- patches.suse/slab-handle-memoryless-nodes-v2a.patch: Refresh.
[linux-flexiantxendom0-3.2.10.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44                 return 0;
45
46         /*
47          * Initialize all data queues.
48          */
49         rt2x00queue_init_queues(rt2x00dev);
50
51         /*
52          * Enable radio.
53          */
54         status =
55             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56         if (status)
57                 return status;
58
59         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
60
61         rt2x00leds_led_radio(rt2x00dev, true);
62         rt2x00led_led_activity(rt2x00dev, true);
63
64         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
65
66         /*
67          * Enable RX.
68          */
69         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
70
71         /*
72          * Start the TX queues.
73          */
74         ieee80211_wake_queues(rt2x00dev->hw);
75
76         return 0;
77 }
78
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
80 {
81         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82                 return;
83
84         /*
85          * Stop the TX queues in mac80211.
86          */
87         ieee80211_stop_queues(rt2x00dev->hw);
88         rt2x00queue_stop_queues(rt2x00dev);
89
90         /*
91          * Disable RX.
92          */
93         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
94
95         /*
96          * Disable radio.
97          */
98         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100         rt2x00led_led_activity(rt2x00dev, false);
101         rt2x00leds_led_radio(rt2x00dev, false);
102 }
103
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
105 {
106         /*
107          * When we are disabling the RX, we should also stop the link tuner.
108          */
109         if (state == STATE_RADIO_RX_OFF)
110                 rt2x00link_stop_tuner(rt2x00dev);
111
112         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
113
114         /*
115          * When we are enabling the RX, we should also start the link tuner.
116          */
117         if (state == STATE_RADIO_RX_ON)
118                 rt2x00link_start_tuner(rt2x00dev);
119 }
120
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122                                           struct ieee80211_vif *vif)
123 {
124         struct rt2x00_dev *rt2x00dev = data;
125         struct rt2x00_intf *intf = vif_to_intf(vif);
126         int delayed_flags;
127
128         /*
129          * Copy all data we need during this action under the protection
130          * of a spinlock. Otherwise race conditions might occur which results
131          * into an invalid configuration.
132          */
133         spin_lock(&intf->lock);
134
135         delayed_flags = intf->delayed_flags;
136         intf->delayed_flags = 0;
137
138         spin_unlock(&intf->lock);
139
140         /*
141          * It is possible the radio was disabled while the work had been
142          * scheduled. If that happens we should return here immediately,
143          * note that in the spinlock protected area above the delayed_flags
144          * have been cleared correctly.
145          */
146         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147                 return;
148
149         if (delayed_flags & DELAYED_UPDATE_BEACON)
150                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
151 }
152
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155         struct rt2x00_dev *rt2x00dev =
156             container_of(work, struct rt2x00_dev, intf_work);
157
158         /*
159          * Iterate over each interface and perform the
160          * requested configurations.
161          */
162         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163                                             rt2x00lib_intf_scheduled_iter,
164                                             rt2x00dev);
165 }
166
167 /*
168  * Interrupt context handlers.
169  */
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171                                       struct ieee80211_vif *vif)
172 {
173         struct rt2x00_intf *intf = vif_to_intf(vif);
174
175         if (vif->type != NL80211_IFTYPE_AP &&
176             vif->type != NL80211_IFTYPE_ADHOC &&
177             vif->type != NL80211_IFTYPE_MESH_POINT &&
178             vif->type != NL80211_IFTYPE_WDS)
179                 return;
180
181         spin_lock(&intf->lock);
182         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183         spin_unlock(&intf->lock);
184 }
185
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189                 return;
190
191         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192                                                    rt2x00lib_beacondone_iter,
193                                                    rt2x00dev);
194
195         ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
196 }
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
198
199 void rt2x00lib_txdone(struct queue_entry *entry,
200                       struct txdone_entry_desc *txdesc)
201 {
202         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207         u8 rate_idx, rate_flags, retry_rates;
208         u8 skbdesc_flags = skbdesc->flags;
209         unsigned int i;
210         bool success;
211
212         /*
213          * Unmap the skb.
214          */
215         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
216
217         /*
218          * Remove L2 padding which was added during
219          */
220         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
221                 rt2x00queue_remove_l2pad(entry->skb, header_length);
222
223         /*
224          * If the IV/EIV data was stripped from the frame before it was
225          * passed to the hardware, we should now reinsert it again because
226          * mac80211 will expect the the same data to be present it the
227          * frame as it was passed to us.
228          */
229         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
230                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
231
232         /*
233          * Send frame to debugfs immediately, after this call is completed
234          * we are going to overwrite the skb->cb array.
235          */
236         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
237
238         /*
239          * Determine if the frame has been successfully transmitted.
240          */
241         success =
242             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
243             test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
244             test_bit(TXDONE_FALLBACK, &txdesc->flags);
245
246         /*
247          * Update TX statistics.
248          */
249         rt2x00dev->link.qual.tx_success += success;
250         rt2x00dev->link.qual.tx_failed += !success;
251
252         rate_idx = skbdesc->tx_rate_idx;
253         rate_flags = skbdesc->tx_rate_flags;
254         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
255             (txdesc->retry + 1) : 1;
256
257         /*
258          * Initialize TX status
259          */
260         memset(&tx_info->status, 0, sizeof(tx_info->status));
261         tx_info->status.ack_signal = 0;
262
263         /*
264          * Frame was send with retries, hardware tried
265          * different rates to send out the frame, at each
266          * retry it lowered the rate 1 step.
267          */
268         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
269                 tx_info->status.rates[i].idx = rate_idx - i;
270                 tx_info->status.rates[i].flags = rate_flags;
271                 tx_info->status.rates[i].count = 1;
272         }
273         if (i < (IEEE80211_TX_MAX_RATES - 1))
274                 tx_info->status.rates[i].idx = -1; /* terminate */
275
276         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
277                 if (success)
278                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
279                 else
280                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
281         }
282
283         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
284                 if (success)
285                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
286                 else
287                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
288         }
289
290         /*
291          * Only send the status report to mac80211 when it's a frame
292          * that originated in mac80211. If this was a extra frame coming
293          * through a mac80211 library call (RTS/CTS) then we should not
294          * send the status report back.
295          */
296         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
297                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
298         else
299                 dev_kfree_skb_irq(entry->skb);
300
301         /*
302          * Make this entry available for reuse.
303          */
304         entry->skb = NULL;
305         entry->flags = 0;
306
307         rt2x00dev->ops->lib->clear_entry(entry);
308
309         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
310         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
311
312         /*
313          * If the data queue was below the threshold before the txdone
314          * handler we must make sure the packet queue in the mac80211 stack
315          * is reenabled when the txdone handler has finished.
316          */
317         if (!rt2x00queue_threshold(entry->queue))
318                 ieee80211_wake_queue(rt2x00dev->hw, qid);
319 }
320 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
321
322 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
323                                         struct rxdone_entry_desc *rxdesc)
324 {
325         struct ieee80211_supported_band *sband;
326         const struct rt2x00_rate *rate;
327         unsigned int i;
328         int signal;
329         int type;
330
331         /*
332          * For non-HT rates the MCS value needs to contain the
333          * actually used rate modulation (CCK or OFDM).
334          */
335         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
336                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
337         else
338                 signal = rxdesc->signal;
339
340         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
341
342         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
343         for (i = 0; i < sband->n_bitrates; i++) {
344                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
345
346                 if (((type == RXDONE_SIGNAL_PLCP) &&
347                      (rate->plcp == signal)) ||
348                     ((type == RXDONE_SIGNAL_BITRATE) &&
349                       (rate->bitrate == signal)) ||
350                     ((type == RXDONE_SIGNAL_MCS) &&
351                       (rate->mcs == signal))) {
352                         return i;
353                 }
354         }
355
356         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
357                 "signal=0x%.4x, type=%d.\n", signal, type);
358         return 0;
359 }
360
361 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
362                       struct queue_entry *entry)
363 {
364         struct rxdone_entry_desc rxdesc;
365         struct sk_buff *skb;
366         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
367         unsigned int header_length;
368         int rate_idx;
369         /*
370          * Allocate a new sk_buffer. If no new buffer available, drop the
371          * received frame and reuse the existing buffer.
372          */
373         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
374         if (!skb)
375                 return;
376
377         /*
378          * Unmap the skb.
379          */
380         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
381
382         /*
383          * Extract the RXD details.
384          */
385         memset(&rxdesc, 0, sizeof(rxdesc));
386         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
387
388         /* Trim buffer to correct size */
389         skb_trim(entry->skb, rxdesc.size);
390
391         /*
392          * The data behind the ieee80211 header must be
393          * aligned on a 4 byte boundary.
394          */
395         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
396
397         /*
398          * Hardware might have stripped the IV/EIV/ICV data,
399          * in that case it is possible that the data was
400          * provided seperately (through hardware descriptor)
401          * in which case we should reinsert the data into the frame.
402          */
403         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
404             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
405                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
406                                           &rxdesc);
407         else if (rxdesc.dev_flags & RXDONE_L2PAD)
408                 rt2x00queue_remove_l2pad(entry->skb, header_length);
409         else
410                 rt2x00queue_align_payload(entry->skb, header_length);
411
412         /*
413          * Check if the frame was received using HT. In that case,
414          * the rate is the MCS index and should be passed to mac80211
415          * directly. Otherwise we need to translate the signal to
416          * the correct bitrate index.
417          */
418         if (rxdesc.rate_mode == RATE_MODE_CCK ||
419             rxdesc.rate_mode == RATE_MODE_OFDM) {
420                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
421         } else {
422                 rxdesc.flags |= RX_FLAG_HT;
423                 rate_idx = rxdesc.signal;
424         }
425
426         /*
427          * Update extra components
428          */
429         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
430         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
431
432         rx_status->mactime = rxdesc.timestamp;
433         rx_status->rate_idx = rate_idx;
434         rx_status->signal = rxdesc.rssi;
435         rx_status->noise = rxdesc.noise;
436         rx_status->flag = rxdesc.flags;
437         rx_status->antenna = rt2x00dev->link.ant.active.rx;
438
439         /*
440          * Send frame to mac80211 & debugfs.
441          * mac80211 will clean up the skb structure.
442          */
443         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
444         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
445         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
446
447         /*
448          * Replace the skb with the freshly allocated one.
449          */
450         entry->skb = skb;
451         entry->flags = 0;
452
453         rt2x00dev->ops->lib->clear_entry(entry);
454
455         rt2x00queue_index_inc(entry->queue, Q_INDEX);
456 }
457 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
458
459 /*
460  * Driver initialization handlers.
461  */
462 const struct rt2x00_rate rt2x00_supported_rates[12] = {
463         {
464                 .flags = DEV_RATE_CCK,
465                 .bitrate = 10,
466                 .ratemask = BIT(0),
467                 .plcp = 0x00,
468                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
469         },
470         {
471                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
472                 .bitrate = 20,
473                 .ratemask = BIT(1),
474                 .plcp = 0x01,
475                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
476         },
477         {
478                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
479                 .bitrate = 55,
480                 .ratemask = BIT(2),
481                 .plcp = 0x02,
482                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
483         },
484         {
485                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
486                 .bitrate = 110,
487                 .ratemask = BIT(3),
488                 .plcp = 0x03,
489                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
490         },
491         {
492                 .flags = DEV_RATE_OFDM,
493                 .bitrate = 60,
494                 .ratemask = BIT(4),
495                 .plcp = 0x0b,
496                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
497         },
498         {
499                 .flags = DEV_RATE_OFDM,
500                 .bitrate = 90,
501                 .ratemask = BIT(5),
502                 .plcp = 0x0f,
503                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
504         },
505         {
506                 .flags = DEV_RATE_OFDM,
507                 .bitrate = 120,
508                 .ratemask = BIT(6),
509                 .plcp = 0x0a,
510                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
511         },
512         {
513                 .flags = DEV_RATE_OFDM,
514                 .bitrate = 180,
515                 .ratemask = BIT(7),
516                 .plcp = 0x0e,
517                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
518         },
519         {
520                 .flags = DEV_RATE_OFDM,
521                 .bitrate = 240,
522                 .ratemask = BIT(8),
523                 .plcp = 0x09,
524                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
525         },
526         {
527                 .flags = DEV_RATE_OFDM,
528                 .bitrate = 360,
529                 .ratemask = BIT(9),
530                 .plcp = 0x0d,
531                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
532         },
533         {
534                 .flags = DEV_RATE_OFDM,
535                 .bitrate = 480,
536                 .ratemask = BIT(10),
537                 .plcp = 0x08,
538                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
539         },
540         {
541                 .flags = DEV_RATE_OFDM,
542                 .bitrate = 540,
543                 .ratemask = BIT(11),
544                 .plcp = 0x0c,
545                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
546         },
547 };
548
549 static void rt2x00lib_channel(struct ieee80211_channel *entry,
550                               const int channel, const int tx_power,
551                               const int value)
552 {
553         entry->center_freq = ieee80211_channel_to_frequency(channel);
554         entry->hw_value = value;
555         entry->max_power = tx_power;
556         entry->max_antenna_gain = 0xff;
557 }
558
559 static void rt2x00lib_rate(struct ieee80211_rate *entry,
560                            const u16 index, const struct rt2x00_rate *rate)
561 {
562         entry->flags = 0;
563         entry->bitrate = rate->bitrate;
564         entry->hw_value =index;
565         entry->hw_value_short = index;
566
567         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
568                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
569 }
570
571 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
572                                     struct hw_mode_spec *spec)
573 {
574         struct ieee80211_hw *hw = rt2x00dev->hw;
575         struct ieee80211_channel *channels;
576         struct ieee80211_rate *rates;
577         unsigned int num_rates;
578         unsigned int i;
579
580         num_rates = 0;
581         if (spec->supported_rates & SUPPORT_RATE_CCK)
582                 num_rates += 4;
583         if (spec->supported_rates & SUPPORT_RATE_OFDM)
584                 num_rates += 8;
585
586         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
587         if (!channels)
588                 return -ENOMEM;
589
590         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
591         if (!rates)
592                 goto exit_free_channels;
593
594         /*
595          * Initialize Rate list.
596          */
597         for (i = 0; i < num_rates; i++)
598                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
599
600         /*
601          * Initialize Channel list.
602          */
603         for (i = 0; i < spec->num_channels; i++) {
604                 rt2x00lib_channel(&channels[i],
605                                   spec->channels[i].channel,
606                                   spec->channels_info[i].tx_power1, i);
607         }
608
609         /*
610          * Intitialize 802.11b, 802.11g
611          * Rates: CCK, OFDM.
612          * Channels: 2.4 GHz
613          */
614         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
615                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
616                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
617                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
618                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
619                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
620                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
621                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
622                        &spec->ht, sizeof(spec->ht));
623         }
624
625         /*
626          * Intitialize 802.11a
627          * Rates: OFDM.
628          * Channels: OFDM, UNII, HiperLAN2.
629          */
630         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
631                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
632                     spec->num_channels - 14;
633                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
634                     num_rates - 4;
635                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
636                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
637                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
638                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
639                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
640                        &spec->ht, sizeof(spec->ht));
641         }
642
643         return 0;
644
645  exit_free_channels:
646         kfree(channels);
647         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
648         return -ENOMEM;
649 }
650
651 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
652 {
653         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
654                 ieee80211_unregister_hw(rt2x00dev->hw);
655
656         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
657                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
658                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
659                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
660                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
661         }
662
663         kfree(rt2x00dev->spec.channels_info);
664 }
665
666 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
667 {
668         struct hw_mode_spec *spec = &rt2x00dev->spec;
669         int status;
670
671         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
672                 return 0;
673
674         /*
675          * Initialize HW modes.
676          */
677         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
678         if (status)
679                 return status;
680
681         /*
682          * Initialize HW fields.
683          */
684         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
685
686         /*
687          * Initialize extra TX headroom required.
688          */
689         rt2x00dev->hw->extra_tx_headroom =
690                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
691                       rt2x00dev->ops->extra_tx_headroom);
692
693         /*
694          * Take TX headroom required for alignment into account.
695          */
696         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
697                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
698         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
699                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
700
701         /*
702          * Register HW.
703          */
704         status = ieee80211_register_hw(rt2x00dev->hw);
705         if (status)
706                 return status;
707
708         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
709
710         return 0;
711 }
712
713 /*
714  * Initialization/uninitialization handlers.
715  */
716 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
717 {
718         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
719                 return;
720
721         /*
722          * Unregister extra components.
723          */
724         rt2x00rfkill_unregister(rt2x00dev);
725
726         /*
727          * Allow the HW to uninitialize.
728          */
729         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
730
731         /*
732          * Free allocated queue entries.
733          */
734         rt2x00queue_uninitialize(rt2x00dev);
735 }
736
737 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
738 {
739         int status;
740
741         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
742                 return 0;
743
744         /*
745          * Allocate all queue entries.
746          */
747         status = rt2x00queue_initialize(rt2x00dev);
748         if (status)
749                 return status;
750
751         /*
752          * Initialize the device.
753          */
754         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
755         if (status) {
756                 rt2x00queue_uninitialize(rt2x00dev);
757                 return status;
758         }
759
760         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
761
762         /*
763          * Register the extra components.
764          */
765         rt2x00rfkill_register(rt2x00dev);
766
767         return 0;
768 }
769
770 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
771 {
772         int retval;
773
774         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
775                 return 0;
776
777         /*
778          * If this is the first interface which is added,
779          * we should load the firmware now.
780          */
781         retval = rt2x00lib_load_firmware(rt2x00dev);
782         if (retval)
783                 return retval;
784
785         /*
786          * Initialize the device.
787          */
788         retval = rt2x00lib_initialize(rt2x00dev);
789         if (retval)
790                 return retval;
791
792         rt2x00dev->intf_ap_count = 0;
793         rt2x00dev->intf_sta_count = 0;
794         rt2x00dev->intf_associated = 0;
795
796         /* Enable the radio */
797         retval = rt2x00lib_enable_radio(rt2x00dev);
798         if (retval) {
799                 rt2x00queue_uninitialize(rt2x00dev);
800                 return retval;
801         }
802
803         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
804
805         return 0;
806 }
807
808 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
809 {
810         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
811                 return;
812
813         /*
814          * Perhaps we can add something smarter here,
815          * but for now just disabling the radio should do.
816          */
817         rt2x00lib_disable_radio(rt2x00dev);
818
819         rt2x00dev->intf_ap_count = 0;
820         rt2x00dev->intf_sta_count = 0;
821         rt2x00dev->intf_associated = 0;
822 }
823
824 /*
825  * driver allocation handlers.
826  */
827 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
828 {
829         int retval = -ENOMEM;
830
831         mutex_init(&rt2x00dev->csr_mutex);
832
833         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
834
835         /*
836          * Make room for rt2x00_intf inside the per-interface
837          * structure ieee80211_vif.
838          */
839         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
840
841         /*
842          * Determine which operating modes are supported, all modes
843          * which require beaconing, depend on the availability of
844          * beacon entries.
845          */
846         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
847         if (rt2x00dev->ops->bcn->entry_num > 0)
848                 rt2x00dev->hw->wiphy->interface_modes |=
849                     BIT(NL80211_IFTYPE_ADHOC) |
850                     BIT(NL80211_IFTYPE_AP) |
851                     BIT(NL80211_IFTYPE_MESH_POINT) |
852                     BIT(NL80211_IFTYPE_WDS);
853
854         /*
855          * Let the driver probe the device to detect the capabilities.
856          */
857         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
858         if (retval) {
859                 ERROR(rt2x00dev, "Failed to allocate device.\n");
860                 goto exit;
861         }
862
863         /*
864          * Initialize configuration work.
865          */
866         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
867
868         /*
869          * Allocate queue array.
870          */
871         retval = rt2x00queue_allocate(rt2x00dev);
872         if (retval)
873                 goto exit;
874
875         /*
876          * Initialize ieee80211 structure.
877          */
878         retval = rt2x00lib_probe_hw(rt2x00dev);
879         if (retval) {
880                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
881                 goto exit;
882         }
883
884         /*
885          * Register extra components.
886          */
887         rt2x00link_register(rt2x00dev);
888         rt2x00leds_register(rt2x00dev);
889         rt2x00debug_register(rt2x00dev);
890
891         return 0;
892
893 exit:
894         rt2x00lib_remove_dev(rt2x00dev);
895
896         return retval;
897 }
898 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
899
900 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
901 {
902         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
903
904         /*
905          * Disable radio.
906          */
907         rt2x00lib_disable_radio(rt2x00dev);
908
909         /*
910          * Stop all work.
911          */
912         cancel_work_sync(&rt2x00dev->intf_work);
913
914         /*
915          * Uninitialize device.
916          */
917         rt2x00lib_uninitialize(rt2x00dev);
918
919         /*
920          * Free extra components
921          */
922         rt2x00debug_deregister(rt2x00dev);
923         rt2x00leds_unregister(rt2x00dev);
924
925         /*
926          * Free ieee80211_hw memory.
927          */
928         rt2x00lib_remove_hw(rt2x00dev);
929
930         /*
931          * Free firmware image.
932          */
933         rt2x00lib_free_firmware(rt2x00dev);
934
935         /*
936          * Free queue structures.
937          */
938         rt2x00queue_free(rt2x00dev);
939 }
940 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
941
942 /*
943  * Device state handlers
944  */
945 #ifdef CONFIG_PM
946 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
947 {
948         NOTICE(rt2x00dev, "Going to sleep.\n");
949
950         /*
951          * Prevent mac80211 from accessing driver while suspended.
952          */
953         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
954                 return 0;
955
956         /*
957          * Cleanup as much as possible.
958          */
959         rt2x00lib_uninitialize(rt2x00dev);
960
961         /*
962          * Suspend/disable extra components.
963          */
964         rt2x00leds_suspend(rt2x00dev);
965         rt2x00debug_deregister(rt2x00dev);
966
967         /*
968          * Set device mode to sleep for power management,
969          * on some hardware this call seems to consistently fail.
970          * From the specifications it is hard to tell why it fails,
971          * and if this is a "bad thing".
972          * Overall it is safe to just ignore the failure and
973          * continue suspending. The only downside is that the
974          * device will not be in optimal power save mode, but with
975          * the radio and the other components already disabled the
976          * device is as good as disabled.
977          */
978         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
979                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
980                         "continue suspending.\n");
981
982         return 0;
983 }
984 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
985
986 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
987 {
988         NOTICE(rt2x00dev, "Waking up.\n");
989
990         /*
991          * Restore/enable extra components.
992          */
993         rt2x00debug_register(rt2x00dev);
994         rt2x00leds_resume(rt2x00dev);
995
996         /*
997          * We are ready again to receive requests from mac80211.
998          */
999         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1000
1001         return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1004 #endif /* CONFIG_PM */
1005
1006 /*
1007  * rt2x00lib module information.
1008  */
1009 MODULE_AUTHOR(DRV_PROJECT);
1010 MODULE_VERSION(DRV_VERSION);
1011 MODULE_DESCRIPTION("rt2x00 library");
1012 MODULE_LICENSE("GPL");