- patches.suse/slab-handle-memoryless-nodes-v2a.patch: Refresh.
[linux-flexiantxendom0-3.2.10.git] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "drm_cache.h"
38 #include "ttm/ttm_module.h"
39 #include "ttm/ttm_bo_driver.h"
40 #include "ttm/ttm_placement.h"
41
42 static int ttm_tt_swapin(struct ttm_tt *ttm);
43
44 /**
45  * Allocates storage for pointers to the pages that back the ttm.
46  *
47  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
48  */
49 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
50 {
51         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
52         ttm->pages = NULL;
53
54         if (size <= PAGE_SIZE)
55                 ttm->pages = kzalloc(size, GFP_KERNEL);
56
57         if (!ttm->pages) {
58                 ttm->pages = vmalloc_user(size);
59                 if (ttm->pages)
60                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
61         }
62 }
63
64 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
65 {
66         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
67                 vfree(ttm->pages);
68                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
69         } else {
70                 kfree(ttm->pages);
71         }
72         ttm->pages = NULL;
73 }
74
75 static struct page *ttm_tt_alloc_page(unsigned page_flags)
76 {
77         gfp_t gfp_flags = GFP_USER;
78
79         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
80                 gfp_flags |= __GFP_ZERO;
81
82         if (page_flags & TTM_PAGE_FLAG_DMA32)
83                 gfp_flags |= __GFP_DMA32;
84         else
85                 gfp_flags |= __GFP_HIGHMEM;
86
87         return alloc_page(gfp_flags);
88 }
89
90 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
91 {
92         int write;
93         int dirty;
94         struct page *page;
95         int i;
96         struct ttm_backend *be = ttm->be;
97
98         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
99         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
100         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
101
102         if (be)
103                 be->func->clear(be);
104
105         for (i = 0; i < ttm->num_pages; ++i) {
106                 page = ttm->pages[i];
107                 if (page == NULL)
108                         continue;
109
110                 if (page == ttm->dummy_read_page) {
111                         BUG_ON(write);
112                         continue;
113                 }
114
115                 if (write && dirty && !PageReserved(page))
116                         set_page_dirty_lock(page);
117
118                 ttm->pages[i] = NULL;
119                 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
120                 put_page(page);
121         }
122         ttm->state = tt_unpopulated;
123         ttm->first_himem_page = ttm->num_pages;
124         ttm->last_lomem_page = -1;
125 }
126
127 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
128 {
129         struct page *p;
130         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
131         int ret;
132
133         while (NULL == (p = ttm->pages[index])) {
134                 p = ttm_tt_alloc_page(ttm->page_flags);
135
136                 if (!p)
137                         return NULL;
138
139                 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
140                 if (unlikely(ret != 0))
141                         goto out_err;
142
143                 if (PageHighMem(p))
144                         ttm->pages[--ttm->first_himem_page] = p;
145                 else
146                         ttm->pages[++ttm->last_lomem_page] = p;
147         }
148         return p;
149 out_err:
150         put_page(p);
151         return NULL;
152 }
153
154 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
155 {
156         int ret;
157
158         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
159                 ret = ttm_tt_swapin(ttm);
160                 if (unlikely(ret != 0))
161                         return NULL;
162         }
163         return __ttm_tt_get_page(ttm, index);
164 }
165
166 int ttm_tt_populate(struct ttm_tt *ttm)
167 {
168         struct page *page;
169         unsigned long i;
170         struct ttm_backend *be;
171         int ret;
172
173         if (ttm->state != tt_unpopulated)
174                 return 0;
175
176         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
177                 ret = ttm_tt_swapin(ttm);
178                 if (unlikely(ret != 0))
179                         return ret;
180         }
181
182         be = ttm->be;
183
184         for (i = 0; i < ttm->num_pages; ++i) {
185                 page = __ttm_tt_get_page(ttm, i);
186                 if (!page)
187                         return -ENOMEM;
188         }
189
190         be->func->populate(be, ttm->num_pages, ttm->pages,
191                            ttm->dummy_read_page);
192         ttm->state = tt_unbound;
193         return 0;
194 }
195 EXPORT_SYMBOL(ttm_tt_populate);
196
197 #ifdef CONFIG_X86
198 static inline int ttm_tt_set_page_caching(struct page *p,
199                                           enum ttm_caching_state c_state)
200 {
201         if (PageHighMem(p))
202                 return 0;
203
204         switch (c_state) {
205         case tt_cached:
206                 return set_pages_wb(p, 1);
207         case tt_wc:
208             return set_memory_wc((unsigned long) page_address(p), 1);
209         default:
210                 return set_pages_uc(p, 1);
211         }
212 }
213 #else /* CONFIG_X86 */
214 static inline int ttm_tt_set_page_caching(struct page *p,
215                                           enum ttm_caching_state c_state)
216 {
217         return 0;
218 }
219 #endif /* CONFIG_X86 */
220
221 /*
222  * Change caching policy for the linear kernel map
223  * for range of pages in a ttm.
224  */
225
226 static int ttm_tt_set_caching(struct ttm_tt *ttm,
227                               enum ttm_caching_state c_state)
228 {
229         int i, j;
230         struct page *cur_page;
231         int ret;
232
233         if (ttm->caching_state == c_state)
234                 return 0;
235
236         if (c_state != tt_cached) {
237                 ret = ttm_tt_populate(ttm);
238                 if (unlikely(ret != 0))
239                         return ret;
240         }
241
242         if (ttm->caching_state == tt_cached)
243                 drm_clflush_pages(ttm->pages, ttm->num_pages);
244
245         for (i = 0; i < ttm->num_pages; ++i) {
246                 cur_page = ttm->pages[i];
247                 if (likely(cur_page != NULL)) {
248                         ret = ttm_tt_set_page_caching(cur_page, c_state);
249                         if (unlikely(ret != 0))
250                                 goto out_err;
251                 }
252         }
253
254         ttm->caching_state = c_state;
255
256         return 0;
257
258 out_err:
259         for (j = 0; j < i; ++j) {
260                 cur_page = ttm->pages[j];
261                 if (likely(cur_page != NULL)) {
262                         (void)ttm_tt_set_page_caching(cur_page,
263                                                       ttm->caching_state);
264                 }
265         }
266
267         return ret;
268 }
269
270 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
271 {
272         enum ttm_caching_state state;
273
274         if (placement & TTM_PL_FLAG_WC)
275                 state = tt_wc;
276         else if (placement & TTM_PL_FLAG_UNCACHED)
277                 state = tt_uncached;
278         else
279                 state = tt_cached;
280
281         return ttm_tt_set_caching(ttm, state);
282 }
283 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
284
285 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
286 {
287         int i;
288         struct page *cur_page;
289         struct ttm_backend *be = ttm->be;
290
291         if (be)
292                 be->func->clear(be);
293         (void)ttm_tt_set_caching(ttm, tt_cached);
294         for (i = 0; i < ttm->num_pages; ++i) {
295                 cur_page = ttm->pages[i];
296                 ttm->pages[i] = NULL;
297                 if (cur_page) {
298                         if (page_count(cur_page) != 1)
299                                 printk(KERN_ERR TTM_PFX
300                                        "Erroneous page count. "
301                                        "Leaking pages.\n");
302                         ttm_mem_global_free_page(ttm->glob->mem_glob,
303                                                  cur_page);
304                         __free_page(cur_page);
305                 }
306         }
307         ttm->state = tt_unpopulated;
308         ttm->first_himem_page = ttm->num_pages;
309         ttm->last_lomem_page = -1;
310 }
311
312 void ttm_tt_destroy(struct ttm_tt *ttm)
313 {
314         struct ttm_backend *be;
315
316         if (unlikely(ttm == NULL))
317                 return;
318
319         be = ttm->be;
320         if (likely(be != NULL)) {
321                 be->func->destroy(be);
322                 ttm->be = NULL;
323         }
324
325         if (likely(ttm->pages != NULL)) {
326                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
327                         ttm_tt_free_user_pages(ttm);
328                 else
329                         ttm_tt_free_alloced_pages(ttm);
330
331                 ttm_tt_free_page_directory(ttm);
332         }
333
334         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
335             ttm->swap_storage)
336                 fput(ttm->swap_storage);
337
338         kfree(ttm);
339 }
340
341 int ttm_tt_set_user(struct ttm_tt *ttm,
342                     struct task_struct *tsk,
343                     unsigned long start, unsigned long num_pages)
344 {
345         struct mm_struct *mm = tsk->mm;
346         int ret;
347         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
348         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
349
350         BUG_ON(num_pages != ttm->num_pages);
351         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
352
353         /**
354          * Account user pages as lowmem pages for now.
355          */
356
357         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
358                                    false, false);
359         if (unlikely(ret != 0))
360                 return ret;
361
362         down_read(&mm->mmap_sem);
363         ret = get_user_pages(tsk, mm, start, num_pages,
364                              write, 0, ttm->pages, NULL);
365         up_read(&mm->mmap_sem);
366
367         if (ret != num_pages && write) {
368                 ttm_tt_free_user_pages(ttm);
369                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
370                 return -ENOMEM;
371         }
372
373         ttm->tsk = tsk;
374         ttm->start = start;
375         ttm->state = tt_unbound;
376
377         return 0;
378 }
379
380 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
381                              uint32_t page_flags, struct page *dummy_read_page)
382 {
383         struct ttm_bo_driver *bo_driver = bdev->driver;
384         struct ttm_tt *ttm;
385
386         if (!bo_driver)
387                 return NULL;
388
389         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
390         if (!ttm)
391                 return NULL;
392
393         ttm->glob = bdev->glob;
394         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
395         ttm->first_himem_page = ttm->num_pages;
396         ttm->last_lomem_page = -1;
397         ttm->caching_state = tt_cached;
398         ttm->page_flags = page_flags;
399
400         ttm->dummy_read_page = dummy_read_page;
401
402         ttm_tt_alloc_page_directory(ttm);
403         if (!ttm->pages) {
404                 ttm_tt_destroy(ttm);
405                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
406                 return NULL;
407         }
408         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
409         if (!ttm->be) {
410                 ttm_tt_destroy(ttm);
411                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
412                 return NULL;
413         }
414         ttm->state = tt_unpopulated;
415         return ttm;
416 }
417
418 void ttm_tt_unbind(struct ttm_tt *ttm)
419 {
420         int ret;
421         struct ttm_backend *be = ttm->be;
422
423         if (ttm->state == tt_bound) {
424                 ret = be->func->unbind(be);
425                 BUG_ON(ret);
426                 ttm->state = tt_unbound;
427         }
428 }
429
430 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
431 {
432         int ret = 0;
433         struct ttm_backend *be;
434
435         if (!ttm)
436                 return -EINVAL;
437
438         if (ttm->state == tt_bound)
439                 return 0;
440
441         be = ttm->be;
442
443         ret = ttm_tt_populate(ttm);
444         if (ret)
445                 return ret;
446
447         ret = be->func->bind(be, bo_mem);
448         if (ret) {
449                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
450                 return ret;
451         }
452
453         ttm->state = tt_bound;
454
455         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
456                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
457         return 0;
458 }
459 EXPORT_SYMBOL(ttm_tt_bind);
460
461 static int ttm_tt_swapin(struct ttm_tt *ttm)
462 {
463         struct address_space *swap_space;
464         struct file *swap_storage;
465         struct page *from_page;
466         struct page *to_page;
467         void *from_virtual;
468         void *to_virtual;
469         int i;
470         int ret;
471
472         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
473                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
474                                       ttm->num_pages);
475                 if (unlikely(ret != 0))
476                         return ret;
477
478                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
479                 return 0;
480         }
481
482         swap_storage = ttm->swap_storage;
483         BUG_ON(swap_storage == NULL);
484
485         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
486
487         for (i = 0; i < ttm->num_pages; ++i) {
488                 from_page = read_mapping_page(swap_space, i, NULL);
489                 if (IS_ERR(from_page))
490                         goto out_err;
491                 to_page = __ttm_tt_get_page(ttm, i);
492                 if (unlikely(to_page == NULL))
493                         goto out_err;
494
495                 preempt_disable();
496                 from_virtual = kmap_atomic(from_page, KM_USER0);
497                 to_virtual = kmap_atomic(to_page, KM_USER1);
498                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
499                 kunmap_atomic(to_virtual, KM_USER1);
500                 kunmap_atomic(from_virtual, KM_USER0);
501                 preempt_enable();
502                 page_cache_release(from_page);
503         }
504
505         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
506                 fput(swap_storage);
507         ttm->swap_storage = NULL;
508         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
509
510         return 0;
511 out_err:
512         ttm_tt_free_alloced_pages(ttm);
513         return -ENOMEM;
514 }
515
516 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
517 {
518         struct address_space *swap_space;
519         struct file *swap_storage;
520         struct page *from_page;
521         struct page *to_page;
522         void *from_virtual;
523         void *to_virtual;
524         int i;
525
526         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
527         BUG_ON(ttm->caching_state != tt_cached);
528
529         /*
530          * For user buffers, just unpin the pages, as there should be
531          * vma references.
532          */
533
534         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
535                 ttm_tt_free_user_pages(ttm);
536                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
537                 ttm->swap_storage = NULL;
538                 return 0;
539         }
540
541         if (!persistant_swap_storage) {
542                 swap_storage = shmem_file_setup("ttm swap",
543                                                 ttm->num_pages << PAGE_SHIFT,
544                                                 0);
545                 if (unlikely(IS_ERR(swap_storage))) {
546                         printk(KERN_ERR "Failed allocating swap storage.\n");
547                         return -ENOMEM;
548                 }
549         } else
550                 swap_storage = persistant_swap_storage;
551
552         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
553
554         for (i = 0; i < ttm->num_pages; ++i) {
555                 from_page = ttm->pages[i];
556                 if (unlikely(from_page == NULL))
557                         continue;
558                 to_page = read_mapping_page(swap_space, i, NULL);
559                 if (unlikely(to_page == NULL))
560                         goto out_err;
561
562                 preempt_disable();
563                 from_virtual = kmap_atomic(from_page, KM_USER0);
564                 to_virtual = kmap_atomic(to_page, KM_USER1);
565                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
566                 kunmap_atomic(to_virtual, KM_USER1);
567                 kunmap_atomic(from_virtual, KM_USER0);
568                 preempt_enable();
569                 set_page_dirty(to_page);
570                 mark_page_accessed(to_page);
571                 page_cache_release(to_page);
572         }
573
574         ttm_tt_free_alloced_pages(ttm);
575         ttm->swap_storage = swap_storage;
576         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
577         if (persistant_swap_storage)
578                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
579
580         return 0;
581 out_err:
582         if (!persistant_swap_storage)
583                 fput(swap_storage);
584
585         return -ENOMEM;
586 }