PM / Freezer / Docs: Update documentation about freezing of tasks
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
143
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
148 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
149 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
150
151 /* Strapping Option Register - RO */
152 #define E1000_STRAP                     0x0000C
153 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155
156 /* OEM Bits Phy Register */
157 #define HV_OEM_BITS            PHY_REG(768, 25)
158 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161
162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
164
165 /* KMRN Mode Control */
166 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
167 #define HV_KMRN_MDIO_SLOW      0x0400
168
169 /* KMRN FIFO Control and Status */
170 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
173
174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175 /* Offset 04h HSFSTS */
176 union ich8_hws_flash_status {
177         struct ich8_hsfsts {
178                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
179                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
180                 u16 dael       :1; /* bit 2 Direct Access error Log */
181                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
182                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
183                 u16 reserved1  :2; /* bit 13:6 Reserved */
184                 u16 reserved2  :6; /* bit 13:6 Reserved */
185                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
187         } hsf_status;
188         u16 regval;
189 };
190
191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192 /* Offset 06h FLCTL */
193 union ich8_hws_flash_ctrl {
194         struct ich8_hsflctl {
195                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
196                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
197                 u16 reserved   :5;   /* 7:3 Reserved  */
198                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
199                 u16 flockdn    :6;   /* 15:10 Reserved */
200         } hsf_ctrl;
201         u16 regval;
202 };
203
204 /* ICH Flash Region Access Permissions */
205 union ich8_hws_flash_regacc {
206         struct ich8_flracc {
207                 u32 grra      :8; /* 0:7 GbE region Read Access */
208                 u32 grwa      :8; /* 8:15 GbE region Write Access */
209                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
210                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
211         } hsf_flregacc;
212         u16 regval;
213 };
214
215 /* ICH Flash Protected Region */
216 union ich8_flash_protected_range {
217         struct ich8_pr {
218                 u32 base:13;     /* 0:12 Protected Range Base */
219                 u32 reserved1:2; /* 13:14 Reserved */
220                 u32 rpe:1;       /* 15 Read Protection Enable */
221                 u32 limit:13;    /* 16:28 Protected Range Limit */
222                 u32 reserved2:2; /* 29:30 Reserved */
223                 u32 wpe:1;       /* 31 Write Protection Enable */
224         } range;
225         u32 regval;
226 };
227
228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233                                                 u32 offset, u8 byte);
234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235                                          u8 *data);
236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237                                          u16 *data);
238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239                                          u8 size, u16 *data);
240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260
261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262 {
263         return readw(hw->flash_address + reg);
264 }
265
266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267 {
268         return readl(hw->flash_address + reg);
269 }
270
271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272 {
273         writew(val, hw->flash_address + reg);
274 }
275
276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277 {
278         writel(val, hw->flash_address + reg);
279 }
280
281 #define er16flash(reg)          __er16flash(hw, (reg))
282 #define er32flash(reg)          __er32flash(hw, (reg))
283 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
284 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
285
286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287 {
288         u32 ctrl;
289
290         ctrl = er32(CTRL);
291         ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292         ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293         ew32(CTRL, ctrl);
294         e1e_flush();
295         udelay(10);
296         ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297         ew32(CTRL, ctrl);
298 }
299
300 /**
301  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
302  *  @hw: pointer to the HW structure
303  *
304  *  Initialize family-specific PHY parameters and function pointers.
305  **/
306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307 {
308         struct e1000_phy_info *phy = &hw->phy;
309         s32 ret_val = 0;
310
311         phy->addr                     = 1;
312         phy->reset_delay_us           = 100;
313
314         phy->ops.set_page             = e1000_set_page_igp;
315         phy->ops.read_reg             = e1000_read_phy_reg_hv;
316         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
319         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320         phy->ops.write_reg            = e1000_write_phy_reg_hv;
321         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323         phy->ops.power_up             = e1000_power_up_phy_copper;
324         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326
327         if (!hw->phy.ops.check_reset_block(hw)) {
328                 u32 fwsm = er32(FWSM);
329
330                 /*
331                  * The MAC-PHY interconnect may still be in SMBus mode after
332                  * Sx->S0.  If resetting the PHY is not blocked, toggle the
333                  * LANPHYPC Value bit to force the interconnect to PCIe mode.
334                  */
335                 e1000_toggle_lanphypc_value_ich8lan(hw);
336                 msleep(50);
337
338                 /*
339                  * Gate automatic PHY configuration by hardware on
340                  * non-managed 82579
341                  */
342                 if ((hw->mac.type == e1000_pch2lan) &&
343                     !(fwsm & E1000_ICH_FWSM_FW_VALID))
344                         e1000_gate_hw_phy_config_ich8lan(hw, true);
345
346                 /*
347                  * Reset the PHY before any access to it.  Doing so, ensures
348                  * that the PHY is in a known good state before we read/write
349                  * PHY registers.  The generic reset is sufficient here,
350                  * because we haven't determined the PHY type yet.
351                  */
352                 ret_val = e1000e_phy_hw_reset_generic(hw);
353                 if (ret_val)
354                         return ret_val;
355
356                 /* Ungate automatic PHY configuration on non-managed 82579 */
357                 if ((hw->mac.type == e1000_pch2lan) &&
358                     !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359                         usleep_range(10000, 20000);
360                         e1000_gate_hw_phy_config_ich8lan(hw, false);
361                 }
362         }
363
364         phy->id = e1000_phy_unknown;
365         switch (hw->mac.type) {
366         default:
367                 ret_val = e1000e_get_phy_id(hw);
368                 if (ret_val)
369                         return ret_val;
370                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371                         break;
372                 /* fall-through */
373         case e1000_pch2lan:
374                 /*
375                  * In case the PHY needs to be in mdio slow mode,
376                  * set slow mode and try to get the PHY id again.
377                  */
378                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
379                 if (ret_val)
380                         return ret_val;
381                 ret_val = e1000e_get_phy_id(hw);
382                 if (ret_val)
383                         return ret_val;
384                 break;
385         }
386         phy->type = e1000e_get_phy_type_from_id(phy->id);
387
388         switch (phy->type) {
389         case e1000_phy_82577:
390         case e1000_phy_82579:
391                 phy->ops.check_polarity = e1000_check_polarity_82577;
392                 phy->ops.force_speed_duplex =
393                     e1000_phy_force_speed_duplex_82577;
394                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
395                 phy->ops.get_info = e1000_get_phy_info_82577;
396                 phy->ops.commit = e1000e_phy_sw_reset;
397                 break;
398         case e1000_phy_82578:
399                 phy->ops.check_polarity = e1000_check_polarity_m88;
400                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402                 phy->ops.get_info = e1000e_get_phy_info_m88;
403                 break;
404         default:
405                 ret_val = -E1000_ERR_PHY;
406                 break;
407         }
408
409         return ret_val;
410 }
411
412 /**
413  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414  *  @hw: pointer to the HW structure
415  *
416  *  Initialize family-specific PHY parameters and function pointers.
417  **/
418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419 {
420         struct e1000_phy_info *phy = &hw->phy;
421         s32 ret_val;
422         u16 i = 0;
423
424         phy->addr                       = 1;
425         phy->reset_delay_us             = 100;
426
427         phy->ops.power_up               = e1000_power_up_phy_copper;
428         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
429
430         /*
431          * We may need to do this twice - once for IGP and if that fails,
432          * we'll set BM func pointers and try again
433          */
434         ret_val = e1000e_determine_phy_address(hw);
435         if (ret_val) {
436                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
437                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438                 ret_val = e1000e_determine_phy_address(hw);
439                 if (ret_val) {
440                         e_dbg("Cannot determine PHY addr. Erroring out\n");
441                         return ret_val;
442                 }
443         }
444
445         phy->id = 0;
446         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447                (i++ < 100)) {
448                 usleep_range(1000, 2000);
449                 ret_val = e1000e_get_phy_id(hw);
450                 if (ret_val)
451                         return ret_val;
452         }
453
454         /* Verify phy id */
455         switch (phy->id) {
456         case IGP03E1000_E_PHY_ID:
457                 phy->type = e1000_phy_igp_3;
458                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461                 phy->ops.get_info = e1000e_get_phy_info_igp;
462                 phy->ops.check_polarity = e1000_check_polarity_igp;
463                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464                 break;
465         case IFE_E_PHY_ID:
466         case IFE_PLUS_E_PHY_ID:
467         case IFE_C_E_PHY_ID:
468                 phy->type = e1000_phy_ife;
469                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
470                 phy->ops.get_info = e1000_get_phy_info_ife;
471                 phy->ops.check_polarity = e1000_check_polarity_ife;
472                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473                 break;
474         case BME1000_E_PHY_ID:
475                 phy->type = e1000_phy_bm;
476                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
478                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
479                 phy->ops.commit = e1000e_phy_sw_reset;
480                 phy->ops.get_info = e1000e_get_phy_info_m88;
481                 phy->ops.check_polarity = e1000_check_polarity_m88;
482                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483                 break;
484         default:
485                 return -E1000_ERR_PHY;
486                 break;
487         }
488
489         return 0;
490 }
491
492 /**
493  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494  *  @hw: pointer to the HW structure
495  *
496  *  Initialize family-specific NVM parameters and function
497  *  pointers.
498  **/
499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500 {
501         struct e1000_nvm_info *nvm = &hw->nvm;
502         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503         u32 gfpreg, sector_base_addr, sector_end_addr;
504         u16 i;
505
506         /* Can't read flash registers if the register set isn't mapped. */
507         if (!hw->flash_address) {
508                 e_dbg("ERROR: Flash registers not mapped\n");
509                 return -E1000_ERR_CONFIG;
510         }
511
512         nvm->type = e1000_nvm_flash_sw;
513
514         gfpreg = er32flash(ICH_FLASH_GFPREG);
515
516         /*
517          * sector_X_addr is a "sector"-aligned address (4096 bytes)
518          * Add 1 to sector_end_addr since this sector is included in
519          * the overall size.
520          */
521         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523
524         /* flash_base_addr is byte-aligned */
525         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526
527         /*
528          * find total size of the NVM, then cut in half since the total
529          * size represents two separate NVM banks.
530          */
531         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532                                 << FLASH_SECTOR_ADDR_SHIFT;
533         nvm->flash_bank_size /= 2;
534         /* Adjust to word count */
535         nvm->flash_bank_size /= sizeof(u16);
536
537         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538
539         /* Clear shadow ram */
540         for (i = 0; i < nvm->word_size; i++) {
541                 dev_spec->shadow_ram[i].modified = false;
542                 dev_spec->shadow_ram[i].value    = 0xFFFF;
543         }
544
545         return 0;
546 }
547
548 /**
549  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550  *  @hw: pointer to the HW structure
551  *
552  *  Initialize family-specific MAC parameters and function
553  *  pointers.
554  **/
555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556 {
557         struct e1000_mac_info *mac = &hw->mac;
558
559         /* Set media type function pointer */
560         hw->phy.media_type = e1000_media_type_copper;
561
562         /* Set mta register count */
563         mac->mta_reg_count = 32;
564         /* Set rar entry count */
565         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566         if (mac->type == e1000_ich8lan)
567                 mac->rar_entry_count--;
568         /* FWSM register */
569         mac->has_fwsm = true;
570         /* ARC subsystem not supported */
571         mac->arc_subsystem_valid = false;
572         /* Adaptive IFS supported */
573         mac->adaptive_ifs = true;
574
575         /* LED operations */
576         switch (mac->type) {
577         case e1000_ich8lan:
578         case e1000_ich9lan:
579         case e1000_ich10lan:
580                 /* check management mode */
581                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582                 /* ID LED init */
583                 mac->ops.id_led_init = e1000e_id_led_init_generic;
584                 /* blink LED */
585                 mac->ops.blink_led = e1000e_blink_led_generic;
586                 /* setup LED */
587                 mac->ops.setup_led = e1000e_setup_led_generic;
588                 /* cleanup LED */
589                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590                 /* turn on/off LED */
591                 mac->ops.led_on = e1000_led_on_ich8lan;
592                 mac->ops.led_off = e1000_led_off_ich8lan;
593                 break;
594         case e1000_pchlan:
595         case e1000_pch2lan:
596                 /* check management mode */
597                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598                 /* ID LED init */
599                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600                 /* setup LED */
601                 mac->ops.setup_led = e1000_setup_led_pchlan;
602                 /* cleanup LED */
603                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604                 /* turn on/off LED */
605                 mac->ops.led_on = e1000_led_on_pchlan;
606                 mac->ops.led_off = e1000_led_off_pchlan;
607                 break;
608         default:
609                 break;
610         }
611
612         /* Enable PCS Lock-loss workaround for ICH8 */
613         if (mac->type == e1000_ich8lan)
614                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616         /* Gate automatic PHY configuration by hardware on managed 82579 */
617         if ((mac->type == e1000_pch2lan) &&
618             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619                 e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621         return 0;
622 }
623
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633         s32 ret_val = 0;
634         u16 phy_reg;
635
636         if (hw->phy.type != e1000_phy_82579)
637                 return 0;
638
639         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640         if (ret_val)
641                 return ret_val;
642
643         if (hw->dev_spec.ich8lan.eee_disable)
644                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645         else
646                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648         return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 }
650
651 /**
652  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653  *  @hw: pointer to the HW structure
654  *
655  *  Checks to see of the link status of the hardware has changed.  If a
656  *  change in link status has been detected, then we read the PHY registers
657  *  to get the current speed/duplex if link exists.
658  **/
659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660 {
661         struct e1000_mac_info *mac = &hw->mac;
662         s32 ret_val;
663         bool link;
664         u16 phy_reg;
665
666         /*
667          * We only want to go out to the PHY registers to see if Auto-Neg
668          * has completed and/or if our link status has changed.  The
669          * get_link_status flag is set upon receiving a Link Status
670          * Change or Rx Sequence Error interrupt.
671          */
672         if (!mac->get_link_status)
673                 return 0;
674
675         /*
676          * First we want to see if the MII Status Register reports
677          * link.  If so, then we want to get the current speed/duplex
678          * of the PHY.
679          */
680         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681         if (ret_val)
682                 return ret_val;
683
684         if (hw->mac.type == e1000_pchlan) {
685                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
686                 if (ret_val)
687                         return ret_val;
688         }
689
690         if (!link)
691                 return 0; /* No link detected */
692
693         mac->get_link_status = false;
694
695         switch (hw->mac.type) {
696         case e1000_pch2lan:
697                 ret_val = e1000_k1_workaround_lv(hw);
698                 if (ret_val)
699                         return ret_val;
700                 /* fall-thru */
701         case e1000_pchlan:
702                 if (hw->phy.type == e1000_phy_82578) {
703                         ret_val = e1000_link_stall_workaround_hv(hw);
704                         if (ret_val)
705                                 return ret_val;
706                 }
707
708                 /*
709                  * Workaround for PCHx parts in half-duplex:
710                  * Set the number of preambles removed from the packet
711                  * when it is passed from the PHY to the MAC to prevent
712                  * the MAC from misinterpreting the packet type.
713                  */
714                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716
717                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719
720                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721                 break;
722         default:
723                 break;
724         }
725
726         /*
727          * Check if there was DownShift, must be checked
728          * immediately after link-up
729          */
730         e1000e_check_downshift(hw);
731
732         /* Enable/Disable EEE after link up */
733         ret_val = e1000_set_eee_pchlan(hw);
734         if (ret_val)
735                 return ret_val;
736
737         /*
738          * If we are forcing speed/duplex, then we simply return since
739          * we have already determined whether we have link or not.
740          */
741         if (!mac->autoneg)
742                 return -E1000_ERR_CONFIG;
743
744         /*
745          * Auto-Neg is enabled.  Auto Speed Detection takes care
746          * of MAC speed/duplex configuration.  So we only need to
747          * configure Collision Distance in the MAC.
748          */
749         mac->ops.config_collision_dist(hw);
750
751         /*
752          * Configure Flow Control now that Auto-Neg has completed.
753          * First, we need to restore the desired flow control
754          * settings because we may have had to re-autoneg with a
755          * different link partner.
756          */
757         ret_val = e1000e_config_fc_after_link_up(hw);
758         if (ret_val)
759                 e_dbg("Error configuring flow control\n");
760
761         return ret_val;
762 }
763
764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765 {
766         struct e1000_hw *hw = &adapter->hw;
767         s32 rc;
768
769         rc = e1000_init_mac_params_ich8lan(hw);
770         if (rc)
771                 return rc;
772
773         rc = e1000_init_nvm_params_ich8lan(hw);
774         if (rc)
775                 return rc;
776
777         switch (hw->mac.type) {
778         case e1000_ich8lan:
779         case e1000_ich9lan:
780         case e1000_ich10lan:
781                 rc = e1000_init_phy_params_ich8lan(hw);
782                 break;
783         case e1000_pchlan:
784         case e1000_pch2lan:
785                 rc = e1000_init_phy_params_pchlan(hw);
786                 break;
787         default:
788                 break;
789         }
790         if (rc)
791                 return rc;
792
793         /*
794          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796          */
797         if ((adapter->hw.phy.type == e1000_phy_ife) ||
798             ((adapter->hw.mac.type >= e1000_pch2lan) &&
799              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802
803                 hw->mac.ops.blink_led = NULL;
804         }
805
806         if ((adapter->hw.mac.type == e1000_ich8lan) &&
807             (adapter->hw.phy.type != e1000_phy_ife))
808                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809
810         /* Enable workaround for 82579 w/ ME enabled */
811         if ((adapter->hw.mac.type == e1000_pch2lan) &&
812             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814
815         /* Disable EEE by default until IEEE802.3az spec is finalized */
816         if (adapter->flags2 & FLAG2_HAS_EEE)
817                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
818
819         return 0;
820 }
821
822 static DEFINE_MUTEX(nvm_mutex);
823
824 /**
825  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826  *  @hw: pointer to the HW structure
827  *
828  *  Acquires the mutex for performing NVM operations.
829  **/
830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831 {
832         mutex_lock(&nvm_mutex);
833
834         return 0;
835 }
836
837 /**
838  *  e1000_release_nvm_ich8lan - Release NVM mutex
839  *  @hw: pointer to the HW structure
840  *
841  *  Releases the mutex used while performing NVM operations.
842  **/
843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844 {
845         mutex_unlock(&nvm_mutex);
846 }
847
848 /**
849  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
850  *  @hw: pointer to the HW structure
851  *
852  *  Acquires the software control flag for performing PHY and select
853  *  MAC CSR accesses.
854  **/
855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856 {
857         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858         s32 ret_val = 0;
859
860         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861                              &hw->adapter->state)) {
862                 e_dbg("contention for Phy access\n");
863                 return -E1000_ERR_PHY;
864         }
865
866         while (timeout) {
867                 extcnf_ctrl = er32(EXTCNF_CTRL);
868                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869                         break;
870
871                 mdelay(1);
872                 timeout--;
873         }
874
875         if (!timeout) {
876                 e_dbg("SW has already locked the resource.\n");
877                 ret_val = -E1000_ERR_CONFIG;
878                 goto out;
879         }
880
881         timeout = SW_FLAG_TIMEOUT;
882
883         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884         ew32(EXTCNF_CTRL, extcnf_ctrl);
885
886         while (timeout) {
887                 extcnf_ctrl = er32(EXTCNF_CTRL);
888                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889                         break;
890
891                 mdelay(1);
892                 timeout--;
893         }
894
895         if (!timeout) {
896                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897                       er32(FWSM), extcnf_ctrl);
898                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899                 ew32(EXTCNF_CTRL, extcnf_ctrl);
900                 ret_val = -E1000_ERR_CONFIG;
901                 goto out;
902         }
903
904 out:
905         if (ret_val)
906                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907
908         return ret_val;
909 }
910
911 /**
912  *  e1000_release_swflag_ich8lan - Release software control flag
913  *  @hw: pointer to the HW structure
914  *
915  *  Releases the software control flag for performing PHY and select
916  *  MAC CSR accesses.
917  **/
918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919 {
920         u32 extcnf_ctrl;
921
922         extcnf_ctrl = er32(EXTCNF_CTRL);
923
924         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926                 ew32(EXTCNF_CTRL, extcnf_ctrl);
927         } else {
928                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929         }
930
931         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932 }
933
934 /**
935  *  e1000_check_mng_mode_ich8lan - Checks management mode
936  *  @hw: pointer to the HW structure
937  *
938  *  This checks if the adapter has any manageability enabled.
939  *  This is a function pointer entry point only called by read/write
940  *  routines for the PHY and NVM parts.
941  **/
942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943 {
944         u32 fwsm;
945
946         fwsm = er32(FWSM);
947         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948                ((fwsm & E1000_FWSM_MODE_MASK) ==
949                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950 }
951
952 /**
953  *  e1000_check_mng_mode_pchlan - Checks management mode
954  *  @hw: pointer to the HW structure
955  *
956  *  This checks if the adapter has iAMT enabled.
957  *  This is a function pointer entry point only called by read/write
958  *  routines for the PHY and NVM parts.
959  **/
960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961 {
962         u32 fwsm;
963
964         fwsm = er32(FWSM);
965         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967 }
968
969 /**
970  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if firmware is blocking the reset of the PHY.
974  *  This is a function pointer entry point only called by
975  *  reset routines.
976  **/
977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978 {
979         u32 fwsm;
980
981         fwsm = er32(FWSM);
982
983         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984 }
985
986 /**
987  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988  *  @hw: pointer to the HW structure
989  *
990  *  Assumes semaphore already acquired.
991  *
992  **/
993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994 {
995         u16 phy_data;
996         u32 strap = er32(STRAP);
997         s32 ret_val = 0;
998
999         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000
1001         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002         if (ret_val)
1003                 return ret_val;
1004
1005         phy_data &= ~HV_SMB_ADDR_MASK;
1006         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1008
1009         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010 }
1011
1012 /**
1013  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014  *  @hw:   pointer to the HW structure
1015  *
1016  *  SW should configure the LCD from the NVM extended configuration region
1017  *  as a workaround for certain parts.
1018  **/
1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020 {
1021         struct e1000_phy_info *phy = &hw->phy;
1022         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023         s32 ret_val = 0;
1024         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025
1026         /*
1027          * Initialize the PHY from the NVM on ICH platforms.  This
1028          * is needed due to an issue where the NVM configuration is
1029          * not properly autoloaded after power transitions.
1030          * Therefore, after each PHY reset, we will load the
1031          * configuration data out of the NVM manually.
1032          */
1033         switch (hw->mac.type) {
1034         case e1000_ich8lan:
1035                 if (phy->type != e1000_phy_igp_3)
1036                         return ret_val;
1037
1038                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041                         break;
1042                 }
1043                 /* Fall-thru */
1044         case e1000_pchlan:
1045         case e1000_pch2lan:
1046                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047                 break;
1048         default:
1049                 return ret_val;
1050         }
1051
1052         ret_val = hw->phy.ops.acquire(hw);
1053         if (ret_val)
1054                 return ret_val;
1055
1056         data = er32(FEXTNVM);
1057         if (!(data & sw_cfg_mask))
1058                 goto release;
1059
1060         /*
1061          * Make sure HW does not configure LCD from PHY
1062          * extended configuration before SW configuration
1063          */
1064         data = er32(EXTCNF_CTRL);
1065         if (!(hw->mac.type == e1000_pch2lan)) {
1066                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067                         goto release;
1068         }
1069
1070         cnf_size = er32(EXTCNF_SIZE);
1071         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073         if (!cnf_size)
1074                 goto release;
1075
1076         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078
1079         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080             (hw->mac.type == e1000_pchlan)) ||
1081              (hw->mac.type == e1000_pch2lan)) {
1082                 /*
1083                  * HW configures the SMBus address and LEDs when the
1084                  * OEM and LCD Write Enable bits are set in the NVM.
1085                  * When both NVM bits are cleared, SW will configure
1086                  * them instead.
1087                  */
1088                 ret_val = e1000_write_smbus_addr(hw);
1089                 if (ret_val)
1090                         goto release;
1091
1092                 data = er32(LEDCTL);
1093                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094                                                         (u16)data);
1095                 if (ret_val)
1096                         goto release;
1097         }
1098
1099         /* Configure LCD from extended configuration region. */
1100
1101         /* cnf_base_addr is in DWORD */
1102         word_addr = (u16)(cnf_base_addr << 1);
1103
1104         for (i = 0; i < cnf_size; i++) {
1105                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106                                          &reg_data);
1107                 if (ret_val)
1108                         goto release;
1109
1110                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111                                          1, &reg_addr);
1112                 if (ret_val)
1113                         goto release;
1114
1115                 /* Save off the PHY page for future writes. */
1116                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117                         phy_page = reg_data;
1118                         continue;
1119                 }
1120
1121                 reg_addr &= PHY_REG_MASK;
1122                 reg_addr |= phy_page;
1123
1124                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125                                                     reg_data);
1126                 if (ret_val)
1127                         goto release;
1128         }
1129
1130 release:
1131         hw->phy.ops.release(hw);
1132         return ret_val;
1133 }
1134
1135 /**
1136  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1137  *  @hw:   pointer to the HW structure
1138  *  @link: link up bool flag
1139  *
1140  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1142  *  If link is down, the function will restore the default K1 setting located
1143  *  in the NVM.
1144  **/
1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146 {
1147         s32 ret_val = 0;
1148         u16 status_reg = 0;
1149         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150
1151         if (hw->mac.type != e1000_pchlan)
1152                 return 0;
1153
1154         /* Wrap the whole flow with the sw flag */
1155         ret_val = hw->phy.ops.acquire(hw);
1156         if (ret_val)
1157                 return ret_val;
1158
1159         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160         if (link) {
1161                 if (hw->phy.type == e1000_phy_82578) {
1162                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163                                                                   &status_reg);
1164                         if (ret_val)
1165                                 goto release;
1166
1167                         status_reg &= BM_CS_STATUS_LINK_UP |
1168                                       BM_CS_STATUS_RESOLVED |
1169                                       BM_CS_STATUS_SPEED_MASK;
1170
1171                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1172                                            BM_CS_STATUS_RESOLVED |
1173                                            BM_CS_STATUS_SPEED_1000))
1174                                 k1_enable = false;
1175                 }
1176
1177                 if (hw->phy.type == e1000_phy_82577) {
1178                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179                                                                   &status_reg);
1180                         if (ret_val)
1181                                 goto release;
1182
1183                         status_reg &= HV_M_STATUS_LINK_UP |
1184                                       HV_M_STATUS_AUTONEG_COMPLETE |
1185                                       HV_M_STATUS_SPEED_MASK;
1186
1187                         if (status_reg == (HV_M_STATUS_LINK_UP |
1188                                            HV_M_STATUS_AUTONEG_COMPLETE |
1189                                            HV_M_STATUS_SPEED_1000))
1190                                 k1_enable = false;
1191                 }
1192
1193                 /* Link stall fix for link up */
1194                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195                                                            0x0100);
1196                 if (ret_val)
1197                         goto release;
1198
1199         } else {
1200                 /* Link stall fix for link down */
1201                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202                                                            0x4100);
1203                 if (ret_val)
1204                         goto release;
1205         }
1206
1207         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208
1209 release:
1210         hw->phy.ops.release(hw);
1211
1212         return ret_val;
1213 }
1214
1215 /**
1216  *  e1000_configure_k1_ich8lan - Configure K1 power state
1217  *  @hw: pointer to the HW structure
1218  *  @enable: K1 state to configure
1219  *
1220  *  Configure the K1 power state based on the provided parameter.
1221  *  Assumes semaphore already acquired.
1222  *
1223  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224  **/
1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226 {
1227         s32 ret_val = 0;
1228         u32 ctrl_reg = 0;
1229         u32 ctrl_ext = 0;
1230         u32 reg = 0;
1231         u16 kmrn_reg = 0;
1232
1233         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1234                                               &kmrn_reg);
1235         if (ret_val)
1236                 return ret_val;
1237
1238         if (k1_enable)
1239                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1240         else
1241                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1242
1243         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1244                                                kmrn_reg);
1245         if (ret_val)
1246                 return ret_val;
1247
1248         udelay(20);
1249         ctrl_ext = er32(CTRL_EXT);
1250         ctrl_reg = er32(CTRL);
1251
1252         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1253         reg |= E1000_CTRL_FRCSPD;
1254         ew32(CTRL, reg);
1255
1256         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1257         e1e_flush();
1258         udelay(20);
1259         ew32(CTRL, ctrl_reg);
1260         ew32(CTRL_EXT, ctrl_ext);
1261         e1e_flush();
1262         udelay(20);
1263
1264         return 0;
1265 }
1266
1267 /**
1268  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1269  *  @hw:       pointer to the HW structure
1270  *  @d0_state: boolean if entering d0 or d3 device state
1271  *
1272  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1273  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1274  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1275  **/
1276 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1277 {
1278         s32 ret_val = 0;
1279         u32 mac_reg;
1280         u16 oem_reg;
1281
1282         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1283                 return ret_val;
1284
1285         ret_val = hw->phy.ops.acquire(hw);
1286         if (ret_val)
1287                 return ret_val;
1288
1289         if (!(hw->mac.type == e1000_pch2lan)) {
1290                 mac_reg = er32(EXTCNF_CTRL);
1291                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1292                         goto release;
1293         }
1294
1295         mac_reg = er32(FEXTNVM);
1296         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1297                 goto release;
1298
1299         mac_reg = er32(PHY_CTRL);
1300
1301         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1302         if (ret_val)
1303                 goto release;
1304
1305         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1306
1307         if (d0_state) {
1308                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1309                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1310
1311                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1312                         oem_reg |= HV_OEM_BITS_LPLU;
1313
1314                 /* Set Restart auto-neg to activate the bits */
1315                 if (!hw->phy.ops.check_reset_block(hw))
1316                         oem_reg |= HV_OEM_BITS_RESTART_AN;
1317         } else {
1318                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1319                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1320                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1321
1322                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1323                                E1000_PHY_CTRL_NOND0A_LPLU))
1324                         oem_reg |= HV_OEM_BITS_LPLU;
1325         }
1326
1327         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1328
1329 release:
1330         hw->phy.ops.release(hw);
1331
1332         return ret_val;
1333 }
1334
1335
1336 /**
1337  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1338  *  @hw:   pointer to the HW structure
1339  **/
1340 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1341 {
1342         s32 ret_val;
1343         u16 data;
1344
1345         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1346         if (ret_val)
1347                 return ret_val;
1348
1349         data |= HV_KMRN_MDIO_SLOW;
1350
1351         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1352
1353         return ret_val;
1354 }
1355
1356 /**
1357  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1358  *  done after every PHY reset.
1359  **/
1360 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1361 {
1362         s32 ret_val = 0;
1363         u16 phy_data;
1364
1365         if (hw->mac.type != e1000_pchlan)
1366                 return 0;
1367
1368         /* Set MDIO slow mode before any other MDIO access */
1369         if (hw->phy.type == e1000_phy_82577) {
1370                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1371                 if (ret_val)
1372                         return ret_val;
1373         }
1374
1375         if (((hw->phy.type == e1000_phy_82577) &&
1376              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1377             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1378                 /* Disable generation of early preamble */
1379                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1380                 if (ret_val)
1381                         return ret_val;
1382
1383                 /* Preamble tuning for SSC */
1384                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1385                 if (ret_val)
1386                         return ret_val;
1387         }
1388
1389         if (hw->phy.type == e1000_phy_82578) {
1390                 /*
1391                  * Return registers to default by doing a soft reset then
1392                  * writing 0x3140 to the control register.
1393                  */
1394                 if (hw->phy.revision < 2) {
1395                         e1000e_phy_sw_reset(hw);
1396                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1397                 }
1398         }
1399
1400         /* Select page 0 */
1401         ret_val = hw->phy.ops.acquire(hw);
1402         if (ret_val)
1403                 return ret_val;
1404
1405         hw->phy.addr = 1;
1406         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1407         hw->phy.ops.release(hw);
1408         if (ret_val)
1409                 return ret_val;
1410
1411         /*
1412          * Configure the K1 Si workaround during phy reset assuming there is
1413          * link so that it disables K1 if link is in 1Gbps.
1414          */
1415         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1416         if (ret_val)
1417                 return ret_val;
1418
1419         /* Workaround for link disconnects on a busy hub in half duplex */
1420         ret_val = hw->phy.ops.acquire(hw);
1421         if (ret_val)
1422                 return ret_val;
1423         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1424         if (ret_val)
1425                 goto release;
1426         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1427                                                phy_data & 0x00FF);
1428 release:
1429         hw->phy.ops.release(hw);
1430
1431         return ret_val;
1432 }
1433
1434 /**
1435  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1436  *  @hw:   pointer to the HW structure
1437  **/
1438 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1439 {
1440         u32 mac_reg;
1441         u16 i, phy_reg = 0;
1442         s32 ret_val;
1443
1444         ret_val = hw->phy.ops.acquire(hw);
1445         if (ret_val)
1446                 return;
1447         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1448         if (ret_val)
1449                 goto release;
1450
1451         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1452         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1453                 mac_reg = er32(RAL(i));
1454                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1455                                            (u16)(mac_reg & 0xFFFF));
1456                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1457                                            (u16)((mac_reg >> 16) & 0xFFFF));
1458
1459                 mac_reg = er32(RAH(i));
1460                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1461                                            (u16)(mac_reg & 0xFFFF));
1462                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1463                                            (u16)((mac_reg & E1000_RAH_AV)
1464                                                  >> 16));
1465         }
1466
1467         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1468
1469 release:
1470         hw->phy.ops.release(hw);
1471 }
1472
1473 /**
1474  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1475  *  with 82579 PHY
1476  *  @hw: pointer to the HW structure
1477  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1478  **/
1479 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1480 {
1481         s32 ret_val = 0;
1482         u16 phy_reg, data;
1483         u32 mac_reg;
1484         u16 i;
1485
1486         if (hw->mac.type != e1000_pch2lan)
1487                 return 0;
1488
1489         /* disable Rx path while enabling/disabling workaround */
1490         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1491         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1492         if (ret_val)
1493                 return ret_val;
1494
1495         if (enable) {
1496                 /*
1497                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1498                  * SHRAL/H) and initial CRC values to the MAC
1499                  */
1500                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1501                         u8 mac_addr[ETH_ALEN] = {0};
1502                         u32 addr_high, addr_low;
1503
1504                         addr_high = er32(RAH(i));
1505                         if (!(addr_high & E1000_RAH_AV))
1506                                 continue;
1507                         addr_low = er32(RAL(i));
1508                         mac_addr[0] = (addr_low & 0xFF);
1509                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1510                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1511                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1512                         mac_addr[4] = (addr_high & 0xFF);
1513                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1514
1515                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1516                 }
1517
1518                 /* Write Rx addresses to the PHY */
1519                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1520
1521                 /* Enable jumbo frame workaround in the MAC */
1522                 mac_reg = er32(FFLT_DBG);
1523                 mac_reg &= ~(1 << 14);
1524                 mac_reg |= (7 << 15);
1525                 ew32(FFLT_DBG, mac_reg);
1526
1527                 mac_reg = er32(RCTL);
1528                 mac_reg |= E1000_RCTL_SECRC;
1529                 ew32(RCTL, mac_reg);
1530
1531                 ret_val = e1000e_read_kmrn_reg(hw,
1532                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1533                                                 &data);
1534                 if (ret_val)
1535                         return ret_val;
1536                 ret_val = e1000e_write_kmrn_reg(hw,
1537                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538                                                 data | (1 << 0));
1539                 if (ret_val)
1540                         return ret_val;
1541                 ret_val = e1000e_read_kmrn_reg(hw,
1542                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1543                                                 &data);
1544                 if (ret_val)
1545                         return ret_val;
1546                 data &= ~(0xF << 8);
1547                 data |= (0xB << 8);
1548                 ret_val = e1000e_write_kmrn_reg(hw,
1549                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1550                                                 data);
1551                 if (ret_val)
1552                         return ret_val;
1553
1554                 /* Enable jumbo frame workaround in the PHY */
1555                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1556                 data &= ~(0x7F << 5);
1557                 data |= (0x37 << 5);
1558                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1559                 if (ret_val)
1560                         return ret_val;
1561                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1562                 data &= ~(1 << 13);
1563                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1564                 if (ret_val)
1565                         return ret_val;
1566                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1567                 data &= ~(0x3FF << 2);
1568                 data |= (0x1A << 2);
1569                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1570                 if (ret_val)
1571                         return ret_val;
1572                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1573                 if (ret_val)
1574                         return ret_val;
1575                 e1e_rphy(hw, HV_PM_CTRL, &data);
1576                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1577                 if (ret_val)
1578                         return ret_val;
1579         } else {
1580                 /* Write MAC register values back to h/w defaults */
1581                 mac_reg = er32(FFLT_DBG);
1582                 mac_reg &= ~(0xF << 14);
1583                 ew32(FFLT_DBG, mac_reg);
1584
1585                 mac_reg = er32(RCTL);
1586                 mac_reg &= ~E1000_RCTL_SECRC;
1587                 ew32(RCTL, mac_reg);
1588
1589                 ret_val = e1000e_read_kmrn_reg(hw,
1590                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1591                                                 &data);
1592                 if (ret_val)
1593                         return ret_val;
1594                 ret_val = e1000e_write_kmrn_reg(hw,
1595                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1596                                                 data & ~(1 << 0));
1597                 if (ret_val)
1598                         return ret_val;
1599                 ret_val = e1000e_read_kmrn_reg(hw,
1600                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1601                                                 &data);
1602                 if (ret_val)
1603                         return ret_val;
1604                 data &= ~(0xF << 8);
1605                 data |= (0xB << 8);
1606                 ret_val = e1000e_write_kmrn_reg(hw,
1607                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1608                                                 data);
1609                 if (ret_val)
1610                         return ret_val;
1611
1612                 /* Write PHY register values back to h/w defaults */
1613                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1614                 data &= ~(0x7F << 5);
1615                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1616                 if (ret_val)
1617                         return ret_val;
1618                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1619                 data |= (1 << 13);
1620                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1621                 if (ret_val)
1622                         return ret_val;
1623                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1624                 data &= ~(0x3FF << 2);
1625                 data |= (0x8 << 2);
1626                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1627                 if (ret_val)
1628                         return ret_val;
1629                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1630                 if (ret_val)
1631                         return ret_val;
1632                 e1e_rphy(hw, HV_PM_CTRL, &data);
1633                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1634                 if (ret_val)
1635                         return ret_val;
1636         }
1637
1638         /* re-enable Rx path after enabling/disabling workaround */
1639         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1640 }
1641
1642 /**
1643  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1644  *  done after every PHY reset.
1645  **/
1646 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1647 {
1648         s32 ret_val = 0;
1649
1650         if (hw->mac.type != e1000_pch2lan)
1651                 return 0;
1652
1653         /* Set MDIO slow mode before any other MDIO access */
1654         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1655
1656         ret_val = hw->phy.ops.acquire(hw);
1657         if (ret_val)
1658                 return ret_val;
1659         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1660                                                I82579_MSE_THRESHOLD);
1661         if (ret_val)
1662                 goto release;
1663         /* set MSE higher to enable link to stay up when noise is high */
1664         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1665         if (ret_val)
1666                 goto release;
1667         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1668                                                I82579_MSE_LINK_DOWN);
1669         if (ret_val)
1670                 goto release;
1671         /* drop link after 5 times MSE threshold was reached */
1672         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1673 release:
1674         hw->phy.ops.release(hw);
1675
1676         return ret_val;
1677 }
1678
1679 /**
1680  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1681  *  @hw:   pointer to the HW structure
1682  *
1683  *  Workaround to set the K1 beacon duration for 82579 parts
1684  **/
1685 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1686 {
1687         s32 ret_val = 0;
1688         u16 status_reg = 0;
1689         u32 mac_reg;
1690         u16 phy_reg;
1691
1692         if (hw->mac.type != e1000_pch2lan)
1693                 return 0;
1694
1695         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1696         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1697         if (ret_val)
1698                 return ret_val;
1699
1700         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1701             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1702                 mac_reg = er32(FEXTNVM4);
1703                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1704
1705                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1706                 if (ret_val)
1707                         return ret_val;
1708
1709                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1710                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1711                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1712                 } else {
1713                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1714                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1715                 }
1716                 ew32(FEXTNVM4, mac_reg);
1717                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1718         }
1719
1720         return ret_val;
1721 }
1722
1723 /**
1724  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1725  *  @hw:   pointer to the HW structure
1726  *  @gate: boolean set to true to gate, false to ungate
1727  *
1728  *  Gate/ungate the automatic PHY configuration via hardware; perform
1729  *  the configuration via software instead.
1730  **/
1731 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1732 {
1733         u32 extcnf_ctrl;
1734
1735         if (hw->mac.type != e1000_pch2lan)
1736                 return;
1737
1738         extcnf_ctrl = er32(EXTCNF_CTRL);
1739
1740         if (gate)
1741                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1742         else
1743                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1744
1745         ew32(EXTCNF_CTRL, extcnf_ctrl);
1746 }
1747
1748 /**
1749  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1750  *  @hw: pointer to the HW structure
1751  *
1752  *  Check the appropriate indication the MAC has finished configuring the
1753  *  PHY after a software reset.
1754  **/
1755 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1756 {
1757         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1758
1759         /* Wait for basic configuration completes before proceeding */
1760         do {
1761                 data = er32(STATUS);
1762                 data &= E1000_STATUS_LAN_INIT_DONE;
1763                 udelay(100);
1764         } while ((!data) && --loop);
1765
1766         /*
1767          * If basic configuration is incomplete before the above loop
1768          * count reaches 0, loading the configuration from NVM will
1769          * leave the PHY in a bad state possibly resulting in no link.
1770          */
1771         if (loop == 0)
1772                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1773
1774         /* Clear the Init Done bit for the next init event */
1775         data = er32(STATUS);
1776         data &= ~E1000_STATUS_LAN_INIT_DONE;
1777         ew32(STATUS, data);
1778 }
1779
1780 /**
1781  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1782  *  @hw: pointer to the HW structure
1783  **/
1784 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1785 {
1786         s32 ret_val = 0;
1787         u16 reg;
1788
1789         if (hw->phy.ops.check_reset_block(hw))
1790                 return 0;
1791
1792         /* Allow time for h/w to get to quiescent state after reset */
1793         usleep_range(10000, 20000);
1794
1795         /* Perform any necessary post-reset workarounds */
1796         switch (hw->mac.type) {
1797         case e1000_pchlan:
1798                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1799                 if (ret_val)
1800                         return ret_val;
1801                 break;
1802         case e1000_pch2lan:
1803                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1804                 if (ret_val)
1805                         return ret_val;
1806                 break;
1807         default:
1808                 break;
1809         }
1810
1811         /* Clear the host wakeup bit after lcd reset */
1812         if (hw->mac.type >= e1000_pchlan) {
1813                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1814                 reg &= ~BM_WUC_HOST_WU_BIT;
1815                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1816         }
1817
1818         /* Configure the LCD with the extended configuration region in NVM */
1819         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1820         if (ret_val)
1821                 return ret_val;
1822
1823         /* Configure the LCD with the OEM bits in NVM */
1824         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1825
1826         if (hw->mac.type == e1000_pch2lan) {
1827                 /* Ungate automatic PHY configuration on non-managed 82579 */
1828                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1829                         usleep_range(10000, 20000);
1830                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1831                 }
1832
1833                 /* Set EEE LPI Update Timer to 200usec */
1834                 ret_val = hw->phy.ops.acquire(hw);
1835                 if (ret_val)
1836                         return ret_val;
1837                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1838                                                        I82579_LPI_UPDATE_TIMER);
1839                 if (!ret_val)
1840                         ret_val = hw->phy.ops.write_reg_locked(hw,
1841                                                                I82579_EMI_DATA,
1842                                                                0x1387);
1843                 hw->phy.ops.release(hw);
1844         }
1845
1846         return ret_val;
1847 }
1848
1849 /**
1850  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1851  *  @hw: pointer to the HW structure
1852  *
1853  *  Resets the PHY
1854  *  This is a function pointer entry point called by drivers
1855  *  or other shared routines.
1856  **/
1857 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1858 {
1859         s32 ret_val = 0;
1860
1861         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1862         if ((hw->mac.type == e1000_pch2lan) &&
1863             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1864                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1865
1866         ret_val = e1000e_phy_hw_reset_generic(hw);
1867         if (ret_val)
1868                 return ret_val;
1869
1870         return e1000_post_phy_reset_ich8lan(hw);
1871 }
1872
1873 /**
1874  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1875  *  @hw: pointer to the HW structure
1876  *  @active: true to enable LPLU, false to disable
1877  *
1878  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1879  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1880  *  the phy speed. This function will manually set the LPLU bit and restart
1881  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1882  *  since it configures the same bit.
1883  **/
1884 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1885 {
1886         s32 ret_val = 0;
1887         u16 oem_reg;
1888
1889         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1890         if (ret_val)
1891                 return ret_val;
1892
1893         if (active)
1894                 oem_reg |= HV_OEM_BITS_LPLU;
1895         else
1896                 oem_reg &= ~HV_OEM_BITS_LPLU;
1897
1898         if (!hw->phy.ops.check_reset_block(hw))
1899                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1900
1901         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1902 }
1903
1904 /**
1905  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1906  *  @hw: pointer to the HW structure
1907  *  @active: true to enable LPLU, false to disable
1908  *
1909  *  Sets the LPLU D0 state according to the active flag.  When
1910  *  activating LPLU this function also disables smart speed
1911  *  and vice versa.  LPLU will not be activated unless the
1912  *  device autonegotiation advertisement meets standards of
1913  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1914  *  This is a function pointer entry point only called by
1915  *  PHY setup routines.
1916  **/
1917 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1918 {
1919         struct e1000_phy_info *phy = &hw->phy;
1920         u32 phy_ctrl;
1921         s32 ret_val = 0;
1922         u16 data;
1923
1924         if (phy->type == e1000_phy_ife)
1925                 return 0;
1926
1927         phy_ctrl = er32(PHY_CTRL);
1928
1929         if (active) {
1930                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1931                 ew32(PHY_CTRL, phy_ctrl);
1932
1933                 if (phy->type != e1000_phy_igp_3)
1934                         return 0;
1935
1936                 /*
1937                  * Call gig speed drop workaround on LPLU before accessing
1938                  * any PHY registers
1939                  */
1940                 if (hw->mac.type == e1000_ich8lan)
1941                         e1000e_gig_downshift_workaround_ich8lan(hw);
1942
1943                 /* When LPLU is enabled, we should disable SmartSpeed */
1944                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1945                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1946                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1947                 if (ret_val)
1948                         return ret_val;
1949         } else {
1950                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1951                 ew32(PHY_CTRL, phy_ctrl);
1952
1953                 if (phy->type != e1000_phy_igp_3)
1954                         return 0;
1955
1956                 /*
1957                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1958                  * during Dx states where the power conservation is most
1959                  * important.  During driver activity we should enable
1960                  * SmartSpeed, so performance is maintained.
1961                  */
1962                 if (phy->smart_speed == e1000_smart_speed_on) {
1963                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1964                                            &data);
1965                         if (ret_val)
1966                                 return ret_val;
1967
1968                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1969                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1970                                            data);
1971                         if (ret_val)
1972                                 return ret_val;
1973                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1974                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1975                                            &data);
1976                         if (ret_val)
1977                                 return ret_val;
1978
1979                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1980                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1981                                            data);
1982                         if (ret_val)
1983                                 return ret_val;
1984                 }
1985         }
1986
1987         return 0;
1988 }
1989
1990 /**
1991  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1992  *  @hw: pointer to the HW structure
1993  *  @active: true to enable LPLU, false to disable
1994  *
1995  *  Sets the LPLU D3 state according to the active flag.  When
1996  *  activating LPLU this function also disables smart speed
1997  *  and vice versa.  LPLU will not be activated unless the
1998  *  device autonegotiation advertisement meets standards of
1999  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2000  *  This is a function pointer entry point only called by
2001  *  PHY setup routines.
2002  **/
2003 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2004 {
2005         struct e1000_phy_info *phy = &hw->phy;
2006         u32 phy_ctrl;
2007         s32 ret_val = 0;
2008         u16 data;
2009
2010         phy_ctrl = er32(PHY_CTRL);
2011
2012         if (!active) {
2013                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2014                 ew32(PHY_CTRL, phy_ctrl);
2015
2016                 if (phy->type != e1000_phy_igp_3)
2017                         return 0;
2018
2019                 /*
2020                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2021                  * during Dx states where the power conservation is most
2022                  * important.  During driver activity we should enable
2023                  * SmartSpeed, so performance is maintained.
2024                  */
2025                 if (phy->smart_speed == e1000_smart_speed_on) {
2026                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2027                                            &data);
2028                         if (ret_val)
2029                                 return ret_val;
2030
2031                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2032                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2033                                            data);
2034                         if (ret_val)
2035                                 return ret_val;
2036                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2037                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2038                                            &data);
2039                         if (ret_val)
2040                                 return ret_val;
2041
2042                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2043                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2044                                            data);
2045                         if (ret_val)
2046                                 return ret_val;
2047                 }
2048         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2049                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2050                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2051                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2052                 ew32(PHY_CTRL, phy_ctrl);
2053
2054                 if (phy->type != e1000_phy_igp_3)
2055                         return 0;
2056
2057                 /*
2058                  * Call gig speed drop workaround on LPLU before accessing
2059                  * any PHY registers
2060                  */
2061                 if (hw->mac.type == e1000_ich8lan)
2062                         e1000e_gig_downshift_workaround_ich8lan(hw);
2063
2064                 /* When LPLU is enabled, we should disable SmartSpeed */
2065                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2066                 if (ret_val)
2067                         return ret_val;
2068
2069                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2070                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2071         }
2072
2073         return ret_val;
2074 }
2075
2076 /**
2077  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2078  *  @hw: pointer to the HW structure
2079  *  @bank:  pointer to the variable that returns the active bank
2080  *
2081  *  Reads signature byte from the NVM using the flash access registers.
2082  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2083  **/
2084 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2085 {
2086         u32 eecd;
2087         struct e1000_nvm_info *nvm = &hw->nvm;
2088         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2089         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2090         u8 sig_byte = 0;
2091         s32 ret_val;
2092
2093         switch (hw->mac.type) {
2094         case e1000_ich8lan:
2095         case e1000_ich9lan:
2096                 eecd = er32(EECD);
2097                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2098                     E1000_EECD_SEC1VAL_VALID_MASK) {
2099                         if (eecd & E1000_EECD_SEC1VAL)
2100                                 *bank = 1;
2101                         else
2102                                 *bank = 0;
2103
2104                         return 0;
2105                 }
2106                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2107                 /* fall-thru */
2108         default:
2109                 /* set bank to 0 in case flash read fails */
2110                 *bank = 0;
2111
2112                 /* Check bank 0 */
2113                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2114                                                         &sig_byte);
2115                 if (ret_val)
2116                         return ret_val;
2117                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2118                     E1000_ICH_NVM_SIG_VALUE) {
2119                         *bank = 0;
2120                         return 0;
2121                 }
2122
2123                 /* Check bank 1 */
2124                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2125                                                         bank1_offset,
2126                                                         &sig_byte);
2127                 if (ret_val)
2128                         return ret_val;
2129                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2130                     E1000_ICH_NVM_SIG_VALUE) {
2131                         *bank = 1;
2132                         return 0;
2133                 }
2134
2135                 e_dbg("ERROR: No valid NVM bank present\n");
2136                 return -E1000_ERR_NVM;
2137         }
2138 }
2139
2140 /**
2141  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2142  *  @hw: pointer to the HW structure
2143  *  @offset: The offset (in bytes) of the word(s) to read.
2144  *  @words: Size of data to read in words
2145  *  @data: Pointer to the word(s) to read at offset.
2146  *
2147  *  Reads a word(s) from the NVM using the flash access registers.
2148  **/
2149 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2150                                   u16 *data)
2151 {
2152         struct e1000_nvm_info *nvm = &hw->nvm;
2153         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2154         u32 act_offset;
2155         s32 ret_val = 0;
2156         u32 bank = 0;
2157         u16 i, word;
2158
2159         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2160             (words == 0)) {
2161                 e_dbg("nvm parameter(s) out of bounds\n");
2162                 ret_val = -E1000_ERR_NVM;
2163                 goto out;
2164         }
2165
2166         nvm->ops.acquire(hw);
2167
2168         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169         if (ret_val) {
2170                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2171                 bank = 0;
2172         }
2173
2174         act_offset = (bank) ? nvm->flash_bank_size : 0;
2175         act_offset += offset;
2176
2177         ret_val = 0;
2178         for (i = 0; i < words; i++) {
2179                 if (dev_spec->shadow_ram[offset+i].modified) {
2180                         data[i] = dev_spec->shadow_ram[offset+i].value;
2181                 } else {
2182                         ret_val = e1000_read_flash_word_ich8lan(hw,
2183                                                                 act_offset + i,
2184                                                                 &word);
2185                         if (ret_val)
2186                                 break;
2187                         data[i] = word;
2188                 }
2189         }
2190
2191         nvm->ops.release(hw);
2192
2193 out:
2194         if (ret_val)
2195                 e_dbg("NVM read error: %d\n", ret_val);
2196
2197         return ret_val;
2198 }
2199
2200 /**
2201  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2202  *  @hw: pointer to the HW structure
2203  *
2204  *  This function does initial flash setup so that a new read/write/erase cycle
2205  *  can be started.
2206  **/
2207 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2208 {
2209         union ich8_hws_flash_status hsfsts;
2210         s32 ret_val = -E1000_ERR_NVM;
2211
2212         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213
2214         /* Check if the flash descriptor is valid */
2215         if (hsfsts.hsf_status.fldesvalid == 0) {
2216                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2217                 return -E1000_ERR_NVM;
2218         }
2219
2220         /* Clear FCERR and DAEL in hw status by writing 1 */
2221         hsfsts.hsf_status.flcerr = 1;
2222         hsfsts.hsf_status.dael = 1;
2223
2224         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2225
2226         /*
2227          * Either we should have a hardware SPI cycle in progress
2228          * bit to check against, in order to start a new cycle or
2229          * FDONE bit should be changed in the hardware so that it
2230          * is 1 after hardware reset, which can then be used as an
2231          * indication whether a cycle is in progress or has been
2232          * completed.
2233          */
2234
2235         if (hsfsts.hsf_status.flcinprog == 0) {
2236                 /*
2237                  * There is no cycle running at present,
2238                  * so we can start a cycle.
2239                  * Begin by setting Flash Cycle Done.
2240                  */
2241                 hsfsts.hsf_status.flcdone = 1;
2242                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2243                 ret_val = 0;
2244         } else {
2245                 s32 i;
2246
2247                 /*
2248                  * Otherwise poll for sometime so the current
2249                  * cycle has a chance to end before giving up.
2250                  */
2251                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2252                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2253                         if (hsfsts.hsf_status.flcinprog == 0) {
2254                                 ret_val = 0;
2255                                 break;
2256                         }
2257                         udelay(1);
2258                 }
2259                 if (!ret_val) {
2260                         /*
2261                          * Successful in waiting for previous cycle to timeout,
2262                          * now set the Flash Cycle Done.
2263                          */
2264                         hsfsts.hsf_status.flcdone = 1;
2265                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2266                 } else {
2267                         e_dbg("Flash controller busy, cannot get access\n");
2268                 }
2269         }
2270
2271         return ret_val;
2272 }
2273
2274 /**
2275  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2276  *  @hw: pointer to the HW structure
2277  *  @timeout: maximum time to wait for completion
2278  *
2279  *  This function starts a flash cycle and waits for its completion.
2280  **/
2281 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2282 {
2283         union ich8_hws_flash_ctrl hsflctl;
2284         union ich8_hws_flash_status hsfsts;
2285         u32 i = 0;
2286
2287         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2288         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2289         hsflctl.hsf_ctrl.flcgo = 1;
2290         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2291
2292         /* wait till FDONE bit is set to 1 */
2293         do {
2294                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2295                 if (hsfsts.hsf_status.flcdone == 1)
2296                         break;
2297                 udelay(1);
2298         } while (i++ < timeout);
2299
2300         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2301                 return 0;
2302
2303         return -E1000_ERR_NVM;
2304 }
2305
2306 /**
2307  *  e1000_read_flash_word_ich8lan - Read word from flash
2308  *  @hw: pointer to the HW structure
2309  *  @offset: offset to data location
2310  *  @data: pointer to the location for storing the data
2311  *
2312  *  Reads the flash word at offset into data.  Offset is converted
2313  *  to bytes before read.
2314  **/
2315 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2316                                          u16 *data)
2317 {
2318         /* Must convert offset into bytes. */
2319         offset <<= 1;
2320
2321         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2322 }
2323
2324 /**
2325  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2326  *  @hw: pointer to the HW structure
2327  *  @offset: The offset of the byte to read.
2328  *  @data: Pointer to a byte to store the value read.
2329  *
2330  *  Reads a single byte from the NVM using the flash access registers.
2331  **/
2332 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2333                                          u8 *data)
2334 {
2335         s32 ret_val;
2336         u16 word = 0;
2337
2338         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2339         if (ret_val)
2340                 return ret_val;
2341
2342         *data = (u8)word;
2343
2344         return 0;
2345 }
2346
2347 /**
2348  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2349  *  @hw: pointer to the HW structure
2350  *  @offset: The offset (in bytes) of the byte or word to read.
2351  *  @size: Size of data to read, 1=byte 2=word
2352  *  @data: Pointer to the word to store the value read.
2353  *
2354  *  Reads a byte or word from the NVM using the flash access registers.
2355  **/
2356 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2357                                          u8 size, u16 *data)
2358 {
2359         union ich8_hws_flash_status hsfsts;
2360         union ich8_hws_flash_ctrl hsflctl;
2361         u32 flash_linear_addr;
2362         u32 flash_data = 0;
2363         s32 ret_val = -E1000_ERR_NVM;
2364         u8 count = 0;
2365
2366         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2367                 return -E1000_ERR_NVM;
2368
2369         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2370                             hw->nvm.flash_base_addr;
2371
2372         do {
2373                 udelay(1);
2374                 /* Steps */
2375                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2376                 if (ret_val)
2377                         break;
2378
2379                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2380                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2381                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2382                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2383                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2384
2385                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2386
2387                 ret_val = e1000_flash_cycle_ich8lan(hw,
2388                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2389
2390                 /*
2391                  * Check if FCERR is set to 1, if set to 1, clear it
2392                  * and try the whole sequence a few more times, else
2393                  * read in (shift in) the Flash Data0, the order is
2394                  * least significant byte first msb to lsb
2395                  */
2396                 if (!ret_val) {
2397                         flash_data = er32flash(ICH_FLASH_FDATA0);
2398                         if (size == 1)
2399                                 *data = (u8)(flash_data & 0x000000FF);
2400                         else if (size == 2)
2401                                 *data = (u16)(flash_data & 0x0000FFFF);
2402                         break;
2403                 } else {
2404                         /*
2405                          * If we've gotten here, then things are probably
2406                          * completely hosed, but if the error condition is
2407                          * detected, it won't hurt to give it another try...
2408                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2409                          */
2410                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2411                         if (hsfsts.hsf_status.flcerr == 1) {
2412                                 /* Repeat for some time before giving up. */
2413                                 continue;
2414                         } else if (hsfsts.hsf_status.flcdone == 0) {
2415                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2416                                 break;
2417                         }
2418                 }
2419         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2420
2421         return ret_val;
2422 }
2423
2424 /**
2425  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2426  *  @hw: pointer to the HW structure
2427  *  @offset: The offset (in bytes) of the word(s) to write.
2428  *  @words: Size of data to write in words
2429  *  @data: Pointer to the word(s) to write at offset.
2430  *
2431  *  Writes a byte or word to the NVM using the flash access registers.
2432  **/
2433 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2434                                    u16 *data)
2435 {
2436         struct e1000_nvm_info *nvm = &hw->nvm;
2437         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2438         u16 i;
2439
2440         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2441             (words == 0)) {
2442                 e_dbg("nvm parameter(s) out of bounds\n");
2443                 return -E1000_ERR_NVM;
2444         }
2445
2446         nvm->ops.acquire(hw);
2447
2448         for (i = 0; i < words; i++) {
2449                 dev_spec->shadow_ram[offset+i].modified = true;
2450                 dev_spec->shadow_ram[offset+i].value = data[i];
2451         }
2452
2453         nvm->ops.release(hw);
2454
2455         return 0;
2456 }
2457
2458 /**
2459  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2460  *  @hw: pointer to the HW structure
2461  *
2462  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2463  *  which writes the checksum to the shadow ram.  The changes in the shadow
2464  *  ram are then committed to the EEPROM by processing each bank at a time
2465  *  checking for the modified bit and writing only the pending changes.
2466  *  After a successful commit, the shadow ram is cleared and is ready for
2467  *  future writes.
2468  **/
2469 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2470 {
2471         struct e1000_nvm_info *nvm = &hw->nvm;
2472         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2473         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2474         s32 ret_val;
2475         u16 data;
2476
2477         ret_val = e1000e_update_nvm_checksum_generic(hw);
2478         if (ret_val)
2479                 goto out;
2480
2481         if (nvm->type != e1000_nvm_flash_sw)
2482                 goto out;
2483
2484         nvm->ops.acquire(hw);
2485
2486         /*
2487          * We're writing to the opposite bank so if we're on bank 1,
2488          * write to bank 0 etc.  We also need to erase the segment that
2489          * is going to be written
2490          */
2491         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2492         if (ret_val) {
2493                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2494                 bank = 0;
2495         }
2496
2497         if (bank == 0) {
2498                 new_bank_offset = nvm->flash_bank_size;
2499                 old_bank_offset = 0;
2500                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2501                 if (ret_val)
2502                         goto release;
2503         } else {
2504                 old_bank_offset = nvm->flash_bank_size;
2505                 new_bank_offset = 0;
2506                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2507                 if (ret_val)
2508                         goto release;
2509         }
2510
2511         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2512                 /*
2513                  * Determine whether to write the value stored
2514                  * in the other NVM bank or a modified value stored
2515                  * in the shadow RAM
2516                  */
2517                 if (dev_spec->shadow_ram[i].modified) {
2518                         data = dev_spec->shadow_ram[i].value;
2519                 } else {
2520                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2521                                                                 old_bank_offset,
2522                                                                 &data);
2523                         if (ret_val)
2524                                 break;
2525                 }
2526
2527                 /*
2528                  * If the word is 0x13, then make sure the signature bits
2529                  * (15:14) are 11b until the commit has completed.
2530                  * This will allow us to write 10b which indicates the
2531                  * signature is valid.  We want to do this after the write
2532                  * has completed so that we don't mark the segment valid
2533                  * while the write is still in progress
2534                  */
2535                 if (i == E1000_ICH_NVM_SIG_WORD)
2536                         data |= E1000_ICH_NVM_SIG_MASK;
2537
2538                 /* Convert offset to bytes. */
2539                 act_offset = (i + new_bank_offset) << 1;
2540
2541                 udelay(100);
2542                 /* Write the bytes to the new bank. */
2543                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2544                                                                act_offset,
2545                                                                (u8)data);
2546                 if (ret_val)
2547                         break;
2548
2549                 udelay(100);
2550                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2551                                                           act_offset + 1,
2552                                                           (u8)(data >> 8));
2553                 if (ret_val)
2554                         break;
2555         }
2556
2557         /*
2558          * Don't bother writing the segment valid bits if sector
2559          * programming failed.
2560          */
2561         if (ret_val) {
2562                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2563                 e_dbg("Flash commit failed.\n");
2564                 goto release;
2565         }
2566
2567         /*
2568          * Finally validate the new segment by setting bit 15:14
2569          * to 10b in word 0x13 , this can be done without an
2570          * erase as well since these bits are 11 to start with
2571          * and we need to change bit 14 to 0b
2572          */
2573         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2574         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2575         if (ret_val)
2576                 goto release;
2577
2578         data &= 0xBFFF;
2579         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2580                                                        act_offset * 2 + 1,
2581                                                        (u8)(data >> 8));
2582         if (ret_val)
2583                 goto release;
2584
2585         /*
2586          * And invalidate the previously valid segment by setting
2587          * its signature word (0x13) high_byte to 0b. This can be
2588          * done without an erase because flash erase sets all bits
2589          * to 1's. We can write 1's to 0's without an erase
2590          */
2591         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2592         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2593         if (ret_val)
2594                 goto release;
2595
2596         /* Great!  Everything worked, we can now clear the cached entries. */
2597         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2598                 dev_spec->shadow_ram[i].modified = false;
2599                 dev_spec->shadow_ram[i].value = 0xFFFF;
2600         }
2601
2602 release:
2603         nvm->ops.release(hw);
2604
2605         /*
2606          * Reload the EEPROM, or else modifications will not appear
2607          * until after the next adapter reset.
2608          */
2609         if (!ret_val) {
2610                 nvm->ops.reload(hw);
2611                 usleep_range(10000, 20000);
2612         }
2613
2614 out:
2615         if (ret_val)
2616                 e_dbg("NVM update error: %d\n", ret_val);
2617
2618         return ret_val;
2619 }
2620
2621 /**
2622  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2623  *  @hw: pointer to the HW structure
2624  *
2625  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2626  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2627  *  calculated, in which case we need to calculate the checksum and set bit 6.
2628  **/
2629 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2630 {
2631         s32 ret_val;
2632         u16 data;
2633
2634         /*
2635          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2636          * needs to be fixed.  This bit is an indication that the NVM
2637          * was prepared by OEM software and did not calculate the
2638          * checksum...a likely scenario.
2639          */
2640         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2641         if (ret_val)
2642                 return ret_val;
2643
2644         if ((data & 0x40) == 0) {
2645                 data |= 0x40;
2646                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2647                 if (ret_val)
2648                         return ret_val;
2649                 ret_val = e1000e_update_nvm_checksum(hw);
2650                 if (ret_val)
2651                         return ret_val;
2652         }
2653
2654         return e1000e_validate_nvm_checksum_generic(hw);
2655 }
2656
2657 /**
2658  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2659  *  @hw: pointer to the HW structure
2660  *
2661  *  To prevent malicious write/erase of the NVM, set it to be read-only
2662  *  so that the hardware ignores all write/erase cycles of the NVM via
2663  *  the flash control registers.  The shadow-ram copy of the NVM will
2664  *  still be updated, however any updates to this copy will not stick
2665  *  across driver reloads.
2666  **/
2667 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2668 {
2669         struct e1000_nvm_info *nvm = &hw->nvm;
2670         union ich8_flash_protected_range pr0;
2671         union ich8_hws_flash_status hsfsts;
2672         u32 gfpreg;
2673
2674         nvm->ops.acquire(hw);
2675
2676         gfpreg = er32flash(ICH_FLASH_GFPREG);
2677
2678         /* Write-protect GbE Sector of NVM */
2679         pr0.regval = er32flash(ICH_FLASH_PR0);
2680         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2681         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2682         pr0.range.wpe = true;
2683         ew32flash(ICH_FLASH_PR0, pr0.regval);
2684
2685         /*
2686          * Lock down a subset of GbE Flash Control Registers, e.g.
2687          * PR0 to prevent the write-protection from being lifted.
2688          * Once FLOCKDN is set, the registers protected by it cannot
2689          * be written until FLOCKDN is cleared by a hardware reset.
2690          */
2691         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2692         hsfsts.hsf_status.flockdn = true;
2693         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2694
2695         nvm->ops.release(hw);
2696 }
2697
2698 /**
2699  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2700  *  @hw: pointer to the HW structure
2701  *  @offset: The offset (in bytes) of the byte/word to read.
2702  *  @size: Size of data to read, 1=byte 2=word
2703  *  @data: The byte(s) to write to the NVM.
2704  *
2705  *  Writes one/two bytes to the NVM using the flash access registers.
2706  **/
2707 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2708                                           u8 size, u16 data)
2709 {
2710         union ich8_hws_flash_status hsfsts;
2711         union ich8_hws_flash_ctrl hsflctl;
2712         u32 flash_linear_addr;
2713         u32 flash_data = 0;
2714         s32 ret_val;
2715         u8 count = 0;
2716
2717         if (size < 1 || size > 2 || data > size * 0xff ||
2718             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2719                 return -E1000_ERR_NVM;
2720
2721         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2722                             hw->nvm.flash_base_addr;
2723
2724         do {
2725                 udelay(1);
2726                 /* Steps */
2727                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2728                 if (ret_val)
2729                         break;
2730
2731                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2732                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2733                 hsflctl.hsf_ctrl.fldbcount = size -1;
2734                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2735                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2736
2737                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2738
2739                 if (size == 1)
2740                         flash_data = (u32)data & 0x00FF;
2741                 else
2742                         flash_data = (u32)data;
2743
2744                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2745
2746                 /*
2747                  * check if FCERR is set to 1 , if set to 1, clear it
2748                  * and try the whole sequence a few more times else done
2749                  */
2750                 ret_val = e1000_flash_cycle_ich8lan(hw,
2751                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2752                 if (!ret_val)
2753                         break;
2754
2755                 /*
2756                  * If we're here, then things are most likely
2757                  * completely hosed, but if the error condition
2758                  * is detected, it won't hurt to give it another
2759                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2760                  */
2761                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2762                 if (hsfsts.hsf_status.flcerr == 1)
2763                         /* Repeat for some time before giving up. */
2764                         continue;
2765                 if (hsfsts.hsf_status.flcdone == 0) {
2766                         e_dbg("Timeout error - flash cycle did not complete.\n");
2767                         break;
2768                 }
2769         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2770
2771         return ret_val;
2772 }
2773
2774 /**
2775  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2776  *  @hw: pointer to the HW structure
2777  *  @offset: The index of the byte to read.
2778  *  @data: The byte to write to the NVM.
2779  *
2780  *  Writes a single byte to the NVM using the flash access registers.
2781  **/
2782 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2783                                           u8 data)
2784 {
2785         u16 word = (u16)data;
2786
2787         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2788 }
2789
2790 /**
2791  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2792  *  @hw: pointer to the HW structure
2793  *  @offset: The offset of the byte to write.
2794  *  @byte: The byte to write to the NVM.
2795  *
2796  *  Writes a single byte to the NVM using the flash access registers.
2797  *  Goes through a retry algorithm before giving up.
2798  **/
2799 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2800                                                 u32 offset, u8 byte)
2801 {
2802         s32 ret_val;
2803         u16 program_retries;
2804
2805         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2806         if (!ret_val)
2807                 return ret_val;
2808
2809         for (program_retries = 0; program_retries < 100; program_retries++) {
2810                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2811                 udelay(100);
2812                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2813                 if (!ret_val)
2814                         break;
2815         }
2816         if (program_retries == 100)
2817                 return -E1000_ERR_NVM;
2818
2819         return 0;
2820 }
2821
2822 /**
2823  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2824  *  @hw: pointer to the HW structure
2825  *  @bank: 0 for first bank, 1 for second bank, etc.
2826  *
2827  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2828  *  bank N is 4096 * N + flash_reg_addr.
2829  **/
2830 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2831 {
2832         struct e1000_nvm_info *nvm = &hw->nvm;
2833         union ich8_hws_flash_status hsfsts;
2834         union ich8_hws_flash_ctrl hsflctl;
2835         u32 flash_linear_addr;
2836         /* bank size is in 16bit words - adjust to bytes */
2837         u32 flash_bank_size = nvm->flash_bank_size * 2;
2838         s32 ret_val;
2839         s32 count = 0;
2840         s32 j, iteration, sector_size;
2841
2842         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2843
2844         /*
2845          * Determine HW Sector size: Read BERASE bits of hw flash status
2846          * register
2847          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2848          *     consecutive sectors.  The start index for the nth Hw sector
2849          *     can be calculated as = bank * 4096 + n * 256
2850          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2851          *     The start index for the nth Hw sector can be calculated
2852          *     as = bank * 4096
2853          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2854          *     (ich9 only, otherwise error condition)
2855          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2856          */
2857         switch (hsfsts.hsf_status.berasesz) {
2858         case 0:
2859                 /* Hw sector size 256 */
2860                 sector_size = ICH_FLASH_SEG_SIZE_256;
2861                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2862                 break;
2863         case 1:
2864                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2865                 iteration = 1;
2866                 break;
2867         case 2:
2868                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2869                 iteration = 1;
2870                 break;
2871         case 3:
2872                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2873                 iteration = 1;
2874                 break;
2875         default:
2876                 return -E1000_ERR_NVM;
2877         }
2878
2879         /* Start with the base address, then add the sector offset. */
2880         flash_linear_addr = hw->nvm.flash_base_addr;
2881         flash_linear_addr += (bank) ? flash_bank_size : 0;
2882
2883         for (j = 0; j < iteration ; j++) {
2884                 do {
2885                         /* Steps */
2886                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2887                         if (ret_val)
2888                                 return ret_val;
2889
2890                         /*
2891                          * Write a value 11 (block Erase) in Flash
2892                          * Cycle field in hw flash control
2893                          */
2894                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2895                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2896                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2897
2898                         /*
2899                          * Write the last 24 bits of an index within the
2900                          * block into Flash Linear address field in Flash
2901                          * Address.
2902                          */
2903                         flash_linear_addr += (j * sector_size);
2904                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2905
2906                         ret_val = e1000_flash_cycle_ich8lan(hw,
2907                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2908                         if (!ret_val)
2909                                 break;
2910
2911                         /*
2912                          * Check if FCERR is set to 1.  If 1,
2913                          * clear it and try the whole sequence
2914                          * a few more times else Done
2915                          */
2916                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2917                         if (hsfsts.hsf_status.flcerr == 1)
2918                                 /* repeat for some time before giving up */
2919                                 continue;
2920                         else if (hsfsts.hsf_status.flcdone == 0)
2921                                 return ret_val;
2922                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2923         }
2924
2925         return 0;
2926 }
2927
2928 /**
2929  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2930  *  @hw: pointer to the HW structure
2931  *  @data: Pointer to the LED settings
2932  *
2933  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2934  *  settings is all 0's or F's, set the LED default to a valid LED default
2935  *  setting.
2936  **/
2937 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2938 {
2939         s32 ret_val;
2940
2941         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2942         if (ret_val) {
2943                 e_dbg("NVM Read Error\n");
2944                 return ret_val;
2945         }
2946
2947         if (*data == ID_LED_RESERVED_0000 ||
2948             *data == ID_LED_RESERVED_FFFF)
2949                 *data = ID_LED_DEFAULT_ICH8LAN;
2950
2951         return 0;
2952 }
2953
2954 /**
2955  *  e1000_id_led_init_pchlan - store LED configurations
2956  *  @hw: pointer to the HW structure
2957  *
2958  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2959  *  the PHY LED configuration register.
2960  *
2961  *  PCH also does not have an "always on" or "always off" mode which
2962  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2963  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2964  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2965  *  link based on logic in e1000_led_[on|off]_pchlan().
2966  **/
2967 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2968 {
2969         struct e1000_mac_info *mac = &hw->mac;
2970         s32 ret_val;
2971         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2972         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2973         u16 data, i, temp, shift;
2974
2975         /* Get default ID LED modes */
2976         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2977         if (ret_val)
2978                 return ret_val;
2979
2980         mac->ledctl_default = er32(LEDCTL);
2981         mac->ledctl_mode1 = mac->ledctl_default;
2982         mac->ledctl_mode2 = mac->ledctl_default;
2983
2984         for (i = 0; i < 4; i++) {
2985                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2986                 shift = (i * 5);
2987                 switch (temp) {
2988                 case ID_LED_ON1_DEF2:
2989                 case ID_LED_ON1_ON2:
2990                 case ID_LED_ON1_OFF2:
2991                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2992                         mac->ledctl_mode1 |= (ledctl_on << shift);
2993                         break;
2994                 case ID_LED_OFF1_DEF2:
2995                 case ID_LED_OFF1_ON2:
2996                 case ID_LED_OFF1_OFF2:
2997                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2998                         mac->ledctl_mode1 |= (ledctl_off << shift);
2999                         break;
3000                 default:
3001                         /* Do nothing */
3002                         break;
3003                 }
3004                 switch (temp) {
3005                 case ID_LED_DEF1_ON2:
3006                 case ID_LED_ON1_ON2:
3007                 case ID_LED_OFF1_ON2:
3008                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3009                         mac->ledctl_mode2 |= (ledctl_on << shift);
3010                         break;
3011                 case ID_LED_DEF1_OFF2:
3012                 case ID_LED_ON1_OFF2:
3013                 case ID_LED_OFF1_OFF2:
3014                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3015                         mac->ledctl_mode2 |= (ledctl_off << shift);
3016                         break;
3017                 default:
3018                         /* Do nothing */
3019                         break;
3020                 }
3021         }
3022
3023         return 0;
3024 }
3025
3026 /**
3027  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3028  *  @hw: pointer to the HW structure
3029  *
3030  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3031  *  register, so the the bus width is hard coded.
3032  **/
3033 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3034 {
3035         struct e1000_bus_info *bus = &hw->bus;
3036         s32 ret_val;
3037
3038         ret_val = e1000e_get_bus_info_pcie(hw);
3039
3040         /*
3041          * ICH devices are "PCI Express"-ish.  They have
3042          * a configuration space, but do not contain
3043          * PCI Express Capability registers, so bus width
3044          * must be hardcoded.
3045          */
3046         if (bus->width == e1000_bus_width_unknown)
3047                 bus->width = e1000_bus_width_pcie_x1;
3048
3049         return ret_val;
3050 }
3051
3052 /**
3053  *  e1000_reset_hw_ich8lan - Reset the hardware
3054  *  @hw: pointer to the HW structure
3055  *
3056  *  Does a full reset of the hardware which includes a reset of the PHY and
3057  *  MAC.
3058  **/
3059 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3060 {
3061         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3062         u16 reg;
3063         u32 ctrl, kab;
3064         s32 ret_val;
3065
3066         /*
3067          * Prevent the PCI-E bus from sticking if there is no TLP connection
3068          * on the last TLP read/write transaction when MAC is reset.
3069          */
3070         ret_val = e1000e_disable_pcie_master(hw);
3071         if (ret_val)
3072                 e_dbg("PCI-E Master disable polling has failed.\n");
3073
3074         e_dbg("Masking off all interrupts\n");
3075         ew32(IMC, 0xffffffff);
3076
3077         /*
3078          * Disable the Transmit and Receive units.  Then delay to allow
3079          * any pending transactions to complete before we hit the MAC
3080          * with the global reset.
3081          */
3082         ew32(RCTL, 0);
3083         ew32(TCTL, E1000_TCTL_PSP);
3084         e1e_flush();
3085
3086         usleep_range(10000, 20000);
3087
3088         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3089         if (hw->mac.type == e1000_ich8lan) {
3090                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3091                 ew32(PBA, E1000_PBA_8K);
3092                 /* Set Packet Buffer Size to 16k. */
3093                 ew32(PBS, E1000_PBS_16K);
3094         }
3095
3096         if (hw->mac.type == e1000_pchlan) {
3097                 /* Save the NVM K1 bit setting*/
3098                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3099                 if (ret_val)
3100                         return ret_val;
3101
3102                 if (reg & E1000_NVM_K1_ENABLE)
3103                         dev_spec->nvm_k1_enabled = true;
3104                 else
3105                         dev_spec->nvm_k1_enabled = false;
3106         }
3107
3108         ctrl = er32(CTRL);
3109
3110         if (!hw->phy.ops.check_reset_block(hw)) {
3111                 /*
3112                  * Full-chip reset requires MAC and PHY reset at the same
3113                  * time to make sure the interface between MAC and the
3114                  * external PHY is reset.
3115                  */
3116                 ctrl |= E1000_CTRL_PHY_RST;
3117
3118                 /*
3119                  * Gate automatic PHY configuration by hardware on
3120                  * non-managed 82579
3121                  */
3122                 if ((hw->mac.type == e1000_pch2lan) &&
3123                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3124                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3125         }
3126         ret_val = e1000_acquire_swflag_ich8lan(hw);
3127         e_dbg("Issuing a global reset to ich8lan\n");
3128         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3129         /* cannot issue a flush here because it hangs the hardware */
3130         msleep(20);
3131
3132         if (!ret_val)
3133                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3134
3135         if (ctrl & E1000_CTRL_PHY_RST) {
3136                 ret_val = hw->phy.ops.get_cfg_done(hw);
3137                 if (ret_val)
3138                         return ret_val;
3139
3140                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3141                 if (ret_val)
3142                         return ret_val;
3143         }
3144
3145         /*
3146          * For PCH, this write will make sure that any noise
3147          * will be detected as a CRC error and be dropped rather than show up
3148          * as a bad packet to the DMA engine.
3149          */
3150         if (hw->mac.type == e1000_pchlan)
3151                 ew32(CRC_OFFSET, 0x65656565);
3152
3153         ew32(IMC, 0xffffffff);
3154         er32(ICR);
3155
3156         kab = er32(KABGTXD);
3157         kab |= E1000_KABGTXD_BGSQLBIAS;
3158         ew32(KABGTXD, kab);
3159
3160         return 0;
3161 }
3162
3163 /**
3164  *  e1000_init_hw_ich8lan - Initialize the hardware
3165  *  @hw: pointer to the HW structure
3166  *
3167  *  Prepares the hardware for transmit and receive by doing the following:
3168  *   - initialize hardware bits
3169  *   - initialize LED identification
3170  *   - setup receive address registers
3171  *   - setup flow control
3172  *   - setup transmit descriptors
3173  *   - clear statistics
3174  **/
3175 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3176 {
3177         struct e1000_mac_info *mac = &hw->mac;
3178         u32 ctrl_ext, txdctl, snoop;
3179         s32 ret_val;
3180         u16 i;
3181
3182         e1000_initialize_hw_bits_ich8lan(hw);
3183
3184         /* Initialize identification LED */
3185         ret_val = mac->ops.id_led_init(hw);
3186         if (ret_val)
3187                 e_dbg("Error initializing identification LED\n");
3188                 /* This is not fatal and we should not stop init due to this */
3189
3190         /* Setup the receive address. */
3191         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3192
3193         /* Zero out the Multicast HASH table */
3194         e_dbg("Zeroing the MTA\n");
3195         for (i = 0; i < mac->mta_reg_count; i++)
3196                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3197
3198         /*
3199          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3200          * the ME.  Disable wakeup by clearing the host wakeup bit.
3201          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3202          */
3203         if (hw->phy.type == e1000_phy_82578) {
3204                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3205                 i &= ~BM_WUC_HOST_WU_BIT;
3206                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3207                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3208                 if (ret_val)
3209                         return ret_val;
3210         }
3211
3212         /* Setup link and flow control */
3213         ret_val = mac->ops.setup_link(hw);
3214
3215         /* Set the transmit descriptor write-back policy for both queues */
3216         txdctl = er32(TXDCTL(0));
3217         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3218                  E1000_TXDCTL_FULL_TX_DESC_WB;
3219         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3220                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3221         ew32(TXDCTL(0), txdctl);
3222         txdctl = er32(TXDCTL(1));
3223         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3224                  E1000_TXDCTL_FULL_TX_DESC_WB;
3225         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3226                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227         ew32(TXDCTL(1), txdctl);
3228
3229         /*
3230          * ICH8 has opposite polarity of no_snoop bits.
3231          * By default, we should use snoop behavior.
3232          */
3233         if (mac->type == e1000_ich8lan)
3234                 snoop = PCIE_ICH8_SNOOP_ALL;
3235         else
3236                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3237         e1000e_set_pcie_no_snoop(hw, snoop);
3238
3239         ctrl_ext = er32(CTRL_EXT);
3240         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3241         ew32(CTRL_EXT, ctrl_ext);
3242
3243         /*
3244          * Clear all of the statistics registers (clear on read).  It is
3245          * important that we do this after we have tried to establish link
3246          * because the symbol error count will increment wildly if there
3247          * is no link.
3248          */
3249         e1000_clear_hw_cntrs_ich8lan(hw);
3250
3251         return ret_val;
3252 }
3253 /**
3254  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3255  *  @hw: pointer to the HW structure
3256  *
3257  *  Sets/Clears required hardware bits necessary for correctly setting up the
3258  *  hardware for transmit and receive.
3259  **/
3260 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3261 {
3262         u32 reg;
3263
3264         /* Extended Device Control */
3265         reg = er32(CTRL_EXT);
3266         reg |= (1 << 22);
3267         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3268         if (hw->mac.type >= e1000_pchlan)
3269                 reg |= E1000_CTRL_EXT_PHYPDEN;
3270         ew32(CTRL_EXT, reg);
3271
3272         /* Transmit Descriptor Control 0 */
3273         reg = er32(TXDCTL(0));
3274         reg |= (1 << 22);
3275         ew32(TXDCTL(0), reg);
3276
3277         /* Transmit Descriptor Control 1 */
3278         reg = er32(TXDCTL(1));
3279         reg |= (1 << 22);
3280         ew32(TXDCTL(1), reg);
3281
3282         /* Transmit Arbitration Control 0 */
3283         reg = er32(TARC(0));
3284         if (hw->mac.type == e1000_ich8lan)
3285                 reg |= (1 << 28) | (1 << 29);
3286         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3287         ew32(TARC(0), reg);
3288
3289         /* Transmit Arbitration Control 1 */
3290         reg = er32(TARC(1));
3291         if (er32(TCTL) & E1000_TCTL_MULR)
3292                 reg &= ~(1 << 28);
3293         else
3294                 reg |= (1 << 28);
3295         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3296         ew32(TARC(1), reg);
3297
3298         /* Device Status */
3299         if (hw->mac.type == e1000_ich8lan) {
3300                 reg = er32(STATUS);
3301                 reg &= ~(1 << 31);
3302                 ew32(STATUS, reg);
3303         }
3304
3305         /*
3306          * work-around descriptor data corruption issue during nfs v2 udp
3307          * traffic, just disable the nfs filtering capability
3308          */
3309         reg = er32(RFCTL);
3310         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3311         ew32(RFCTL, reg);
3312 }
3313
3314 /**
3315  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3316  *  @hw: pointer to the HW structure
3317  *
3318  *  Determines which flow control settings to use, then configures flow
3319  *  control.  Calls the appropriate media-specific link configuration
3320  *  function.  Assuming the adapter has a valid link partner, a valid link
3321  *  should be established.  Assumes the hardware has previously been reset
3322  *  and the transmitter and receiver are not enabled.
3323  **/
3324 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3325 {
3326         s32 ret_val;
3327
3328         if (hw->phy.ops.check_reset_block(hw))
3329                 return 0;
3330
3331         /*
3332          * ICH parts do not have a word in the NVM to determine
3333          * the default flow control setting, so we explicitly
3334          * set it to full.
3335          */
3336         if (hw->fc.requested_mode == e1000_fc_default) {
3337                 /* Workaround h/w hang when Tx flow control enabled */
3338                 if (hw->mac.type == e1000_pchlan)
3339                         hw->fc.requested_mode = e1000_fc_rx_pause;
3340                 else
3341                         hw->fc.requested_mode = e1000_fc_full;
3342         }
3343
3344         /*
3345          * Save off the requested flow control mode for use later.  Depending
3346          * on the link partner's capabilities, we may or may not use this mode.
3347          */
3348         hw->fc.current_mode = hw->fc.requested_mode;
3349
3350         e_dbg("After fix-ups FlowControl is now = %x\n",
3351                 hw->fc.current_mode);
3352
3353         /* Continue to configure the copper link. */
3354         ret_val = hw->mac.ops.setup_physical_interface(hw);
3355         if (ret_val)
3356                 return ret_val;
3357
3358         ew32(FCTTV, hw->fc.pause_time);
3359         if ((hw->phy.type == e1000_phy_82578) ||
3360             (hw->phy.type == e1000_phy_82579) ||
3361             (hw->phy.type == e1000_phy_82577)) {
3362                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3363
3364                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3365                                    hw->fc.pause_time);
3366                 if (ret_val)
3367                         return ret_val;
3368         }
3369
3370         return e1000e_set_fc_watermarks(hw);
3371 }
3372
3373 /**
3374  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3375  *  @hw: pointer to the HW structure
3376  *
3377  *  Configures the kumeran interface to the PHY to wait the appropriate time
3378  *  when polling the PHY, then call the generic setup_copper_link to finish
3379  *  configuring the copper link.
3380  **/
3381 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3382 {
3383         u32 ctrl;
3384         s32 ret_val;
3385         u16 reg_data;
3386
3387         ctrl = er32(CTRL);
3388         ctrl |= E1000_CTRL_SLU;
3389         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3390         ew32(CTRL, ctrl);
3391
3392         /*
3393          * Set the mac to wait the maximum time between each iteration
3394          * and increase the max iterations when polling the phy;
3395          * this fixes erroneous timeouts at 10Mbps.
3396          */
3397         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3398         if (ret_val)
3399                 return ret_val;
3400         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3401                                        &reg_data);
3402         if (ret_val)
3403                 return ret_val;
3404         reg_data |= 0x3F;
3405         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3406                                         reg_data);
3407         if (ret_val)
3408                 return ret_val;
3409
3410         switch (hw->phy.type) {
3411         case e1000_phy_igp_3:
3412                 ret_val = e1000e_copper_link_setup_igp(hw);
3413                 if (ret_val)
3414                         return ret_val;
3415                 break;
3416         case e1000_phy_bm:
3417         case e1000_phy_82578:
3418                 ret_val = e1000e_copper_link_setup_m88(hw);
3419                 if (ret_val)
3420                         return ret_val;
3421                 break;
3422         case e1000_phy_82577:
3423         case e1000_phy_82579:
3424                 ret_val = e1000_copper_link_setup_82577(hw);
3425                 if (ret_val)
3426                         return ret_val;
3427                 break;
3428         case e1000_phy_ife:
3429                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3430                 if (ret_val)
3431                         return ret_val;
3432
3433                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3434
3435                 switch (hw->phy.mdix) {
3436                 case 1:
3437                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3438                         break;
3439                 case 2:
3440                         reg_data |= IFE_PMC_FORCE_MDIX;
3441                         break;
3442                 case 0:
3443                 default:
3444                         reg_data |= IFE_PMC_AUTO_MDIX;
3445                         break;
3446                 }
3447                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3448                 if (ret_val)
3449                         return ret_val;
3450                 break;
3451         default:
3452                 break;
3453         }
3454
3455         return e1000e_setup_copper_link(hw);
3456 }
3457
3458 /**
3459  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3460  *  @hw: pointer to the HW structure
3461  *  @speed: pointer to store current link speed
3462  *  @duplex: pointer to store the current link duplex
3463  *
3464  *  Calls the generic get_speed_and_duplex to retrieve the current link
3465  *  information and then calls the Kumeran lock loss workaround for links at
3466  *  gigabit speeds.
3467  **/
3468 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3469                                           u16 *duplex)
3470 {
3471         s32 ret_val;
3472
3473         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3474         if (ret_val)
3475                 return ret_val;
3476
3477         if ((hw->mac.type == e1000_ich8lan) &&
3478             (hw->phy.type == e1000_phy_igp_3) &&
3479             (*speed == SPEED_1000)) {
3480                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3481         }
3482
3483         return ret_val;
3484 }
3485
3486 /**
3487  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3488  *  @hw: pointer to the HW structure
3489  *
3490  *  Work-around for 82566 Kumeran PCS lock loss:
3491  *  On link status change (i.e. PCI reset, speed change) and link is up and
3492  *  speed is gigabit-
3493  *    0) if workaround is optionally disabled do nothing
3494  *    1) wait 1ms for Kumeran link to come up
3495  *    2) check Kumeran Diagnostic register PCS lock loss bit
3496  *    3) if not set the link is locked (all is good), otherwise...
3497  *    4) reset the PHY
3498  *    5) repeat up to 10 times
3499  *  Note: this is only called for IGP3 copper when speed is 1gb.
3500  **/
3501 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3502 {
3503         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3504         u32 phy_ctrl;
3505         s32 ret_val;
3506         u16 i, data;
3507         bool link;
3508
3509         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3510                 return 0;
3511
3512         /*
3513          * Make sure link is up before proceeding.  If not just return.
3514          * Attempting this while link is negotiating fouled up link
3515          * stability
3516          */
3517         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3518         if (!link)
3519                 return 0;
3520
3521         for (i = 0; i < 10; i++) {
3522                 /* read once to clear */
3523                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3524                 if (ret_val)
3525                         return ret_val;
3526                 /* and again to get new status */
3527                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3528                 if (ret_val)
3529                         return ret_val;
3530
3531                 /* check for PCS lock */
3532                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3533                         return 0;
3534
3535                 /* Issue PHY reset */
3536                 e1000_phy_hw_reset(hw);
3537                 mdelay(5);
3538         }
3539         /* Disable GigE link negotiation */
3540         phy_ctrl = er32(PHY_CTRL);
3541         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3542                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3543         ew32(PHY_CTRL, phy_ctrl);
3544
3545         /*
3546          * Call gig speed drop workaround on Gig disable before accessing
3547          * any PHY registers
3548          */
3549         e1000e_gig_downshift_workaround_ich8lan(hw);
3550
3551         /* unable to acquire PCS lock */
3552         return -E1000_ERR_PHY;
3553 }
3554
3555 /**
3556  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3557  *  @hw: pointer to the HW structure
3558  *  @state: boolean value used to set the current Kumeran workaround state
3559  *
3560  *  If ICH8, set the current Kumeran workaround state (enabled - true
3561  *  /disabled - false).
3562  **/
3563 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3564                                                  bool state)
3565 {
3566         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3567
3568         if (hw->mac.type != e1000_ich8lan) {
3569                 e_dbg("Workaround applies to ICH8 only.\n");
3570                 return;
3571         }
3572
3573         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3574 }
3575
3576 /**
3577  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3578  *  @hw: pointer to the HW structure
3579  *
3580  *  Workaround for 82566 power-down on D3 entry:
3581  *    1) disable gigabit link
3582  *    2) write VR power-down enable
3583  *    3) read it back
3584  *  Continue if successful, else issue LCD reset and repeat
3585  **/
3586 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3587 {
3588         u32 reg;
3589         u16 data;
3590         u8  retry = 0;
3591
3592         if (hw->phy.type != e1000_phy_igp_3)
3593                 return;
3594
3595         /* Try the workaround twice (if needed) */
3596         do {
3597                 /* Disable link */
3598                 reg = er32(PHY_CTRL);
3599                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3600                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3601                 ew32(PHY_CTRL, reg);
3602
3603                 /*
3604                  * Call gig speed drop workaround on Gig disable before
3605                  * accessing any PHY registers
3606                  */
3607                 if (hw->mac.type == e1000_ich8lan)
3608                         e1000e_gig_downshift_workaround_ich8lan(hw);
3609
3610                 /* Write VR power-down enable */
3611                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3612                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3613                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3614
3615                 /* Read it back and test */
3616                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3617                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3618                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3619                         break;
3620
3621                 /* Issue PHY reset and repeat at most one more time */
3622                 reg = er32(CTRL);
3623                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3624                 retry++;
3625         } while (retry);
3626 }
3627
3628 /**
3629  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3630  *  @hw: pointer to the HW structure
3631  *
3632  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3633  *  LPLU, Gig disable, MDIC PHY reset):
3634  *    1) Set Kumeran Near-end loopback
3635  *    2) Clear Kumeran Near-end loopback
3636  *  Should only be called for ICH8[m] devices with any 1G Phy.
3637  **/
3638 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3639 {
3640         s32 ret_val;
3641         u16 reg_data;
3642
3643         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3644                 return;
3645
3646         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3647                                       &reg_data);
3648         if (ret_val)
3649                 return;
3650         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3651         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3652                                        reg_data);
3653         if (ret_val)
3654                 return;
3655         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3656         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3657                                        reg_data);
3658 }
3659
3660 /**
3661  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3662  *  @hw: pointer to the HW structure
3663  *
3664  *  During S0 to Sx transition, it is possible the link remains at gig
3665  *  instead of negotiating to a lower speed.  Before going to Sx, set
3666  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3667  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3668  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3669  *  needs to be written.
3670  **/
3671 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3672 {
3673         u32 phy_ctrl;
3674         s32 ret_val;
3675
3676         phy_ctrl = er32(PHY_CTRL);
3677         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3678         ew32(PHY_CTRL, phy_ctrl);
3679
3680         if (hw->mac.type == e1000_ich8lan)
3681                 e1000e_gig_downshift_workaround_ich8lan(hw);
3682
3683         if (hw->mac.type >= e1000_pchlan) {
3684                 e1000_oem_bits_config_ich8lan(hw, false);
3685                 e1000_phy_hw_reset_ich8lan(hw);
3686                 ret_val = hw->phy.ops.acquire(hw);
3687                 if (ret_val)
3688                         return;
3689                 e1000_write_smbus_addr(hw);
3690                 hw->phy.ops.release(hw);
3691         }
3692 }
3693
3694 /**
3695  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3696  *  @hw: pointer to the HW structure
3697  *
3698  *  During Sx to S0 transitions on non-managed devices or managed devices
3699  *  on which PHY resets are not blocked, if the PHY registers cannot be
3700  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3701  *  the PHY.
3702  **/
3703 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3704 {
3705         u16 phy_id1, phy_id2;
3706         s32 ret_val;
3707
3708         if ((hw->mac.type != e1000_pch2lan) ||
3709             hw->phy.ops.check_reset_block(hw))
3710                 return;
3711
3712         ret_val = hw->phy.ops.acquire(hw);
3713         if (ret_val) {
3714                 e_dbg("Failed to acquire PHY semaphore in resume\n");
3715                 return;
3716         }
3717
3718         /* Test access to the PHY registers by reading the ID regs */
3719         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3720         if (ret_val)
3721                 goto release;
3722         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3723         if (ret_val)
3724                 goto release;
3725
3726         if (hw->phy.id == ((u32)(phy_id1 << 16) |
3727                            (u32)(phy_id2 & PHY_REVISION_MASK)))
3728                 goto release;
3729
3730         e1000_toggle_lanphypc_value_ich8lan(hw);
3731
3732         hw->phy.ops.release(hw);
3733         msleep(50);
3734         e1000_phy_hw_reset(hw);
3735         msleep(50);
3736         return;
3737
3738 release:
3739         hw->phy.ops.release(hw);
3740 }
3741
3742 /**
3743  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3744  *  @hw: pointer to the HW structure
3745  *
3746  *  Return the LED back to the default configuration.
3747  **/
3748 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3749 {
3750         if (hw->phy.type == e1000_phy_ife)
3751                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3752
3753         ew32(LEDCTL, hw->mac.ledctl_default);
3754         return 0;
3755 }
3756
3757 /**
3758  *  e1000_led_on_ich8lan - Turn LEDs on
3759  *  @hw: pointer to the HW structure
3760  *
3761  *  Turn on the LEDs.
3762  **/
3763 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3764 {
3765         if (hw->phy.type == e1000_phy_ife)
3766                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3767                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3768
3769         ew32(LEDCTL, hw->mac.ledctl_mode2);
3770         return 0;
3771 }
3772
3773 /**
3774  *  e1000_led_off_ich8lan - Turn LEDs off
3775  *  @hw: pointer to the HW structure
3776  *
3777  *  Turn off the LEDs.
3778  **/
3779 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3780 {
3781         if (hw->phy.type == e1000_phy_ife)
3782                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3783                                 (IFE_PSCL_PROBE_MODE |
3784                                  IFE_PSCL_PROBE_LEDS_OFF));
3785
3786         ew32(LEDCTL, hw->mac.ledctl_mode1);
3787         return 0;
3788 }
3789
3790 /**
3791  *  e1000_setup_led_pchlan - Configures SW controllable LED
3792  *  @hw: pointer to the HW structure
3793  *
3794  *  This prepares the SW controllable LED for use.
3795  **/
3796 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3797 {
3798         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3799 }
3800
3801 /**
3802  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3803  *  @hw: pointer to the HW structure
3804  *
3805  *  Return the LED back to the default configuration.
3806  **/
3807 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3808 {
3809         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3810 }
3811
3812 /**
3813  *  e1000_led_on_pchlan - Turn LEDs on
3814  *  @hw: pointer to the HW structure
3815  *
3816  *  Turn on the LEDs.
3817  **/
3818 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3819 {
3820         u16 data = (u16)hw->mac.ledctl_mode2;
3821         u32 i, led;
3822
3823         /*
3824          * If no link, then turn LED on by setting the invert bit
3825          * for each LED that's mode is "link_up" in ledctl_mode2.
3826          */
3827         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3828                 for (i = 0; i < 3; i++) {
3829                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3830                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3831                             E1000_LEDCTL_MODE_LINK_UP)
3832                                 continue;
3833                         if (led & E1000_PHY_LED0_IVRT)
3834                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3835                         else
3836                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3837                 }
3838         }
3839
3840         return e1e_wphy(hw, HV_LED_CONFIG, data);
3841 }
3842
3843 /**
3844  *  e1000_led_off_pchlan - Turn LEDs off
3845  *  @hw: pointer to the HW structure
3846  *
3847  *  Turn off the LEDs.
3848  **/
3849 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3850 {
3851         u16 data = (u16)hw->mac.ledctl_mode1;
3852         u32 i, led;
3853
3854         /*
3855          * If no link, then turn LED off by clearing the invert bit
3856          * for each LED that's mode is "link_up" in ledctl_mode1.
3857          */
3858         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3859                 for (i = 0; i < 3; i++) {
3860                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3861                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3862                             E1000_LEDCTL_MODE_LINK_UP)
3863                                 continue;
3864                         if (led & E1000_PHY_LED0_IVRT)
3865                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3866                         else
3867                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3868                 }
3869         }
3870
3871         return e1e_wphy(hw, HV_LED_CONFIG, data);
3872 }
3873
3874 /**
3875  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3876  *  @hw: pointer to the HW structure
3877  *
3878  *  Read appropriate register for the config done bit for completion status
3879  *  and configure the PHY through s/w for EEPROM-less parts.
3880  *
3881  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3882  *  config done bit, so only an error is logged and continues.  If we were
3883  *  to return with error, EEPROM-less silicon would not be able to be reset
3884  *  or change link.
3885  **/
3886 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3887 {
3888         s32 ret_val = 0;
3889         u32 bank = 0;
3890         u32 status;
3891
3892         e1000e_get_cfg_done(hw);
3893
3894         /* Wait for indication from h/w that it has completed basic config */
3895         if (hw->mac.type >= e1000_ich10lan) {
3896                 e1000_lan_init_done_ich8lan(hw);
3897         } else {
3898                 ret_val = e1000e_get_auto_rd_done(hw);
3899                 if (ret_val) {
3900                         /*
3901                          * When auto config read does not complete, do not
3902                          * return with an error. This can happen in situations
3903                          * where there is no eeprom and prevents getting link.
3904                          */
3905                         e_dbg("Auto Read Done did not complete\n");
3906                         ret_val = 0;
3907                 }
3908         }
3909
3910         /* Clear PHY Reset Asserted bit */
3911         status = er32(STATUS);
3912         if (status & E1000_STATUS_PHYRA)
3913                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3914         else
3915                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3916
3917         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3918         if (hw->mac.type <= e1000_ich9lan) {
3919                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3920                     (hw->phy.type == e1000_phy_igp_3)) {
3921                         e1000e_phy_init_script_igp3(hw);
3922                 }
3923         } else {
3924                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3925                         /* Maybe we should do a basic PHY config */
3926                         e_dbg("EEPROM not present\n");
3927                         ret_val = -E1000_ERR_CONFIG;
3928                 }
3929         }
3930
3931         return ret_val;
3932 }
3933
3934 /**
3935  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3936  * @hw: pointer to the HW structure
3937  *
3938  * In the case of a PHY power down to save power, or to turn off link during a
3939  * driver unload, or wake on lan is not enabled, remove the link.
3940  **/
3941 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3942 {
3943         /* If the management interface is not enabled, then power down */
3944         if (!(hw->mac.ops.check_mng_mode(hw) ||
3945               hw->phy.ops.check_reset_block(hw)))
3946                 e1000_power_down_phy_copper(hw);
3947 }
3948
3949 /**
3950  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3951  *  @hw: pointer to the HW structure
3952  *
3953  *  Clears hardware counters specific to the silicon family and calls
3954  *  clear_hw_cntrs_generic to clear all general purpose counters.
3955  **/
3956 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3957 {
3958         u16 phy_data;
3959         s32 ret_val;
3960
3961         e1000e_clear_hw_cntrs_base(hw);
3962
3963         er32(ALGNERRC);
3964         er32(RXERRC);
3965         er32(TNCRS);
3966         er32(CEXTERR);
3967         er32(TSCTC);
3968         er32(TSCTFC);
3969
3970         er32(MGTPRC);
3971         er32(MGTPDC);
3972         er32(MGTPTC);
3973
3974         er32(IAC);
3975         er32(ICRXOC);
3976
3977         /* Clear PHY statistics registers */
3978         if ((hw->phy.type == e1000_phy_82578) ||
3979             (hw->phy.type == e1000_phy_82579) ||
3980             (hw->phy.type == e1000_phy_82577)) {
3981                 ret_val = hw->phy.ops.acquire(hw);
3982                 if (ret_val)
3983                         return;
3984                 ret_val = hw->phy.ops.set_page(hw,
3985                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
3986                 if (ret_val)
3987                         goto release;
3988                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3989                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3990                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3991                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3992                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3993                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3994                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3995                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3996                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3997                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3998                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
3999                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4000                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4001                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4002 release:
4003                 hw->phy.ops.release(hw);
4004         }
4005 }
4006
4007 static const struct e1000_mac_operations ich8_mac_ops = {
4008         /* check_mng_mode dependent on mac type */
4009         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4010         /* cleanup_led dependent on mac type */
4011         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4012         .get_bus_info           = e1000_get_bus_info_ich8lan,
4013         .set_lan_id             = e1000_set_lan_id_single_port,
4014         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4015         /* led_on dependent on mac type */
4016         /* led_off dependent on mac type */
4017         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4018         .reset_hw               = e1000_reset_hw_ich8lan,
4019         .init_hw                = e1000_init_hw_ich8lan,
4020         .setup_link             = e1000_setup_link_ich8lan,
4021         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4022         /* id_led_init dependent on mac type */
4023         .config_collision_dist  = e1000e_config_collision_dist_generic,
4024 };
4025
4026 static const struct e1000_phy_operations ich8_phy_ops = {
4027         .acquire                = e1000_acquire_swflag_ich8lan,
4028         .check_reset_block      = e1000_check_reset_block_ich8lan,
4029         .commit                 = NULL,
4030         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4031         .get_cable_length       = e1000e_get_cable_length_igp_2,
4032         .read_reg               = e1000e_read_phy_reg_igp,
4033         .release                = e1000_release_swflag_ich8lan,
4034         .reset                  = e1000_phy_hw_reset_ich8lan,
4035         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4036         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4037         .write_reg              = e1000e_write_phy_reg_igp,
4038 };
4039
4040 static const struct e1000_nvm_operations ich8_nvm_ops = {
4041         .acquire                = e1000_acquire_nvm_ich8lan,
4042         .read                   = e1000_read_nvm_ich8lan,
4043         .release                = e1000_release_nvm_ich8lan,
4044         .reload                 = e1000e_reload_nvm_generic,
4045         .update                 = e1000_update_nvm_checksum_ich8lan,
4046         .valid_led_default      = e1000_valid_led_default_ich8lan,
4047         .validate               = e1000_validate_nvm_checksum_ich8lan,
4048         .write                  = e1000_write_nvm_ich8lan,
4049 };
4050
4051 const struct e1000_info e1000_ich8_info = {
4052         .mac                    = e1000_ich8lan,
4053         .flags                  = FLAG_HAS_WOL
4054                                   | FLAG_IS_ICH
4055                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4056                                   | FLAG_HAS_AMT
4057                                   | FLAG_HAS_FLASH
4058                                   | FLAG_APME_IN_WUC,
4059         .pba                    = 8,
4060         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4061         .get_variants           = e1000_get_variants_ich8lan,
4062         .mac_ops                = &ich8_mac_ops,
4063         .phy_ops                = &ich8_phy_ops,
4064         .nvm_ops                = &ich8_nvm_ops,
4065 };
4066
4067 const struct e1000_info e1000_ich9_info = {
4068         .mac                    = e1000_ich9lan,
4069         .flags                  = FLAG_HAS_JUMBO_FRAMES
4070                                   | FLAG_IS_ICH
4071                                   | FLAG_HAS_WOL
4072                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4073                                   | FLAG_HAS_AMT
4074                                   | FLAG_HAS_FLASH
4075                                   | FLAG_APME_IN_WUC,
4076         .pba                    = 18,
4077         .max_hw_frame_size      = DEFAULT_JUMBO,
4078         .get_variants           = e1000_get_variants_ich8lan,
4079         .mac_ops                = &ich8_mac_ops,
4080         .phy_ops                = &ich8_phy_ops,
4081         .nvm_ops                = &ich8_nvm_ops,
4082 };
4083
4084 const struct e1000_info e1000_ich10_info = {
4085         .mac                    = e1000_ich10lan,
4086         .flags                  = FLAG_HAS_JUMBO_FRAMES
4087                                   | FLAG_IS_ICH
4088                                   | FLAG_HAS_WOL
4089                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4090                                   | FLAG_HAS_AMT
4091                                   | FLAG_HAS_FLASH
4092                                   | FLAG_APME_IN_WUC,
4093         .pba                    = 18,
4094         .max_hw_frame_size      = DEFAULT_JUMBO,
4095         .get_variants           = e1000_get_variants_ich8lan,
4096         .mac_ops                = &ich8_mac_ops,
4097         .phy_ops                = &ich8_phy_ops,
4098         .nvm_ops                = &ich8_nvm_ops,
4099 };
4100
4101 const struct e1000_info e1000_pch_info = {
4102         .mac                    = e1000_pchlan,
4103         .flags                  = FLAG_IS_ICH
4104                                   | FLAG_HAS_WOL
4105                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4106                                   | FLAG_HAS_AMT
4107                                   | FLAG_HAS_FLASH
4108                                   | FLAG_HAS_JUMBO_FRAMES
4109                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4110                                   | FLAG_APME_IN_WUC,
4111         .flags2                 = FLAG2_HAS_PHY_STATS,
4112         .pba                    = 26,
4113         .max_hw_frame_size      = 4096,
4114         .get_variants           = e1000_get_variants_ich8lan,
4115         .mac_ops                = &ich8_mac_ops,
4116         .phy_ops                = &ich8_phy_ops,
4117         .nvm_ops                = &ich8_nvm_ops,
4118 };
4119
4120 const struct e1000_info e1000_pch2_info = {
4121         .mac                    = e1000_pch2lan,
4122         .flags                  = FLAG_IS_ICH
4123                                   | FLAG_HAS_WOL
4124                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4125                                   | FLAG_HAS_AMT
4126                                   | FLAG_HAS_FLASH
4127                                   | FLAG_HAS_JUMBO_FRAMES
4128                                   | FLAG_APME_IN_WUC,
4129         .flags2                 = FLAG2_HAS_PHY_STATS
4130                                   | FLAG2_HAS_EEE,
4131         .pba                    = 26,
4132         .max_hw_frame_size      = DEFAULT_JUMBO,
4133         .get_variants           = e1000_get_variants_ich8lan,
4134         .mac_ops                = &ich8_mac_ops,
4135         .phy_ops                = &ich8_phy_ops,
4136         .nvm_ops                = &ich8_nvm_ops,
4137 };