ARM: 7366/3: amba: Remove AMBA level regulator support
[linux-flexiantxendom0-3.2.10.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <asm/hardware/gic.h>
34 #include <mach/hardware.h>
35 #include <mach/irqs.h>
36 #include <mach/db8500-regs.h>
37 #include <mach/id.h>
38 #include "dbx500-prcmu-regs.h"
39
40 /* Offset for the firmware version within the TCPM */
41 #define PRCMU_FW_VERSION_OFFSET 0xA4
42
43 /* Index of different voltages to be used when accessing AVSData */
44 #define PRCM_AVS_BASE           0x2FC
45 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
46 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
47 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
48 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
49 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
50 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
51 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
52 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
53 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
54 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
55 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
56 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
57 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
58
59 #define PRCM_AVS_VOLTAGE                0
60 #define PRCM_AVS_VOLTAGE_MASK           0x3f
61 #define PRCM_AVS_ISSLOWSTARTUP          6
62 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
63 #define PRCM_AVS_ISMODEENABLE           7
64 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
65
66 #define PRCM_BOOT_STATUS        0xFFF
67 #define PRCM_ROMCODE_A2P        0xFFE
68 #define PRCM_ROMCODE_P2A        0xFFD
69 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
70
71 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
72
73 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
74 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
75 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
76 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
77 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
78 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
79 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
80 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
81
82 /* Req Mailboxes */
83 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
84 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
85 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
86 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
87 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
88 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
89
90 /* Ack Mailboxes */
91 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
92 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
93 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
94 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
95 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
96 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
97
98 /* Mailbox 0 headers */
99 #define MB0H_POWER_STATE_TRANS          0
100 #define MB0H_CONFIG_WAKEUPS_EXE         1
101 #define MB0H_READ_WAKEUP_ACK            3
102 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
103
104 #define MB0H_WAKEUP_EXE 2
105 #define MB0H_WAKEUP_SLEEP 5
106
107 /* Mailbox 0 REQs */
108 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
109 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
110 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
111 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
112 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
113 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
114
115 /* Mailbox 0 ACKs */
116 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
117 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
118 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
119 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
120 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
121 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
122 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
123
124 /* Mailbox 1 headers */
125 #define MB1H_ARM_APE_OPP 0x0
126 #define MB1H_RESET_MODEM 0x2
127 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
128 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
129 #define MB1H_RELEASE_USB_WAKEUP 0x5
130 #define MB1H_PLL_ON_OFF 0x6
131
132 /* Mailbox 1 Requests */
133 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
134 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
135 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
136 #define PLL_SOC0_OFF    0x1
137 #define PLL_SOC0_ON     0x2
138 #define PLL_SOC1_OFF    0x4
139 #define PLL_SOC1_ON     0x8
140
141 /* Mailbox 1 ACKs */
142 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
143 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
144 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
145 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
146
147 /* Mailbox 2 headers */
148 #define MB2H_DPS        0x0
149 #define MB2H_AUTO_PWR   0x1
150
151 /* Mailbox 2 REQs */
152 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
153 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
154 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
155 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
156 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
157 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
158 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
159 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
160 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
161 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
162
163 /* Mailbox 2 ACKs */
164 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
165 #define HWACC_PWR_ST_OK 0xFE
166
167 /* Mailbox 3 headers */
168 #define MB3H_ANC        0x0
169 #define MB3H_SIDETONE   0x1
170 #define MB3H_SYSCLK     0xE
171
172 /* Mailbox 3 Requests */
173 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
174 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
175 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
176 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
179 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
180
181 /* Mailbox 4 headers */
182 #define MB4H_DDR_INIT   0x0
183 #define MB4H_MEM_ST     0x1
184 #define MB4H_HOTDOG     0x12
185 #define MB4H_HOTMON     0x13
186 #define MB4H_HOT_PERIOD 0x14
187 #define MB4H_A9WDOG_CONF 0x16
188 #define MB4H_A9WDOG_EN   0x17
189 #define MB4H_A9WDOG_DIS  0x18
190 #define MB4H_A9WDOG_LOAD 0x19
191 #define MB4H_A9WDOG_KICK 0x20
192
193 /* Mailbox 4 Requests */
194 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
196 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
197 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
200 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
201 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
202 #define HOTMON_CONFIG_LOW                       BIT(0)
203 #define HOTMON_CONFIG_HIGH                      BIT(1)
204 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
205 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
206 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
207 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
208 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
209 #define A9WDOG_AUTO_OFF_DIS                     0
210 #define A9WDOG_ID_MASK                          0xf
211
212 /* Mailbox 5 Requests */
213 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
214 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
215 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
216 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
217 #define PRCMU_I2C_WRITE(slave) \
218         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
219 #define PRCMU_I2C_READ(slave) \
220         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_STOP_EN               BIT(3)
222
223 /* Mailbox 5 ACKs */
224 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
225 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
226 #define I2C_WR_OK 0x1
227 #define I2C_RD_OK 0x2
228
229 #define NUM_MB 8
230 #define MBOX_BIT BIT
231 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
232
233 /*
234  * Wakeups/IRQs
235  */
236
237 #define WAKEUP_BIT_RTC BIT(0)
238 #define WAKEUP_BIT_RTT0 BIT(1)
239 #define WAKEUP_BIT_RTT1 BIT(2)
240 #define WAKEUP_BIT_HSI0 BIT(3)
241 #define WAKEUP_BIT_HSI1 BIT(4)
242 #define WAKEUP_BIT_CA_WAKE BIT(5)
243 #define WAKEUP_BIT_USB BIT(6)
244 #define WAKEUP_BIT_ABB BIT(7)
245 #define WAKEUP_BIT_ABB_FIFO BIT(8)
246 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
247 #define WAKEUP_BIT_CA_SLEEP BIT(10)
248 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
249 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
250 #define WAKEUP_BIT_ANC_OK BIT(13)
251 #define WAKEUP_BIT_SW_ERROR BIT(14)
252 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
253 #define WAKEUP_BIT_ARM BIT(17)
254 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
255 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
256 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
257 #define WAKEUP_BIT_GPIO0 BIT(23)
258 #define WAKEUP_BIT_GPIO1 BIT(24)
259 #define WAKEUP_BIT_GPIO2 BIT(25)
260 #define WAKEUP_BIT_GPIO3 BIT(26)
261 #define WAKEUP_BIT_GPIO4 BIT(27)
262 #define WAKEUP_BIT_GPIO5 BIT(28)
263 #define WAKEUP_BIT_GPIO6 BIT(29)
264 #define WAKEUP_BIT_GPIO7 BIT(30)
265 #define WAKEUP_BIT_GPIO8 BIT(31)
266
267 static struct {
268         bool valid;
269         struct prcmu_fw_version version;
270 } fw_info;
271
272 /*
273  * This vector maps irq numbers to the bits in the bit field used in
274  * communication with the PRCMU firmware.
275  *
276  * The reason for having this is to keep the irq numbers contiguous even though
277  * the bits in the bit field are not. (The bits also have a tendency to move
278  * around, to further complicate matters.)
279  */
280 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
281 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
282 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
283         IRQ_ENTRY(RTC),
284         IRQ_ENTRY(RTT0),
285         IRQ_ENTRY(RTT1),
286         IRQ_ENTRY(HSI0),
287         IRQ_ENTRY(HSI1),
288         IRQ_ENTRY(CA_WAKE),
289         IRQ_ENTRY(USB),
290         IRQ_ENTRY(ABB),
291         IRQ_ENTRY(ABB_FIFO),
292         IRQ_ENTRY(CA_SLEEP),
293         IRQ_ENTRY(ARM),
294         IRQ_ENTRY(HOTMON_LOW),
295         IRQ_ENTRY(HOTMON_HIGH),
296         IRQ_ENTRY(MODEM_SW_RESET_REQ),
297         IRQ_ENTRY(GPIO0),
298         IRQ_ENTRY(GPIO1),
299         IRQ_ENTRY(GPIO2),
300         IRQ_ENTRY(GPIO3),
301         IRQ_ENTRY(GPIO4),
302         IRQ_ENTRY(GPIO5),
303         IRQ_ENTRY(GPIO6),
304         IRQ_ENTRY(GPIO7),
305         IRQ_ENTRY(GPIO8)
306 };
307
308 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
309 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
310 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
311         WAKEUP_ENTRY(RTC),
312         WAKEUP_ENTRY(RTT0),
313         WAKEUP_ENTRY(RTT1),
314         WAKEUP_ENTRY(HSI0),
315         WAKEUP_ENTRY(HSI1),
316         WAKEUP_ENTRY(USB),
317         WAKEUP_ENTRY(ABB),
318         WAKEUP_ENTRY(ABB_FIFO),
319         WAKEUP_ENTRY(ARM)
320 };
321
322 /*
323  * mb0_transfer - state needed for mailbox 0 communication.
324  * @lock:               The transaction lock.
325  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
326  *                      the request data.
327  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
328  * @req:                Request data that need to persist between requests.
329  */
330 static struct {
331         spinlock_t lock;
332         spinlock_t dbb_irqs_lock;
333         struct work_struct mask_work;
334         struct mutex ac_wake_lock;
335         struct completion ac_wake_work;
336         struct {
337                 u32 dbb_irqs;
338                 u32 dbb_wakeups;
339                 u32 abb_events;
340         } req;
341 } mb0_transfer;
342
343 /*
344  * mb1_transfer - state needed for mailbox 1 communication.
345  * @lock:       The transaction lock.
346  * @work:       The transaction completion structure.
347  * @ape_opp:    The current APE OPP.
348  * @ack:        Reply ("acknowledge") data.
349  */
350 static struct {
351         struct mutex lock;
352         struct completion work;
353         u8 ape_opp;
354         struct {
355                 u8 header;
356                 u8 arm_opp;
357                 u8 ape_opp;
358                 u8 ape_voltage_status;
359         } ack;
360 } mb1_transfer;
361
362 /*
363  * mb2_transfer - state needed for mailbox 2 communication.
364  * @lock:            The transaction lock.
365  * @work:            The transaction completion structure.
366  * @auto_pm_lock:    The autonomous power management configuration lock.
367  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
368  * @req:             Request data that need to persist between requests.
369  * @ack:             Reply ("acknowledge") data.
370  */
371 static struct {
372         struct mutex lock;
373         struct completion work;
374         spinlock_t auto_pm_lock;
375         bool auto_pm_enabled;
376         struct {
377                 u8 status;
378         } ack;
379 } mb2_transfer;
380
381 /*
382  * mb3_transfer - state needed for mailbox 3 communication.
383  * @lock:               The request lock.
384  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
385  * @sysclk_work:        Work structure used for sysclk requests.
386  */
387 static struct {
388         spinlock_t lock;
389         struct mutex sysclk_lock;
390         struct completion sysclk_work;
391 } mb3_transfer;
392
393 /*
394  * mb4_transfer - state needed for mailbox 4 communication.
395  * @lock:       The transaction lock.
396  * @work:       The transaction completion structure.
397  */
398 static struct {
399         struct mutex lock;
400         struct completion work;
401 } mb4_transfer;
402
403 /*
404  * mb5_transfer - state needed for mailbox 5 communication.
405  * @lock:       The transaction lock.
406  * @work:       The transaction completion structure.
407  * @ack:        Reply ("acknowledge") data.
408  */
409 static struct {
410         struct mutex lock;
411         struct completion work;
412         struct {
413                 u8 status;
414                 u8 value;
415         } ack;
416 } mb5_transfer;
417
418 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
419
420 /* Spinlocks */
421 static DEFINE_SPINLOCK(prcmu_lock);
422 static DEFINE_SPINLOCK(clkout_lock);
423
424 /* Global var to runtime determine TCDM base for v2 or v1 */
425 static __iomem void *tcdm_base;
426
427 struct clk_mgt {
428         void __iomem *reg;
429         u32 pllsw;
430         int branch;
431         bool clk38div;
432 };
433
434 enum {
435         PLL_RAW,
436         PLL_FIX,
437         PLL_DIV
438 };
439
440 static DEFINE_SPINLOCK(clk_mgt_lock);
441
442 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
443         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
444 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
445         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
446         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
447         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
448         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
449         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
450         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
451         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
452         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
453         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
454         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
455         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
456         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
457         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
458         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
459         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
462         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
463         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
464         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
465         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
466         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
467         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
468         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
469         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
470         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
474 };
475
476 struct dsiclk {
477         u32 divsel_mask;
478         u32 divsel_shift;
479         u32 divsel;
480 };
481
482 static struct dsiclk dsiclk[2] = {
483         {
484                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
485                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
486                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
487         },
488         {
489                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
490                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
491                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
492         }
493 };
494
495 struct dsiescclk {
496         u32 en;
497         u32 div_mask;
498         u32 div_shift;
499 };
500
501 static struct dsiescclk dsiescclk[3] = {
502         {
503                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
504                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
505                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
506         },
507         {
508                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
509                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
510                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
511         },
512         {
513                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
514                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
515                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
516         }
517 };
518
519 /*
520 * Used by MCDE to setup all necessary PRCMU registers
521 */
522 #define PRCMU_RESET_DSIPLL              0x00004000
523 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
524
525 #define PRCMU_CLK_PLL_DIV_SHIFT         0
526 #define PRCMU_CLK_PLL_SW_SHIFT          5
527 #define PRCMU_CLK_38                    (1 << 9)
528 #define PRCMU_CLK_38_SRC                (1 << 10)
529 #define PRCMU_CLK_38_DIV                (1 << 11)
530
531 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
532 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
533
534 /* DPI 50000000 Hz */
535 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
538
539 /* D=101, N=1, R=4, SELDIV2=0 */
540 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
541
542 #define PRCMU_ENABLE_PLLDSI             0x00000001
543 #define PRCMU_DISABLE_PLLDSI            0x00000000
544 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
545 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
546 /* ESC clk, div0=1, div1=1, div2=3 */
547 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
548 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
549 #define PRCMU_DSI_RESET_SW              0x00000007
550
551 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
552
553 int db8500_prcmu_enable_dsipll(void)
554 {
555         int i;
556
557         /* Clear DSIPLL_RESETN */
558         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
559         /* Unclamp DSIPLL in/out */
560         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
561
562         /* Set DSI PLL FREQ */
563         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
564         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
565         /* Enable Escape clocks */
566         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
567
568         /* Start DSI PLL */
569         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
570         /* Reset DSI PLL */
571         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
572         for (i = 0; i < 10; i++) {
573                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
574                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
575                         break;
576                 udelay(100);
577         }
578         /* Set DSIPLL_RESETN */
579         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
580         return 0;
581 }
582
583 int db8500_prcmu_disable_dsipll(void)
584 {
585         /* Disable dsi pll */
586         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
587         /* Disable  escapeclock */
588         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
589         return 0;
590 }
591
592 int db8500_prcmu_set_display_clocks(void)
593 {
594         unsigned long flags;
595
596         spin_lock_irqsave(&clk_mgt_lock, flags);
597
598         /* Grab the HW semaphore. */
599         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
600                 cpu_relax();
601
602         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
603         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
605
606         /* Release the HW semaphore. */
607         writel(0, PRCM_SEM);
608
609         spin_unlock_irqrestore(&clk_mgt_lock, flags);
610
611         return 0;
612 }
613
614 u32 db8500_prcmu_read(unsigned int reg)
615 {
616         return readl(_PRCMU_BASE + reg);
617 }
618
619 void db8500_prcmu_write(unsigned int reg, u32 value)
620 {
621         unsigned long flags;
622
623         spin_lock_irqsave(&prcmu_lock, flags);
624         writel(value, (_PRCMU_BASE + reg));
625         spin_unlock_irqrestore(&prcmu_lock, flags);
626 }
627
628 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
629 {
630         u32 val;
631         unsigned long flags;
632
633         spin_lock_irqsave(&prcmu_lock, flags);
634         val = readl(_PRCMU_BASE + reg);
635         val = ((val & ~mask) | (value & mask));
636         writel(val, (_PRCMU_BASE + reg));
637         spin_unlock_irqrestore(&prcmu_lock, flags);
638 }
639
640 struct prcmu_fw_version *prcmu_get_fw_version(void)
641 {
642         return fw_info.valid ? &fw_info.version : NULL;
643 }
644
645 bool prcmu_has_arm_maxopp(void)
646 {
647         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
649 }
650
651 /**
652  * prcmu_get_boot_status - PRCMU boot status checking
653  * Returns: the current PRCMU boot status
654  */
655 int prcmu_get_boot_status(void)
656 {
657         return readb(tcdm_base + PRCM_BOOT_STATUS);
658 }
659
660 /**
661  * prcmu_set_rc_a2p - This function is used to run few power state sequences
662  * @val: Value to be set, i.e. transition requested
663  * Returns: 0 on success, -EINVAL on invalid argument
664  *
665  * This function is used to run the following power state sequences -
666  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
667  */
668 int prcmu_set_rc_a2p(enum romcode_write val)
669 {
670         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671                 return -EINVAL;
672         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673         return 0;
674 }
675
676 /**
677  * prcmu_get_rc_p2a - This function is used to get power state sequences
678  * Returns: the power transition that has last happened
679  *
680  * This function can return the following transitions-
681  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
682  */
683 enum romcode_read prcmu_get_rc_p2a(void)
684 {
685         return readb(tcdm_base + PRCM_ROMCODE_P2A);
686 }
687
688 /**
689  * prcmu_get_current_mode - Return the current XP70 power mode
690  * Returns: Returns the current AP(ARM) power mode: init,
691  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
692  */
693 enum ap_pwrst prcmu_get_xp70_current_state(void)
694 {
695         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
696 }
697
698 /**
699  * prcmu_config_clkout - Configure one of the programmable clock outputs.
700  * @clkout:     The CLKOUT number (0 or 1).
701  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
702  * @div:        The divider to be applied.
703  *
704  * Configures one of the programmable clock outputs (CLKOUTs).
705  * @div should be in the range [1,63] to request a configuration, or 0 to
706  * inform that the configuration is no longer requested.
707  */
708 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
709 {
710         static int requests[2];
711         int r = 0;
712         unsigned long flags;
713         u32 val;
714         u32 bits;
715         u32 mask;
716         u32 div_mask;
717
718         BUG_ON(clkout > 1);
719         BUG_ON(div > 63);
720         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
721
722         if (!div && !requests[clkout])
723                 return -EINVAL;
724
725         switch (clkout) {
726         case 0:
727                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731                 break;
732         case 1:
733                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735                         PRCM_CLKOCR_CLK1TYPE);
736                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738                 break;
739         }
740         bits &= mask;
741
742         spin_lock_irqsave(&clkout_lock, flags);
743
744         val = readl(PRCM_CLKOCR);
745         if (val & div_mask) {
746                 if (div) {
747                         if ((val & mask) != bits) {
748                                 r = -EBUSY;
749                                 goto unlock_and_return;
750                         }
751                 } else {
752                         if ((val & mask & ~div_mask) != bits) {
753                                 r = -EINVAL;
754                                 goto unlock_and_return;
755                         }
756                 }
757         }
758         writel((bits | (val & ~mask)), PRCM_CLKOCR);
759         requests[clkout] += (div ? 1 : -1);
760
761 unlock_and_return:
762         spin_unlock_irqrestore(&clkout_lock, flags);
763
764         return r;
765 }
766
767 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
768 {
769         unsigned long flags;
770
771         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
772
773         spin_lock_irqsave(&mb0_transfer.lock, flags);
774
775         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
776                 cpu_relax();
777
778         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781         writeb((keep_ulp_clk ? 1 : 0),
782                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
784         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
785
786         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787
788         return 0;
789 }
790
791 u8 db8500_prcmu_get_power_state_result(void)
792 {
793         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
794 }
795
796 /* This function decouple the gic from the prcmu */
797 int db8500_prcmu_gic_decouple(void)
798 {
799         u32 val = readl(PRCM_A9_MASK_REQ);
800
801         /* Set bit 0 register value to 1 */
802         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803                PRCM_A9_MASK_REQ);
804
805         /* Make sure the register is updated */
806         readl(PRCM_A9_MASK_REQ);
807
808         /* Wait a few cycles for the gic mask completion */
809         udelay(1);
810
811         return 0;
812 }
813
814 /* This function recouple the gic with the prcmu */
815 int db8500_prcmu_gic_recouple(void)
816 {
817         u32 val = readl(PRCM_A9_MASK_REQ);
818
819         /* Set bit 0 register value to 0 */
820         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
821
822         return 0;
823 }
824
825 #define PRCMU_GIC_NUMBER_REGS 5
826
827 /*
828  * This function checks if there are pending irq on the gic. It only
829  * makes sense if the gic has been decoupled before with the
830  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831  * disables the forwarding of the interrupt to any CPU interface. It
832  * does not prevent the interrupt from changing state, for example
833  * becoming pending, or active and pending if it is already
834  * active. Hence, we have to check the interrupt is pending *and* is
835  * active.
836  */
837 bool db8500_prcmu_gic_pending_irq(void)
838 {
839         u32 pr; /* Pending register */
840         u32 er; /* Enable register */
841         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842         int i;
843
844         /* 5 registers. STI & PPI not skipped */
845         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
846
847                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
849
850                 if (pr & er)
851                         return true; /* There is a pending interrupt */
852         }
853
854         return false;
855 }
856
857 /*
858  * This function checks if there are pending interrupt on the
859  * prcmu which has been delegated to monitor the irqs with the
860  * db8500_prcmu_copy_gic_settings function.
861  */
862 bool db8500_prcmu_pending_irq(void)
863 {
864         u32 it, im;
865         int i;
866
867         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870                 if (it & im)
871                         return true; /* There is a pending interrupt */
872         }
873
874         return false;
875 }
876
877 /*
878  * This function checks if the specified cpu is in in WFI. It's usage
879  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880  * function. Of course passing smp_processor_id() to this function will
881  * always return false...
882  */
883 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
884 {
885         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886                      PRCM_ARM_WFI_STANDBY_WFI0;
887 }
888
889 /*
890  * This function copies the gic SPI settings to the prcmu in order to
891  * monitor them and abort/finish the retention/off sequence or state.
892  */
893 int db8500_prcmu_copy_gic_settings(void)
894 {
895         u32 er; /* Enable register */
896         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897         int i;
898
899         /* We skip the STI and PPI */
900         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901                 er = readl_relaxed(dist_base +
902                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
903                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
904         }
905
906         return 0;
907 }
908
909 /* This function should only be called while mb0_transfer.lock is held. */
910 static void config_wakeups(void)
911 {
912         const u8 header[2] = {
913                 MB0H_CONFIG_WAKEUPS_EXE,
914                 MB0H_CONFIG_WAKEUPS_SLEEP
915         };
916         static u32 last_dbb_events;
917         static u32 last_abb_events;
918         u32 dbb_events;
919         u32 abb_events;
920         unsigned int i;
921
922         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
924
925         abb_events = mb0_transfer.req.abb_events;
926
927         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928                 return;
929
930         for (i = 0; i < 2; i++) {
931                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
932                         cpu_relax();
933                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
936                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
937         }
938         last_dbb_events = dbb_events;
939         last_abb_events = abb_events;
940 }
941
942 void db8500_prcmu_enable_wakeups(u32 wakeups)
943 {
944         unsigned long flags;
945         u32 bits;
946         int i;
947
948         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
949
950         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951                 if (wakeups & BIT(i))
952                         bits |= prcmu_wakeup_bit[i];
953         }
954
955         spin_lock_irqsave(&mb0_transfer.lock, flags);
956
957         mb0_transfer.req.dbb_wakeups = bits;
958         config_wakeups();
959
960         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
961 }
962
963 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
964 {
965         unsigned long flags;
966
967         spin_lock_irqsave(&mb0_transfer.lock, flags);
968
969         mb0_transfer.req.abb_events = abb_events;
970         config_wakeups();
971
972         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
973 }
974
975 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
976 {
977         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979         else
980                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
981 }
982
983 /**
984  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
985  * @opp: The new ARM operating point to which transition is to be made
986  * Returns: 0 on success, non-zero on failure
987  *
988  * This function sets the the operating point of the ARM.
989  */
990 int db8500_prcmu_set_arm_opp(u8 opp)
991 {
992         int r;
993
994         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995                 return -EINVAL;
996
997         r = 0;
998
999         mutex_lock(&mb1_transfer.lock);
1000
1001         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002                 cpu_relax();
1003
1004         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007
1008         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009         wait_for_completion(&mb1_transfer.work);
1010
1011         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012                 (mb1_transfer.ack.arm_opp != opp))
1013                 r = -EIO;
1014
1015         mutex_unlock(&mb1_transfer.lock);
1016
1017         return r;
1018 }
1019
1020 /**
1021  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1022  *
1023  * Returns: the current ARM OPP
1024  */
1025 int db8500_prcmu_get_arm_opp(void)
1026 {
1027         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028 }
1029
1030 /**
1031  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1032  *
1033  * Returns: the current DDR OPP
1034  */
1035 int db8500_prcmu_get_ddr_opp(void)
1036 {
1037         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1038 }
1039
1040 /**
1041  * db8500_set_ddr_opp - set the appropriate DDR OPP
1042  * @opp: The new DDR operating point to which transition is to be made
1043  * Returns: 0 on success, non-zero on failure
1044  *
1045  * This function sets the operating point of the DDR.
1046  */
1047 int db8500_prcmu_set_ddr_opp(u8 opp)
1048 {
1049         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1050                 return -EINVAL;
1051         /* Changing the DDR OPP can hang the hardware pre-v21 */
1052         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1053                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1054
1055         return 0;
1056 }
1057
1058 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1059 static void request_even_slower_clocks(bool enable)
1060 {
1061         void __iomem *clock_reg[] = {
1062                 PRCM_ACLK_MGT,
1063                 PRCM_DMACLK_MGT
1064         };
1065         unsigned long flags;
1066         unsigned int i;
1067
1068         spin_lock_irqsave(&clk_mgt_lock, flags);
1069
1070         /* Grab the HW semaphore. */
1071         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1072                 cpu_relax();
1073
1074         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1075                 u32 val;
1076                 u32 div;
1077
1078                 val = readl(clock_reg[i]);
1079                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1080                 if (enable) {
1081                         if ((div <= 1) || (div > 15)) {
1082                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1083                                         div, __func__);
1084                                 goto unlock_and_return;
1085                         }
1086                         div <<= 1;
1087                 } else {
1088                         if (div <= 2)
1089                                 goto unlock_and_return;
1090                         div >>= 1;
1091                 }
1092                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1093                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1094                 writel(val, clock_reg[i]);
1095         }
1096
1097 unlock_and_return:
1098         /* Release the HW semaphore. */
1099         writel(0, PRCM_SEM);
1100
1101         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1102 }
1103
1104 /**
1105  * db8500_set_ape_opp - set the appropriate APE OPP
1106  * @opp: The new APE operating point to which transition is to be made
1107  * Returns: 0 on success, non-zero on failure
1108  *
1109  * This function sets the operating point of the APE.
1110  */
1111 int db8500_prcmu_set_ape_opp(u8 opp)
1112 {
1113         int r = 0;
1114
1115         if (opp == mb1_transfer.ape_opp)
1116                 return 0;
1117
1118         mutex_lock(&mb1_transfer.lock);
1119
1120         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1121                 request_even_slower_clocks(false);
1122
1123         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1124                 goto skip_message;
1125
1126         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1127                 cpu_relax();
1128
1129         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1131         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1132                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1133
1134         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1135         wait_for_completion(&mb1_transfer.work);
1136
1137         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1138                 (mb1_transfer.ack.ape_opp != opp))
1139                 r = -EIO;
1140
1141 skip_message:
1142         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1143                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1144                 request_even_slower_clocks(true);
1145         if (!r)
1146                 mb1_transfer.ape_opp = opp;
1147
1148         mutex_unlock(&mb1_transfer.lock);
1149
1150         return r;
1151 }
1152
1153 /**
1154  * db8500_prcmu_get_ape_opp - get the current APE OPP
1155  *
1156  * Returns: the current APE OPP
1157  */
1158 int db8500_prcmu_get_ape_opp(void)
1159 {
1160         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1161 }
1162
1163 /**
1164  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1165  * @enable: true to request the higher voltage, false to drop a request.
1166  *
1167  * Calls to this function to enable and disable requests must be balanced.
1168  */
1169 int prcmu_request_ape_opp_100_voltage(bool enable)
1170 {
1171         int r = 0;
1172         u8 header;
1173         static unsigned int requests;
1174
1175         mutex_lock(&mb1_transfer.lock);
1176
1177         if (enable) {
1178                 if (0 != requests++)
1179                         goto unlock_and_return;
1180                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1181         } else {
1182                 if (requests == 0) {
1183                         r = -EIO;
1184                         goto unlock_and_return;
1185                 } else if (1 != requests--) {
1186                         goto unlock_and_return;
1187                 }
1188                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1189         }
1190
1191         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1192                 cpu_relax();
1193
1194         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1195
1196         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1197         wait_for_completion(&mb1_transfer.work);
1198
1199         if ((mb1_transfer.ack.header != header) ||
1200                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1201                 r = -EIO;
1202
1203 unlock_and_return:
1204         mutex_unlock(&mb1_transfer.lock);
1205
1206         return r;
1207 }
1208
1209 /**
1210  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1211  *
1212  * This function releases the power state requirements of a USB wakeup.
1213  */
1214 int prcmu_release_usb_wakeup_state(void)
1215 {
1216         int r = 0;
1217
1218         mutex_lock(&mb1_transfer.lock);
1219
1220         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1221                 cpu_relax();
1222
1223         writeb(MB1H_RELEASE_USB_WAKEUP,
1224                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1225
1226         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1227         wait_for_completion(&mb1_transfer.work);
1228
1229         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1230                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1231                 r = -EIO;
1232
1233         mutex_unlock(&mb1_transfer.lock);
1234
1235         return r;
1236 }
1237
1238 static int request_pll(u8 clock, bool enable)
1239 {
1240         int r = 0;
1241
1242         if (clock == PRCMU_PLLSOC0)
1243                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1244         else if (clock == PRCMU_PLLSOC1)
1245                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1246         else
1247                 return -EINVAL;
1248
1249         mutex_lock(&mb1_transfer.lock);
1250
1251         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1252                 cpu_relax();
1253
1254         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1255         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1256
1257         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1258         wait_for_completion(&mb1_transfer.work);
1259
1260         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1261                 r = -EIO;
1262
1263         mutex_unlock(&mb1_transfer.lock);
1264
1265         return r;
1266 }
1267
1268 /**
1269  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1270  * @epod_id: The EPOD to set
1271  * @epod_state: The new EPOD state
1272  *
1273  * This function sets the state of a EPOD (power domain). It may not be called
1274  * from interrupt context.
1275  */
1276 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1277 {
1278         int r = 0;
1279         bool ram_retention = false;
1280         int i;
1281
1282         /* check argument */
1283         BUG_ON(epod_id >= NUM_EPOD_ID);
1284
1285         /* set flag if retention is possible */
1286         switch (epod_id) {
1287         case EPOD_ID_SVAMMDSP:
1288         case EPOD_ID_SIAMMDSP:
1289         case EPOD_ID_ESRAM12:
1290         case EPOD_ID_ESRAM34:
1291                 ram_retention = true;
1292                 break;
1293         }
1294
1295         /* check argument */
1296         BUG_ON(epod_state > EPOD_STATE_ON);
1297         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1298
1299         /* get lock */
1300         mutex_lock(&mb2_transfer.lock);
1301
1302         /* wait for mailbox */
1303         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1304                 cpu_relax();
1305
1306         /* fill in mailbox */
1307         for (i = 0; i < NUM_EPOD_ID; i++)
1308                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1309         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1310
1311         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1312
1313         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1314
1315         /*
1316          * The current firmware version does not handle errors correctly,
1317          * and we cannot recover if there is an error.
1318          * This is expected to change when the firmware is updated.
1319          */
1320         if (!wait_for_completion_timeout(&mb2_transfer.work,
1321                         msecs_to_jiffies(20000))) {
1322                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1323                         __func__);
1324                 r = -EIO;
1325                 goto unlock_and_return;
1326         }
1327
1328         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1329                 r = -EIO;
1330
1331 unlock_and_return:
1332         mutex_unlock(&mb2_transfer.lock);
1333         return r;
1334 }
1335
1336 /**
1337  * prcmu_configure_auto_pm - Configure autonomous power management.
1338  * @sleep: Configuration for ApSleep.
1339  * @idle:  Configuration for ApIdle.
1340  */
1341 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1342         struct prcmu_auto_pm_config *idle)
1343 {
1344         u32 sleep_cfg;
1345         u32 idle_cfg;
1346         unsigned long flags;
1347
1348         BUG_ON((sleep == NULL) || (idle == NULL));
1349
1350         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1351         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1352         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1353         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1354         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1355         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1356
1357         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1358         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1359         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1360         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1361         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1362         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1363
1364         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1365
1366         /*
1367          * The autonomous power management configuration is done through
1368          * fields in mailbox 2, but these fields are only used as shared
1369          * variables - i.e. there is no need to send a message.
1370          */
1371         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1372         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1373
1374         mb2_transfer.auto_pm_enabled =
1375                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1376                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1379
1380         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1381 }
1382 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1383
1384 bool prcmu_is_auto_pm_enabled(void)
1385 {
1386         return mb2_transfer.auto_pm_enabled;
1387 }
1388
1389 static int request_sysclk(bool enable)
1390 {
1391         int r;
1392         unsigned long flags;
1393
1394         r = 0;
1395
1396         mutex_lock(&mb3_transfer.sysclk_lock);
1397
1398         spin_lock_irqsave(&mb3_transfer.lock, flags);
1399
1400         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1401                 cpu_relax();
1402
1403         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1404
1405         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1406         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1407
1408         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1409
1410         /*
1411          * The firmware only sends an ACK if we want to enable the
1412          * SysClk, and it succeeds.
1413          */
1414         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1415                         msecs_to_jiffies(20000))) {
1416                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1417                         __func__);
1418                 r = -EIO;
1419         }
1420
1421         mutex_unlock(&mb3_transfer.sysclk_lock);
1422
1423         return r;
1424 }
1425
1426 static int request_timclk(bool enable)
1427 {
1428         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1429
1430         if (!enable)
1431                 val |= PRCM_TCR_STOP_TIMERS;
1432         writel(val, PRCM_TCR);
1433
1434         return 0;
1435 }
1436
1437 static int request_clock(u8 clock, bool enable)
1438 {
1439         u32 val;
1440         unsigned long flags;
1441
1442         spin_lock_irqsave(&clk_mgt_lock, flags);
1443
1444         /* Grab the HW semaphore. */
1445         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1446                 cpu_relax();
1447
1448         val = readl(clk_mgt[clock].reg);
1449         if (enable) {
1450                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1451         } else {
1452                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1453                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1454         }
1455         writel(val, clk_mgt[clock].reg);
1456
1457         /* Release the HW semaphore. */
1458         writel(0, PRCM_SEM);
1459
1460         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1461
1462         return 0;
1463 }
1464
1465 static int request_sga_clock(u8 clock, bool enable)
1466 {
1467         u32 val;
1468         int ret;
1469
1470         if (enable) {
1471                 val = readl(PRCM_CGATING_BYPASS);
1472                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1473         }
1474
1475         ret = request_clock(clock, enable);
1476
1477         if (!ret && !enable) {
1478                 val = readl(PRCM_CGATING_BYPASS);
1479                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1480         }
1481
1482         return ret;
1483 }
1484
1485 static inline bool plldsi_locked(void)
1486 {
1487         return (readl(PRCM_PLLDSI_LOCKP) &
1488                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1489                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1490                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1491                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1492 }
1493
1494 static int request_plldsi(bool enable)
1495 {
1496         int r = 0;
1497         u32 val;
1498
1499         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1500                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1501                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1502
1503         val = readl(PRCM_PLLDSI_ENABLE);
1504         if (enable)
1505                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1506         else
1507                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1508         writel(val, PRCM_PLLDSI_ENABLE);
1509
1510         if (enable) {
1511                 unsigned int i;
1512                 bool locked = plldsi_locked();
1513
1514                 for (i = 10; !locked && (i > 0); --i) {
1515                         udelay(100);
1516                         locked = plldsi_locked();
1517                 }
1518                 if (locked) {
1519                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1520                                 PRCM_APE_RESETN_SET);
1521                 } else {
1522                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1523                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1524                                 PRCM_MMIP_LS_CLAMP_SET);
1525                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1526                         writel(val, PRCM_PLLDSI_ENABLE);
1527                         r = -EAGAIN;
1528                 }
1529         } else {
1530                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1531         }
1532         return r;
1533 }
1534
1535 static int request_dsiclk(u8 n, bool enable)
1536 {
1537         u32 val;
1538
1539         val = readl(PRCM_DSI_PLLOUT_SEL);
1540         val &= ~dsiclk[n].divsel_mask;
1541         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1542                 dsiclk[n].divsel_shift);
1543         writel(val, PRCM_DSI_PLLOUT_SEL);
1544         return 0;
1545 }
1546
1547 static int request_dsiescclk(u8 n, bool enable)
1548 {
1549         u32 val;
1550
1551         val = readl(PRCM_DSITVCLK_DIV);
1552         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1553         writel(val, PRCM_DSITVCLK_DIV);
1554         return 0;
1555 }
1556
1557 /**
1558  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1559  * @clock:      The clock for which the request is made.
1560  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1561  *
1562  * This function should only be used by the clock implementation.
1563  * Do not use it from any other place!
1564  */
1565 int db8500_prcmu_request_clock(u8 clock, bool enable)
1566 {
1567         if (clock == PRCMU_SGACLK)
1568                 return request_sga_clock(clock, enable);
1569         else if (clock < PRCMU_NUM_REG_CLOCKS)
1570                 return request_clock(clock, enable);
1571         else if (clock == PRCMU_TIMCLK)
1572                 return request_timclk(enable);
1573         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1574                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1575         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1576                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1577         else if (clock == PRCMU_PLLDSI)
1578                 return request_plldsi(enable);
1579         else if (clock == PRCMU_SYSCLK)
1580                 return request_sysclk(enable);
1581         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1582                 return request_pll(clock, enable);
1583         else
1584                 return -EINVAL;
1585 }
1586
1587 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1588         int branch)
1589 {
1590         u64 rate;
1591         u32 val;
1592         u32 d;
1593         u32 div = 1;
1594
1595         val = readl(reg);
1596
1597         rate = src_rate;
1598         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1599
1600         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1601         if (d > 1)
1602                 div *= d;
1603
1604         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1605         if (d > 1)
1606                 div *= d;
1607
1608         if (val & PRCM_PLL_FREQ_SELDIV2)
1609                 div *= 2;
1610
1611         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1612                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1613                 ((reg == PRCM_PLLSOC0_FREQ) ||
1614                  (reg == PRCM_PLLDDR_FREQ))))
1615                 div *= 2;
1616
1617         (void)do_div(rate, div);
1618
1619         return (unsigned long)rate;
1620 }
1621
1622 #define ROOT_CLOCK_RATE 38400000
1623
1624 static unsigned long clock_rate(u8 clock)
1625 {
1626         u32 val;
1627         u32 pllsw;
1628         unsigned long rate = ROOT_CLOCK_RATE;
1629
1630         val = readl(clk_mgt[clock].reg);
1631
1632         if (val & PRCM_CLK_MGT_CLK38) {
1633                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1634                         rate /= 2;
1635                 return rate;
1636         }
1637
1638         val |= clk_mgt[clock].pllsw;
1639         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1640
1641         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1642                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1643         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1644                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1645         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1646                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1647         else
1648                 return 0;
1649
1650         if ((clock == PRCMU_SGACLK) &&
1651                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1652                 u64 r = (rate * 10);
1653
1654                 (void)do_div(r, 25);
1655                 return (unsigned long)r;
1656         }
1657         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1658         if (val)
1659                 return rate / val;
1660         else
1661                 return 0;
1662 }
1663
1664 static unsigned long dsiclk_rate(u8 n)
1665 {
1666         u32 divsel;
1667         u32 div = 1;
1668
1669         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1670         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1671
1672         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1673                 divsel = dsiclk[n].divsel;
1674
1675         switch (divsel) {
1676         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1677                 div *= 2;
1678         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1679                 div *= 2;
1680         case PRCM_DSI_PLLOUT_SEL_PHI:
1681                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1682                         PLL_RAW) / div;
1683         default:
1684                 return 0;
1685         }
1686 }
1687
1688 static unsigned long dsiescclk_rate(u8 n)
1689 {
1690         u32 div;
1691
1692         div = readl(PRCM_DSITVCLK_DIV);
1693         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1694         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1695 }
1696
1697 unsigned long prcmu_clock_rate(u8 clock)
1698 {
1699         if (clock < PRCMU_NUM_REG_CLOCKS)
1700                 return clock_rate(clock);
1701         else if (clock == PRCMU_TIMCLK)
1702                 return ROOT_CLOCK_RATE / 16;
1703         else if (clock == PRCMU_SYSCLK)
1704                 return ROOT_CLOCK_RATE;
1705         else if (clock == PRCMU_PLLSOC0)
1706                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1707         else if (clock == PRCMU_PLLSOC1)
1708                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1709         else if (clock == PRCMU_PLLDDR)
1710                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1711         else if (clock == PRCMU_PLLDSI)
1712                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1713                         PLL_RAW);
1714         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1715                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1716         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1717                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1718         else
1719                 return 0;
1720 }
1721
1722 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1723 {
1724         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1725                 return ROOT_CLOCK_RATE;
1726         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1727         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1728                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1729         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1730                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1731         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1732                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1733         else
1734                 return 0;
1735 }
1736
1737 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1738 {
1739         u32 div;
1740
1741         div = (src_rate / rate);
1742         if (div == 0)
1743                 return 1;
1744         if (rate < (src_rate / div))
1745                 div++;
1746         return div;
1747 }
1748
1749 static long round_clock_rate(u8 clock, unsigned long rate)
1750 {
1751         u32 val;
1752         u32 div;
1753         unsigned long src_rate;
1754         long rounded_rate;
1755
1756         val = readl(clk_mgt[clock].reg);
1757         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1758                 clk_mgt[clock].branch);
1759         div = clock_divider(src_rate, rate);
1760         if (val & PRCM_CLK_MGT_CLK38) {
1761                 if (clk_mgt[clock].clk38div) {
1762                         if (div > 2)
1763                                 div = 2;
1764                 } else {
1765                         div = 1;
1766                 }
1767         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1768                 u64 r = (src_rate * 10);
1769
1770                 (void)do_div(r, 25);
1771                 if (r <= rate)
1772                         return (unsigned long)r;
1773         }
1774         rounded_rate = (src_rate / min(div, (u32)31));
1775
1776         return rounded_rate;
1777 }
1778
1779 #define MIN_PLL_VCO_RATE 600000000ULL
1780 #define MAX_PLL_VCO_RATE 1680640000ULL
1781
1782 static long round_plldsi_rate(unsigned long rate)
1783 {
1784         long rounded_rate = 0;
1785         unsigned long src_rate;
1786         unsigned long rem;
1787         u32 r;
1788
1789         src_rate = clock_rate(PRCMU_HDMICLK);
1790         rem = rate;
1791
1792         for (r = 7; (rem > 0) && (r > 0); r--) {
1793                 u64 d;
1794
1795                 d = (r * rate);
1796                 (void)do_div(d, src_rate);
1797                 if (d < 6)
1798                         d = 6;
1799                 else if (d > 255)
1800                         d = 255;
1801                 d *= src_rate;
1802                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1803                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1804                         continue;
1805                 (void)do_div(d, r);
1806                 if (rate < d) {
1807                         if (rounded_rate == 0)
1808                                 rounded_rate = (long)d;
1809                         break;
1810                 }
1811                 if ((rate - d) < rem) {
1812                         rem = (rate - d);
1813                         rounded_rate = (long)d;
1814                 }
1815         }
1816         return rounded_rate;
1817 }
1818
1819 static long round_dsiclk_rate(unsigned long rate)
1820 {
1821         u32 div;
1822         unsigned long src_rate;
1823         long rounded_rate;
1824
1825         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1826                 PLL_RAW);
1827         div = clock_divider(src_rate, rate);
1828         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1829
1830         return rounded_rate;
1831 }
1832
1833 static long round_dsiescclk_rate(unsigned long rate)
1834 {
1835         u32 div;
1836         unsigned long src_rate;
1837         long rounded_rate;
1838
1839         src_rate = clock_rate(PRCMU_TVCLK);
1840         div = clock_divider(src_rate, rate);
1841         rounded_rate = (src_rate / min(div, (u32)255));
1842
1843         return rounded_rate;
1844 }
1845
1846 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1847 {
1848         if (clock < PRCMU_NUM_REG_CLOCKS)
1849                 return round_clock_rate(clock, rate);
1850         else if (clock == PRCMU_PLLDSI)
1851                 return round_plldsi_rate(rate);
1852         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1853                 return round_dsiclk_rate(rate);
1854         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1855                 return round_dsiescclk_rate(rate);
1856         else
1857                 return (long)prcmu_clock_rate(clock);
1858 }
1859
1860 static void set_clock_rate(u8 clock, unsigned long rate)
1861 {
1862         u32 val;
1863         u32 div;
1864         unsigned long src_rate;
1865         unsigned long flags;
1866
1867         spin_lock_irqsave(&clk_mgt_lock, flags);
1868
1869         /* Grab the HW semaphore. */
1870         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1871                 cpu_relax();
1872
1873         val = readl(clk_mgt[clock].reg);
1874         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1875                 clk_mgt[clock].branch);
1876         div = clock_divider(src_rate, rate);
1877         if (val & PRCM_CLK_MGT_CLK38) {
1878                 if (clk_mgt[clock].clk38div) {
1879                         if (div > 1)
1880                                 val |= PRCM_CLK_MGT_CLK38DIV;
1881                         else
1882                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1883                 }
1884         } else if (clock == PRCMU_SGACLK) {
1885                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1886                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1887                 if (div == 3) {
1888                         u64 r = (src_rate * 10);
1889
1890                         (void)do_div(r, 25);
1891                         if (r <= rate) {
1892                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1893                                 div = 0;
1894                         }
1895                 }
1896                 val |= min(div, (u32)31);
1897         } else {
1898                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1899                 val |= min(div, (u32)31);
1900         }
1901         writel(val, clk_mgt[clock].reg);
1902
1903         /* Release the HW semaphore. */
1904         writel(0, PRCM_SEM);
1905
1906         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1907 }
1908
1909 static int set_plldsi_rate(unsigned long rate)
1910 {
1911         unsigned long src_rate;
1912         unsigned long rem;
1913         u32 pll_freq = 0;
1914         u32 r;
1915
1916         src_rate = clock_rate(PRCMU_HDMICLK);
1917         rem = rate;
1918
1919         for (r = 7; (rem > 0) && (r > 0); r--) {
1920                 u64 d;
1921                 u64 hwrate;
1922
1923                 d = (r * rate);
1924                 (void)do_div(d, src_rate);
1925                 if (d < 6)
1926                         d = 6;
1927                 else if (d > 255)
1928                         d = 255;
1929                 hwrate = (d * src_rate);
1930                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1931                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1932                         continue;
1933                 (void)do_div(hwrate, r);
1934                 if (rate < hwrate) {
1935                         if (pll_freq == 0)
1936                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1937                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1938                         break;
1939                 }
1940                 if ((rate - hwrate) < rem) {
1941                         rem = (rate - hwrate);
1942                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1943                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1944                 }
1945         }
1946         if (pll_freq == 0)
1947                 return -EINVAL;
1948
1949         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1950         writel(pll_freq, PRCM_PLLDSI_FREQ);
1951
1952         return 0;
1953 }
1954
1955 static void set_dsiclk_rate(u8 n, unsigned long rate)
1956 {
1957         u32 val;
1958         u32 div;
1959
1960         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1961                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1962
1963         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1964                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1965                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1966
1967         val = readl(PRCM_DSI_PLLOUT_SEL);
1968         val &= ~dsiclk[n].divsel_mask;
1969         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1970         writel(val, PRCM_DSI_PLLOUT_SEL);
1971 }
1972
1973 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1974 {
1975         u32 val;
1976         u32 div;
1977
1978         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1979         val = readl(PRCM_DSITVCLK_DIV);
1980         val &= ~dsiescclk[n].div_mask;
1981         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1982         writel(val, PRCM_DSITVCLK_DIV);
1983 }
1984
1985 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1986 {
1987         if (clock < PRCMU_NUM_REG_CLOCKS)
1988                 set_clock_rate(clock, rate);
1989         else if (clock == PRCMU_PLLDSI)
1990                 return set_plldsi_rate(rate);
1991         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995         return 0;
1996 }
1997
1998 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1999 {
2000         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002                 return -EINVAL;
2003
2004         mutex_lock(&mb4_transfer.lock);
2005
2006         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007                 cpu_relax();
2008
2009         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012         writeb(DDR_PWR_STATE_ON,
2013                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2015
2016         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017         wait_for_completion(&mb4_transfer.work);
2018
2019         mutex_unlock(&mb4_transfer.lock);
2020
2021         return 0;
2022 }
2023
2024 int db8500_prcmu_config_hotdog(u8 threshold)
2025 {
2026         mutex_lock(&mb4_transfer.lock);
2027
2028         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029                 cpu_relax();
2030
2031         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2033
2034         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035         wait_for_completion(&mb4_transfer.work);
2036
2037         mutex_unlock(&mb4_transfer.lock);
2038
2039         return 0;
2040 }
2041
2042 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2043 {
2044         mutex_lock(&mb4_transfer.lock);
2045
2046         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047                 cpu_relax();
2048
2049         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054
2055         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056         wait_for_completion(&mb4_transfer.work);
2057
2058         mutex_unlock(&mb4_transfer.lock);
2059
2060         return 0;
2061 }
2062
2063 static int config_hot_period(u16 val)
2064 {
2065         mutex_lock(&mb4_transfer.lock);
2066
2067         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068                 cpu_relax();
2069
2070         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2072
2073         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074         wait_for_completion(&mb4_transfer.work);
2075
2076         mutex_unlock(&mb4_transfer.lock);
2077
2078         return 0;
2079 }
2080
2081 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2082 {
2083         if (cycles32k == 0xFFFF)
2084                 return -EINVAL;
2085
2086         return config_hot_period(cycles32k);
2087 }
2088
2089 int db8500_prcmu_stop_temp_sense(void)
2090 {
2091         return config_hot_period(0xFFFF);
2092 }
2093
2094 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2095 {
2096
2097         mutex_lock(&mb4_transfer.lock);
2098
2099         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100                 cpu_relax();
2101
2102         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2106
2107         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2108
2109         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110         wait_for_completion(&mb4_transfer.work);
2111
2112         mutex_unlock(&mb4_transfer.lock);
2113
2114         return 0;
2115
2116 }
2117
2118 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2119 {
2120         BUG_ON(num == 0 || num > 0xf);
2121         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123                             A9WDOG_AUTO_OFF_DIS);
2124 }
2125
2126 int db8500_prcmu_enable_a9wdog(u8 id)
2127 {
2128         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2129 }
2130
2131 int db8500_prcmu_disable_a9wdog(u8 id)
2132 {
2133         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2134 }
2135
2136 int db8500_prcmu_kick_a9wdog(u8 id)
2137 {
2138         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139 }
2140
2141 /*
2142  * timeout is 28 bit, in ms.
2143  */
2144 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2145 {
2146         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2147                             (id & A9WDOG_ID_MASK) |
2148                             /*
2149                              * Put the lowest 28 bits of timeout at
2150                              * offset 4. Four first bits are used for id.
2151                              */
2152                             (u8)((timeout << 4) & 0xf0),
2153                             (u8)((timeout >> 4) & 0xff),
2154                             (u8)((timeout >> 12) & 0xff),
2155                             (u8)((timeout >> 20) & 0xff));
2156 }
2157
2158 /**
2159  * prcmu_abb_read() - Read register value(s) from the ABB.
2160  * @slave:      The I2C slave address.
2161  * @reg:        The (start) register address.
2162  * @value:      The read out value(s).
2163  * @size:       The number of registers to read.
2164  *
2165  * Reads register value(s) from the ABB.
2166  * @size has to be 1 for the current firmware version.
2167  */
2168 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2169 {
2170         int r;
2171
2172         if (size != 1)
2173                 return -EINVAL;
2174
2175         mutex_lock(&mb5_transfer.lock);
2176
2177         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2178                 cpu_relax();
2179
2180         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2181         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2182         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2183         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2184         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2185
2186         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2187
2188         if (!wait_for_completion_timeout(&mb5_transfer.work,
2189                                 msecs_to_jiffies(20000))) {
2190                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2191                         __func__);
2192                 r = -EIO;
2193         } else {
2194                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2195         }
2196
2197         if (!r)
2198                 *value = mb5_transfer.ack.value;
2199
2200         mutex_unlock(&mb5_transfer.lock);
2201
2202         return r;
2203 }
2204
2205 /**
2206  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2207  * @slave:      The I2C slave address.
2208  * @reg:        The (start) register address.
2209  * @value:      The value(s) to write.
2210  * @mask:       The mask(s) to use.
2211  * @size:       The number of registers to write.
2212  *
2213  * Writes masked register value(s) to the ABB.
2214  * For each @value, only the bits set to 1 in the corresponding @mask
2215  * will be written. The other bits are not changed.
2216  * @size has to be 1 for the current firmware version.
2217  */
2218 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2219 {
2220         int r;
2221
2222         if (size != 1)
2223                 return -EINVAL;
2224
2225         mutex_lock(&mb5_transfer.lock);
2226
2227         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2228                 cpu_relax();
2229
2230         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2231         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2232         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2233         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2234         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2235
2236         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2237
2238         if (!wait_for_completion_timeout(&mb5_transfer.work,
2239                                 msecs_to_jiffies(20000))) {
2240                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2241                         __func__);
2242                 r = -EIO;
2243         } else {
2244                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2245         }
2246
2247         mutex_unlock(&mb5_transfer.lock);
2248
2249         return r;
2250 }
2251
2252 /**
2253  * prcmu_abb_write() - Write register value(s) to the ABB.
2254  * @slave:      The I2C slave address.
2255  * @reg:        The (start) register address.
2256  * @value:      The value(s) to write.
2257  * @size:       The number of registers to write.
2258  *
2259  * Writes register value(s) to the ABB.
2260  * @size has to be 1 for the current firmware version.
2261  */
2262 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2263 {
2264         u8 mask = ~0;
2265
2266         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2267 }
2268
2269 /**
2270  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2271  */
2272 void prcmu_ac_wake_req(void)
2273 {
2274         u32 val;
2275         u32 status;
2276
2277         mutex_lock(&mb0_transfer.ac_wake_lock);
2278
2279         val = readl(PRCM_HOSTACCESS_REQ);
2280         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2281                 goto unlock_and_return;
2282
2283         atomic_set(&ac_wake_req_state, 1);
2284
2285 retry:
2286         writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
2287
2288         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2289                         msecs_to_jiffies(5000))) {
2290                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2291                         __func__);
2292                 goto unlock_and_return;
2293         }
2294
2295         /*
2296          * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2297          * As a workaround, we wait, and then check that the modem is indeed
2298          * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2299          * register, which may not be the whole truth).
2300          */
2301         udelay(400);
2302         status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2303         if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2304                         PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2305                 pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2306                         __func__, status);
2307                 udelay(1200);
2308                 writel(val, PRCM_HOSTACCESS_REQ);
2309                 if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2310                                 msecs_to_jiffies(5000)))
2311                         goto retry;
2312                 pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
2313                         __func__);
2314         }
2315
2316 unlock_and_return:
2317         mutex_unlock(&mb0_transfer.ac_wake_lock);
2318 }
2319
2320 /**
2321  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2322  */
2323 void prcmu_ac_sleep_req()
2324 {
2325         u32 val;
2326
2327         mutex_lock(&mb0_transfer.ac_wake_lock);
2328
2329         val = readl(PRCM_HOSTACCESS_REQ);
2330         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2331                 goto unlock_and_return;
2332
2333         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2334                 PRCM_HOSTACCESS_REQ);
2335
2336         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2337                         msecs_to_jiffies(5000))) {
2338                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2339                         __func__);
2340         }
2341
2342         atomic_set(&ac_wake_req_state, 0);
2343
2344 unlock_and_return:
2345         mutex_unlock(&mb0_transfer.ac_wake_lock);
2346 }
2347
2348 bool db8500_prcmu_is_ac_wake_requested(void)
2349 {
2350         return (atomic_read(&ac_wake_req_state) != 0);
2351 }
2352
2353 /**
2354  * db8500_prcmu_system_reset - System reset
2355  *
2356  * Saves the reset reason code and then sets the APE_SOFTRST register which
2357  * fires interrupt to fw
2358  */
2359 void db8500_prcmu_system_reset(u16 reset_code)
2360 {
2361         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2362         writel(1, PRCM_APE_SOFTRST);
2363 }
2364
2365 /**
2366  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2367  *
2368  * Retrieves the reset reason code stored by prcmu_system_reset() before
2369  * last restart.
2370  */
2371 u16 db8500_prcmu_get_reset_code(void)
2372 {
2373         return readw(tcdm_base + PRCM_SW_RST_REASON);
2374 }
2375
2376 /**
2377  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2378  */
2379 void db8500_prcmu_modem_reset(void)
2380 {
2381         mutex_lock(&mb1_transfer.lock);
2382
2383         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2384                 cpu_relax();
2385
2386         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2387         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2388         wait_for_completion(&mb1_transfer.work);
2389
2390         /*
2391          * No need to check return from PRCMU as modem should go in reset state
2392          * This state is already managed by upper layer
2393          */
2394
2395         mutex_unlock(&mb1_transfer.lock);
2396 }
2397
2398 static void ack_dbb_wakeup(void)
2399 {
2400         unsigned long flags;
2401
2402         spin_lock_irqsave(&mb0_transfer.lock, flags);
2403
2404         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2405                 cpu_relax();
2406
2407         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2408         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2409
2410         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2411 }
2412
2413 static inline void print_unknown_header_warning(u8 n, u8 header)
2414 {
2415         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2416                 header, n);
2417 }
2418
2419 static bool read_mailbox_0(void)
2420 {
2421         bool r;
2422         u32 ev;
2423         unsigned int n;
2424         u8 header;
2425
2426         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2427         switch (header) {
2428         case MB0H_WAKEUP_EXE:
2429         case MB0H_WAKEUP_SLEEP:
2430                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2431                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2432                 else
2433                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2434
2435                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2436                         complete(&mb0_transfer.ac_wake_work);
2437                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2438                         complete(&mb3_transfer.sysclk_work);
2439
2440                 ev &= mb0_transfer.req.dbb_irqs;
2441
2442                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2443                         if (ev & prcmu_irq_bit[n])
2444                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
2445                 }
2446                 r = true;
2447                 break;
2448         default:
2449                 print_unknown_header_warning(0, header);
2450                 r = false;
2451                 break;
2452         }
2453         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2454         return r;
2455 }
2456
2457 static bool read_mailbox_1(void)
2458 {
2459         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2460         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2461                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2462         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2463                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2464         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2465                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2466         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2467         complete(&mb1_transfer.work);
2468         return false;
2469 }
2470
2471 static bool read_mailbox_2(void)
2472 {
2473         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2474         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2475         complete(&mb2_transfer.work);
2476         return false;
2477 }
2478
2479 static bool read_mailbox_3(void)
2480 {
2481         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2482         return false;
2483 }
2484
2485 static bool read_mailbox_4(void)
2486 {
2487         u8 header;
2488         bool do_complete = true;
2489
2490         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2491         switch (header) {
2492         case MB4H_MEM_ST:
2493         case MB4H_HOTDOG:
2494         case MB4H_HOTMON:
2495         case MB4H_HOT_PERIOD:
2496         case MB4H_A9WDOG_CONF:
2497         case MB4H_A9WDOG_EN:
2498         case MB4H_A9WDOG_DIS:
2499         case MB4H_A9WDOG_LOAD:
2500         case MB4H_A9WDOG_KICK:
2501                 break;
2502         default:
2503                 print_unknown_header_warning(4, header);
2504                 do_complete = false;
2505                 break;
2506         }
2507
2508         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2509
2510         if (do_complete)
2511                 complete(&mb4_transfer.work);
2512
2513         return false;
2514 }
2515
2516 static bool read_mailbox_5(void)
2517 {
2518         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2519         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2520         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2521         complete(&mb5_transfer.work);
2522         return false;
2523 }
2524
2525 static bool read_mailbox_6(void)
2526 {
2527         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2528         return false;
2529 }
2530
2531 static bool read_mailbox_7(void)
2532 {
2533         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2534         return false;
2535 }
2536
2537 static bool (* const read_mailbox[NUM_MB])(void) = {
2538         read_mailbox_0,
2539         read_mailbox_1,
2540         read_mailbox_2,
2541         read_mailbox_3,
2542         read_mailbox_4,
2543         read_mailbox_5,
2544         read_mailbox_6,
2545         read_mailbox_7
2546 };
2547
2548 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2549 {
2550         u32 bits;
2551         u8 n;
2552         irqreturn_t r;
2553
2554         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2555         if (unlikely(!bits))
2556                 return IRQ_NONE;
2557
2558         r = IRQ_HANDLED;
2559         for (n = 0; bits; n++) {
2560                 if (bits & MBOX_BIT(n)) {
2561                         bits -= MBOX_BIT(n);
2562                         if (read_mailbox[n]())
2563                                 r = IRQ_WAKE_THREAD;
2564                 }
2565         }
2566         return r;
2567 }
2568
2569 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2570 {
2571         ack_dbb_wakeup();
2572         return IRQ_HANDLED;
2573 }
2574
2575 static void prcmu_mask_work(struct work_struct *work)
2576 {
2577         unsigned long flags;
2578
2579         spin_lock_irqsave(&mb0_transfer.lock, flags);
2580
2581         config_wakeups();
2582
2583         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2584 }
2585
2586 static void prcmu_irq_mask(struct irq_data *d)
2587 {
2588         unsigned long flags;
2589
2590         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2591
2592         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2593
2594         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2595
2596         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2597                 schedule_work(&mb0_transfer.mask_work);
2598 }
2599
2600 static void prcmu_irq_unmask(struct irq_data *d)
2601 {
2602         unsigned long flags;
2603
2604         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2605
2606         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2607
2608         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2609
2610         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2611                 schedule_work(&mb0_transfer.mask_work);
2612 }
2613
2614 static void noop(struct irq_data *d)
2615 {
2616 }
2617
2618 static struct irq_chip prcmu_irq_chip = {
2619         .name           = "prcmu",
2620         .irq_disable    = prcmu_irq_mask,
2621         .irq_ack        = noop,
2622         .irq_mask       = prcmu_irq_mask,
2623         .irq_unmask     = prcmu_irq_unmask,
2624 };
2625
2626 static char *fw_project_name(u8 project)
2627 {
2628         switch (project) {
2629         case PRCMU_FW_PROJECT_U8500:
2630                 return "U8500";
2631         case PRCMU_FW_PROJECT_U8500_C2:
2632                 return "U8500 C2";
2633         case PRCMU_FW_PROJECT_U9500:
2634                 return "U9500";
2635         case PRCMU_FW_PROJECT_U9500_C2:
2636                 return "U9500 C2";
2637         case PRCMU_FW_PROJECT_U8520:
2638                 return "U8520";
2639         case PRCMU_FW_PROJECT_U8420:
2640                 return "U8420";
2641         default:
2642                 return "Unknown";
2643         }
2644 }
2645
2646 void __init db8500_prcmu_early_init(void)
2647 {
2648         unsigned int i;
2649         if (cpu_is_u8500v2()) {
2650                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2651
2652                 if (tcpm_base != NULL) {
2653                         u32 version;
2654                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2655                         fw_info.version.project = version & 0xFF;
2656                         fw_info.version.api_version = (version >> 8) & 0xFF;
2657                         fw_info.version.func_version = (version >> 16) & 0xFF;
2658                         fw_info.version.errata = (version >> 24) & 0xFF;
2659                         fw_info.valid = true;
2660                         pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2661                                 fw_project_name(fw_info.version.project),
2662                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2663                                 (version >> 24) & 0xFF);
2664                         iounmap(tcpm_base);
2665                 }
2666
2667                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2668         } else {
2669                 pr_err("prcmu: Unsupported chip version\n");
2670                 BUG();
2671         }
2672
2673         spin_lock_init(&mb0_transfer.lock);
2674         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2675         mutex_init(&mb0_transfer.ac_wake_lock);
2676         init_completion(&mb0_transfer.ac_wake_work);
2677         mutex_init(&mb1_transfer.lock);
2678         init_completion(&mb1_transfer.work);
2679         mb1_transfer.ape_opp = APE_NO_CHANGE;
2680         mutex_init(&mb2_transfer.lock);
2681         init_completion(&mb2_transfer.work);
2682         spin_lock_init(&mb2_transfer.auto_pm_lock);
2683         spin_lock_init(&mb3_transfer.lock);
2684         mutex_init(&mb3_transfer.sysclk_lock);
2685         init_completion(&mb3_transfer.sysclk_work);
2686         mutex_init(&mb4_transfer.lock);
2687         init_completion(&mb4_transfer.work);
2688         mutex_init(&mb5_transfer.lock);
2689         init_completion(&mb5_transfer.work);
2690
2691         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2692
2693         /* Initalize irqs. */
2694         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2695                 unsigned int irq;
2696
2697                 irq = IRQ_PRCMU_BASE + i;
2698                 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2699                                          handle_simple_irq);
2700                 set_irq_flags(irq, IRQF_VALID);
2701         }
2702 }
2703
2704 static void __init init_prcm_registers(void)
2705 {
2706         u32 val;
2707
2708         val = readl(PRCM_A9PL_FORCE_CLKEN);
2709         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2710                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2711         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2712 }
2713
2714 /*
2715  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2716  */
2717 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2718         REGULATOR_SUPPLY("v-ape", NULL),
2719         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2720         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2721         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2722         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2723         /* "v-mmc" changed to "vcore" in the mainline kernel */
2724         REGULATOR_SUPPLY("vcore", "sdi0"),
2725         REGULATOR_SUPPLY("vcore", "sdi1"),
2726         REGULATOR_SUPPLY("vcore", "sdi2"),
2727         REGULATOR_SUPPLY("vcore", "sdi3"),
2728         REGULATOR_SUPPLY("vcore", "sdi4"),
2729         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2730         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2731         /* "v-uart" changed to "vcore" in the mainline kernel */
2732         REGULATOR_SUPPLY("vcore", "uart0"),
2733         REGULATOR_SUPPLY("vcore", "uart1"),
2734         REGULATOR_SUPPLY("vcore", "uart2"),
2735         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2736         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2737 };
2738
2739 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2740         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2741         /* AV8100 regulator */
2742         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2743 };
2744
2745 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2746         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2747         REGULATOR_SUPPLY("vsupply", "mcde"),
2748 };
2749
2750 /* SVA MMDSP regulator switch */
2751 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2752         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2753 };
2754
2755 /* SVA pipe regulator switch */
2756 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2757         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2758 };
2759
2760 /* SIA MMDSP regulator switch */
2761 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2762         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2763 };
2764
2765 /* SIA pipe regulator switch */
2766 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2767         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2768 };
2769
2770 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2771         REGULATOR_SUPPLY("v-mali", NULL),
2772 };
2773
2774 /* ESRAM1 and 2 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2776         REGULATOR_SUPPLY("esram12", "cm_control"),
2777 };
2778
2779 /* ESRAM3 and 4 regulator switch */
2780 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2781         REGULATOR_SUPPLY("v-esram34", "mcde"),
2782         REGULATOR_SUPPLY("esram34", "cm_control"),
2783         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2784 };
2785
2786 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2787         [DB8500_REGULATOR_VAPE] = {
2788                 .constraints = {
2789                         .name = "db8500-vape",
2790                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2791                         .always_on = true,
2792                 },
2793                 .consumer_supplies = db8500_vape_consumers,
2794                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2795         },
2796         [DB8500_REGULATOR_VARM] = {
2797                 .constraints = {
2798                         .name = "db8500-varm",
2799                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2800                 },
2801         },
2802         [DB8500_REGULATOR_VMODEM] = {
2803                 .constraints = {
2804                         .name = "db8500-vmodem",
2805                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2806                 },
2807         },
2808         [DB8500_REGULATOR_VPLL] = {
2809                 .constraints = {
2810                         .name = "db8500-vpll",
2811                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2812                 },
2813         },
2814         [DB8500_REGULATOR_VSMPS1] = {
2815                 .constraints = {
2816                         .name = "db8500-vsmps1",
2817                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2818                 },
2819         },
2820         [DB8500_REGULATOR_VSMPS2] = {
2821                 .constraints = {
2822                         .name = "db8500-vsmps2",
2823                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824                 },
2825                 .consumer_supplies = db8500_vsmps2_consumers,
2826                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2827         },
2828         [DB8500_REGULATOR_VSMPS3] = {
2829                 .constraints = {
2830                         .name = "db8500-vsmps3",
2831                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2832                 },
2833         },
2834         [DB8500_REGULATOR_VRF1] = {
2835                 .constraints = {
2836                         .name = "db8500-vrf1",
2837                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838                 },
2839         },
2840         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2841                 /* dependency to u8500-vape is handled outside regulator framework */
2842                 .constraints = {
2843                         .name = "db8500-sva-mmdsp",
2844                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845                 },
2846                 .consumer_supplies = db8500_svammdsp_consumers,
2847                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2848         },
2849         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2850                 .constraints = {
2851                         /* "ret" means "retention" */
2852                         .name = "db8500-sva-mmdsp-ret",
2853                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2854                 },
2855         },
2856         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2857                 /* dependency to u8500-vape is handled outside regulator framework */
2858                 .constraints = {
2859                         .name = "db8500-sva-pipe",
2860                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861                 },
2862                 .consumer_supplies = db8500_svapipe_consumers,
2863                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2864         },
2865         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2866                 /* dependency to u8500-vape is handled outside regulator framework */
2867                 .constraints = {
2868                         .name = "db8500-sia-mmdsp",
2869                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870                 },
2871                 .consumer_supplies = db8500_siammdsp_consumers,
2872                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2873         },
2874         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2875                 .constraints = {
2876                         .name = "db8500-sia-mmdsp-ret",
2877                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878                 },
2879         },
2880         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2881                 /* dependency to u8500-vape is handled outside regulator framework */
2882                 .constraints = {
2883                         .name = "db8500-sia-pipe",
2884                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2885                 },
2886                 .consumer_supplies = db8500_siapipe_consumers,
2887                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2888         },
2889         [DB8500_REGULATOR_SWITCH_SGA] = {
2890                 .supply_regulator = "db8500-vape",
2891                 .constraints = {
2892                         .name = "db8500-sga",
2893                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894                 },
2895                 .consumer_supplies = db8500_sga_consumers,
2896                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2897
2898         },
2899         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2900                 .supply_regulator = "db8500-vape",
2901                 .constraints = {
2902                         .name = "db8500-b2r2-mcde",
2903                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904                 },
2905                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2906                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2907         },
2908         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2909                 /*
2910                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2911                  * no need to hold Vape
2912                  */
2913                 .constraints = {
2914                         .name = "db8500-esram12",
2915                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2916                 },
2917                 .consumer_supplies = db8500_esram12_consumers,
2918                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2919         },
2920         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2921                 .constraints = {
2922                         .name = "db8500-esram12-ret",
2923                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2924                 },
2925         },
2926         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2927                 /*
2928                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2929                  * no need to hold Vape
2930                  */
2931                 .constraints = {
2932                         .name = "db8500-esram34",
2933                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934                 },
2935                 .consumer_supplies = db8500_esram34_consumers,
2936                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2937         },
2938         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2939                 .constraints = {
2940                         .name = "db8500-esram34-ret",
2941                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942                 },
2943         },
2944 };
2945
2946 static struct mfd_cell db8500_prcmu_devs[] = {
2947         {
2948                 .name = "db8500-prcmu-regulators",
2949                 .platform_data = &db8500_regulators,
2950                 .pdata_size = sizeof(db8500_regulators),
2951         },
2952         {
2953                 .name = "cpufreq-u8500",
2954         },
2955 };
2956
2957 /**
2958  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2959  *
2960  */
2961 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2962 {
2963         int err = 0;
2964
2965         if (ux500_is_svp())
2966                 return -ENODEV;
2967
2968         init_prcm_registers();
2969
2970         /* Clean up the mailbox interrupts after pre-kernel code. */
2971         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2972
2973         err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2974                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2975         if (err < 0) {
2976                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2977                 err = -EBUSY;
2978                 goto no_irq_return;
2979         }
2980
2981         if (cpu_is_u8500v20_or_later())
2982                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2983
2984         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2985                               ARRAY_SIZE(db8500_prcmu_devs), NULL,
2986                               0);
2987
2988         if (err)
2989                 pr_err("prcmu: Failed to add subdevices\n");
2990         else
2991                 pr_info("DB8500 PRCMU initialized\n");
2992
2993 no_irq_return:
2994         return err;
2995 }
2996
2997 static struct platform_driver db8500_prcmu_driver = {
2998         .driver = {
2999                 .name = "db8500-prcmu",
3000                 .owner = THIS_MODULE,
3001         },
3002 };
3003
3004 static int __init db8500_prcmu_init(void)
3005 {
3006         return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
3007 }
3008
3009 arch_initcall(db8500_prcmu_init);
3010
3011 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3012 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3013 MODULE_LICENSE("GPL v2");