23c6d34f800f7324204eff19e61024125a1bcb99
[linux-flexiantxendom0-3.2.10.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/file.h>
25 #include <linux/binfmts.h>
26 #include <linux/mman.h>
27 #include <linux/fs.h>
28 #include <linux/security.h>
29 #include <linux/jiffies.h>
30 #include <linux/futex.h>
31 #include <linux/ptrace.h>
32 #include <linux/mount.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/pgalloc.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
40
41 static kmem_cache_t *task_struct_cachep;
42
43 extern int copy_semundo(unsigned long clone_flags, struct task_struct *tsk);
44 extern void exit_semundo(struct task_struct *tsk);
45
46 /* The idle threads do not count..
47  * Protected by write_lock_irq(&tasklist_lock)
48  */
49 int nr_threads;
50
51 int max_threads;
52 unsigned long total_forks;      /* Handle normal Linux uptimes. */
53
54 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
55
56 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
57
58 /*
59  * A per-CPU task cache - this relies on the fact that
60  * the very last portion of sys_exit() is executed with
61  * preemption turned off.
62  */
63 static task_t *task_cache[NR_CPUS] __cacheline_aligned;
64
65 int nr_processes(void)
66 {
67         int cpu;
68         int total = 0;
69
70         for (cpu = 0; cpu < NR_CPUS; cpu++) {
71                 if (cpu_online(cpu))
72                         total += per_cpu(process_counts, cpu);
73         }
74         return total;
75 }
76
77 static void free_task_struct(struct task_struct *tsk)
78 {
79         /*
80          * The task cache is effectively disabled right now.
81          * Do we want it? The slab cache already has per-cpu
82          * stuff, but the thread info (usually a order-1 page
83          * allocation) doesn't.
84          */
85         if (tsk != current) {
86                 free_thread_info(tsk->thread_info);
87                 kmem_cache_free(task_struct_cachep,tsk);
88         } else {
89                 int cpu = get_cpu();
90
91                 tsk = task_cache[cpu];
92                 if (tsk) {
93                         free_thread_info(tsk->thread_info);
94                         kmem_cache_free(task_struct_cachep,tsk);
95                 }
96                 task_cache[cpu] = current;
97                 put_cpu();
98         }
99 }
100
101 void __put_task_struct(struct task_struct *tsk)
102 {
103         WARN_ON(!(tsk->state & (TASK_DEAD | TASK_ZOMBIE)));
104         WARN_ON(atomic_read(&tsk->usage));
105         WARN_ON(tsk == current);
106
107         security_task_free(tsk);
108         free_uid(tsk->user);
109         free_task_struct(tsk);
110 }
111
112 void add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
113 {
114         unsigned long flags;
115
116         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
117         spin_lock_irqsave(&q->lock, flags);
118         __add_wait_queue(q, wait);
119         spin_unlock_irqrestore(&q->lock, flags);
120 }
121
122 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)
123 {
124         unsigned long flags;
125
126         wait->flags |= WQ_FLAG_EXCLUSIVE;
127         spin_lock_irqsave(&q->lock, flags);
128         __add_wait_queue_tail(q, wait);
129         spin_unlock_irqrestore(&q->lock, flags);
130 }
131
132 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
133 {
134         unsigned long flags;
135
136         spin_lock_irqsave(&q->lock, flags);
137         __remove_wait_queue(q, wait);
138         spin_unlock_irqrestore(&q->lock, flags);
139 }
140
141 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
142 {
143         unsigned long flags;
144
145         __set_current_state(state);
146         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
147         spin_lock_irqsave(&q->lock, flags);
148         if (list_empty(&wait->task_list))
149                 __add_wait_queue(q, wait);
150         spin_unlock_irqrestore(&q->lock, flags);
151 }
152
153 void
154 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
155 {
156         unsigned long flags;
157
158         __set_current_state(state);
159         wait->flags |= WQ_FLAG_EXCLUSIVE;
160         spin_lock_irqsave(&q->lock, flags);
161         if (list_empty(&wait->task_list))
162                 __add_wait_queue_tail(q, wait);
163         spin_unlock_irqrestore(&q->lock, flags);
164 }
165
166 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
167 {
168         unsigned long flags;
169
170         __set_current_state(TASK_RUNNING);
171         if (!list_empty(&wait->task_list)) {
172                 spin_lock_irqsave(&q->lock, flags);
173                 list_del_init(&wait->task_list);
174                 spin_unlock_irqrestore(&q->lock, flags);
175         }
176 }
177
178 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync)
179 {
180         int ret = default_wake_function(wait, mode, sync);
181
182         if (ret)
183                 list_del_init(&wait->task_list);
184         return ret;
185 }
186
187 void __init fork_init(unsigned long mempages)
188 {
189         /* create a slab on which task_structs can be allocated */
190         task_struct_cachep =
191                 kmem_cache_create("task_struct",
192                                   sizeof(struct task_struct),0,
193                                   SLAB_MUST_HWCACHE_ALIGN, NULL, NULL);
194         if (!task_struct_cachep)
195                 panic("fork_init(): cannot create task_struct SLAB cache");
196
197         /*
198          * The default maximum number of threads is set to a safe
199          * value: the thread structures can take up at most half
200          * of memory.
201          */
202         max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8;
203         /*
204          * we need to allow at least 20 threads to boot a system
205          */
206         if(max_threads < 20)
207                 max_threads = 20;
208
209         init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
210         init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
211 }
212
213 static struct task_struct *dup_task_struct(struct task_struct *orig)
214 {
215         struct task_struct *tsk;
216         struct thread_info *ti;
217         int cpu = get_cpu();
218
219         prepare_to_copy(orig);
220
221         tsk = task_cache[cpu];
222         task_cache[cpu] = NULL;
223         put_cpu();
224         if (!tsk) {
225                 ti = alloc_thread_info();
226                 if (!ti)
227                         return NULL;
228
229                 tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
230                 if (!tsk) {
231                         free_thread_info(ti);
232                         return NULL;
233                 }
234         } else
235                 ti = tsk->thread_info;
236
237         *ti = *orig->thread_info;
238         *tsk = *orig;
239         tsk->thread_info = ti;
240         ti->task = tsk;
241
242         /* One for us, one for whoever does the "release_task()" (usually parent) */
243         atomic_set(&tsk->usage,2);
244         return tsk;
245 }
246
247 #ifdef CONFIG_MMU
248 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
249 {
250         struct vm_area_struct * mpnt, *tmp, **pprev;
251         int retval;
252         unsigned long charge = 0;
253
254         down_write(&oldmm->mmap_sem);
255         flush_cache_mm(current->mm);
256         mm->locked_vm = 0;
257         mm->mmap = NULL;
258         mm->mmap_cache = NULL;
259         mm->free_area_cache = TASK_UNMAPPED_BASE;
260         mm->map_count = 0;
261         mm->rss = 0;
262         mm->cpu_vm_mask = 0;
263         pprev = &mm->mmap;
264
265         /*
266          * Add it to the mmlist after the parent.
267          * Doing it this way means that we can order the list,
268          * and fork() won't mess up the ordering significantly.
269          * Add it first so that swapoff can see any swap entries.
270          */
271         spin_lock(&mmlist_lock);
272         list_add(&mm->mmlist, &current->mm->mmlist);
273         mmlist_nr++;
274         spin_unlock(&mmlist_lock);
275
276         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
277                 struct file *file;
278
279                 if(mpnt->vm_flags & VM_DONTCOPY)
280                         continue;
281                 if (mpnt->vm_flags & VM_ACCOUNT) {
282                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
283                         if (!vm_enough_memory(len))
284                                 goto fail_nomem;
285                         charge += len;
286                 }
287                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
288                 if (!tmp)
289                         goto fail_nomem;
290                 *tmp = *mpnt;
291                 tmp->vm_flags &= ~VM_LOCKED;
292                 tmp->vm_mm = mm;
293                 tmp->vm_next = NULL;
294                 file = tmp->vm_file;
295                 INIT_LIST_HEAD(&tmp->shared);
296                 if (file) {
297                         struct inode *inode = file->f_dentry->d_inode;
298                         get_file(file);
299                         if (tmp->vm_flags & VM_DENYWRITE)
300                                 atomic_dec(&inode->i_writecount);
301       
302                         /* insert tmp into the share list, just after mpnt */
303                         down(&inode->i_mapping->i_shared_sem);
304                         list_add_tail(&tmp->shared, &mpnt->shared);
305                         up(&inode->i_mapping->i_shared_sem);
306                 }
307
308                 /*
309                  * Link in the new vma and copy the page table entries:
310                  * link in first so that swapoff can see swap entries.
311                  */
312                 spin_lock(&mm->page_table_lock);
313                 *pprev = tmp;
314                 pprev = &tmp->vm_next;
315                 mm->map_count++;
316                 retval = copy_page_range(mm, current->mm, tmp);
317                 spin_unlock(&mm->page_table_lock);
318
319                 if (tmp->vm_ops && tmp->vm_ops->open)
320                         tmp->vm_ops->open(tmp);
321
322                 if (retval)
323                         goto fail;
324         }
325         retval = 0;
326         build_mmap_rb(mm);
327
328 out:
329         flush_tlb_mm(current->mm);
330         up_write(&oldmm->mmap_sem);
331         return retval;
332 fail_nomem:
333         retval = -ENOMEM;
334   fail:
335         vm_unacct_memory(charge);
336         goto out;
337 }
338 static inline int mm_alloc_pgd(struct mm_struct * mm)
339 {
340         mm->pgd = pgd_alloc(mm);
341         if (unlikely(!mm->pgd))
342                 return -ENOMEM;
343         return 0;
344 }
345
346 static inline void mm_free_pgd(struct mm_struct * mm)
347 {
348         pgd_free(mm->pgd);
349 }
350 #else
351 #define dup_mmap(mm, oldmm)     (0)
352 #define mm_alloc_pgd(mm)        (0)
353 #define mm_free_pgd(mm)
354 #endif /* CONFIG_MMU */
355
356 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
357 int mmlist_nr;
358
359 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
360 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
361
362 #include <linux/init_task.h>
363
364 static struct mm_struct * mm_init(struct mm_struct * mm)
365 {
366         atomic_set(&mm->mm_users, 1);
367         atomic_set(&mm->mm_count, 1);
368         init_rwsem(&mm->mmap_sem);
369         mm->core_waiters = 0;
370         mm->page_table_lock = SPIN_LOCK_UNLOCKED;
371         mm->ioctx_list_lock = RW_LOCK_UNLOCKED;
372         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
373         mm->free_area_cache = TASK_UNMAPPED_BASE;
374
375         if (likely(!mm_alloc_pgd(mm))) {
376                 mm->def_flags = 0;
377                 return mm;
378         }
379         free_mm(mm);
380         return NULL;
381 }
382
383 /*
384  * Allocate and initialize an mm_struct.
385  */
386 struct mm_struct * mm_alloc(void)
387 {
388         struct mm_struct * mm;
389
390         mm = allocate_mm();
391         if (mm) {
392                 memset(mm, 0, sizeof(*mm));
393                 return mm_init(mm);
394         }
395         return NULL;
396 }
397
398 /*
399  * Called when the last reference to the mm
400  * is dropped: either by a lazy thread or by
401  * mmput. Free the page directory and the mm.
402  */
403 inline void __mmdrop(struct mm_struct *mm)
404 {
405         BUG_ON(mm == &init_mm);
406         mm_free_pgd(mm);
407         destroy_context(mm);
408         free_mm(mm);
409 }
410
411 /*
412  * Decrement the use count and release all resources for an mm.
413  */
414 void mmput(struct mm_struct *mm)
415 {
416         if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {
417                 list_del(&mm->mmlist);
418                 mmlist_nr--;
419                 spin_unlock(&mmlist_lock);
420                 exit_aio(mm);
421                 exit_mmap(mm);
422                 mmdrop(mm);
423         }
424 }
425
426 /* Please note the differences between mmput and mm_release.
427  * mmput is called whenever we stop holding onto a mm_struct,
428  * error success whatever.
429  *
430  * mm_release is called after a mm_struct has been removed
431  * from the current process.
432  *
433  * This difference is important for error handling, when we
434  * only half set up a mm_struct for a new process and need to restore
435  * the old one.  Because we mmput the new mm_struct before
436  * restoring the old one. . .
437  * Eric Biederman 10 January 1998
438  */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441         struct completion *vfork_done = tsk->vfork_done;
442
443         /* Get rid of any cached register state */
444         deactivate_mm(tsk, mm);
445
446         /* notify parent sleeping on vfork() */
447         if (vfork_done) {
448                 tsk->vfork_done = NULL;
449                 complete(vfork_done);
450         }
451         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
452                 u32 __user * tidptr = tsk->clear_child_tid;
453                 tsk->clear_child_tid = NULL;
454
455                 /*
456                  * We don't check the error code - if userspace has
457                  * not set up a proper pointer then tough luck.
458                  */
459                 put_user(0, tidptr);
460                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL);
461         }
462 }
463
464 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
465 {
466         struct mm_struct * mm, *oldmm;
467         int retval;
468
469         tsk->min_flt = tsk->maj_flt = 0;
470         tsk->cmin_flt = tsk->cmaj_flt = 0;
471         tsk->nswap = tsk->cnswap = 0;
472
473         tsk->mm = NULL;
474         tsk->active_mm = NULL;
475
476         /*
477          * Are we cloning a kernel thread?
478          *
479          * We need to steal a active VM for that..
480          */
481         oldmm = current->mm;
482         if (!oldmm)
483                 return 0;
484
485         if (clone_flags & CLONE_VM) {
486                 atomic_inc(&oldmm->mm_users);
487                 mm = oldmm;
488                 /*
489                  * There are cases where the PTL is held to ensure no
490                  * new threads start up in user mode using an mm, which
491                  * allows optimizing out ipis; the tlb_gather_mmu code
492                  * is an example.
493                  */
494                 spin_unlock_wait(&oldmm->page_table_lock);
495                 goto good_mm;
496         }
497
498         retval = -ENOMEM;
499         mm = allocate_mm();
500         if (!mm)
501                 goto fail_nomem;
502
503         /* Copy the current MM stuff.. */
504         memcpy(mm, oldmm, sizeof(*mm));
505         if (!mm_init(mm))
506                 goto fail_nomem;
507
508         if (init_new_context(tsk,mm))
509                 goto free_pt;
510
511         retval = dup_mmap(mm, oldmm);
512         if (retval)
513                 goto free_pt;
514
515 good_mm:
516         tsk->mm = mm;
517         tsk->active_mm = mm;
518         return 0;
519
520 free_pt:
521         mmput(mm);
522 fail_nomem:
523         return retval;
524 }
525
526 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
527 {
528         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
529         /* We don't need to lock fs - think why ;-) */
530         if (fs) {
531                 atomic_set(&fs->count, 1);
532                 fs->lock = RW_LOCK_UNLOCKED;
533                 fs->umask = old->umask;
534                 read_lock(&old->lock);
535                 fs->rootmnt = mntget(old->rootmnt);
536                 fs->root = dget(old->root);
537                 fs->pwdmnt = mntget(old->pwdmnt);
538                 fs->pwd = dget(old->pwd);
539                 if (old->altroot) {
540                         fs->altrootmnt = mntget(old->altrootmnt);
541                         fs->altroot = dget(old->altroot);
542                 } else {
543                         fs->altrootmnt = NULL;
544                         fs->altroot = NULL;
545                 }
546                 read_unlock(&old->lock);
547         }
548         return fs;
549 }
550
551 struct fs_struct *copy_fs_struct(struct fs_struct *old)
552 {
553         return __copy_fs_struct(old);
554 }
555
556 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
557 {
558         if (clone_flags & CLONE_FS) {
559                 atomic_inc(&current->fs->count);
560                 return 0;
561         }
562         tsk->fs = __copy_fs_struct(current->fs);
563         if (!tsk->fs)
564                 return -ENOMEM;
565         return 0;
566 }
567
568 static int count_open_files(struct files_struct *files, int size)
569 {
570         int i;
571
572         /* Find the last open fd */
573         for (i = size/(8*sizeof(long)); i > 0; ) {
574                 if (files->open_fds->fds_bits[--i])
575                         break;
576         }
577         i = (i+1) * 8 * sizeof(long);
578         return i;
579 }
580
581 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
582 {
583         struct files_struct *oldf, *newf;
584         struct file **old_fds, **new_fds;
585         int open_files, nfds, size, i, error = 0;
586
587         /*
588          * A background process may not have any files ...
589          */
590         oldf = current->files;
591         if (!oldf)
592                 goto out;
593
594         if (clone_flags & CLONE_FILES) {
595                 atomic_inc(&oldf->count);
596                 goto out;
597         }
598
599         tsk->files = NULL;
600         error = -ENOMEM;
601         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
602         if (!newf) 
603                 goto out;
604
605         atomic_set(&newf->count, 1);
606
607         newf->file_lock     = SPIN_LOCK_UNLOCKED;
608         newf->next_fd       = 0;
609         newf->max_fds       = NR_OPEN_DEFAULT;
610         newf->max_fdset     = __FD_SETSIZE;
611         newf->close_on_exec = &newf->close_on_exec_init;
612         newf->open_fds      = &newf->open_fds_init;
613         newf->fd            = &newf->fd_array[0];
614
615         /* We don't yet have the oldf readlock, but even if the old
616            fdset gets grown now, we'll only copy up to "size" fds */
617         size = oldf->max_fdset;
618         if (size > __FD_SETSIZE) {
619                 newf->max_fdset = 0;
620                 spin_lock(&newf->file_lock);
621                 error = expand_fdset(newf, size-1);
622                 spin_unlock(&newf->file_lock);
623                 if (error)
624                         goto out_release;
625         }
626         spin_lock(&oldf->file_lock);
627
628         open_files = count_open_files(oldf, size);
629
630         /*
631          * Check whether we need to allocate a larger fd array.
632          * Note: we're not a clone task, so the open count won't
633          * change.
634          */
635         nfds = NR_OPEN_DEFAULT;
636         if (open_files > nfds) {
637                 spin_unlock(&oldf->file_lock);
638                 newf->max_fds = 0;
639                 spin_lock(&newf->file_lock);
640                 error = expand_fd_array(newf, open_files-1);
641                 spin_unlock(&newf->file_lock);
642                 if (error) 
643                         goto out_release;
644                 nfds = newf->max_fds;
645                 spin_lock(&oldf->file_lock);
646         }
647
648         old_fds = oldf->fd;
649         new_fds = newf->fd;
650
651         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
652         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
653
654         for (i = open_files; i != 0; i--) {
655                 struct file *f = *old_fds++;
656                 if (f)
657                         get_file(f);
658                 *new_fds++ = f;
659         }
660         spin_unlock(&oldf->file_lock);
661
662         /* compute the remainder to be cleared */
663         size = (newf->max_fds - open_files) * sizeof(struct file *);
664
665         /* This is long word aligned thus could use a optimized version */ 
666         memset(new_fds, 0, size); 
667
668         if (newf->max_fdset > open_files) {
669                 int left = (newf->max_fdset-open_files)/8;
670                 int start = open_files / (8 * sizeof(unsigned long));
671
672                 memset(&newf->open_fds->fds_bits[start], 0, left);
673                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
674         }
675
676         tsk->files = newf;
677         error = 0;
678 out:
679         return error;
680
681 out_release:
682         free_fdset (newf->close_on_exec, newf->max_fdset);
683         free_fdset (newf->open_fds, newf->max_fdset);
684         kmem_cache_free(files_cachep, newf);
685         goto out;
686 }
687
688 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
689 {
690         struct sighand_struct *sig;
691
692         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
693                 atomic_inc(&current->sighand->count);
694                 return 0;
695         }
696         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
697         tsk->sighand = sig;
698         if (!sig)
699                 return -ENOMEM;
700         spin_lock_init(&sig->siglock);
701         atomic_set(&sig->count, 1);
702         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
703         return 0;
704 }
705
706 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
707 {
708         struct signal_struct *sig;
709
710         if (clone_flags & CLONE_THREAD) {
711                 atomic_inc(&current->signal->count);
712                 return 0;
713         }
714         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
715         tsk->signal = sig;
716         if (!sig)
717                 return -ENOMEM;
718         atomic_set(&sig->count, 1);
719         sig->group_exit = 0;
720         sig->group_exit_code = 0;
721         sig->group_exit_task = NULL;
722         sig->group_stop_count = 0;
723         sig->curr_target = NULL;
724         init_sigpending(&sig->shared_pending);
725
726         return 0;
727 }
728
729 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
730 {
731         unsigned long new_flags = p->flags;
732
733         new_flags &= ~PF_SUPERPRIV;
734         new_flags |= PF_FORKNOEXEC;
735         if (!(clone_flags & CLONE_PTRACE))
736                 p->ptrace = 0;
737         p->flags = new_flags;
738 }
739
740 asmlinkage long sys_set_tid_address(int __user *tidptr)
741 {
742         current->clear_child_tid = tidptr;
743
744         return current->pid;
745 }
746
747 /*
748  * This creates a new process as a copy of the old one,
749  * but does not actually start it yet.
750  *
751  * It copies the registers, and all the appropriate
752  * parts of the process environment (as per the clone
753  * flags). The actual kick-off is left to the caller.
754  */
755 struct task_struct *copy_process(unsigned long clone_flags,
756                                  unsigned long stack_start,
757                                  struct pt_regs *regs,
758                                  unsigned long stack_size,
759                                  int __user *parent_tidptr,
760                                  int __user *child_tidptr)
761 {
762         int retval;
763         struct task_struct *p = NULL;
764
765         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
766                 return ERR_PTR(-EINVAL);
767
768         /*
769          * Thread groups must share signals as well, and detached threads
770          * can only be started up within the thread group.
771          */
772         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
773                 return ERR_PTR(-EINVAL);
774         if ((clone_flags & CLONE_DETACHED) && !(clone_flags & CLONE_THREAD))
775                 return ERR_PTR(-EINVAL);
776
777         retval = security_task_create(clone_flags);
778         if (retval)
779                 goto fork_out;
780
781         retval = -ENOMEM;
782         p = dup_task_struct(current);
783         if (!p)
784                 goto fork_out;
785
786         retval = -EAGAIN;
787         if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur) {
788                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE))
789                         goto bad_fork_free;
790         }
791
792         atomic_inc(&p->user->__count);
793         atomic_inc(&p->user->processes);
794
795         /*
796          * If multiple threads are within copy_process(), then this check
797          * triggers too late. This doesn't hurt, the check is only there
798          * to stop root fork bombs.
799          */
800         if (nr_threads >= max_threads)
801                 goto bad_fork_cleanup_count;
802
803         if (!try_module_get(p->thread_info->exec_domain->module))
804                 goto bad_fork_cleanup_count;
805
806         if (p->binfmt && !try_module_get(p->binfmt->module))
807                 goto bad_fork_cleanup_put_domain;
808
809 #ifdef CONFIG_PREEMPT
810         /*
811          * schedule_tail drops this_rq()->lock so we compensate with a count
812          * of 1.  Also, we want to start with kernel preemption disabled.
813          */
814         p->thread_info->preempt_count = 1;
815 #endif
816         p->did_exec = 0;
817         p->state = TASK_UNINTERRUPTIBLE;
818
819         copy_flags(clone_flags, p);
820         if (clone_flags & CLONE_IDLETASK)
821                 p->pid = 0;
822         else {
823                 p->pid = alloc_pidmap();
824                 if (p->pid == -1)
825                         goto bad_fork_cleanup;
826         }
827         retval = -EFAULT;
828         if (clone_flags & CLONE_PARENT_SETTID)
829                 if (put_user(p->pid, parent_tidptr))
830                         goto bad_fork_cleanup;
831
832         p->proc_dentry = NULL;
833
834         INIT_LIST_HEAD(&p->run_list);
835
836         INIT_LIST_HEAD(&p->children);
837         INIT_LIST_HEAD(&p->sibling);
838         INIT_LIST_HEAD(&p->posix_timers);
839         init_waitqueue_head(&p->wait_chldexit);
840         p->vfork_done = NULL;
841         spin_lock_init(&p->alloc_lock);
842         spin_lock_init(&p->switch_lock);
843
844         clear_tsk_thread_flag(p, TIF_SIGPENDING);
845         init_sigpending(&p->pending);
846
847         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
848         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
849         init_timer(&p->real_timer);
850         p->real_timer.data = (unsigned long) p;
851
852         p->leader = 0;          /* session leadership doesn't inherit */
853         p->tty_old_pgrp = 0;
854         p->utime = p->stime = 0;
855         p->cutime = p->cstime = 0;
856         p->array = NULL;
857         p->lock_depth = -1;             /* -1 = no lock */
858         p->start_time = get_jiffies_64();
859         p->security = NULL;
860
861         retval = -ENOMEM;
862         if ((retval = security_task_alloc(p)))
863                 goto bad_fork_cleanup;
864         /* copy all the process information */
865         if ((retval = copy_semundo(clone_flags, p)))
866                 goto bad_fork_cleanup_security;
867         if ((retval = copy_files(clone_flags, p)))
868                 goto bad_fork_cleanup_semundo;
869         if ((retval = copy_fs(clone_flags, p)))
870                 goto bad_fork_cleanup_files;
871         if ((retval = copy_sighand(clone_flags, p)))
872                 goto bad_fork_cleanup_fs;
873         if ((retval = copy_signal(clone_flags, p)))
874                 goto bad_fork_cleanup_sighand;
875         if ((retval = copy_mm(clone_flags, p)))
876                 goto bad_fork_cleanup_signal;
877         if ((retval = copy_namespace(clone_flags, p)))
878                 goto bad_fork_cleanup_mm;
879         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
880         if (retval)
881                 goto bad_fork_cleanup_namespace;
882
883         if (clone_flags & CLONE_CHILD_SETTID)
884                 p->set_child_tid = child_tidptr;
885         /*
886          * Clear TID on mm_release()?
887          */
888         if (clone_flags & CLONE_CHILD_CLEARTID)
889                 p->clear_child_tid = child_tidptr;
890
891         /*
892          * Syscall tracing should be turned off in the child regardless
893          * of CLONE_PTRACE.
894          */
895         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
896
897         /* Our parent execution domain becomes current domain
898            These must match for thread signalling to apply */
899            
900         p->parent_exec_id = p->self_exec_id;
901
902         /* ok, now we should be set up.. */
903         if (clone_flags & CLONE_DETACHED)
904                 p->exit_signal = -1;
905         else
906                 p->exit_signal = clone_flags & CSIGNAL;
907         p->pdeath_signal = 0;
908
909         /*
910          * Share the timeslice between parent and child, thus the
911          * total amount of pending timeslices in the system doesn't change,
912          * resulting in more scheduling fairness.
913          */
914         local_irq_disable();
915         p->time_slice = (current->time_slice + 1) >> 1;
916         /*
917          * The remainder of the first timeslice might be recovered by
918          * the parent if the child exits early enough.
919          */
920         p->first_time_slice = 1;
921         current->time_slice >>= 1;
922         p->last_run = jiffies;
923         if (!current->time_slice) {
924                 /*
925                  * This case is rare, it happens when the parent has only
926                  * a single jiffy left from its timeslice. Taking the
927                  * runqueue lock is not a problem.
928                  */
929                 current->time_slice = 1;
930                 preempt_disable();
931                 scheduler_tick(0, 0);
932                 local_irq_enable();
933                 preempt_enable();
934         } else
935                 local_irq_enable();
936         /*
937          * Ok, add it to the run-queues and make it
938          * visible to the rest of the system.
939          *
940          * Let it rip!
941          */
942         p->tgid = p->pid;
943         p->group_leader = p;
944         INIT_LIST_HEAD(&p->ptrace_children);
945         INIT_LIST_HEAD(&p->ptrace_list);
946
947         /* Need tasklist lock for parent etc handling! */
948         write_lock_irq(&tasklist_lock);
949         /*
950          * Check for pending SIGKILL! The new thread should not be allowed
951          * to slip out of an OOM kill. (or normal SIGKILL.)
952          */
953         if (sigismember(&current->pending.signal, SIGKILL)) {
954                 write_unlock_irq(&tasklist_lock);
955                 retval = -EINTR;
956                 goto bad_fork_cleanup_namespace;
957         }
958
959         /* CLONE_PARENT re-uses the old parent */
960         if (clone_flags & CLONE_PARENT)
961                 p->real_parent = current->real_parent;
962         else
963                 p->real_parent = current;
964         p->parent = p->real_parent;
965
966         if (clone_flags & CLONE_THREAD) {
967                 spin_lock(&current->sighand->siglock);
968                 /*
969                  * Important: if an exit-all has been started then
970                  * do not create this new thread - the whole thread
971                  * group is supposed to exit anyway.
972                  */
973                 if (current->signal->group_exit) {
974                         spin_unlock(&current->sighand->siglock);
975                         write_unlock_irq(&tasklist_lock);
976                         goto bad_fork_cleanup_namespace;
977                 }
978                 p->tgid = current->tgid;
979                 p->group_leader = current->group_leader;
980
981                 if (current->signal->group_stop_count > 0) {
982                         /*
983                          * There is an all-stop in progress for the group.
984                          * We ourselves will stop as soon as we check signals.
985                          * Make the new thread part of that group stop too.
986                          */
987                         current->signal->group_stop_count++;
988                         set_tsk_thread_flag(p, TIF_SIGPENDING);
989                 }
990
991                 spin_unlock(&current->sighand->siglock);
992         }
993
994         SET_LINKS(p);
995         if (p->ptrace & PT_PTRACED)
996                 __ptrace_link(p, current->parent);
997
998         attach_pid(p, PIDTYPE_PID, p->pid);
999         if (thread_group_leader(p)) {
1000                 attach_pid(p, PIDTYPE_TGID, p->tgid);
1001                 attach_pid(p, PIDTYPE_PGID, p->pgrp);
1002                 attach_pid(p, PIDTYPE_SID, p->session);
1003                 if (p->pid)
1004                         per_cpu(process_counts, smp_processor_id())++;
1005         } else
1006                 link_pid(p, p->pids + PIDTYPE_TGID, &p->group_leader->pids[PIDTYPE_TGID].pid);
1007
1008         nr_threads++;
1009         write_unlock_irq(&tasklist_lock);
1010         retval = 0;
1011
1012 fork_out:
1013         if (retval)
1014                 return ERR_PTR(retval);
1015         return p;
1016
1017 bad_fork_cleanup_namespace:
1018         exit_namespace(p);
1019 bad_fork_cleanup_mm:
1020         exit_mm(p);
1021 bad_fork_cleanup_signal:
1022         exit_signal(p);
1023 bad_fork_cleanup_sighand:
1024         exit_sighand(p);
1025 bad_fork_cleanup_fs:
1026         exit_fs(p); /* blocking */
1027 bad_fork_cleanup_files:
1028         exit_files(p); /* blocking */
1029 bad_fork_cleanup_semundo:
1030         exit_semundo(p);
1031 bad_fork_cleanup_security:
1032         security_task_free(p);
1033 bad_fork_cleanup:
1034         if (p->pid > 0)
1035                 free_pidmap(p->pid);
1036         if (p->binfmt)
1037                 module_put(p->binfmt->module);
1038 bad_fork_cleanup_put_domain:
1039         module_put(p->thread_info->exec_domain->module);
1040 bad_fork_cleanup_count:
1041         atomic_dec(&p->user->processes);
1042         free_uid(p->user);
1043 bad_fork_free:
1044         free_task_struct(p);
1045         goto fork_out;
1046 }
1047
1048 static inline int fork_traceflag (unsigned clone_flags)
1049 {
1050         if (clone_flags & (CLONE_UNTRACED | CLONE_IDLETASK))
1051                 return 0;
1052         else if (clone_flags & CLONE_VFORK) {
1053                 if (current->ptrace & PT_TRACE_VFORK)
1054                         return PTRACE_EVENT_VFORK;
1055         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1056                 if (current->ptrace & PT_TRACE_CLONE)
1057                         return PTRACE_EVENT_CLONE;
1058         } else if (current->ptrace & PT_TRACE_FORK)
1059                 return PTRACE_EVENT_FORK;
1060
1061         return 0;
1062 }
1063
1064 /*
1065  *  Ok, this is the main fork-routine.
1066  *
1067  * It copies the process, and if successful kick-starts
1068  * it and waits for it to finish using the VM if required.
1069  */
1070 long do_fork(unsigned long clone_flags,
1071               unsigned long stack_start,
1072               struct pt_regs *regs,
1073               unsigned long stack_size,
1074               int __user *parent_tidptr,
1075               int __user *child_tidptr)
1076 {
1077         struct task_struct *p;
1078         int trace = 0;
1079         long pid;
1080
1081         if (unlikely(current->ptrace)) {
1082                 trace = fork_traceflag (clone_flags);
1083                 if (trace)
1084                         clone_flags |= CLONE_PTRACE;
1085         }
1086
1087         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr);
1088         /*
1089          * Do this prior waking up the new thread - the thread pointer
1090          * might get invalid after that point, if the thread exits quickly.
1091          */
1092         pid = IS_ERR(p) ? PTR_ERR(p) : p->pid;
1093
1094         if (!IS_ERR(p)) {
1095                 struct completion vfork;
1096
1097                 if (clone_flags & CLONE_VFORK) {
1098                         p->vfork_done = &vfork;
1099                         init_completion(&vfork);
1100                 }
1101
1102                 if (p->ptrace & PT_PTRACED) {
1103                         /*
1104                          * We'll start up with an immediate SIGSTOP.
1105                          */
1106                         sigaddset(&p->pending.signal, SIGSTOP);
1107                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1108                 }
1109
1110                 wake_up_forked_process(p);              /* do this last */
1111                 ++total_forks;
1112
1113                 if (unlikely (trace)) {
1114                         current->ptrace_message = pid;
1115                         ptrace_notify ((trace << 8) | SIGTRAP);
1116                 }
1117
1118                 if (clone_flags & CLONE_VFORK) {
1119                         wait_for_completion(&vfork);
1120                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1121                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1122                 } else
1123                         /*
1124                          * Let the child process run first, to avoid most of the
1125                          * COW overhead when the child exec()s afterwards.
1126                          */
1127                         set_need_resched();
1128         }
1129         return pid;
1130 }
1131
1132 /* SLAB cache for signal_struct structures (tsk->signal) */
1133 kmem_cache_t *signal_cachep;
1134
1135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1136 kmem_cache_t *sighand_cachep;
1137
1138 /* SLAB cache for files_struct structures (tsk->files) */
1139 kmem_cache_t *files_cachep;
1140
1141 /* SLAB cache for fs_struct structures (tsk->fs) */
1142 kmem_cache_t *fs_cachep;
1143
1144 /* SLAB cache for vm_area_struct structures */
1145 kmem_cache_t *vm_area_cachep;
1146
1147 /* SLAB cache for mm_struct structures (tsk->mm) */
1148 kmem_cache_t *mm_cachep;
1149
1150 void __init proc_caches_init(void)
1151 {
1152         sighand_cachep = kmem_cache_create("sighand_cache",
1153                         sizeof(struct sighand_struct), 0,
1154                         SLAB_HWCACHE_ALIGN, NULL, NULL);
1155         if (!sighand_cachep)
1156                 panic("Cannot create sighand SLAB cache");
1157
1158         signal_cachep = kmem_cache_create("signal_cache",
1159                         sizeof(struct signal_struct), 0,
1160                         SLAB_HWCACHE_ALIGN, NULL, NULL);
1161         if (!signal_cachep)
1162                 panic("Cannot create signal SLAB cache");
1163
1164         files_cachep = kmem_cache_create("files_cache", 
1165                          sizeof(struct files_struct), 0, 
1166                          SLAB_HWCACHE_ALIGN, NULL, NULL);
1167         if (!files_cachep) 
1168                 panic("Cannot create files SLAB cache");
1169
1170         fs_cachep = kmem_cache_create("fs_cache", 
1171                          sizeof(struct fs_struct), 0, 
1172                          SLAB_HWCACHE_ALIGN, NULL, NULL);
1173         if (!fs_cachep) 
1174                 panic("Cannot create fs_struct SLAB cache");
1175  
1176         vm_area_cachep = kmem_cache_create("vm_area_struct",
1177                         sizeof(struct vm_area_struct), 0,
1178                         0, NULL, NULL);
1179         if(!vm_area_cachep)
1180                 panic("vma_init: Cannot alloc vm_area_struct SLAB cache");
1181
1182         mm_cachep = kmem_cache_create("mm_struct",
1183                         sizeof(struct mm_struct), 0,
1184                         SLAB_HWCACHE_ALIGN, NULL, NULL);
1185         if(!mm_cachep)
1186                 panic("vma_init: Cannot alloc mm_struct SLAB cache");
1187 }