - write combine device mem is TEXCB=00100
389                          * (Inner/Outer Uncacheable in xsc3 parlance)
390                          */
391                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
392                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394                 } else {
395                         /*
396                          * For ARMv6 and ARMv7 without TEX remapping,
397                          * - shared device is TEXCB=00001
398                          * - nonshared device is TEXCB=01000
399                          * - write combine device mem is TEXCB=00100
400                          * (Uncached Normal in ARMv6 parlance).
401                          */
402                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
403                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
404                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
405                 }
406         } else {
407                 /*
408                  * On others, write combining is "Uncached/Buffered"
409                  */
410                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
411         }
412
413         /*
414          * Now deal with the memory-type mappings
415          */
416         cp = &cache_policies[cachepolicy];
417         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418
419         /*
420          * Only use write-through for non-SMP systems
421          */
422         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
423                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424
425         /*
426          * Enable CPU-specific coherency if supported.
427          * (Only available on XSC3 at the moment.)
428          */
429         if (arch_is_coherent() && cpu_is_xsc3()) {
430                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434         }
435         /*
436          * ARMv6 and above have extended page tables.
437          */
438         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440                 /*
441                  * Mark cache clean areas and XIP ROM read only
442                  * from SVC mode and no access from userspace.
443                  */
444                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448
449                 if (is_smp()) {
450                         /*
451                          * Mark memory with the "shared" attribute
452                          * for SMP systems
453                          */
454                         user_pgprot |= L_PTE_SHARED;
455                         kern_pgprot |= L_PTE_SHARED;
456                         vecs_pgprot |= L_PTE_SHARED;
457                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
464                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
465                 }
466         }
467
468         /*
469          * Non-cacheable Normal - intended for memory areas that must
470          * not cause dirty cache line writebacks when used
471          */
472         if (cpu_arch >= CPU_ARCH_ARMv6) {
473                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
474                         /* Non-cacheable Normal is XCB = 001 */
475                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
476                                 PMD_SECT_BUFFERED;
477                 } else {
478                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
479                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
480                                 PMD_SECT_TEX(1);
481                 }
482         } else {
483                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484         }
485
486 #ifdef CONFIG_ARM_LPAE
487         /*
488          * Do not generate access flag faults for the kernel mappings.
489          */
490         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491                 mem_types[i].prot_pte |= PTE_EXT_AF;
492                 mem_types[i].prot_sect |= PMD_SECT_AF;
493         }
494         kern_pgprot |= PTE_EXT_AF;
495         vecs_pgprot |= PTE_EXT_AF;
496 #endif
497
498         for (i = 0; i < 16; i++) {
499                 unsigned long v = pgprot_val(protection_map[i]);
500                 protection_map[i] = __pgprot(v | user_pgprot);
501         }
502
503         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
504         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
505
506         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
507         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
508                                  L_PTE_DIRTY | kern_pgprot);
509
510         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
511         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
512         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
513         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
514         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
515         mem_types[MT_ROM].prot_sect |= cp->pmd;
516
517         switch (cp->pmd) {
518         case PMD_SECT_WT:
519                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
520                 break;
521         case PMD_SECT_WB:
522         case PMD_SECT_WBWA:
523                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
524                 break;
525         }
526         printk("Memory policy: ECC %sabled, Data cache %s\n",
527                 ecc_mask ? "en" : "dis", cp->policy);
528
529         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
530                 struct mem_type *t = &mem_types[i];
531                 if (t->prot_l1)
532                         t->prot_l1 |= PMD_DOMAIN(t->domain);
533                 if (t->prot_sect)
534                         t->prot_sect |= PMD_DOMAIN(t->domain);
535         }
536 }
537
538 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
539 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
540                               unsigned long size, pgprot_t vma_prot)
541 {
542         if (!pfn_valid(pfn))
543                 return pgprot_noncached(vma_prot);
544         else if (file->f_flags & O_SYNC)
545                 return pgprot_writecombine(vma_prot);
546         return vma_prot;
547 }
548 EXPORT_SYMBOL(phys_mem_access_prot);
549 #endif
550
551 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
552
553 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
554 {
555         void *ptr = __va(memblock_alloc(sz, align));
556         memset(ptr, 0, sz);
557         return ptr;
558 }
559
560 static void __init *early_alloc(unsigned long sz)
561 {
562         return early_alloc_aligned(sz, sz);
563 }
564
565 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
566 {
567         if (pmd_none(*pmd)) {
568                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
569                 __pmd_populate(pmd, __pa(pte), prot);
570         }
571         BUG_ON(pmd_bad(*pmd));
572         return pte_offset_kernel(pmd, addr);
573 }
574
575 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
576                                   unsigned long end, unsigned long pfn,
577                                   const struct mem_type *type)
578 {
579         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
580         do {
581                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
582                 pfn++;
583         } while (pte++, addr += PAGE_SIZE, addr != end);
584 }
585
586 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
587                                       unsigned long end, phys_addr_t phys,
588                                       const struct mem_type *type)
589 {
590         pmd_t *pmd = pmd_offset(pud, addr);
591
592         /*
593          * Try a section mapping - end, addr and phys must all be aligned
594          * to a section boundary.  Note that PMDs refer to the individual
595          * L1 entries, whereas PGDs refer to a group of L1 entries making
596          * up one logical pointer to an L2 table.
597          */
598         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
599                 pmd_t *p = pmd;
600
601 #ifndef CONFIG_ARM_LPAE
602                 if (addr & SECTION_SIZE)
603                         pmd++;
604 #endif
605
606                 do {
607                         *pmd = __pmd(phys | type->prot_sect);
608                         phys += SECTION_SIZE;
609                 } while (pmd++, addr += SECTION_SIZE, addr != end);
610
611                 flush_pmd_entry(p);
612         } else {
613                 /*
614                  * No need to loop; pte's aren't interested in the
615                  * individual L1 entries.
616                  */
617                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
618         }
619 }
620
621 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
622         unsigned long end, unsigned long phys, const struct mem_type *type)
623 {
624         pud_t *pud = pud_offset(pgd, addr);
625         unsigned long next;
626
627         do {
628                 next = pud_addr_end(addr, end);
629                 alloc_init_section(pud, addr, next, phys, type);
630                 phys += next - addr;
631         } while (pud++, addr = next, addr != end);
632 }
633
634 #ifndef CONFIG_ARM_LPAE
635 static void __init create_36bit_mapping(struct map_desc *md,
636                                         const struct mem_type *type)
637 {
638         unsigned long addr, length, end;
639         phys_addr_t phys;
640         pgd_t *pgd;
641
642         addr = md->virtual;
643         phys = __pfn_to_phys(md->pfn);
644         length = PAGE_ALIGN(md->length);
645
646         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
647                 printk(KERN_ERR "MM: CPU does not support supersection "
648                        "mapping for 0x%08llx at 0x%08lx\n",
649                        (long long)__pfn_to_phys((u64)md->pfn), addr);
650                 return;
651         }
652
653         /* N.B. ARMv6 supersections are only defined to work with domain 0.
654          *      Since domain assignments can in fact be arbitrary, the
655          *      'domain == 0' check below is required to insure that ARMv6
656          *      supersections are only allocated for domain 0 regardless
657          *      of the actual domain assignments in use.
658          */
659         if (type->domain) {
660                 printk(KERN_ERR "MM: invalid domain in supersection "
661                        "mapping for 0x%08llx at 0x%08lx\n",
662                        (long long)__pfn_to_phys((u64)md->pfn), addr);
663                 return;
664         }
665
666         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
667                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
668                        " at 0x%08lx invalid alignment\n",
669                        (long long)__pfn_to_phys((u64)md->pfn), addr);
670                 return;
671         }
672
673         /*
674          * Shift bits [35:32] of address into bits [23:20] of PMD
675          * (See ARMv6 spec).
676          */
677         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
678
679         pgd = pgd_offset_k(addr);
680         end = addr + length;
681         do {
682                 pud_t *pud = pud_offset(pgd, addr);
683                 pmd_t *pmd = pmd_offset(pud, addr);
684                 int i;
685
686                 for (i = 0; i < 16; i++)
687                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
688
689                 addr += SUPERSECTION_SIZE;
690                 phys += SUPERSECTION_SIZE;
691                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
692         } while (addr != end);
693 }
694 #endif  /* !CONFIG_ARM_LPAE */
695
696 /*
697  * Create the page directory entries and any necessary
698  * page tables for the mapping specified by `md'.  We
699  * are able to cope here with varying sizes and address
700  * offsets, and we take full advantage of sections and
701  * supersections.
702  */
703 static void __init create_mapping(struct map_desc *md)
704 {
705         unsigned long addr, length, end;
706         phys_addr_t phys;
707         const struct mem_type *type;
708         pgd_t *pgd;
709
710         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
711                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
712                        " at 0x%08lx in user region\n",
713                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
714                 return;
715         }
716
717         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
718             md->virtual >= PAGE_OFFSET &&
719             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
720                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
721                        " at 0x%08lx out of vmalloc space\n",
722                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723         }
724
725         type = &mem_types[md->type];
726
727 #ifndef CONFIG_ARM_LPAE
728         /*
729          * Catch 36-bit addresses
730          */
731         if (md->pfn >= 0x100000) {
732                 create_36bit_mapping(md, type);
733                 return;
734         }
735 #endif
736
737         addr = md->virtual & PAGE_MASK;
738         phys = __pfn_to_phys(md->pfn);
739         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
740
741         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
742                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
743                        "be mapped using pages, ignoring.\n",
744                        (long long)__pfn_to_phys(md->pfn), addr);
745                 return;
746         }
747
748         pgd = pgd_offset_k(addr);
749         end = addr + length;
750         do {
751                 unsigned long next = pgd_addr_end(addr, end);
752
753                 alloc_init_pud(pgd, addr, next, phys, type);
754
755                 phys += next - addr;
756                 addr = next;
757         } while (pgd++, addr != end);
758 }
759
760 /*
761  * Create the architecture specific mappings
762  */
763 void __init iotable_init(struct map_desc *io_desc, int nr)
764 {
765         struct map_desc *md;
766         struct vm_struct *vm;
767
768         if (!nr)
769                 return;
770
771         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
772
773         for (md = io_desc; nr; md++, nr--) {
774                 create_mapping(md);
775                 vm->addr = (void *)(md->virtual & PAGE_MASK);
776                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
777                 vm->phys_addr = __pfn_to_phys(md->pfn); 
778                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
779                 vm->flags |= VM_ARM_MTYPE(md->type);
780                 vm->caller = iotable_init;
781                 vm_area_add_early(vm++);
782         }
783 }
784
785 static void * __initdata vmalloc_min =
786         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
787
788 /*
789  * vmalloc=size forces the vmalloc area to be exactly 'size'
790  * bytes. This can be used to increase (or decrease) the vmalloc
791  * area - the default is 240m.
792  */
793 static int __init early_vmalloc(char *arg)
794 {
795         unsigned long vmalloc_reserve = memparse(arg, NULL);
796
797         if (vmalloc_reserve < SZ_16M) {
798                 vmalloc_reserve = SZ_16M;
799                 printk(KERN_WARNING
800                         "vmalloc area too small, limiting to %luMB\n",
801                         vmalloc_reserve >> 20);
802         }
803
804         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
805                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
806                 printk(KERN_WARNING
807                         "vmalloc area is too big, limiting to %luMB\n",
808                         vmalloc_reserve >> 20);
809         }
810
811         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
812         return 0;
813 }
814 early_param("vmalloc", early_vmalloc);
815
816 static phys_addr_t lowmem_limit __initdata = 0;
817
818 void __init sanity_check_meminfo(void)
819 {
820         int i, j, highmem = 0;
821
822         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
823                 struct membank *bank = &meminfo.bank[j];
824                 *bank = meminfo.bank[i];
825
826                 if (bank->start > ULONG_MAX)
827                         highmem = 1;
828
829 #ifdef CONFIG_HIGHMEM
830                 if (__va(bank->start) >= vmalloc_min ||
831                     __va(bank->start) < (void *)PAGE_OFFSET)
832                         highmem = 1;
833
834                 bank->highmem = highmem;
835
836                 /*
837                  * Split those memory banks which are partially overlapping
838                  * the vmalloc area greatly simplifying things later.
839                  */
840                 if (!highmem && __va(bank->start) < vmalloc_min &&
841                     bank->size > vmalloc_min - __va(bank->start)) {
842                         if (meminfo.nr_banks >= NR_BANKS) {
843                                 printk(KERN_CRIT "NR_BANKS too low, "
844                                                  "ignoring high memory\n");
845                         } else {
846                                 memmove(bank + 1, bank,
847                                         (meminfo.nr_banks - i) * sizeof(*bank));
848                                 meminfo.nr_banks++;
849                                 i++;
850                                 bank[1].size -= vmalloc_min - __va(bank->start);
851                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
852                                 bank[1].highmem = highmem = 1;
853                                 j++;
854                         }
855                         bank->size = vmalloc_min - __va(bank->start);
856                 }
857 #else
858                 bank->highmem = highmem;
859
860                 /*
861                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
862                  */
863                 if (highmem) {
864                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
865                                "(!CONFIG_HIGHMEM).\n",
866                                (unsigned long long)bank->start,
867                                (unsigned long long)bank->start + bank->size - 1);
868                         continue;
869                 }
870
871                 /*
872                  * Check whether this memory bank would entirely overlap
873                  * the vmalloc area.
874                  */
875                 if (__va(bank->start) >= vmalloc_min ||
876                     __va(bank->start) < (void *)PAGE_OFFSET) {
877                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
878                                "(vmalloc region overlap).\n",
879                                (unsigned long long)bank->start,
880                                (unsigned long long)bank->start + bank->size - 1);
881                         continue;
882                 }
883
884                 /*
885                  * Check whether this memory bank would partially overlap
886                  * the vmalloc area.
887                  */
888                 if (__va(bank->start + bank->size) > vmalloc_min ||
889                     __va(bank->start + bank->size) < __va(bank->start)) {
890                         unsigned long newsize = vmalloc_min - __va(bank->start);
891                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
892                                "to -%.8llx (vmalloc region overlap).\n",
893                                (unsigned long long)bank->start,
894                                (unsigned long long)bank->start + bank->size - 1,
895                                (unsigned long long)bank->start + newsize - 1);
896                         bank->size = newsize;
897                 }
898 #endif
899                 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
900                         lowmem_limit = bank->start + bank->size;
901
902                 j++;
903         }
904 #ifdef CONFIG_HIGHMEM
905         if (highmem) {
906                 const char *reason = NULL;
907
908                 if (cache_is_vipt_aliasing()) {
909                         /*
910                          * Interactions between kmap and other mappings
911                          * make highmem support with aliasing VIPT caches
912                          * rather difficult.
913                          */
914                         reason = "with VIPT aliasing cache";
915                 }
916                 if (reason) {
917                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
918                                 reason);
919                         while (j > 0 && meminfo.bank[j - 1].highmem)
920                                 j--;
921                 }
922         }
923 #endif
924         meminfo.nr_banks = j;
925         high_memory = __va(lowmem_limit - 1) + 1;
926         memblock_set_current_limit(lowmem_limit);
927 }
928
929 static inline void prepare_page_table(void)
930 {
931         unsigned long addr;
932         phys_addr_t end;
933
934         /*
935          * Clear out all the mappings below the kernel image.
936          */
937         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
938                 pmd_clear(pmd_off_k(addr));
939
940 #ifdef CONFIG_XIP_KERNEL
941         /* The XIP kernel is mapped in the module area -- skip over it */
942         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
943 #endif
944         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
945                 pmd_clear(pmd_off_k(addr));
946
947         /*
948          * Find the end of the first block of lowmem.
949          */
950         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
951         if (end >= lowmem_limit)
952                 end = lowmem_limit;
953
954         /*
955          * Clear out all the kernel space mappings, except for the first
956          * memory bank, up to the vmalloc region.
957          */
958         for (addr = __phys_to_virt(end);
959              addr < VMALLOC_START; addr += PMD_SIZE)
960                 pmd_clear(pmd_off_k(addr));
961 }
962
963 #ifdef CONFIG_ARM_LPAE
964 /* the first page is reserved for pgd */
965 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
966                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
967 #else
968 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
969 #endif
970
971 /*
972  * Reserve the special regions of memory
973  */
974 void __init arm_mm_memblock_reserve(void)
975 {
976         /*
977          * Reserve the page tables.  These are already in use,
978          * and can only be in node 0.
979          */
980         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
981
982 #ifdef CONFIG_SA1111
983         /*
984          * Because of the SA1111 DMA bug, we want to preserve our
985          * precious DMA-able memory...
986          */
987         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
988 #endif
989 }
990
991 /*
992  * Set up the device mappings.  Since we clear out the page tables for all
993  * mappings above VMALLOC_START, we will remove any debug device mappings.
994  * This means you have to be careful how you debug this function, or any
995  * called function.  This means you can't use any function or debugging
996  * method which may touch any device, otherwise the kernel _will_ crash.
997  */
998 static void __init devicemaps_init(struct machine_desc *mdesc)
999 {
1000         struct map_desc map;
1001         unsigned long addr;
1002         void *vectors;
1003
1004         /*
1005          * Allocate the vector page early.
1006          */
1007         vectors = early_alloc(PAGE_SIZE);
1008
1009         early_trap_init(vectors);
1010
1011         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1012                 pmd_clear(pmd_off_k(addr));
1013
1014         /*
1015          * Map the kernel if it is XIP.
1016          * It is always first in the modulearea.
1017          */
1018 #ifdef CONFIG_XIP_KERNEL
1019         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1020         map.virtual = MODULES_VADDR;
1021         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1022         map.type = MT_ROM;
1023         create_mapping(&map);
1024 #endif
1025
1026         /*
1027          * Map the cache flushing regions.
1028          */
1029 #ifdef FLUSH_BASE
1030         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1031         map.virtual = FLUSH_BASE;
1032         map.length = SZ_1M;
1033         map.type = MT_CACHECLEAN;
1034         create_mapping(&map);
1035 #endif
1036 #ifdef FLUSH_BASE_MINICACHE
1037         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1038         map.virtual = FLUSH_BASE_MINICACHE;
1039         map.length = SZ_1M;
1040         map.type = MT_MINICLEAN;
1041         create_mapping(&map);
1042 #endif
1043
1044         /*
1045          * Create a mapping for the machine vectors at the high-vectors
1046          * location (0xffff0000).  If we aren't using high-vectors, also
1047          * create a mapping at the low-vectors virtual address.
1048          */
1049         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1050         map.virtual = 0xffff0000;
1051         map.length = PAGE_SIZE;
1052         map.type = MT_HIGH_VECTORS;
1053         create_mapping(&map);
1054
1055         if (!vectors_high()) {
1056                 map.virtual = 0;
1057                 map.type = MT_LOW_VECTORS;
1058                 create_mapping(&map);
1059         }
1060
1061         /*
1062          * Ask the machine support to map in the statically mapped devices.
1063          */
1064         if (mdesc->map_io)
1065                 mdesc->map_io();
1066
1067         /*
1068          * Finally flush the caches and tlb to ensure that we're in a
1069          * consistent state wrt the writebuffer.  This also ensures that
1070          * any write-allocated cache lines in the vector page are written
1071          * back.  After this point, we can start to touch devices again.
1072          */
1073         local_flush_tlb_all();
1074         flush_cache_all();
1075 }
1076
1077 static void __init kmap_init(void)
1078 {
1079 #ifdef CONFIG_HIGHMEM
1080         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1081                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1082 #endif
1083 }
1084
1085 static void __init map_lowmem(void)
1086 {
1087         struct memblock_region *reg;
1088
1089         /* Map all the lowmem memory banks. */
1090         for_each_memblock(memory, reg) {
1091                 phys_addr_t start = reg->base;
1092                 phys_addr_t end = start + reg->size;
1093                 struct map_desc map;
1094
1095                 if (end > lowmem_limit)
1096                         end = lowmem_limit;
1097                 if (start >= end)
1098                         break;
1099
1100                 map.pfn = __phys_to_pfn(start);
1101                 map.virtual = __phys_to_virt(start);
1102                 map.length = end - start;
1103                 map.type = MT_MEMORY;
1104
1105                 create_mapping(&map);
1106         }
1107 }
1108
1109 /*
1110  * paging_init() sets up the page tables, initialises the zone memory
1111  * maps, and sets up the zero page, bad page and bad page tables.
1112  */
1113 void __init paging_init(struct machine_desc *mdesc)
1114 {
1115         void *zero_page;
1116
1117         memblock_set_current_limit(lowmem_limit);
1118
1119         build_mem_type_table();
1120         prepare_page_table();
1121         map_lowmem();
1122         devicemaps_init(mdesc);
1123         kmap_init();
1124
1125         top_pmd = pmd_off_k(0xffff0000);
1126
1127         /* allocate the zero page. */
1128         zero_page = early_alloc(PAGE_SIZE);
1129
1130         bootmem_init();
1131
1132         empty_zero_page = virt_to_page(zero_page);
1133         __flush_dcache_page(NULL, empty_zero_page);
1134 }