- supported.conf: Added sparse_keymap (eeepc_laptop depends on it)
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / include / mach-xen / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9 #include <asm/hypervisor.h>
10
11 #include <linux/kernel.h>
12 #include <linux/irqflags.h>
13
14 /* entries in ARCH_DLINFO: */
15 #ifdef CONFIG_IA32_EMULATION
16 # define AT_VECTOR_SIZE_ARCH 2
17 #else
18 # define AT_VECTOR_SIZE_ARCH 1
19 #endif
20
21 struct task_struct; /* one of the stranger aspects of C forward declarations */
22 struct task_struct *__switch_to(struct task_struct *prev,
23                                 struct task_struct *next);
24 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p);
25
26 #ifdef CONFIG_X86_32
27
28 #ifdef CONFIG_CC_STACKPROTECTOR
29 #define __switch_canary                                                 \
30         "movl %P[task_canary](%[next]), %%ebx\n\t"                      \
31         "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
32 #define __switch_canary_oparam                                          \
33         , [stack_canary] "=m" (per_cpu_var(stack_canary.canary))
34 #define __switch_canary_iparam                                          \
35         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
36 #else   /* CC_STACKPROTECTOR */
37 #define __switch_canary
38 #define __switch_canary_oparam
39 #define __switch_canary_iparam
40 #endif  /* CC_STACKPROTECTOR */
41
42 /*
43  * Saving eflags is important. It switches not only IOPL between tasks,
44  * it also protects other tasks from NT leaking through sysenter etc.
45  */
46 #define switch_to(prev, next, last)                                     \
47 do {                                                                    \
48         /*                                                              \
49          * Context-switching clobbers all registers, so we clobber      \
50          * them explicitly, via unused output variables.                \
51          * (EAX and EBP is not listed because EBP is saved/restored     \
52          * explicitly for wchan access and EAX is the return value of   \
53          * __switch_to())                                               \
54          */                                                             \
55         unsigned long ebx, ecx, edx, esi, edi;                          \
56                                                                         \
57         asm volatile("pushfl\n\t"               /* save    flags */     \
58                      "pushl %%ebp\n\t"          /* save    EBP   */     \
59                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
60                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
61                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
62                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
63                      __switch_canary                                    \
64                      "jmp __switch_to\n"        /* regparm call  */     \
65                      "1:\t"                                             \
66                      "popl %%ebp\n\t"           /* restore EBP   */     \
67                      "popfl\n"                  /* restore flags */     \
68                                                                         \
69                      /* output parameters */                            \
70                      : [prev_sp] "=m" (prev->thread.sp),                \
71                        [prev_ip] "=m" (prev->thread.ip),                \
72                        "=a" (last),                                     \
73                                                                         \
74                        /* clobbered output registers: */                \
75                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
76                        "=S" (esi), "=D" (edi)                           \
77                                                                         \
78                        __switch_canary_oparam                           \
79                                                                         \
80                        /* input parameters: */                          \
81                      : [next_sp]  "m" (next->thread.sp),                \
82                        [next_ip]  "m" (next->thread.ip),                \
83                                                                         \
84                        /* regparm parameters for __switch_to(): */      \
85                        [prev]     "a" (prev),                           \
86                        [next]     "d" (next)                            \
87                                                                         \
88                        __switch_canary_iparam                           \
89                                                                         \
90                      : /* reloaded segment registers */                 \
91                         "memory");                                      \
92 } while (0)
93
94 /*
95  * disable hlt during certain critical i/o operations
96  */
97 #define HAVE_DISABLE_HLT
98 #else
99 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
100 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
101
102 /* frame pointer must be last for get_wchan */
103 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
104 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
105
106 #define __EXTRA_CLOBBER  \
107         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
108           "r12", "r13", "r14", "r15"
109
110 #ifdef CONFIG_CC_STACKPROTECTOR
111 #define __switch_canary                                                   \
112         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
113         "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
114 #define __switch_canary_oparam                                            \
115         , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
116 #define __switch_canary_iparam                                            \
117         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
118 #else   /* CC_STACKPROTECTOR */
119 #define __switch_canary
120 #define __switch_canary_oparam
121 #define __switch_canary_iparam
122 #endif  /* CC_STACKPROTECTOR */
123
124 /* Save restore flags to clear handle leaking NT */
125 #define switch_to(prev, next, last) \
126         asm volatile(SAVE_CONTEXT                                         \
127              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
128              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
129              "call __switch_to\n\t"                                       \
130              ".globl thread_return\n"                                     \
131              "thread_return:\n\t"                                         \
132              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
133              __switch_canary                                              \
134              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
135              "movq %%rax,%%rdi\n\t"                                       \
136              "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"         \
137              "jnz   ret_from_fork\n\t"                                    \
138              RESTORE_CONTEXT                                              \
139              : "=a" (last)                                                \
140                __switch_canary_oparam                                     \
141              : [next] "S" (next), [prev] "D" (prev),                      \
142                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
143                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
144                [_tif_fork] "i" (_TIF_FORK),                               \
145                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
146                [current_task] "m" (per_cpu_var(current_task))             \
147                __switch_canary_iparam                                     \
148              : "memory", "cc" __EXTRA_CLOBBER)
149 #endif
150
151 #ifdef __KERNEL__
152
153 extern void xen_load_gs_index(unsigned);
154
155 /*
156  * Load a segment. Fall back on loading the zero
157  * segment if something goes wrong..
158  */
159 #define loadsegment(seg, value)                 \
160         asm volatile("\n"                       \
161                      "1:\t"                     \
162                      "movl %k0,%%" #seg "\n"    \
163                      "2:\n"                     \
164                      ".section .fixup,\"ax\"\n" \
165                      "3:\t"                     \
166                      "movl %k1, %%" #seg "\n\t" \
167                      "jmp 2b\n"                 \
168                      ".previous\n"              \
169                      _ASM_EXTABLE(1b,3b)        \
170                      : :"r" (value), "r" (0) : "memory")
171
172
173 /*
174  * Save a segment register away
175  */
176 #define savesegment(seg, value)                         \
177         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
178
179 /*
180  * x86_32 user gs accessors.
181  */
182 #ifdef CONFIG_X86_32
183 #ifdef CONFIG_X86_32_LAZY_GS
184 #define get_user_gs(regs)       (u16)({unsigned long v; savesegment(gs, v); v;})
185 #define set_user_gs(regs, v)    loadsegment(gs, (unsigned long)(v))
186 #define task_user_gs(tsk)       ((tsk)->thread.gs)
187 #define lazy_save_gs(v)         savesegment(gs, (v))
188 #define lazy_load_gs(v)         loadsegment(gs, (v))
189 #else   /* X86_32_LAZY_GS */
190 #define get_user_gs(regs)       (u16)((regs)->gs)
191 #define set_user_gs(regs, v)    do { (regs)->gs = (v); } while (0)
192 #define task_user_gs(tsk)       (task_pt_regs(tsk)->gs)
193 #define lazy_save_gs(v)         do { } while (0)
194 #define lazy_load_gs(v)         do { } while (0)
195 #endif  /* X86_32_LAZY_GS */
196 #endif  /* X86_32 */
197
198 static inline unsigned long get_limit(unsigned long segment)
199 {
200         unsigned long __limit;
201         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
202         return __limit + 1;
203 }
204
205 static inline void xen_clts(void)
206 {
207         HYPERVISOR_fpu_taskswitch(0);
208 }
209
210 static inline void xen_stts(void)
211 {
212         HYPERVISOR_fpu_taskswitch(1);
213 }
214
215 /*
216  * Volatile isn't enough to prevent the compiler from reordering the
217  * read/write functions for the control registers and messing everything up.
218  * A memory clobber would solve the problem, but would prevent reordering of
219  * all loads stores around it, which can hurt performance. Solution is to
220  * use a variable and mimic reads and writes to it to enforce serialization
221  */
222 static unsigned long __force_order;
223
224 static inline unsigned long xen_read_cr0(void)
225 {
226         unsigned long val;
227         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
228         return val;
229 }
230
231 static inline void xen_write_cr0(unsigned long val)
232 {
233         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
234 }
235
236 #define xen_read_cr2() vcpu_info_read(arch.cr2)
237 #define xen_write_cr2(val) vcpu_info_write(arch.cr2, val)
238
239 static inline unsigned long xen_read_cr3(void)
240 {
241         unsigned long val;
242         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
243 #ifdef CONFIG_X86_32
244         return mfn_to_pfn(xen_cr3_to_pfn(val)) << PAGE_SHIFT;
245 #else
246         return machine_to_phys(val);
247 #endif
248 }
249
250 static inline void xen_write_cr3(unsigned long val)
251 {
252 #ifdef CONFIG_X86_32
253         val = xen_pfn_to_cr3(pfn_to_mfn(val >> PAGE_SHIFT));
254 #else
255         val = phys_to_machine(val);
256 #endif
257         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
258 }
259
260 static inline unsigned long xen_read_cr4(void)
261 {
262         unsigned long val;
263         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
264         return val;
265 }
266
267 #define xen_read_cr4_safe() xen_read_cr4()
268
269 static inline void xen_write_cr4(unsigned long val)
270 {
271         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
272 }
273
274 #ifdef CONFIG_X86_64
275 static inline unsigned long xen_read_cr8(void)
276 {
277         return 0;
278 }
279
280 static inline void xen_write_cr8(unsigned long val)
281 {
282         BUG_ON(val);
283 }
284 #endif
285
286 static inline void xen_wbinvd(void)
287 {
288         asm volatile("wbinvd": : :"memory");
289 }
290
291 #define read_cr0()      (xen_read_cr0())
292 #define write_cr0(x)    (xen_write_cr0(x))
293 #define read_cr2()      (xen_read_cr2())
294 #define write_cr2(x)    (xen_write_cr2(x))
295 #define read_cr3()      (xen_read_cr3())
296 #define write_cr3(x)    (xen_write_cr3(x))
297 #define read_cr4()      (xen_read_cr4())
298 #define read_cr4_safe() (xen_read_cr4_safe())
299 #define write_cr4(x)    (xen_write_cr4(x))
300 #define wbinvd()        (xen_wbinvd())
301 #ifdef CONFIG_X86_64
302 #define read_cr8()      (xen_read_cr8())
303 #define write_cr8(x)    (xen_write_cr8(x))
304 #define load_gs_index   xen_load_gs_index
305 #endif
306
307 /* Clear the 'TS' bit */
308 #define clts()          (xen_clts())
309 #define stts()          (xen_stts())
310
311 #endif /* __KERNEL__ */
312
313 static inline void clflush(volatile void *__p)
314 {
315         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
316 }
317
318 #define nop() asm volatile ("nop")
319
320 void disable_hlt(void);
321 void enable_hlt(void);
322
323 void cpu_idle_wait(void);
324
325 extern unsigned long arch_align_stack(unsigned long sp);
326 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
327
328 void xen_idle(void);
329
330 void stop_this_cpu(void *dummy);
331
332 /*
333  * Force strict CPU ordering.
334  * And yes, this is required on UP too when we're talking
335  * to devices.
336  */
337 #ifdef CONFIG_X86_32
338 /*
339  * Some non-Intel clones support out of order store. wmb() ceases to be a
340  * nop for these.
341  */
342 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
343 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
344 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
345 #else
346 #define mb()    asm volatile("mfence":::"memory")
347 #define rmb()   asm volatile("lfence":::"memory")
348 #define wmb()   asm volatile("sfence" ::: "memory")
349 #endif
350
351 /**
352  * read_barrier_depends - Flush all pending reads that subsequents reads
353  * depend on.
354  *
355  * No data-dependent reads from memory-like regions are ever reordered
356  * over this barrier.  All reads preceding this primitive are guaranteed
357  * to access memory (but not necessarily other CPUs' caches) before any
358  * reads following this primitive that depend on the data return by
359  * any of the preceding reads.  This primitive is much lighter weight than
360  * rmb() on most CPUs, and is never heavier weight than is
361  * rmb().
362  *
363  * These ordering constraints are respected by both the local CPU
364  * and the compiler.
365  *
366  * Ordering is not guaranteed by anything other than these primitives,
367  * not even by data dependencies.  See the documentation for
368  * memory_barrier() for examples and URLs to more information.
369  *
370  * For example, the following code would force ordering (the initial
371  * value of "a" is zero, "b" is one, and "p" is "&a"):
372  *
373  * <programlisting>
374  *      CPU 0                           CPU 1
375  *
376  *      b = 2;
377  *      memory_barrier();
378  *      p = &b;                         q = p;
379  *                                      read_barrier_depends();
380  *                                      d = *q;
381  * </programlisting>
382  *
383  * because the read of "*q" depends on the read of "p" and these
384  * two reads are separated by a read_barrier_depends().  However,
385  * the following code, with the same initial values for "a" and "b":
386  *
387  * <programlisting>
388  *      CPU 0                           CPU 1
389  *
390  *      a = 2;
391  *      memory_barrier();
392  *      b = 3;                          y = b;
393  *                                      read_barrier_depends();
394  *                                      x = a;
395  * </programlisting>
396  *
397  * does not enforce ordering, since there is no data dependency between
398  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
399  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
400  * in cases like this where there are no data dependencies.
401  **/
402
403 #define read_barrier_depends()  do { } while (0)
404
405 #ifdef CONFIG_SMP
406 #define smp_mb()        mb()
407 #ifdef CONFIG_X86_PPRO_FENCE
408 # define smp_rmb()      rmb()
409 #else
410 # define smp_rmb()      barrier()
411 #endif
412 #ifdef CONFIG_X86_OOSTORE
413 # define smp_wmb()      wmb()
414 #else
415 # define smp_wmb()      barrier()
416 #endif
417 #define smp_read_barrier_depends()      read_barrier_depends()
418 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
419 #else
420 #define smp_mb()        barrier()
421 #define smp_rmb()       barrier()
422 #define smp_wmb()       barrier()
423 #define smp_read_barrier_depends()      do { } while (0)
424 #define set_mb(var, value) do { var = value; barrier(); } while (0)
425 #endif
426
427 /*
428  * Stop RDTSC speculation. This is needed when you need to use RDTSC
429  * (or get_cycles or vread that possibly accesses the TSC) in a defined
430  * code region.
431  *
432  * (Could use an alternative three way for this if there was one.)
433  */
434 static inline void rdtsc_barrier(void)
435 {
436         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
437         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
438 }
439
440 #endif /* _ASM_X86_SYSTEM_H */