- patches.suse/slab-handle-memoryless-nodes-v2a.patch: Refresh.
[linux-flexiantxendom0-3.2.10.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38         /* ZD1211 */
39         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
63         /* ZD1211B */
64         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
93         /* "Driverless" devices that need ejecting */
94         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
95         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
96         {}
97 };
98
99 MODULE_LICENSE("GPL");
100 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
101 MODULE_AUTHOR("Ulrich Kunitz");
102 MODULE_AUTHOR("Daniel Drake");
103 MODULE_VERSION("1.0");
104 MODULE_DEVICE_TABLE(usb, usb_ids);
105
106 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
107 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
108
109 /* USB device initialization */
110 static void int_urb_complete(struct urb *urb);
111
112 static int request_fw_file(
113         const struct firmware **fw, const char *name, struct device *device)
114 {
115         int r;
116
117         dev_dbg_f(device, "fw name %s\n", name);
118
119         r = request_firmware(fw, name, device);
120         if (r)
121                 dev_err(device,
122                        "Could not load firmware file %s. Error number %d\n",
123                        name, r);
124         return r;
125 }
126
127 static inline u16 get_bcdDevice(const struct usb_device *udev)
128 {
129         return le16_to_cpu(udev->descriptor.bcdDevice);
130 }
131
132 enum upload_code_flags {
133         REBOOT = 1,
134 };
135
136 /* Ensures that MAX_TRANSFER_SIZE is even. */
137 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
138
139 static int upload_code(struct usb_device *udev,
140         const u8 *data, size_t size, u16 code_offset, int flags)
141 {
142         u8 *p;
143         int r;
144
145         /* USB request blocks need "kmalloced" buffers.
146          */
147         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
148         if (!p) {
149                 dev_err(&udev->dev, "out of memory\n");
150                 r = -ENOMEM;
151                 goto error;
152         }
153
154         size &= ~1;
155         while (size > 0) {
156                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
157                         size : MAX_TRANSFER_SIZE;
158
159                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
160
161                 memcpy(p, data, transfer_size);
162                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
163                         USB_REQ_FIRMWARE_DOWNLOAD,
164                         USB_DIR_OUT | USB_TYPE_VENDOR,
165                         code_offset, 0, p, transfer_size, 1000 /* ms */);
166                 if (r < 0) {
167                         dev_err(&udev->dev,
168                                "USB control request for firmware upload"
169                                " failed. Error number %d\n", r);
170                         goto error;
171                 }
172                 transfer_size = r & ~1;
173
174                 size -= transfer_size;
175                 data += transfer_size;
176                 code_offset += transfer_size/sizeof(u16);
177         }
178
179         if (flags & REBOOT) {
180                 u8 ret;
181
182                 /* Use "DMA-aware" buffer. */
183                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
184                         USB_REQ_FIRMWARE_CONFIRM,
185                         USB_DIR_IN | USB_TYPE_VENDOR,
186                         0, 0, p, sizeof(ret), 5000 /* ms */);
187                 if (r != sizeof(ret)) {
188                         dev_err(&udev->dev,
189                                 "control request firmeware confirmation failed."
190                                 " Return value %d\n", r);
191                         if (r >= 0)
192                                 r = -ENODEV;
193                         goto error;
194                 }
195                 ret = p[0];
196                 if (ret & 0x80) {
197                         dev_err(&udev->dev,
198                                 "Internal error while downloading."
199                                 " Firmware confirm return value %#04x\n",
200                                 (unsigned int)ret);
201                         r = -ENODEV;
202                         goto error;
203                 }
204                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
205                         (unsigned int)ret);
206         }
207
208         r = 0;
209 error:
210         kfree(p);
211         return r;
212 }
213
214 static u16 get_word(const void *data, u16 offset)
215 {
216         const __le16 *p = data;
217         return le16_to_cpu(p[offset]);
218 }
219
220 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
221                        const char* postfix)
222 {
223         scnprintf(buffer, size, "%s%s",
224                 usb->is_zd1211b ?
225                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
226                 postfix);
227         return buffer;
228 }
229
230 static int handle_version_mismatch(struct zd_usb *usb,
231         const struct firmware *ub_fw)
232 {
233         struct usb_device *udev = zd_usb_to_usbdev(usb);
234         const struct firmware *ur_fw = NULL;
235         int offset;
236         int r = 0;
237         char fw_name[128];
238
239         r = request_fw_file(&ur_fw,
240                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
241                 &udev->dev);
242         if (r)
243                 goto error;
244
245         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
246         if (r)
247                 goto error;
248
249         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
250         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
251                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
252
253         /* At this point, the vendor driver downloads the whole firmware
254          * image, hacks around with version IDs, and uploads it again,
255          * completely overwriting the boot code. We do not do this here as
256          * it is not required on any tested devices, and it is suspected to
257          * cause problems. */
258 error:
259         release_firmware(ur_fw);
260         return r;
261 }
262
263 static int upload_firmware(struct zd_usb *usb)
264 {
265         int r;
266         u16 fw_bcdDevice;
267         u16 bcdDevice;
268         struct usb_device *udev = zd_usb_to_usbdev(usb);
269         const struct firmware *ub_fw = NULL;
270         const struct firmware *uph_fw = NULL;
271         char fw_name[128];
272
273         bcdDevice = get_bcdDevice(udev);
274
275         r = request_fw_file(&ub_fw,
276                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
277                 &udev->dev);
278         if (r)
279                 goto error;
280
281         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
282
283         if (fw_bcdDevice != bcdDevice) {
284                 dev_info(&udev->dev,
285                         "firmware version %#06x and device bootcode version "
286                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
287                 if (bcdDevice <= 0x4313)
288                         dev_warn(&udev->dev, "device has old bootcode, please "
289                                 "report success or failure\n");
290
291                 r = handle_version_mismatch(usb, ub_fw);
292                 if (r)
293                         goto error;
294         } else {
295                 dev_dbg_f(&udev->dev,
296                         "firmware device id %#06x is equal to the "
297                         "actual device id\n", fw_bcdDevice);
298         }
299
300
301         r = request_fw_file(&uph_fw,
302                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
303                 &udev->dev);
304         if (r)
305                 goto error;
306
307         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
308         if (r) {
309                 dev_err(&udev->dev,
310                         "Could not upload firmware code uph. Error number %d\n",
311                         r);
312         }
313
314         /* FALL-THROUGH */
315 error:
316         release_firmware(ub_fw);
317         release_firmware(uph_fw);
318         return r;
319 }
320
321 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
322 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
323 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
324 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
325 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
326 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
327
328 /* Read data from device address space using "firmware interface" which does
329  * not require firmware to be loaded. */
330 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
331 {
332         int r;
333         struct usb_device *udev = zd_usb_to_usbdev(usb);
334         u8 *buf;
335
336         /* Use "DMA-aware" buffer. */
337         buf = kmalloc(len, GFP_KERNEL);
338         if (!buf)
339                 return -ENOMEM;
340         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
341                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
342                 buf, len, 5000);
343         if (r < 0) {
344                 dev_err(&udev->dev,
345                         "read over firmware interface failed: %d\n", r);
346                 goto exit;
347         } else if (r != len) {
348                 dev_err(&udev->dev,
349                         "incomplete read over firmware interface: %d/%d\n",
350                         r, len);
351                 r = -EIO;
352                 goto exit;
353         }
354         r = 0;
355         memcpy(data, buf, len);
356 exit:
357         kfree(buf);
358         return r;
359 }
360
361 #define urb_dev(urb) (&(urb)->dev->dev)
362
363 static inline void handle_regs_int(struct urb *urb)
364 {
365         struct zd_usb *usb = urb->context;
366         struct zd_usb_interrupt *intr = &usb->intr;
367         int len;
368         u16 int_num;
369
370         ZD_ASSERT(in_interrupt());
371         spin_lock(&intr->lock);
372
373         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
374         if (int_num == CR_INTERRUPT) {
375                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
376                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
377                                 USB_MAX_EP_INT_BUFFER);
378                 schedule_work(&mac->process_intr);
379         } else if (intr->read_regs_enabled) {
380                 intr->read_regs.length = len = urb->actual_length;
381
382                 if (len > sizeof(intr->read_regs.buffer))
383                         len = sizeof(intr->read_regs.buffer);
384                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
385                 intr->read_regs_enabled = 0;
386                 complete(&intr->read_regs.completion);
387                 goto out;
388         }
389
390 out:
391         spin_unlock(&intr->lock);
392 }
393
394 static void int_urb_complete(struct urb *urb)
395 {
396         int r;
397         struct usb_int_header *hdr;
398
399         switch (urb->status) {
400         case 0:
401                 break;
402         case -ESHUTDOWN:
403         case -EINVAL:
404         case -ENODEV:
405         case -ENOENT:
406         case -ECONNRESET:
407         case -EPIPE:
408                 goto kfree;
409         default:
410                 goto resubmit;
411         }
412
413         if (urb->actual_length < sizeof(hdr)) {
414                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
415                 goto resubmit;
416         }
417
418         hdr = urb->transfer_buffer;
419         if (hdr->type != USB_INT_TYPE) {
420                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
421                 goto resubmit;
422         }
423
424         switch (hdr->id) {
425         case USB_INT_ID_REGS:
426                 handle_regs_int(urb);
427                 break;
428         case USB_INT_ID_RETRY_FAILED:
429                 zd_mac_tx_failed(urb);
430                 break;
431         default:
432                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
433                         (unsigned int)hdr->id);
434                 goto resubmit;
435         }
436
437 resubmit:
438         r = usb_submit_urb(urb, GFP_ATOMIC);
439         if (r) {
440                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
441                 goto kfree;
442         }
443         return;
444 kfree:
445         kfree(urb->transfer_buffer);
446 }
447
448 static inline int int_urb_interval(struct usb_device *udev)
449 {
450         switch (udev->speed) {
451         case USB_SPEED_HIGH:
452                 return 4;
453         case USB_SPEED_LOW:
454                 return 10;
455         case USB_SPEED_FULL:
456         default:
457                 return 1;
458         }
459 }
460
461 static inline int usb_int_enabled(struct zd_usb *usb)
462 {
463         unsigned long flags;
464         struct zd_usb_interrupt *intr = &usb->intr;
465         struct urb *urb;
466
467         spin_lock_irqsave(&intr->lock, flags);
468         urb = intr->urb;
469         spin_unlock_irqrestore(&intr->lock, flags);
470         return urb != NULL;
471 }
472
473 int zd_usb_enable_int(struct zd_usb *usb)
474 {
475         int r;
476         struct usb_device *udev;
477         struct zd_usb_interrupt *intr = &usb->intr;
478         void *transfer_buffer = NULL;
479         struct urb *urb;
480
481         dev_dbg_f(zd_usb_dev(usb), "\n");
482
483         urb = usb_alloc_urb(0, GFP_KERNEL);
484         if (!urb) {
485                 r = -ENOMEM;
486                 goto out;
487         }
488
489         ZD_ASSERT(!irqs_disabled());
490         spin_lock_irq(&intr->lock);
491         if (intr->urb) {
492                 spin_unlock_irq(&intr->lock);
493                 r = 0;
494                 goto error_free_urb;
495         }
496         intr->urb = urb;
497         spin_unlock_irq(&intr->lock);
498
499         /* TODO: make it a DMA buffer */
500         r = -ENOMEM;
501         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
502         if (!transfer_buffer) {
503                 dev_dbg_f(zd_usb_dev(usb),
504                         "couldn't allocate transfer_buffer\n");
505                 goto error_set_urb_null;
506         }
507
508         udev = zd_usb_to_usbdev(usb);
509         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
510                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
511                          int_urb_complete, usb,
512                          intr->interval);
513
514         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
515         r = usb_submit_urb(urb, GFP_KERNEL);
516         if (r) {
517                 dev_dbg_f(zd_usb_dev(usb),
518                          "Couldn't submit urb. Error number %d\n", r);
519                 goto error;
520         }
521
522         return 0;
523 error:
524         kfree(transfer_buffer);
525 error_set_urb_null:
526         spin_lock_irq(&intr->lock);
527         intr->urb = NULL;
528         spin_unlock_irq(&intr->lock);
529 error_free_urb:
530         usb_free_urb(urb);
531 out:
532         return r;
533 }
534
535 void zd_usb_disable_int(struct zd_usb *usb)
536 {
537         unsigned long flags;
538         struct zd_usb_interrupt *intr = &usb->intr;
539         struct urb *urb;
540
541         spin_lock_irqsave(&intr->lock, flags);
542         urb = intr->urb;
543         if (!urb) {
544                 spin_unlock_irqrestore(&intr->lock, flags);
545                 return;
546         }
547         intr->urb = NULL;
548         spin_unlock_irqrestore(&intr->lock, flags);
549
550         usb_kill_urb(urb);
551         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
552         usb_free_urb(urb);
553 }
554
555 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
556                              unsigned int length)
557 {
558         int i;
559         const struct rx_length_info *length_info;
560
561         if (length < sizeof(struct rx_length_info)) {
562                 /* It's not a complete packet anyhow. */
563                 printk("%s: invalid, small RX packet : %d\n",
564                        __func__, length);
565                 return;
566         }
567         length_info = (struct rx_length_info *)
568                 (buffer + length - sizeof(struct rx_length_info));
569
570         /* It might be that three frames are merged into a single URB
571          * transaction. We have to check for the length info tag.
572          *
573          * While testing we discovered that length_info might be unaligned,
574          * because if USB transactions are merged, the last packet will not
575          * be padded. Unaligned access might also happen if the length_info
576          * structure is not present.
577          */
578         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
579         {
580                 unsigned int l, k, n;
581                 for (i = 0, l = 0;; i++) {
582                         k = get_unaligned_le16(&length_info->length[i]);
583                         if (k == 0)
584                                 return;
585                         n = l+k;
586                         if (n > length)
587                                 return;
588                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
589                         if (i >= 2)
590                                 return;
591                         l = (n+3) & ~3;
592                 }
593         } else {
594                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
595         }
596 }
597
598 static void rx_urb_complete(struct urb *urb)
599 {
600         struct zd_usb *usb;
601         struct zd_usb_rx *rx;
602         const u8 *buffer;
603         unsigned int length;
604
605         switch (urb->status) {
606         case 0:
607                 break;
608         case -ESHUTDOWN:
609         case -EINVAL:
610         case -ENODEV:
611         case -ENOENT:
612         case -ECONNRESET:
613         case -EPIPE:
614                 return;
615         default:
616                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
617                 goto resubmit;
618         }
619
620         buffer = urb->transfer_buffer;
621         length = urb->actual_length;
622         usb = urb->context;
623         rx = &usb->rx;
624
625         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
626                 /* If there is an old first fragment, we don't care. */
627                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
628                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
629                 spin_lock(&rx->lock);
630                 memcpy(rx->fragment, buffer, length);
631                 rx->fragment_length = length;
632                 spin_unlock(&rx->lock);
633                 goto resubmit;
634         }
635
636         spin_lock(&rx->lock);
637         if (rx->fragment_length > 0) {
638                 /* We are on a second fragment, we believe */
639                 ZD_ASSERT(length + rx->fragment_length <=
640                           ARRAY_SIZE(rx->fragment));
641                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
642                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
643                 handle_rx_packet(usb, rx->fragment,
644                                  rx->fragment_length + length);
645                 rx->fragment_length = 0;
646                 spin_unlock(&rx->lock);
647         } else {
648                 spin_unlock(&rx->lock);
649                 handle_rx_packet(usb, buffer, length);
650         }
651
652 resubmit:
653         usb_submit_urb(urb, GFP_ATOMIC);
654 }
655
656 static struct urb *alloc_rx_urb(struct zd_usb *usb)
657 {
658         struct usb_device *udev = zd_usb_to_usbdev(usb);
659         struct urb *urb;
660         void *buffer;
661
662         urb = usb_alloc_urb(0, GFP_KERNEL);
663         if (!urb)
664                 return NULL;
665         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
666                                   &urb->transfer_dma);
667         if (!buffer) {
668                 usb_free_urb(urb);
669                 return NULL;
670         }
671
672         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
673                           buffer, USB_MAX_RX_SIZE,
674                           rx_urb_complete, usb);
675         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
676
677         return urb;
678 }
679
680 static void free_rx_urb(struct urb *urb)
681 {
682         if (!urb)
683                 return;
684         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
685                         urb->transfer_buffer, urb->transfer_dma);
686         usb_free_urb(urb);
687 }
688
689 int zd_usb_enable_rx(struct zd_usb *usb)
690 {
691         int i, r;
692         struct zd_usb_rx *rx = &usb->rx;
693         struct urb **urbs;
694
695         dev_dbg_f(zd_usb_dev(usb), "\n");
696
697         r = -ENOMEM;
698         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
699         if (!urbs)
700                 goto error;
701         for (i = 0; i < RX_URBS_COUNT; i++) {
702                 urbs[i] = alloc_rx_urb(usb);
703                 if (!urbs[i])
704                         goto error;
705         }
706
707         ZD_ASSERT(!irqs_disabled());
708         spin_lock_irq(&rx->lock);
709         if (rx->urbs) {
710                 spin_unlock_irq(&rx->lock);
711                 r = 0;
712                 goto error;
713         }
714         rx->urbs = urbs;
715         rx->urbs_count = RX_URBS_COUNT;
716         spin_unlock_irq(&rx->lock);
717
718         for (i = 0; i < RX_URBS_COUNT; i++) {
719                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
720                 if (r)
721                         goto error_submit;
722         }
723
724         return 0;
725 error_submit:
726         for (i = 0; i < RX_URBS_COUNT; i++) {
727                 usb_kill_urb(urbs[i]);
728         }
729         spin_lock_irq(&rx->lock);
730         rx->urbs = NULL;
731         rx->urbs_count = 0;
732         spin_unlock_irq(&rx->lock);
733 error:
734         if (urbs) {
735                 for (i = 0; i < RX_URBS_COUNT; i++)
736                         free_rx_urb(urbs[i]);
737         }
738         return r;
739 }
740
741 void zd_usb_disable_rx(struct zd_usb *usb)
742 {
743         int i;
744         unsigned long flags;
745         struct urb **urbs;
746         unsigned int count;
747         struct zd_usb_rx *rx = &usb->rx;
748
749         spin_lock_irqsave(&rx->lock, flags);
750         urbs = rx->urbs;
751         count = rx->urbs_count;
752         spin_unlock_irqrestore(&rx->lock, flags);
753         if (!urbs)
754                 return;
755
756         for (i = 0; i < count; i++) {
757                 usb_kill_urb(urbs[i]);
758                 free_rx_urb(urbs[i]);
759         }
760         kfree(urbs);
761
762         spin_lock_irqsave(&rx->lock, flags);
763         rx->urbs = NULL;
764         rx->urbs_count = 0;
765         spin_unlock_irqrestore(&rx->lock, flags);
766 }
767
768 /**
769  * zd_usb_disable_tx - disable transmission
770  * @usb: the zd1211rw-private USB structure
771  *
772  * Frees all URBs in the free list and marks the transmission as disabled.
773  */
774 void zd_usb_disable_tx(struct zd_usb *usb)
775 {
776         struct zd_usb_tx *tx = &usb->tx;
777         unsigned long flags;
778         struct list_head *pos, *n;
779
780         spin_lock_irqsave(&tx->lock, flags);
781         list_for_each_safe(pos, n, &tx->free_urb_list) {
782                 list_del(pos);
783                 usb_free_urb(list_entry(pos, struct urb, urb_list));
784         }
785         tx->enabled = 0;
786         tx->submitted_urbs = 0;
787         /* The stopped state is ignored, relying on ieee80211_wake_queues()
788          * in a potentionally following zd_usb_enable_tx().
789          */
790         spin_unlock_irqrestore(&tx->lock, flags);
791 }
792
793 /**
794  * zd_usb_enable_tx - enables transmission
795  * @usb: a &struct zd_usb pointer
796  *
797  * This function enables transmission and prepares the &zd_usb_tx data
798  * structure.
799  */
800 void zd_usb_enable_tx(struct zd_usb *usb)
801 {
802         unsigned long flags;
803         struct zd_usb_tx *tx = &usb->tx;
804
805         spin_lock_irqsave(&tx->lock, flags);
806         tx->enabled = 1;
807         tx->submitted_urbs = 0;
808         ieee80211_wake_queues(zd_usb_to_hw(usb));
809         tx->stopped = 0;
810         spin_unlock_irqrestore(&tx->lock, flags);
811 }
812
813 /**
814  * alloc_tx_urb - provides an tx URB
815  * @usb: a &struct zd_usb pointer
816  *
817  * Allocates a new URB. If possible takes the urb from the free list in
818  * usb->tx.
819  */
820 static struct urb *alloc_tx_urb(struct zd_usb *usb)
821 {
822         struct zd_usb_tx *tx = &usb->tx;
823         unsigned long flags;
824         struct list_head *entry;
825         struct urb *urb;
826
827         spin_lock_irqsave(&tx->lock, flags);
828         if (list_empty(&tx->free_urb_list)) {
829                 urb = usb_alloc_urb(0, GFP_ATOMIC);
830                 goto out;
831         }
832         entry = tx->free_urb_list.next;
833         list_del(entry);
834         urb = list_entry(entry, struct urb, urb_list);
835 out:
836         spin_unlock_irqrestore(&tx->lock, flags);
837         return urb;
838 }
839
840 /**
841  * free_tx_urb - frees a used tx URB
842  * @usb: a &struct zd_usb pointer
843  * @urb: URB to be freed
844  *
845  * Frees the the transmission URB, which means to put it on the free URB
846  * list.
847  */
848 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
849 {
850         struct zd_usb_tx *tx = &usb->tx;
851         unsigned long flags;
852
853         spin_lock_irqsave(&tx->lock, flags);
854         if (!tx->enabled) {
855                 usb_free_urb(urb);
856                 goto out;
857         }
858         list_add(&urb->urb_list, &tx->free_urb_list);
859 out:
860         spin_unlock_irqrestore(&tx->lock, flags);
861 }
862
863 static void tx_dec_submitted_urbs(struct zd_usb *usb)
864 {
865         struct zd_usb_tx *tx = &usb->tx;
866         unsigned long flags;
867
868         spin_lock_irqsave(&tx->lock, flags);
869         --tx->submitted_urbs;
870         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
871                 ieee80211_wake_queues(zd_usb_to_hw(usb));
872                 tx->stopped = 0;
873         }
874         spin_unlock_irqrestore(&tx->lock, flags);
875 }
876
877 static void tx_inc_submitted_urbs(struct zd_usb *usb)
878 {
879         struct zd_usb_tx *tx = &usb->tx;
880         unsigned long flags;
881
882         spin_lock_irqsave(&tx->lock, flags);
883         ++tx->submitted_urbs;
884         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
885                 ieee80211_stop_queues(zd_usb_to_hw(usb));
886                 tx->stopped = 1;
887         }
888         spin_unlock_irqrestore(&tx->lock, flags);
889 }
890
891 /**
892  * tx_urb_complete - completes the execution of an URB
893  * @urb: a URB
894  *
895  * This function is called if the URB has been transferred to a device or an
896  * error has happened.
897  */
898 static void tx_urb_complete(struct urb *urb)
899 {
900         int r;
901         struct sk_buff *skb;
902         struct ieee80211_tx_info *info;
903         struct zd_usb *usb;
904
905         switch (urb->status) {
906         case 0:
907                 break;
908         case -ESHUTDOWN:
909         case -EINVAL:
910         case -ENODEV:
911         case -ENOENT:
912         case -ECONNRESET:
913         case -EPIPE:
914                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
915                 break;
916         default:
917                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
918                 goto resubmit;
919         }
920 free_urb:
921         skb = (struct sk_buff *)urb->context;
922         /*
923          * grab 'usb' pointer before handing off the skb (since
924          * it might be freed by zd_mac_tx_to_dev or mac80211)
925          */
926         info = IEEE80211_SKB_CB(skb);
927         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
928         zd_mac_tx_to_dev(skb, urb->status);
929         free_tx_urb(usb, urb);
930         tx_dec_submitted_urbs(usb);
931         return;
932 resubmit:
933         r = usb_submit_urb(urb, GFP_ATOMIC);
934         if (r) {
935                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
936                 goto free_urb;
937         }
938 }
939
940 /**
941  * zd_usb_tx: initiates transfer of a frame of the device
942  *
943  * @usb: the zd1211rw-private USB structure
944  * @skb: a &struct sk_buff pointer
945  *
946  * This function tranmits a frame to the device. It doesn't wait for
947  * completion. The frame must contain the control set and have all the
948  * control set information available.
949  *
950  * The function returns 0 if the transfer has been successfully initiated.
951  */
952 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
953 {
954         int r;
955         struct usb_device *udev = zd_usb_to_usbdev(usb);
956         struct urb *urb;
957
958         urb = alloc_tx_urb(usb);
959         if (!urb) {
960                 r = -ENOMEM;
961                 goto out;
962         }
963
964         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
965                           skb->data, skb->len, tx_urb_complete, skb);
966
967         r = usb_submit_urb(urb, GFP_ATOMIC);
968         if (r)
969                 goto error;
970         tx_inc_submitted_urbs(usb);
971         return 0;
972 error:
973         free_tx_urb(usb, urb);
974 out:
975         return r;
976 }
977
978 static inline void init_usb_interrupt(struct zd_usb *usb)
979 {
980         struct zd_usb_interrupt *intr = &usb->intr;
981
982         spin_lock_init(&intr->lock);
983         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
984         init_completion(&intr->read_regs.completion);
985         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
986 }
987
988 static inline void init_usb_rx(struct zd_usb *usb)
989 {
990         struct zd_usb_rx *rx = &usb->rx;
991         spin_lock_init(&rx->lock);
992         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
993                 rx->usb_packet_size = 512;
994         } else {
995                 rx->usb_packet_size = 64;
996         }
997         ZD_ASSERT(rx->fragment_length == 0);
998 }
999
1000 static inline void init_usb_tx(struct zd_usb *usb)
1001 {
1002         struct zd_usb_tx *tx = &usb->tx;
1003         spin_lock_init(&tx->lock);
1004         tx->enabled = 0;
1005         tx->stopped = 0;
1006         INIT_LIST_HEAD(&tx->free_urb_list);
1007         tx->submitted_urbs = 0;
1008 }
1009
1010 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1011                  struct usb_interface *intf)
1012 {
1013         memset(usb, 0, sizeof(*usb));
1014         usb->intf = usb_get_intf(intf);
1015         usb_set_intfdata(usb->intf, hw);
1016         init_usb_interrupt(usb);
1017         init_usb_tx(usb);
1018         init_usb_rx(usb);
1019 }
1020
1021 void zd_usb_clear(struct zd_usb *usb)
1022 {
1023         usb_set_intfdata(usb->intf, NULL);
1024         usb_put_intf(usb->intf);
1025         ZD_MEMCLEAR(usb, sizeof(*usb));
1026         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1027 }
1028
1029 static const char *speed(enum usb_device_speed speed)
1030 {
1031         switch (speed) {
1032         case USB_SPEED_LOW:
1033                 return "low";
1034         case USB_SPEED_FULL:
1035                 return "full";
1036         case USB_SPEED_HIGH:
1037                 return "high";
1038         default:
1039                 return "unknown speed";
1040         }
1041 }
1042
1043 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1044 {
1045         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1046                 le16_to_cpu(udev->descriptor.idVendor),
1047                 le16_to_cpu(udev->descriptor.idProduct),
1048                 get_bcdDevice(udev),
1049                 speed(udev->speed));
1050 }
1051
1052 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1053 {
1054         struct usb_device *udev = interface_to_usbdev(usb->intf);
1055         return scnprint_id(udev, buffer, size);
1056 }
1057
1058 #ifdef DEBUG
1059 static void print_id(struct usb_device *udev)
1060 {
1061         char buffer[40];
1062
1063         scnprint_id(udev, buffer, sizeof(buffer));
1064         buffer[sizeof(buffer)-1] = 0;
1065         dev_dbg_f(&udev->dev, "%s\n", buffer);
1066 }
1067 #else
1068 #define print_id(udev) do { } while (0)
1069 #endif
1070
1071 static int eject_installer(struct usb_interface *intf)
1072 {
1073         struct usb_device *udev = interface_to_usbdev(intf);
1074         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1075         struct usb_endpoint_descriptor *endpoint;
1076         unsigned char *cmd;
1077         u8 bulk_out_ep;
1078         int r;
1079
1080         /* Find bulk out endpoint */
1081         endpoint = &iface_desc->endpoint[1].desc;
1082         if (usb_endpoint_dir_out(endpoint) &&
1083             usb_endpoint_xfer_bulk(endpoint)) {
1084                 bulk_out_ep = endpoint->bEndpointAddress;
1085         } else {
1086                 dev_err(&udev->dev,
1087                         "zd1211rw: Could not find bulk out endpoint\n");
1088                 return -ENODEV;
1089         }
1090
1091         cmd = kzalloc(31, GFP_KERNEL);
1092         if (cmd == NULL)
1093                 return -ENODEV;
1094
1095         /* USB bulk command block */
1096         cmd[0] = 0x55;  /* bulk command signature */
1097         cmd[1] = 0x53;  /* bulk command signature */
1098         cmd[2] = 0x42;  /* bulk command signature */
1099         cmd[3] = 0x43;  /* bulk command signature */
1100         cmd[14] = 6;    /* command length */
1101
1102         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1103         cmd[19] = 0x2;  /* eject disc */
1104
1105         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1106         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1107                 cmd, 31, NULL, 2000);
1108         kfree(cmd);
1109         if (r)
1110                 return r;
1111
1112         /* At this point, the device disconnects and reconnects with the real
1113          * ID numbers. */
1114
1115         usb_set_intfdata(intf, NULL);
1116         return 0;
1117 }
1118
1119 int zd_usb_init_hw(struct zd_usb *usb)
1120 {
1121         int r;
1122         struct zd_mac *mac = zd_usb_to_mac(usb);
1123
1124         dev_dbg_f(zd_usb_dev(usb), "\n");
1125
1126         r = upload_firmware(usb);
1127         if (r) {
1128                 dev_err(zd_usb_dev(usb),
1129                        "couldn't load firmware. Error number %d\n", r);
1130                 return r;
1131         }
1132
1133         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1134         if (r) {
1135                 dev_dbg_f(zd_usb_dev(usb),
1136                         "couldn't reset configuration. Error number %d\n", r);
1137                 return r;
1138         }
1139
1140         r = zd_mac_init_hw(mac->hw);
1141         if (r) {
1142                 dev_dbg_f(zd_usb_dev(usb),
1143                          "couldn't initialize mac. Error number %d\n", r);
1144                 return r;
1145         }
1146
1147         usb->initialized = 1;
1148         return 0;
1149 }
1150
1151 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1152 {
1153         int r;
1154         struct usb_device *udev = interface_to_usbdev(intf);
1155         struct zd_usb *usb;
1156         struct ieee80211_hw *hw = NULL;
1157
1158         print_id(udev);
1159
1160         if (id->driver_info & DEVICE_INSTALLER)
1161                 return eject_installer(intf);
1162
1163         switch (udev->speed) {
1164         case USB_SPEED_LOW:
1165         case USB_SPEED_FULL:
1166         case USB_SPEED_HIGH:
1167                 break;
1168         default:
1169                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1170                 r = -ENODEV;
1171                 goto error;
1172         }
1173
1174         r = usb_reset_device(udev);
1175         if (r) {
1176                 dev_err(&intf->dev,
1177                         "couldn't reset usb device. Error number %d\n", r);
1178                 goto error;
1179         }
1180
1181         hw = zd_mac_alloc_hw(intf);
1182         if (hw == NULL) {
1183                 r = -ENOMEM;
1184                 goto error;
1185         }
1186
1187         usb = &zd_hw_mac(hw)->chip.usb;
1188         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1189
1190         r = zd_mac_preinit_hw(hw);
1191         if (r) {
1192                 dev_dbg_f(&intf->dev,
1193                          "couldn't initialize mac. Error number %d\n", r);
1194                 goto error;
1195         }
1196
1197         r = ieee80211_register_hw(hw);
1198         if (r) {
1199                 dev_dbg_f(&intf->dev,
1200                          "couldn't register device. Error number %d\n", r);
1201                 goto error;
1202         }
1203
1204         dev_dbg_f(&intf->dev, "successful\n");
1205         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1206         return 0;
1207 error:
1208         usb_reset_device(interface_to_usbdev(intf));
1209         if (hw) {
1210                 zd_mac_clear(zd_hw_mac(hw));
1211                 ieee80211_free_hw(hw);
1212         }
1213         return r;
1214 }
1215
1216 static void disconnect(struct usb_interface *intf)
1217 {
1218         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1219         struct zd_mac *mac;
1220         struct zd_usb *usb;
1221
1222         /* Either something really bad happened, or we're just dealing with
1223          * a DEVICE_INSTALLER. */
1224         if (hw == NULL)
1225                 return;
1226
1227         mac = zd_hw_mac(hw);
1228         usb = &mac->chip.usb;
1229
1230         dev_dbg_f(zd_usb_dev(usb), "\n");
1231
1232         ieee80211_unregister_hw(hw);
1233
1234         /* Just in case something has gone wrong! */
1235         zd_usb_disable_rx(usb);
1236         zd_usb_disable_int(usb);
1237
1238         /* If the disconnect has been caused by a removal of the
1239          * driver module, the reset allows reloading of the driver. If the
1240          * reset will not be executed here, the upload of the firmware in the
1241          * probe function caused by the reloading of the driver will fail.
1242          */
1243         usb_reset_device(interface_to_usbdev(intf));
1244
1245         zd_mac_clear(mac);
1246         ieee80211_free_hw(hw);
1247         dev_dbg(&intf->dev, "disconnected\n");
1248 }
1249
1250 static struct usb_driver driver = {
1251         .name           = KBUILD_MODNAME,
1252         .id_table       = usb_ids,
1253         .probe          = probe,
1254         .disconnect     = disconnect,
1255 };
1256
1257 struct workqueue_struct *zd_workqueue;
1258
1259 static int __init usb_init(void)
1260 {
1261         int r;
1262
1263         pr_debug("%s usb_init()\n", driver.name);
1264
1265         zd_workqueue = create_singlethread_workqueue(driver.name);
1266         if (zd_workqueue == NULL) {
1267                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1268                 return -ENOMEM;
1269         }
1270
1271         r = usb_register(&driver);
1272         if (r) {
1273                 destroy_workqueue(zd_workqueue);
1274                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1275                        driver.name, r);
1276                 return r;
1277         }
1278
1279         pr_debug("%s initialized\n", driver.name);
1280         return 0;
1281 }
1282
1283 static void __exit usb_exit(void)
1284 {
1285         pr_debug("%s usb_exit()\n", driver.name);
1286         usb_deregister(&driver);
1287         destroy_workqueue(zd_workqueue);
1288 }
1289
1290 module_init(usb_init);
1291 module_exit(usb_exit);
1292
1293 static int usb_int_regs_length(unsigned int count)
1294 {
1295         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1296 }
1297
1298 static void prepare_read_regs_int(struct zd_usb *usb)
1299 {
1300         struct zd_usb_interrupt *intr = &usb->intr;
1301
1302         spin_lock_irq(&intr->lock);
1303         intr->read_regs_enabled = 1;
1304         INIT_COMPLETION(intr->read_regs.completion);
1305         spin_unlock_irq(&intr->lock);
1306 }
1307
1308 static void disable_read_regs_int(struct zd_usb *usb)
1309 {
1310         struct zd_usb_interrupt *intr = &usb->intr;
1311
1312         spin_lock_irq(&intr->lock);
1313         intr->read_regs_enabled = 0;
1314         spin_unlock_irq(&intr->lock);
1315 }
1316
1317 static int get_results(struct zd_usb *usb, u16 *values,
1318                        struct usb_req_read_regs *req, unsigned int count)
1319 {
1320         int r;
1321         int i;
1322         struct zd_usb_interrupt *intr = &usb->intr;
1323         struct read_regs_int *rr = &intr->read_regs;
1324         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1325
1326         spin_lock_irq(&intr->lock);
1327
1328         r = -EIO;
1329         /* The created block size seems to be larger than expected.
1330          * However results appear to be correct.
1331          */
1332         if (rr->length < usb_int_regs_length(count)) {
1333                 dev_dbg_f(zd_usb_dev(usb),
1334                          "error: actual length %d less than expected %d\n",
1335                          rr->length, usb_int_regs_length(count));
1336                 goto error_unlock;
1337         }
1338         if (rr->length > sizeof(rr->buffer)) {
1339                 dev_dbg_f(zd_usb_dev(usb),
1340                          "error: actual length %d exceeds buffer size %zu\n",
1341                          rr->length, sizeof(rr->buffer));
1342                 goto error_unlock;
1343         }
1344
1345         for (i = 0; i < count; i++) {
1346                 struct reg_data *rd = &regs->regs[i];
1347                 if (rd->addr != req->addr[i]) {
1348                         dev_dbg_f(zd_usb_dev(usb),
1349                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1350                                  le16_to_cpu(rd->addr),
1351                                  le16_to_cpu(req->addr[i]));
1352                         goto error_unlock;
1353                 }
1354                 values[i] = le16_to_cpu(rd->value);
1355         }
1356
1357         r = 0;
1358 error_unlock:
1359         spin_unlock_irq(&intr->lock);
1360         return r;
1361 }
1362
1363 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1364                      const zd_addr_t *addresses, unsigned int count)
1365 {
1366         int r;
1367         int i, req_len, actual_req_len;
1368         struct usb_device *udev;
1369         struct usb_req_read_regs *req = NULL;
1370         unsigned long timeout;
1371
1372         if (count < 1) {
1373                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1374                 return -EINVAL;
1375         }
1376         if (count > USB_MAX_IOREAD16_COUNT) {
1377                 dev_dbg_f(zd_usb_dev(usb),
1378                          "error: count %u exceeds possible max %u\n",
1379                          count, USB_MAX_IOREAD16_COUNT);
1380                 return -EINVAL;
1381         }
1382         if (in_atomic()) {
1383                 dev_dbg_f(zd_usb_dev(usb),
1384                          "error: io in atomic context not supported\n");
1385                 return -EWOULDBLOCK;
1386         }
1387         if (!usb_int_enabled(usb)) {
1388                  dev_dbg_f(zd_usb_dev(usb),
1389                           "error: usb interrupt not enabled\n");
1390                 return -EWOULDBLOCK;
1391         }
1392
1393         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1394         req = kmalloc(req_len, GFP_KERNEL);
1395         if (!req)
1396                 return -ENOMEM;
1397         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1398         for (i = 0; i < count; i++)
1399                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1400
1401         udev = zd_usb_to_usbdev(usb);
1402         prepare_read_regs_int(usb);
1403         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1404                          req, req_len, &actual_req_len, 1000 /* ms */);
1405         if (r) {
1406                 dev_dbg_f(zd_usb_dev(usb),
1407                         "error in usb_bulk_msg(). Error number %d\n", r);
1408                 goto error;
1409         }
1410         if (req_len != actual_req_len) {
1411                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1412                         " req_len %d != actual_req_len %d\n",
1413                         req_len, actual_req_len);
1414                 r = -EIO;
1415                 goto error;
1416         }
1417
1418         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1419                                               msecs_to_jiffies(1000));
1420         if (!timeout) {
1421                 disable_read_regs_int(usb);
1422                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1423                 r = -ETIMEDOUT;
1424                 goto error;
1425         }
1426
1427         r = get_results(usb, values, req, count);
1428 error:
1429         kfree(req);
1430         return r;
1431 }
1432
1433 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1434                       unsigned int count)
1435 {
1436         int r;
1437         struct usb_device *udev;
1438         struct usb_req_write_regs *req = NULL;
1439         int i, req_len, actual_req_len;
1440
1441         if (count == 0)
1442                 return 0;
1443         if (count > USB_MAX_IOWRITE16_COUNT) {
1444                 dev_dbg_f(zd_usb_dev(usb),
1445                         "error: count %u exceeds possible max %u\n",
1446                         count, USB_MAX_IOWRITE16_COUNT);
1447                 return -EINVAL;
1448         }
1449         if (in_atomic()) {
1450                 dev_dbg_f(zd_usb_dev(usb),
1451                         "error: io in atomic context not supported\n");
1452                 return -EWOULDBLOCK;
1453         }
1454
1455         req_len = sizeof(struct usb_req_write_regs) +
1456                   count * sizeof(struct reg_data);
1457         req = kmalloc(req_len, GFP_KERNEL);
1458         if (!req)
1459                 return -ENOMEM;
1460
1461         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1462         for (i = 0; i < count; i++) {
1463                 struct reg_data *rw  = &req->reg_writes[i];
1464                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1465                 rw->value = cpu_to_le16(ioreqs[i].value);
1466         }
1467
1468         udev = zd_usb_to_usbdev(usb);
1469         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1470                          req, req_len, &actual_req_len, 1000 /* ms */);
1471         if (r) {
1472                 dev_dbg_f(zd_usb_dev(usb),
1473                         "error in usb_bulk_msg(). Error number %d\n", r);
1474                 goto error;
1475         }
1476         if (req_len != actual_req_len) {
1477                 dev_dbg_f(zd_usb_dev(usb),
1478                         "error in usb_bulk_msg()"
1479                         " req_len %d != actual_req_len %d\n",
1480                         req_len, actual_req_len);
1481                 r = -EIO;
1482                 goto error;
1483         }
1484
1485         /* FALL-THROUGH with r == 0 */
1486 error:
1487         kfree(req);
1488         return r;
1489 }
1490
1491 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1492 {
1493         int r;
1494         struct usb_device *udev;
1495         struct usb_req_rfwrite *req = NULL;
1496         int i, req_len, actual_req_len;
1497         u16 bit_value_template;
1498
1499         if (in_atomic()) {
1500                 dev_dbg_f(zd_usb_dev(usb),
1501                         "error: io in atomic context not supported\n");
1502                 return -EWOULDBLOCK;
1503         }
1504         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1505                 dev_dbg_f(zd_usb_dev(usb),
1506                         "error: bits %d are smaller than"
1507                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1508                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1509                 return -EINVAL;
1510         }
1511         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1512                 dev_dbg_f(zd_usb_dev(usb),
1513                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1514                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1515                 return -EINVAL;
1516         }
1517 #ifdef DEBUG
1518         if (value & (~0UL << bits)) {
1519                 dev_dbg_f(zd_usb_dev(usb),
1520                         "error: value %#09x has bits >= %d set\n",
1521                         value, bits);
1522                 return -EINVAL;
1523         }
1524 #endif /* DEBUG */
1525
1526         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1527
1528         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1529         if (r) {
1530                 dev_dbg_f(zd_usb_dev(usb),
1531                         "error %d: Couldn't read CR203\n", r);
1532                 goto out;
1533         }
1534         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1535
1536         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1537         req = kmalloc(req_len, GFP_KERNEL);
1538         if (!req)
1539                 return -ENOMEM;
1540
1541         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1542         /* 1: 3683a, but not used in ZYDAS driver */
1543         req->value = cpu_to_le16(2);
1544         req->bits = cpu_to_le16(bits);
1545
1546         for (i = 0; i < bits; i++) {
1547                 u16 bv = bit_value_template;
1548                 if (value & (1 << (bits-1-i)))
1549                         bv |= RF_DATA;
1550                 req->bit_values[i] = cpu_to_le16(bv);
1551         }
1552
1553         udev = zd_usb_to_usbdev(usb);
1554         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1555                          req, req_len, &actual_req_len, 1000 /* ms */);
1556         if (r) {
1557                 dev_dbg_f(zd_usb_dev(usb),
1558                         "error in usb_bulk_msg(). Error number %d\n", r);
1559                 goto out;
1560         }
1561         if (req_len != actual_req_len) {
1562                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1563                         " req_len %d != actual_req_len %d\n",
1564                         req_len, actual_req_len);
1565                 r = -EIO;
1566                 goto out;
1567         }
1568
1569         /* FALL-THROUGH with r == 0 */
1570 out:
1571         kfree(req);
1572         return r;
1573 }