Merge branch 'fixes' of git://git.infradead.org/users/vkoul/slave-dma
[linux-flexiantxendom0-3.2.10.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55
56 /* Mask out flags that are inappropriate for the given type of inode. */
57 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 {
59         if (S_ISDIR(mode))
60                 return flags;
61         else if (S_ISREG(mode))
62                 return flags & ~FS_DIRSYNC_FL;
63         else
64                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
65 }
66
67 /*
68  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69  */
70 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 {
72         unsigned int iflags = 0;
73
74         if (flags & BTRFS_INODE_SYNC)
75                 iflags |= FS_SYNC_FL;
76         if (flags & BTRFS_INODE_IMMUTABLE)
77                 iflags |= FS_IMMUTABLE_FL;
78         if (flags & BTRFS_INODE_APPEND)
79                 iflags |= FS_APPEND_FL;
80         if (flags & BTRFS_INODE_NODUMP)
81                 iflags |= FS_NODUMP_FL;
82         if (flags & BTRFS_INODE_NOATIME)
83                 iflags |= FS_NOATIME_FL;
84         if (flags & BTRFS_INODE_DIRSYNC)
85                 iflags |= FS_DIRSYNC_FL;
86         if (flags & BTRFS_INODE_NODATACOW)
87                 iflags |= FS_NOCOW_FL;
88
89         if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
90                 iflags |= FS_COMPR_FL;
91         else if (flags & BTRFS_INODE_NOCOMPRESS)
92                 iflags |= FS_NOCOMP_FL;
93
94         return iflags;
95 }
96
97 /*
98  * Update inode->i_flags based on the btrfs internal flags.
99  */
100 void btrfs_update_iflags(struct inode *inode)
101 {
102         struct btrfs_inode *ip = BTRFS_I(inode);
103
104         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105
106         if (ip->flags & BTRFS_INODE_SYNC)
107                 inode->i_flags |= S_SYNC;
108         if (ip->flags & BTRFS_INODE_IMMUTABLE)
109                 inode->i_flags |= S_IMMUTABLE;
110         if (ip->flags & BTRFS_INODE_APPEND)
111                 inode->i_flags |= S_APPEND;
112         if (ip->flags & BTRFS_INODE_NOATIME)
113                 inode->i_flags |= S_NOATIME;
114         if (ip->flags & BTRFS_INODE_DIRSYNC)
115                 inode->i_flags |= S_DIRSYNC;
116 }
117
118 /*
119  * Inherit flags from the parent inode.
120  *
121  * Currently only the compression flags and the cow flags are inherited.
122  */
123 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 {
125         unsigned int flags;
126
127         if (!dir)
128                 return;
129
130         flags = BTRFS_I(dir)->flags;
131
132         if (flags & BTRFS_INODE_NOCOMPRESS) {
133                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
134                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
135         } else if (flags & BTRFS_INODE_COMPRESS) {
136                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
137                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
138         }
139
140         if (flags & BTRFS_INODE_NODATACOW)
141                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
142
143         btrfs_update_iflags(inode);
144 }
145
146 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
147 {
148         struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
149         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
150
151         if (copy_to_user(arg, &flags, sizeof(flags)))
152                 return -EFAULT;
153         return 0;
154 }
155
156 static int check_flags(unsigned int flags)
157 {
158         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
159                       FS_NOATIME_FL | FS_NODUMP_FL | \
160                       FS_SYNC_FL | FS_DIRSYNC_FL | \
161                       FS_NOCOMP_FL | FS_COMPR_FL |
162                       FS_NOCOW_FL))
163                 return -EOPNOTSUPP;
164
165         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
166                 return -EINVAL;
167
168         return 0;
169 }
170
171 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
172 {
173         struct inode *inode = file->f_path.dentry->d_inode;
174         struct btrfs_inode *ip = BTRFS_I(inode);
175         struct btrfs_root *root = ip->root;
176         struct btrfs_trans_handle *trans;
177         unsigned int flags, oldflags;
178         int ret;
179         u64 ip_oldflags;
180         unsigned int i_oldflags;
181
182         if (btrfs_root_readonly(root))
183                 return -EROFS;
184
185         if (copy_from_user(&flags, arg, sizeof(flags)))
186                 return -EFAULT;
187
188         ret = check_flags(flags);
189         if (ret)
190                 return ret;
191
192         if (!inode_owner_or_capable(inode))
193                 return -EACCES;
194
195         mutex_lock(&inode->i_mutex);
196
197         ip_oldflags = ip->flags;
198         i_oldflags = inode->i_flags;
199
200         flags = btrfs_mask_flags(inode->i_mode, flags);
201         oldflags = btrfs_flags_to_ioctl(ip->flags);
202         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
203                 if (!capable(CAP_LINUX_IMMUTABLE)) {
204                         ret = -EPERM;
205                         goto out_unlock;
206                 }
207         }
208
209         ret = mnt_want_write_file(file);
210         if (ret)
211                 goto out_unlock;
212
213         if (flags & FS_SYNC_FL)
214                 ip->flags |= BTRFS_INODE_SYNC;
215         else
216                 ip->flags &= ~BTRFS_INODE_SYNC;
217         if (flags & FS_IMMUTABLE_FL)
218                 ip->flags |= BTRFS_INODE_IMMUTABLE;
219         else
220                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
221         if (flags & FS_APPEND_FL)
222                 ip->flags |= BTRFS_INODE_APPEND;
223         else
224                 ip->flags &= ~BTRFS_INODE_APPEND;
225         if (flags & FS_NODUMP_FL)
226                 ip->flags |= BTRFS_INODE_NODUMP;
227         else
228                 ip->flags &= ~BTRFS_INODE_NODUMP;
229         if (flags & FS_NOATIME_FL)
230                 ip->flags |= BTRFS_INODE_NOATIME;
231         else
232                 ip->flags &= ~BTRFS_INODE_NOATIME;
233         if (flags & FS_DIRSYNC_FL)
234                 ip->flags |= BTRFS_INODE_DIRSYNC;
235         else
236                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
237         if (flags & FS_NOCOW_FL)
238                 ip->flags |= BTRFS_INODE_NODATACOW;
239         else
240                 ip->flags &= ~BTRFS_INODE_NODATACOW;
241
242         /*
243          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
244          * flag may be changed automatically if compression code won't make
245          * things smaller.
246          */
247         if (flags & FS_NOCOMP_FL) {
248                 ip->flags &= ~BTRFS_INODE_COMPRESS;
249                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
250         } else if (flags & FS_COMPR_FL) {
251                 ip->flags |= BTRFS_INODE_COMPRESS;
252                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
253         } else {
254                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
255         }
256
257         trans = btrfs_start_transaction(root, 1);
258         if (IS_ERR(trans)) {
259                 ret = PTR_ERR(trans);
260                 goto out_drop;
261         }
262
263         btrfs_update_iflags(inode);
264         inode->i_ctime = CURRENT_TIME;
265         ret = btrfs_update_inode(trans, root, inode);
266
267         btrfs_end_transaction(trans, root);
268  out_drop:
269         if (ret) {
270                 ip->flags = ip_oldflags;
271                 inode->i_flags = i_oldflags;
272         }
273
274         mnt_drop_write_file(file);
275  out_unlock:
276         mutex_unlock(&inode->i_mutex);
277         return ret;
278 }
279
280 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
281 {
282         struct inode *inode = file->f_path.dentry->d_inode;
283
284         return put_user(inode->i_generation, arg);
285 }
286
287 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
288 {
289         struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
290         struct btrfs_device *device;
291         struct request_queue *q;
292         struct fstrim_range range;
293         u64 minlen = ULLONG_MAX;
294         u64 num_devices = 0;
295         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
296         int ret;
297
298         if (!capable(CAP_SYS_ADMIN))
299                 return -EPERM;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
303                                 dev_list) {
304                 if (!device->bdev)
305                         continue;
306                 q = bdev_get_queue(device->bdev);
307                 if (blk_queue_discard(q)) {
308                         num_devices++;
309                         minlen = min((u64)q->limits.discard_granularity,
310                                      minlen);
311                 }
312         }
313         rcu_read_unlock();
314
315         if (!num_devices)
316                 return -EOPNOTSUPP;
317         if (copy_from_user(&range, arg, sizeof(range)))
318                 return -EFAULT;
319         if (range.start > total_bytes)
320                 return -EINVAL;
321
322         range.len = min(range.len, total_bytes - range.start);
323         range.minlen = max(range.minlen, minlen);
324         ret = btrfs_trim_fs(fs_info->tree_root, &range);
325         if (ret < 0)
326                 return ret;
327
328         if (copy_to_user(arg, &range, sizeof(range)))
329                 return -EFAULT;
330
331         return 0;
332 }
333
334 static noinline int create_subvol(struct btrfs_root *root,
335                                   struct dentry *dentry,
336                                   char *name, int namelen,
337                                   u64 *async_transid)
338 {
339         struct btrfs_trans_handle *trans;
340         struct btrfs_key key;
341         struct btrfs_root_item root_item;
342         struct btrfs_inode_item *inode_item;
343         struct extent_buffer *leaf;
344         struct btrfs_root *new_root;
345         struct dentry *parent = dentry->d_parent;
346         struct inode *dir;
347         int ret;
348         int err;
349         u64 objectid;
350         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
351         u64 index = 0;
352
353         ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
354         if (ret)
355                 return ret;
356
357         dir = parent->d_inode;
358
359         /*
360          * 1 - inode item
361          * 2 - refs
362          * 1 - root item
363          * 2 - dir items
364          */
365         trans = btrfs_start_transaction(root, 6);
366         if (IS_ERR(trans))
367                 return PTR_ERR(trans);
368
369         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
370                                       0, objectid, NULL, 0, 0, 0, 0);
371         if (IS_ERR(leaf)) {
372                 ret = PTR_ERR(leaf);
373                 goto fail;
374         }
375
376         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
377         btrfs_set_header_bytenr(leaf, leaf->start);
378         btrfs_set_header_generation(leaf, trans->transid);
379         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
380         btrfs_set_header_owner(leaf, objectid);
381
382         write_extent_buffer(leaf, root->fs_info->fsid,
383                             (unsigned long)btrfs_header_fsid(leaf),
384                             BTRFS_FSID_SIZE);
385         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
386                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
387                             BTRFS_UUID_SIZE);
388         btrfs_mark_buffer_dirty(leaf);
389
390         inode_item = &root_item.inode;
391         memset(inode_item, 0, sizeof(*inode_item));
392         inode_item->generation = cpu_to_le64(1);
393         inode_item->size = cpu_to_le64(3);
394         inode_item->nlink = cpu_to_le32(1);
395         inode_item->nbytes = cpu_to_le64(root->leafsize);
396         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
397
398         root_item.flags = 0;
399         root_item.byte_limit = 0;
400         inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
401
402         btrfs_set_root_bytenr(&root_item, leaf->start);
403         btrfs_set_root_generation(&root_item, trans->transid);
404         btrfs_set_root_level(&root_item, 0);
405         btrfs_set_root_refs(&root_item, 1);
406         btrfs_set_root_used(&root_item, leaf->len);
407         btrfs_set_root_last_snapshot(&root_item, 0);
408
409         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
410         root_item.drop_level = 0;
411
412         btrfs_tree_unlock(leaf);
413         free_extent_buffer(leaf);
414         leaf = NULL;
415
416         btrfs_set_root_dirid(&root_item, new_dirid);
417
418         key.objectid = objectid;
419         key.offset = 0;
420         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
421         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
422                                 &root_item);
423         if (ret)
424                 goto fail;
425
426         key.offset = (u64)-1;
427         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
428         if (IS_ERR(new_root)) {
429                 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
430                 ret = PTR_ERR(new_root);
431                 goto fail;
432         }
433
434         btrfs_record_root_in_trans(trans, new_root);
435
436         ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
437         if (ret) {
438                 /* We potentially lose an unused inode item here */
439                 btrfs_abort_transaction(trans, root, ret);
440                 goto fail;
441         }
442
443         /*
444          * insert the directory item
445          */
446         ret = btrfs_set_inode_index(dir, &index);
447         if (ret) {
448                 btrfs_abort_transaction(trans, root, ret);
449                 goto fail;
450         }
451
452         ret = btrfs_insert_dir_item(trans, root,
453                                     name, namelen, dir, &key,
454                                     BTRFS_FT_DIR, index);
455         if (ret) {
456                 btrfs_abort_transaction(trans, root, ret);
457                 goto fail;
458         }
459
460         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
461         ret = btrfs_update_inode(trans, root, dir);
462         BUG_ON(ret);
463
464         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
465                                  objectid, root->root_key.objectid,
466                                  btrfs_ino(dir), index, name, namelen);
467
468         BUG_ON(ret);
469
470         d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
471 fail:
472         if (async_transid) {
473                 *async_transid = trans->transid;
474                 err = btrfs_commit_transaction_async(trans, root, 1);
475         } else {
476                 err = btrfs_commit_transaction(trans, root);
477         }
478         if (err && !ret)
479                 ret = err;
480         return ret;
481 }
482
483 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
484                            char *name, int namelen, u64 *async_transid,
485                            bool readonly)
486 {
487         struct inode *inode;
488         struct btrfs_pending_snapshot *pending_snapshot;
489         struct btrfs_trans_handle *trans;
490         int ret;
491
492         if (!root->ref_cows)
493                 return -EINVAL;
494
495         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
496         if (!pending_snapshot)
497                 return -ENOMEM;
498
499         btrfs_init_block_rsv(&pending_snapshot->block_rsv);
500         pending_snapshot->dentry = dentry;
501         pending_snapshot->root = root;
502         pending_snapshot->readonly = readonly;
503
504         trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
505         if (IS_ERR(trans)) {
506                 ret = PTR_ERR(trans);
507                 goto fail;
508         }
509
510         ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
511         BUG_ON(ret);
512
513         spin_lock(&root->fs_info->trans_lock);
514         list_add(&pending_snapshot->list,
515                  &trans->transaction->pending_snapshots);
516         spin_unlock(&root->fs_info->trans_lock);
517         if (async_transid) {
518                 *async_transid = trans->transid;
519                 ret = btrfs_commit_transaction_async(trans,
520                                      root->fs_info->extent_root, 1);
521         } else {
522                 ret = btrfs_commit_transaction(trans,
523                                                root->fs_info->extent_root);
524         }
525         BUG_ON(ret);
526
527         ret = pending_snapshot->error;
528         if (ret)
529                 goto fail;
530
531         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
532         if (ret)
533                 goto fail;
534
535         inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
536         if (IS_ERR(inode)) {
537                 ret = PTR_ERR(inode);
538                 goto fail;
539         }
540         BUG_ON(!inode);
541         d_instantiate(dentry, inode);
542         ret = 0;
543 fail:
544         kfree(pending_snapshot);
545         return ret;
546 }
547
548 /*  copy of check_sticky in fs/namei.c()
549 * It's inline, so penalty for filesystems that don't use sticky bit is
550 * minimal.
551 */
552 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
553 {
554         uid_t fsuid = current_fsuid();
555
556         if (!(dir->i_mode & S_ISVTX))
557                 return 0;
558         if (inode->i_uid == fsuid)
559                 return 0;
560         if (dir->i_uid == fsuid)
561                 return 0;
562         return !capable(CAP_FOWNER);
563 }
564
565 /*  copy of may_delete in fs/namei.c()
566  *      Check whether we can remove a link victim from directory dir, check
567  *  whether the type of victim is right.
568  *  1. We can't do it if dir is read-only (done in permission())
569  *  2. We should have write and exec permissions on dir
570  *  3. We can't remove anything from append-only dir
571  *  4. We can't do anything with immutable dir (done in permission())
572  *  5. If the sticky bit on dir is set we should either
573  *      a. be owner of dir, or
574  *      b. be owner of victim, or
575  *      c. have CAP_FOWNER capability
576  *  6. If the victim is append-only or immutable we can't do antyhing with
577  *     links pointing to it.
578  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
579  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
580  *  9. We can't remove a root or mountpoint.
581  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
582  *     nfs_async_unlink().
583  */
584
585 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
586 {
587         int error;
588
589         if (!victim->d_inode)
590                 return -ENOENT;
591
592         BUG_ON(victim->d_parent->d_inode != dir);
593         audit_inode_child(victim, dir);
594
595         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
596         if (error)
597                 return error;
598         if (IS_APPEND(dir))
599                 return -EPERM;
600         if (btrfs_check_sticky(dir, victim->d_inode)||
601                 IS_APPEND(victim->d_inode)||
602             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
603                 return -EPERM;
604         if (isdir) {
605                 if (!S_ISDIR(victim->d_inode->i_mode))
606                         return -ENOTDIR;
607                 if (IS_ROOT(victim))
608                         return -EBUSY;
609         } else if (S_ISDIR(victim->d_inode->i_mode))
610                 return -EISDIR;
611         if (IS_DEADDIR(dir))
612                 return -ENOENT;
613         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
614                 return -EBUSY;
615         return 0;
616 }
617
618 /* copy of may_create in fs/namei.c() */
619 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
620 {
621         if (child->d_inode)
622                 return -EEXIST;
623         if (IS_DEADDIR(dir))
624                 return -ENOENT;
625         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
626 }
627
628 /*
629  * Create a new subvolume below @parent.  This is largely modeled after
630  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
631  * inside this filesystem so it's quite a bit simpler.
632  */
633 static noinline int btrfs_mksubvol(struct path *parent,
634                                    char *name, int namelen,
635                                    struct btrfs_root *snap_src,
636                                    u64 *async_transid, bool readonly)
637 {
638         struct inode *dir  = parent->dentry->d_inode;
639         struct dentry *dentry;
640         int error;
641
642         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
643
644         dentry = lookup_one_len(name, parent->dentry, namelen);
645         error = PTR_ERR(dentry);
646         if (IS_ERR(dentry))
647                 goto out_unlock;
648
649         error = -EEXIST;
650         if (dentry->d_inode)
651                 goto out_dput;
652
653         error = mnt_want_write(parent->mnt);
654         if (error)
655                 goto out_dput;
656
657         error = btrfs_may_create(dir, dentry);
658         if (error)
659                 goto out_drop_write;
660
661         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
662
663         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
664                 goto out_up_read;
665
666         if (snap_src) {
667                 error = create_snapshot(snap_src, dentry,
668                                         name, namelen, async_transid, readonly);
669         } else {
670                 error = create_subvol(BTRFS_I(dir)->root, dentry,
671                                       name, namelen, async_transid);
672         }
673         if (!error)
674                 fsnotify_mkdir(dir, dentry);
675 out_up_read:
676         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
677 out_drop_write:
678         mnt_drop_write(parent->mnt);
679 out_dput:
680         dput(dentry);
681 out_unlock:
682         mutex_unlock(&dir->i_mutex);
683         return error;
684 }
685
686 /*
687  * When we're defragging a range, we don't want to kick it off again
688  * if it is really just waiting for delalloc to send it down.
689  * If we find a nice big extent or delalloc range for the bytes in the
690  * file you want to defrag, we return 0 to let you know to skip this
691  * part of the file
692  */
693 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
694 {
695         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
696         struct extent_map *em = NULL;
697         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698         u64 end;
699
700         read_lock(&em_tree->lock);
701         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
702         read_unlock(&em_tree->lock);
703
704         if (em) {
705                 end = extent_map_end(em);
706                 free_extent_map(em);
707                 if (end - offset > thresh)
708                         return 0;
709         }
710         /* if we already have a nice delalloc here, just stop */
711         thresh /= 2;
712         end = count_range_bits(io_tree, &offset, offset + thresh,
713                                thresh, EXTENT_DELALLOC, 1);
714         if (end >= thresh)
715                 return 0;
716         return 1;
717 }
718
719 /*
720  * helper function to walk through a file and find extents
721  * newer than a specific transid, and smaller than thresh.
722  *
723  * This is used by the defragging code to find new and small
724  * extents
725  */
726 static int find_new_extents(struct btrfs_root *root,
727                             struct inode *inode, u64 newer_than,
728                             u64 *off, int thresh)
729 {
730         struct btrfs_path *path;
731         struct btrfs_key min_key;
732         struct btrfs_key max_key;
733         struct extent_buffer *leaf;
734         struct btrfs_file_extent_item *extent;
735         int type;
736         int ret;
737         u64 ino = btrfs_ino(inode);
738
739         path = btrfs_alloc_path();
740         if (!path)
741                 return -ENOMEM;
742
743         min_key.objectid = ino;
744         min_key.type = BTRFS_EXTENT_DATA_KEY;
745         min_key.offset = *off;
746
747         max_key.objectid = ino;
748         max_key.type = (u8)-1;
749         max_key.offset = (u64)-1;
750
751         path->keep_locks = 1;
752
753         while(1) {
754                 ret = btrfs_search_forward(root, &min_key, &max_key,
755                                            path, 0, newer_than);
756                 if (ret != 0)
757                         goto none;
758                 if (min_key.objectid != ino)
759                         goto none;
760                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
761                         goto none;
762
763                 leaf = path->nodes[0];
764                 extent = btrfs_item_ptr(leaf, path->slots[0],
765                                         struct btrfs_file_extent_item);
766
767                 type = btrfs_file_extent_type(leaf, extent);
768                 if (type == BTRFS_FILE_EXTENT_REG &&
769                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
770                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
771                         *off = min_key.offset;
772                         btrfs_free_path(path);
773                         return 0;
774                 }
775
776                 if (min_key.offset == (u64)-1)
777                         goto none;
778
779                 min_key.offset++;
780                 btrfs_release_path(path);
781         }
782 none:
783         btrfs_free_path(path);
784         return -ENOENT;
785 }
786
787 /*
788  * Validaty check of prev em and next em:
789  * 1) no prev/next em
790  * 2) prev/next em is an hole/inline extent
791  */
792 static int check_adjacent_extents(struct inode *inode, struct extent_map *em)
793 {
794         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
795         struct extent_map *prev = NULL, *next = NULL;
796         int ret = 0;
797
798         read_lock(&em_tree->lock);
799         prev = lookup_extent_mapping(em_tree, em->start - 1, (u64)-1);
800         next = lookup_extent_mapping(em_tree, em->start + em->len, (u64)-1);
801         read_unlock(&em_tree->lock);
802
803         if ((!prev || prev->block_start >= EXTENT_MAP_LAST_BYTE) &&
804             (!next || next->block_start >= EXTENT_MAP_LAST_BYTE))
805                 ret = 1;
806         free_extent_map(prev);
807         free_extent_map(next);
808
809         return ret;
810 }
811
812 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
813                                int thresh, u64 *last_len, u64 *skip,
814                                u64 *defrag_end)
815 {
816         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
817         struct extent_map *em = NULL;
818         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819         int ret = 1;
820
821         /*
822          * make sure that once we start defragging an extent, we keep on
823          * defragging it
824          */
825         if (start < *defrag_end)
826                 return 1;
827
828         *skip = 0;
829
830         /*
831          * hopefully we have this extent in the tree already, try without
832          * the full extent lock
833          */
834         read_lock(&em_tree->lock);
835         em = lookup_extent_mapping(em_tree, start, len);
836         read_unlock(&em_tree->lock);
837
838         if (!em) {
839                 /* get the big lock and read metadata off disk */
840                 lock_extent(io_tree, start, start + len - 1);
841                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
842                 unlock_extent(io_tree, start, start + len - 1);
843
844                 if (IS_ERR(em))
845                         return 0;
846         }
847
848         /* this will cover holes, and inline extents */
849         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
850                 ret = 0;
851                 goto out;
852         }
853
854         /* If we have nothing to merge with us, just skip. */
855         if (check_adjacent_extents(inode, em)) {
856                 ret = 0;
857                 goto out;
858         }
859
860         /*
861          * we hit a real extent, if it is big don't bother defragging it again
862          */
863         if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
864                 ret = 0;
865
866 out:
867         /*
868          * last_len ends up being a counter of how many bytes we've defragged.
869          * every time we choose not to defrag an extent, we reset *last_len
870          * so that the next tiny extent will force a defrag.
871          *
872          * The end result of this is that tiny extents before a single big
873          * extent will force at least part of that big extent to be defragged.
874          */
875         if (ret) {
876                 *defrag_end = extent_map_end(em);
877         } else {
878                 *last_len = 0;
879                 *skip = extent_map_end(em);
880                 *defrag_end = 0;
881         }
882
883         free_extent_map(em);
884         return ret;
885 }
886
887 /*
888  * it doesn't do much good to defrag one or two pages
889  * at a time.  This pulls in a nice chunk of pages
890  * to COW and defrag.
891  *
892  * It also makes sure the delalloc code has enough
893  * dirty data to avoid making new small extents as part
894  * of the defrag
895  *
896  * It's a good idea to start RA on this range
897  * before calling this.
898  */
899 static int cluster_pages_for_defrag(struct inode *inode,
900                                     struct page **pages,
901                                     unsigned long start_index,
902                                     int num_pages)
903 {
904         unsigned long file_end;
905         u64 isize = i_size_read(inode);
906         u64 page_start;
907         u64 page_end;
908         u64 page_cnt;
909         int ret;
910         int i;
911         int i_done;
912         struct btrfs_ordered_extent *ordered;
913         struct extent_state *cached_state = NULL;
914         struct extent_io_tree *tree;
915         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
916
917         file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
918         if (!isize || start_index > file_end)
919                 return 0;
920
921         page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
922
923         ret = btrfs_delalloc_reserve_space(inode,
924                                            page_cnt << PAGE_CACHE_SHIFT);
925         if (ret)
926                 return ret;
927         i_done = 0;
928         tree = &BTRFS_I(inode)->io_tree;
929
930         /* step one, lock all the pages */
931         for (i = 0; i < page_cnt; i++) {
932                 struct page *page;
933 again:
934                 page = find_or_create_page(inode->i_mapping,
935                                            start_index + i, mask);
936                 if (!page)
937                         break;
938
939                 page_start = page_offset(page);
940                 page_end = page_start + PAGE_CACHE_SIZE - 1;
941                 while (1) {
942                         lock_extent(tree, page_start, page_end);
943                         ordered = btrfs_lookup_ordered_extent(inode,
944                                                               page_start);
945                         unlock_extent(tree, page_start, page_end);
946                         if (!ordered)
947                                 break;
948
949                         unlock_page(page);
950                         btrfs_start_ordered_extent(inode, ordered, 1);
951                         btrfs_put_ordered_extent(ordered);
952                         lock_page(page);
953                         /*
954                          * we unlocked the page above, so we need check if
955                          * it was released or not.
956                          */
957                         if (page->mapping != inode->i_mapping) {
958                                 unlock_page(page);
959                                 page_cache_release(page);
960                                 goto again;
961                         }
962                 }
963
964                 if (!PageUptodate(page)) {
965                         btrfs_readpage(NULL, page);
966                         lock_page(page);
967                         if (!PageUptodate(page)) {
968                                 unlock_page(page);
969                                 page_cache_release(page);
970                                 ret = -EIO;
971                                 break;
972                         }
973                 }
974
975                 if (page->mapping != inode->i_mapping) {
976                         unlock_page(page);
977                         page_cache_release(page);
978                         goto again;
979                 }
980
981                 pages[i] = page;
982                 i_done++;
983         }
984         if (!i_done || ret)
985                 goto out;
986
987         if (!(inode->i_sb->s_flags & MS_ACTIVE))
988                 goto out;
989
990         /*
991          * so now we have a nice long stream of locked
992          * and up to date pages, lets wait on them
993          */
994         for (i = 0; i < i_done; i++)
995                 wait_on_page_writeback(pages[i]);
996
997         page_start = page_offset(pages[0]);
998         page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
999
1000         lock_extent_bits(&BTRFS_I(inode)->io_tree,
1001                          page_start, page_end - 1, 0, &cached_state);
1002         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1003                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1004                           EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1005                           GFP_NOFS);
1006
1007         if (i_done != page_cnt) {
1008                 spin_lock(&BTRFS_I(inode)->lock);
1009                 BTRFS_I(inode)->outstanding_extents++;
1010                 spin_unlock(&BTRFS_I(inode)->lock);
1011                 btrfs_delalloc_release_space(inode,
1012                                      (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1013         }
1014
1015
1016         btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1017                                   &cached_state);
1018
1019         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1020                              page_start, page_end - 1, &cached_state,
1021                              GFP_NOFS);
1022
1023         for (i = 0; i < i_done; i++) {
1024                 clear_page_dirty_for_io(pages[i]);
1025                 ClearPageChecked(pages[i]);
1026                 set_page_extent_mapped(pages[i]);
1027                 set_page_dirty(pages[i]);
1028                 unlock_page(pages[i]);
1029                 page_cache_release(pages[i]);
1030         }
1031         return i_done;
1032 out:
1033         for (i = 0; i < i_done; i++) {
1034                 unlock_page(pages[i]);
1035                 page_cache_release(pages[i]);
1036         }
1037         btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1038         return ret;
1039
1040 }
1041
1042 int btrfs_defrag_file(struct inode *inode, struct file *file,
1043                       struct btrfs_ioctl_defrag_range_args *range,
1044                       u64 newer_than, unsigned long max_to_defrag)
1045 {
1046         struct btrfs_root *root = BTRFS_I(inode)->root;
1047         struct btrfs_super_block *disk_super;
1048         struct file_ra_state *ra = NULL;
1049         unsigned long last_index;
1050         u64 isize = i_size_read(inode);
1051         u64 features;
1052         u64 last_len = 0;
1053         u64 skip = 0;
1054         u64 defrag_end = 0;
1055         u64 newer_off = range->start;
1056         unsigned long i;
1057         unsigned long ra_index = 0;
1058         int ret;
1059         int defrag_count = 0;
1060         int compress_type = BTRFS_COMPRESS_ZLIB;
1061         int extent_thresh = range->extent_thresh;
1062         int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1063         int cluster = max_cluster;
1064         u64 new_align = ~((u64)128 * 1024 - 1);
1065         struct page **pages = NULL;
1066
1067         if (extent_thresh == 0)
1068                 extent_thresh = 256 * 1024;
1069
1070         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1071                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1072                         return -EINVAL;
1073                 if (range->compress_type)
1074                         compress_type = range->compress_type;
1075         }
1076
1077         if (isize == 0)
1078                 return 0;
1079
1080         /*
1081          * if we were not given a file, allocate a readahead
1082          * context
1083          */
1084         if (!file) {
1085                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1086                 if (!ra)
1087                         return -ENOMEM;
1088                 file_ra_state_init(ra, inode->i_mapping);
1089         } else {
1090                 ra = &file->f_ra;
1091         }
1092
1093         pages = kmalloc(sizeof(struct page *) * max_cluster,
1094                         GFP_NOFS);
1095         if (!pages) {
1096                 ret = -ENOMEM;
1097                 goto out_ra;
1098         }
1099
1100         /* find the last page to defrag */
1101         if (range->start + range->len > range->start) {
1102                 last_index = min_t(u64, isize - 1,
1103                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1104         } else {
1105                 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1106         }
1107
1108         if (newer_than) {
1109                 ret = find_new_extents(root, inode, newer_than,
1110                                        &newer_off, 64 * 1024);
1111                 if (!ret) {
1112                         range->start = newer_off;
1113                         /*
1114                          * we always align our defrag to help keep
1115                          * the extents in the file evenly spaced
1116                          */
1117                         i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1118                 } else
1119                         goto out_ra;
1120         } else {
1121                 i = range->start >> PAGE_CACHE_SHIFT;
1122         }
1123         if (!max_to_defrag)
1124                 max_to_defrag = last_index + 1;
1125
1126         /*
1127          * make writeback starts from i, so the defrag range can be
1128          * written sequentially.
1129          */
1130         if (i < inode->i_mapping->writeback_index)
1131                 inode->i_mapping->writeback_index = i;
1132
1133         while (i <= last_index && defrag_count < max_to_defrag &&
1134                (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1135                 PAGE_CACHE_SHIFT)) {
1136                 /*
1137                  * make sure we stop running if someone unmounts
1138                  * the FS
1139                  */
1140                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1141                         break;
1142
1143                 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1144                                          PAGE_CACHE_SIZE, extent_thresh,
1145                                          &last_len, &skip, &defrag_end)) {
1146                         unsigned long next;
1147                         /*
1148                          * the should_defrag function tells us how much to skip
1149                          * bump our counter by the suggested amount
1150                          */
1151                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1152                         i = max(i + 1, next);
1153                         continue;
1154                 }
1155
1156                 if (!newer_than) {
1157                         cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1158                                    PAGE_CACHE_SHIFT) - i;
1159                         cluster = min(cluster, max_cluster);
1160                 } else {
1161                         cluster = max_cluster;
1162                 }
1163
1164                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1165                         BTRFS_I(inode)->force_compress = compress_type;
1166
1167                 if (i + cluster > ra_index) {
1168                         ra_index = max(i, ra_index);
1169                         btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1170                                        cluster);
1171                         ra_index += max_cluster;
1172                 }
1173
1174                 mutex_lock(&inode->i_mutex);
1175                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1176                 if (ret < 0) {
1177                         mutex_unlock(&inode->i_mutex);
1178                         goto out_ra;
1179                 }
1180
1181                 defrag_count += ret;
1182                 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1183                 mutex_unlock(&inode->i_mutex);
1184
1185                 if (newer_than) {
1186                         if (newer_off == (u64)-1)
1187                                 break;
1188
1189                         if (ret > 0)
1190                                 i += ret;
1191
1192                         newer_off = max(newer_off + 1,
1193                                         (u64)i << PAGE_CACHE_SHIFT);
1194
1195                         ret = find_new_extents(root, inode,
1196                                                newer_than, &newer_off,
1197                                                64 * 1024);
1198                         if (!ret) {
1199                                 range->start = newer_off;
1200                                 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1201                         } else {
1202                                 break;
1203                         }
1204                 } else {
1205                         if (ret > 0) {
1206                                 i += ret;
1207                                 last_len += ret << PAGE_CACHE_SHIFT;
1208                         } else {
1209                                 i++;
1210                                 last_len = 0;
1211                         }
1212                 }
1213         }
1214
1215         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1216                 filemap_flush(inode->i_mapping);
1217
1218         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1219                 /* the filemap_flush will queue IO into the worker threads, but
1220                  * we have to make sure the IO is actually started and that
1221                  * ordered extents get created before we return
1222                  */
1223                 atomic_inc(&root->fs_info->async_submit_draining);
1224                 while (atomic_read(&root->fs_info->nr_async_submits) ||
1225                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1226                         wait_event(root->fs_info->async_submit_wait,
1227                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1228                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1229                 }
1230                 atomic_dec(&root->fs_info->async_submit_draining);
1231
1232                 mutex_lock(&inode->i_mutex);
1233                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1234                 mutex_unlock(&inode->i_mutex);
1235         }
1236
1237         disk_super = root->fs_info->super_copy;
1238         features = btrfs_super_incompat_flags(disk_super);
1239         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1240                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1241                 btrfs_set_super_incompat_flags(disk_super, features);
1242         }
1243
1244         ret = defrag_count;
1245
1246 out_ra:
1247         if (!file)
1248                 kfree(ra);
1249         kfree(pages);
1250         return ret;
1251 }
1252
1253 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1254                                         void __user *arg)
1255 {
1256         u64 new_size;
1257         u64 old_size;
1258         u64 devid = 1;
1259         struct btrfs_ioctl_vol_args *vol_args;
1260         struct btrfs_trans_handle *trans;
1261         struct btrfs_device *device = NULL;
1262         char *sizestr;
1263         char *devstr = NULL;
1264         int ret = 0;
1265         int mod = 0;
1266
1267         if (root->fs_info->sb->s_flags & MS_RDONLY)
1268                 return -EROFS;
1269
1270         if (!capable(CAP_SYS_ADMIN))
1271                 return -EPERM;
1272
1273         mutex_lock(&root->fs_info->volume_mutex);
1274         if (root->fs_info->balance_ctl) {
1275                 printk(KERN_INFO "btrfs: balance in progress\n");
1276                 ret = -EINVAL;
1277                 goto out;
1278         }
1279
1280         vol_args = memdup_user(arg, sizeof(*vol_args));
1281         if (IS_ERR(vol_args)) {
1282                 ret = PTR_ERR(vol_args);
1283                 goto out;
1284         }
1285
1286         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1287
1288         sizestr = vol_args->name;
1289         devstr = strchr(sizestr, ':');
1290         if (devstr) {
1291                 char *end;
1292                 sizestr = devstr + 1;
1293                 *devstr = '\0';
1294                 devstr = vol_args->name;
1295                 devid = simple_strtoull(devstr, &end, 10);
1296                 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1297                        (unsigned long long)devid);
1298         }
1299         device = btrfs_find_device(root, devid, NULL, NULL);
1300         if (!device) {
1301                 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1302                        (unsigned long long)devid);
1303                 ret = -EINVAL;
1304                 goto out_free;
1305         }
1306         if (!strcmp(sizestr, "max"))
1307                 new_size = device->bdev->bd_inode->i_size;
1308         else {
1309                 if (sizestr[0] == '-') {
1310                         mod = -1;
1311                         sizestr++;
1312                 } else if (sizestr[0] == '+') {
1313                         mod = 1;
1314                         sizestr++;
1315                 }
1316                 new_size = memparse(sizestr, NULL);
1317                 if (new_size == 0) {
1318                         ret = -EINVAL;
1319                         goto out_free;
1320                 }
1321         }
1322
1323         old_size = device->total_bytes;
1324
1325         if (mod < 0) {
1326                 if (new_size > old_size) {
1327                         ret = -EINVAL;
1328                         goto out_free;
1329                 }
1330                 new_size = old_size - new_size;
1331         } else if (mod > 0) {
1332                 new_size = old_size + new_size;
1333         }
1334
1335         if (new_size < 256 * 1024 * 1024) {
1336                 ret = -EINVAL;
1337                 goto out_free;
1338         }
1339         if (new_size > device->bdev->bd_inode->i_size) {
1340                 ret = -EFBIG;
1341                 goto out_free;
1342         }
1343
1344         do_div(new_size, root->sectorsize);
1345         new_size *= root->sectorsize;
1346
1347         printk(KERN_INFO "btrfs: new size for %s is %llu\n",
1348                 device->name, (unsigned long long)new_size);
1349
1350         if (new_size > old_size) {
1351                 trans = btrfs_start_transaction(root, 0);
1352                 if (IS_ERR(trans)) {
1353                         ret = PTR_ERR(trans);
1354                         goto out_free;
1355                 }
1356                 ret = btrfs_grow_device(trans, device, new_size);
1357                 btrfs_commit_transaction(trans, root);
1358         } else if (new_size < old_size) {
1359                 ret = btrfs_shrink_device(device, new_size);
1360         }
1361
1362 out_free:
1363         kfree(vol_args);
1364 out:
1365         mutex_unlock(&root->fs_info->volume_mutex);
1366         return ret;
1367 }
1368
1369 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1370                                                     char *name,
1371                                                     unsigned long fd,
1372                                                     int subvol,
1373                                                     u64 *transid,
1374                                                     bool readonly)
1375 {
1376         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1377         struct file *src_file;
1378         int namelen;
1379         int ret = 0;
1380
1381         if (root->fs_info->sb->s_flags & MS_RDONLY)
1382                 return -EROFS;
1383
1384         namelen = strlen(name);
1385         if (strchr(name, '/')) {
1386                 ret = -EINVAL;
1387                 goto out;
1388         }
1389
1390         if (name[0] == '.' &&
1391            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1392                 ret = -EEXIST;
1393                 goto out;
1394         }
1395
1396         if (subvol) {
1397                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1398                                      NULL, transid, readonly);
1399         } else {
1400                 struct inode *src_inode;
1401                 src_file = fget(fd);
1402                 if (!src_file) {
1403                         ret = -EINVAL;
1404                         goto out;
1405                 }
1406
1407                 src_inode = src_file->f_path.dentry->d_inode;
1408                 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1409                         printk(KERN_INFO "btrfs: Snapshot src from "
1410                                "another FS\n");
1411                         ret = -EINVAL;
1412                         fput(src_file);
1413                         goto out;
1414                 }
1415                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1416                                      BTRFS_I(src_inode)->root,
1417                                      transid, readonly);
1418                 fput(src_file);
1419         }
1420 out:
1421         return ret;
1422 }
1423
1424 static noinline int btrfs_ioctl_snap_create(struct file *file,
1425                                             void __user *arg, int subvol)
1426 {
1427         struct btrfs_ioctl_vol_args *vol_args;
1428         int ret;
1429
1430         vol_args = memdup_user(arg, sizeof(*vol_args));
1431         if (IS_ERR(vol_args))
1432                 return PTR_ERR(vol_args);
1433         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1434
1435         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1436                                               vol_args->fd, subvol,
1437                                               NULL, false);
1438
1439         kfree(vol_args);
1440         return ret;
1441 }
1442
1443 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1444                                                void __user *arg, int subvol)
1445 {
1446         struct btrfs_ioctl_vol_args_v2 *vol_args;
1447         int ret;
1448         u64 transid = 0;
1449         u64 *ptr = NULL;
1450         bool readonly = false;
1451
1452         vol_args = memdup_user(arg, sizeof(*vol_args));
1453         if (IS_ERR(vol_args))
1454                 return PTR_ERR(vol_args);
1455         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1456
1457         if (vol_args->flags &
1458             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1459                 ret = -EOPNOTSUPP;
1460                 goto out;
1461         }
1462
1463         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1464                 ptr = &transid;
1465         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1466                 readonly = true;
1467
1468         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1469                                               vol_args->fd, subvol,
1470                                               ptr, readonly);
1471
1472         if (ret == 0 && ptr &&
1473             copy_to_user(arg +
1474                          offsetof(struct btrfs_ioctl_vol_args_v2,
1475                                   transid), ptr, sizeof(*ptr)))
1476                 ret = -EFAULT;
1477 out:
1478         kfree(vol_args);
1479         return ret;
1480 }
1481
1482 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1483                                                 void __user *arg)
1484 {
1485         struct inode *inode = fdentry(file)->d_inode;
1486         struct btrfs_root *root = BTRFS_I(inode)->root;
1487         int ret = 0;
1488         u64 flags = 0;
1489
1490         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1491                 return -EINVAL;
1492
1493         down_read(&root->fs_info->subvol_sem);
1494         if (btrfs_root_readonly(root))
1495                 flags |= BTRFS_SUBVOL_RDONLY;
1496         up_read(&root->fs_info->subvol_sem);
1497
1498         if (copy_to_user(arg, &flags, sizeof(flags)))
1499                 ret = -EFAULT;
1500
1501         return ret;
1502 }
1503
1504 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1505                                               void __user *arg)
1506 {
1507         struct inode *inode = fdentry(file)->d_inode;
1508         struct btrfs_root *root = BTRFS_I(inode)->root;
1509         struct btrfs_trans_handle *trans;
1510         u64 root_flags;
1511         u64 flags;
1512         int ret = 0;
1513
1514         if (root->fs_info->sb->s_flags & MS_RDONLY)
1515                 return -EROFS;
1516
1517         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1518                 return -EINVAL;
1519
1520         if (copy_from_user(&flags, arg, sizeof(flags)))
1521                 return -EFAULT;
1522
1523         if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1524                 return -EINVAL;
1525
1526         if (flags & ~BTRFS_SUBVOL_RDONLY)
1527                 return -EOPNOTSUPP;
1528
1529         if (!inode_owner_or_capable(inode))
1530                 return -EACCES;
1531
1532         down_write(&root->fs_info->subvol_sem);
1533
1534         /* nothing to do */
1535         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1536                 goto out;
1537
1538         root_flags = btrfs_root_flags(&root->root_item);
1539         if (flags & BTRFS_SUBVOL_RDONLY)
1540                 btrfs_set_root_flags(&root->root_item,
1541                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1542         else
1543                 btrfs_set_root_flags(&root->root_item,
1544                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1545
1546         trans = btrfs_start_transaction(root, 1);
1547         if (IS_ERR(trans)) {
1548                 ret = PTR_ERR(trans);
1549                 goto out_reset;
1550         }
1551
1552         ret = btrfs_update_root(trans, root->fs_info->tree_root,
1553                                 &root->root_key, &root->root_item);
1554
1555         btrfs_commit_transaction(trans, root);
1556 out_reset:
1557         if (ret)
1558                 btrfs_set_root_flags(&root->root_item, root_flags);
1559 out:
1560         up_write(&root->fs_info->subvol_sem);
1561         return ret;
1562 }
1563
1564 /*
1565  * helper to check if the subvolume references other subvolumes
1566  */
1567 static noinline int may_destroy_subvol(struct btrfs_root *root)
1568 {
1569         struct btrfs_path *path;
1570         struct btrfs_key key;
1571         int ret;
1572
1573         path = btrfs_alloc_path();
1574         if (!path)
1575                 return -ENOMEM;
1576
1577         key.objectid = root->root_key.objectid;
1578         key.type = BTRFS_ROOT_REF_KEY;
1579         key.offset = (u64)-1;
1580
1581         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1582                                 &key, path, 0, 0);
1583         if (ret < 0)
1584                 goto out;
1585         BUG_ON(ret == 0);
1586
1587         ret = 0;
1588         if (path->slots[0] > 0) {
1589                 path->slots[0]--;
1590                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1591                 if (key.objectid == root->root_key.objectid &&
1592                     key.type == BTRFS_ROOT_REF_KEY)
1593                         ret = -ENOTEMPTY;
1594         }
1595 out:
1596         btrfs_free_path(path);
1597         return ret;
1598 }
1599
1600 static noinline int key_in_sk(struct btrfs_key *key,
1601                               struct btrfs_ioctl_search_key *sk)
1602 {
1603         struct btrfs_key test;
1604         int ret;
1605
1606         test.objectid = sk->min_objectid;
1607         test.type = sk->min_type;
1608         test.offset = sk->min_offset;
1609
1610         ret = btrfs_comp_cpu_keys(key, &test);
1611         if (ret < 0)
1612                 return 0;
1613
1614         test.objectid = sk->max_objectid;
1615         test.type = sk->max_type;
1616         test.offset = sk->max_offset;
1617
1618         ret = btrfs_comp_cpu_keys(key, &test);
1619         if (ret > 0)
1620                 return 0;
1621         return 1;
1622 }
1623
1624 static noinline int copy_to_sk(struct btrfs_root *root,
1625                                struct btrfs_path *path,
1626                                struct btrfs_key *key,
1627                                struct btrfs_ioctl_search_key *sk,
1628                                char *buf,
1629                                unsigned long *sk_offset,
1630                                int *num_found)
1631 {
1632         u64 found_transid;
1633         struct extent_buffer *leaf;
1634         struct btrfs_ioctl_search_header sh;
1635         unsigned long item_off;
1636         unsigned long item_len;
1637         int nritems;
1638         int i;
1639         int slot;
1640         int ret = 0;
1641
1642         leaf = path->nodes[0];
1643         slot = path->slots[0];
1644         nritems = btrfs_header_nritems(leaf);
1645
1646         if (btrfs_header_generation(leaf) > sk->max_transid) {
1647                 i = nritems;
1648                 goto advance_key;
1649         }
1650         found_transid = btrfs_header_generation(leaf);
1651
1652         for (i = slot; i < nritems; i++) {
1653                 item_off = btrfs_item_ptr_offset(leaf, i);
1654                 item_len = btrfs_item_size_nr(leaf, i);
1655
1656                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1657                         item_len = 0;
1658
1659                 if (sizeof(sh) + item_len + *sk_offset >
1660                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1661                         ret = 1;
1662                         goto overflow;
1663                 }
1664
1665                 btrfs_item_key_to_cpu(leaf, key, i);
1666                 if (!key_in_sk(key, sk))
1667                         continue;
1668
1669                 sh.objectid = key->objectid;
1670                 sh.offset = key->offset;
1671                 sh.type = key->type;
1672                 sh.len = item_len;
1673                 sh.transid = found_transid;
1674
1675                 /* copy search result header */
1676                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1677                 *sk_offset += sizeof(sh);
1678
1679                 if (item_len) {
1680                         char *p = buf + *sk_offset;
1681                         /* copy the item */
1682                         read_extent_buffer(leaf, p,
1683                                            item_off, item_len);
1684                         *sk_offset += item_len;
1685                 }
1686                 (*num_found)++;
1687
1688                 if (*num_found >= sk->nr_items)
1689                         break;
1690         }
1691 advance_key:
1692         ret = 0;
1693         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1694                 key->offset++;
1695         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1696                 key->offset = 0;
1697                 key->type++;
1698         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1699                 key->offset = 0;
1700                 key->type = 0;
1701                 key->objectid++;
1702         } else
1703                 ret = 1;
1704 overflow:
1705         return ret;
1706 }
1707
1708 static noinline int search_ioctl(struct inode *inode,
1709                                  struct btrfs_ioctl_search_args *args)
1710 {
1711         struct btrfs_root *root;
1712         struct btrfs_key key;
1713         struct btrfs_key max_key;
1714         struct btrfs_path *path;
1715         struct btrfs_ioctl_search_key *sk = &args->key;
1716         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1717         int ret;
1718         int num_found = 0;
1719         unsigned long sk_offset = 0;
1720
1721         path = btrfs_alloc_path();
1722         if (!path)
1723                 return -ENOMEM;
1724
1725         if (sk->tree_id == 0) {
1726                 /* search the root of the inode that was passed */
1727                 root = BTRFS_I(inode)->root;
1728         } else {
1729                 key.objectid = sk->tree_id;
1730                 key.type = BTRFS_ROOT_ITEM_KEY;
1731                 key.offset = (u64)-1;
1732                 root = btrfs_read_fs_root_no_name(info, &key);
1733                 if (IS_ERR(root)) {
1734                         printk(KERN_ERR "could not find root %llu\n",
1735                                sk->tree_id);
1736                         btrfs_free_path(path);
1737                         return -ENOENT;
1738                 }
1739         }
1740
1741         key.objectid = sk->min_objectid;
1742         key.type = sk->min_type;
1743         key.offset = sk->min_offset;
1744
1745         max_key.objectid = sk->max_objectid;
1746         max_key.type = sk->max_type;
1747         max_key.offset = sk->max_offset;
1748
1749         path->keep_locks = 1;
1750
1751         while(1) {
1752                 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1753                                            sk->min_transid);
1754                 if (ret != 0) {
1755                         if (ret > 0)
1756                                 ret = 0;
1757                         goto err;
1758                 }
1759                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1760                                  &sk_offset, &num_found);
1761                 btrfs_release_path(path);
1762                 if (ret || num_found >= sk->nr_items)
1763                         break;
1764
1765         }
1766         ret = 0;
1767 err:
1768         sk->nr_items = num_found;
1769         btrfs_free_path(path);
1770         return ret;
1771 }
1772
1773 static noinline int btrfs_ioctl_tree_search(struct file *file,
1774                                            void __user *argp)
1775 {
1776          struct btrfs_ioctl_search_args *args;
1777          struct inode *inode;
1778          int ret;
1779
1780         if (!capable(CAP_SYS_ADMIN))
1781                 return -EPERM;
1782
1783         args = memdup_user(argp, sizeof(*args));
1784         if (IS_ERR(args))
1785                 return PTR_ERR(args);
1786
1787         inode = fdentry(file)->d_inode;
1788         ret = search_ioctl(inode, args);
1789         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1790                 ret = -EFAULT;
1791         kfree(args);
1792         return ret;
1793 }
1794
1795 /*
1796  * Search INODE_REFs to identify path name of 'dirid' directory
1797  * in a 'tree_id' tree. and sets path name to 'name'.
1798  */
1799 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1800                                 u64 tree_id, u64 dirid, char *name)
1801 {
1802         struct btrfs_root *root;
1803         struct btrfs_key key;
1804         char *ptr;
1805         int ret = -1;
1806         int slot;
1807         int len;
1808         int total_len = 0;
1809         struct btrfs_inode_ref *iref;
1810         struct extent_buffer *l;
1811         struct btrfs_path *path;
1812
1813         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1814                 name[0]='\0';
1815                 return 0;
1816         }
1817
1818         path = btrfs_alloc_path();
1819         if (!path)
1820                 return -ENOMEM;
1821
1822         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1823
1824         key.objectid = tree_id;
1825         key.type = BTRFS_ROOT_ITEM_KEY;
1826         key.offset = (u64)-1;
1827         root = btrfs_read_fs_root_no_name(info, &key);
1828         if (IS_ERR(root)) {
1829                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1830                 ret = -ENOENT;
1831                 goto out;
1832         }
1833
1834         key.objectid = dirid;
1835         key.type = BTRFS_INODE_REF_KEY;
1836         key.offset = (u64)-1;
1837
1838         while(1) {
1839                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1840                 if (ret < 0)
1841                         goto out;
1842
1843                 l = path->nodes[0];
1844                 slot = path->slots[0];
1845                 if (ret > 0 && slot > 0)
1846                         slot--;
1847                 btrfs_item_key_to_cpu(l, &key, slot);
1848
1849                 if (ret > 0 && (key.objectid != dirid ||
1850                                 key.type != BTRFS_INODE_REF_KEY)) {
1851                         ret = -ENOENT;
1852                         goto out;
1853                 }
1854
1855                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1856                 len = btrfs_inode_ref_name_len(l, iref);
1857                 ptr -= len + 1;
1858                 total_len += len + 1;
1859                 if (ptr < name)
1860                         goto out;
1861
1862                 *(ptr + len) = '/';
1863                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1864
1865                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1866                         break;
1867
1868                 btrfs_release_path(path);
1869                 key.objectid = key.offset;
1870                 key.offset = (u64)-1;
1871                 dirid = key.objectid;
1872         }
1873         if (ptr < name)
1874                 goto out;
1875         memmove(name, ptr, total_len);
1876         name[total_len]='\0';
1877         ret = 0;
1878 out:
1879         btrfs_free_path(path);
1880         return ret;
1881 }
1882
1883 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1884                                            void __user *argp)
1885 {
1886          struct btrfs_ioctl_ino_lookup_args *args;
1887          struct inode *inode;
1888          int ret;
1889
1890         if (!capable(CAP_SYS_ADMIN))
1891                 return -EPERM;
1892
1893         args = memdup_user(argp, sizeof(*args));
1894         if (IS_ERR(args))
1895                 return PTR_ERR(args);
1896
1897         inode = fdentry(file)->d_inode;
1898
1899         if (args->treeid == 0)
1900                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1901
1902         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1903                                         args->treeid, args->objectid,
1904                                         args->name);
1905
1906         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1907                 ret = -EFAULT;
1908
1909         kfree(args);
1910         return ret;
1911 }
1912
1913 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1914                                              void __user *arg)
1915 {
1916         struct dentry *parent = fdentry(file);
1917         struct dentry *dentry;
1918         struct inode *dir = parent->d_inode;
1919         struct inode *inode;
1920         struct btrfs_root *root = BTRFS_I(dir)->root;
1921         struct btrfs_root *dest = NULL;
1922         struct btrfs_ioctl_vol_args *vol_args;
1923         struct btrfs_trans_handle *trans;
1924         int namelen;
1925         int ret;
1926         int err = 0;
1927
1928         vol_args = memdup_user(arg, sizeof(*vol_args));
1929         if (IS_ERR(vol_args))
1930                 return PTR_ERR(vol_args);
1931
1932         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1933         namelen = strlen(vol_args->name);
1934         if (strchr(vol_args->name, '/') ||
1935             strncmp(vol_args->name, "..", namelen) == 0) {
1936                 err = -EINVAL;
1937                 goto out;
1938         }
1939
1940         err = mnt_want_write_file(file);
1941         if (err)
1942                 goto out;
1943
1944         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1945         dentry = lookup_one_len(vol_args->name, parent, namelen);
1946         if (IS_ERR(dentry)) {
1947                 err = PTR_ERR(dentry);
1948                 goto out_unlock_dir;
1949         }
1950
1951         if (!dentry->d_inode) {
1952                 err = -ENOENT;
1953                 goto out_dput;
1954         }
1955
1956         inode = dentry->d_inode;
1957         dest = BTRFS_I(inode)->root;
1958         if (!capable(CAP_SYS_ADMIN)){
1959                 /*
1960                  * Regular user.  Only allow this with a special mount
1961                  * option, when the user has write+exec access to the
1962                  * subvol root, and when rmdir(2) would have been
1963                  * allowed.
1964                  *
1965                  * Note that this is _not_ check that the subvol is
1966                  * empty or doesn't contain data that we wouldn't
1967                  * otherwise be able to delete.
1968                  *
1969                  * Users who want to delete empty subvols should try
1970                  * rmdir(2).
1971                  */
1972                 err = -EPERM;
1973                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1974                         goto out_dput;
1975
1976                 /*
1977                  * Do not allow deletion if the parent dir is the same
1978                  * as the dir to be deleted.  That means the ioctl
1979                  * must be called on the dentry referencing the root
1980                  * of the subvol, not a random directory contained
1981                  * within it.
1982                  */
1983                 err = -EINVAL;
1984                 if (root == dest)
1985                         goto out_dput;
1986
1987                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1988                 if (err)
1989                         goto out_dput;
1990
1991                 /* check if subvolume may be deleted by a non-root user */
1992                 err = btrfs_may_delete(dir, dentry, 1);
1993                 if (err)
1994                         goto out_dput;
1995         }
1996
1997         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1998                 err = -EINVAL;
1999                 goto out_dput;
2000         }
2001
2002         mutex_lock(&inode->i_mutex);
2003         err = d_invalidate(dentry);
2004         if (err)
2005                 goto out_unlock;
2006
2007         down_write(&root->fs_info->subvol_sem);
2008
2009         err = may_destroy_subvol(dest);
2010         if (err)
2011                 goto out_up_write;
2012
2013         trans = btrfs_start_transaction(root, 0);
2014         if (IS_ERR(trans)) {
2015                 err = PTR_ERR(trans);
2016                 goto out_up_write;
2017         }
2018         trans->block_rsv = &root->fs_info->global_block_rsv;
2019
2020         ret = btrfs_unlink_subvol(trans, root, dir,
2021                                 dest->root_key.objectid,
2022                                 dentry->d_name.name,
2023                                 dentry->d_name.len);
2024         if (ret) {
2025                 err = ret;
2026                 btrfs_abort_transaction(trans, root, ret);
2027                 goto out_end_trans;
2028         }
2029
2030         btrfs_record_root_in_trans(trans, dest);
2031
2032         memset(&dest->root_item.drop_progress, 0,
2033                 sizeof(dest->root_item.drop_progress));
2034         dest->root_item.drop_level = 0;
2035         btrfs_set_root_refs(&dest->root_item, 0);
2036
2037         if (!xchg(&dest->orphan_item_inserted, 1)) {
2038                 ret = btrfs_insert_orphan_item(trans,
2039                                         root->fs_info->tree_root,
2040                                         dest->root_key.objectid);
2041                 if (ret) {
2042                         btrfs_abort_transaction(trans, root, ret);
2043                         err = ret;
2044                         goto out_end_trans;
2045                 }
2046         }
2047 out_end_trans:
2048         ret = btrfs_end_transaction(trans, root);
2049         if (ret && !err)
2050                 err = ret;
2051         inode->i_flags |= S_DEAD;
2052 out_up_write:
2053         up_write(&root->fs_info->subvol_sem);
2054 out_unlock:
2055         mutex_unlock(&inode->i_mutex);
2056         if (!err) {
2057                 shrink_dcache_sb(root->fs_info->sb);
2058                 btrfs_invalidate_inodes(dest);
2059                 d_delete(dentry);
2060         }
2061 out_dput:
2062         dput(dentry);
2063 out_unlock_dir:
2064         mutex_unlock(&dir->i_mutex);
2065         mnt_drop_write_file(file);
2066 out:
2067         kfree(vol_args);
2068         return err;
2069 }
2070
2071 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2072 {
2073         struct inode *inode = fdentry(file)->d_inode;
2074         struct btrfs_root *root = BTRFS_I(inode)->root;
2075         struct btrfs_ioctl_defrag_range_args *range;
2076         int ret;
2077
2078         if (btrfs_root_readonly(root))
2079                 return -EROFS;
2080
2081         ret = mnt_want_write_file(file);
2082         if (ret)
2083                 return ret;
2084
2085         switch (inode->i_mode & S_IFMT) {
2086         case S_IFDIR:
2087                 if (!capable(CAP_SYS_ADMIN)) {
2088                         ret = -EPERM;
2089                         goto out;
2090                 }
2091                 ret = btrfs_defrag_root(root, 0);
2092                 if (ret)
2093                         goto out;
2094                 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2095                 break;
2096         case S_IFREG:
2097                 if (!(file->f_mode & FMODE_WRITE)) {
2098                         ret = -EINVAL;
2099                         goto out;
2100                 }
2101
2102                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2103                 if (!range) {
2104                         ret = -ENOMEM;
2105                         goto out;
2106                 }
2107
2108                 if (argp) {
2109                         if (copy_from_user(range, argp,
2110                                            sizeof(*range))) {
2111                                 ret = -EFAULT;
2112                                 kfree(range);
2113                                 goto out;
2114                         }
2115                         /* compression requires us to start the IO */
2116                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2117                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2118                                 range->extent_thresh = (u32)-1;
2119                         }
2120                 } else {
2121                         /* the rest are all set to zero by kzalloc */
2122                         range->len = (u64)-1;
2123                 }
2124                 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2125                                         range, 0, 0);
2126                 if (ret > 0)
2127                         ret = 0;
2128                 kfree(range);
2129                 break;
2130         default:
2131                 ret = -EINVAL;
2132         }
2133 out:
2134         mnt_drop_write_file(file);
2135         return ret;
2136 }
2137
2138 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2139 {
2140         struct btrfs_ioctl_vol_args *vol_args;
2141         int ret;
2142
2143         if (!capable(CAP_SYS_ADMIN))
2144                 return -EPERM;
2145
2146         mutex_lock(&root->fs_info->volume_mutex);
2147         if (root->fs_info->balance_ctl) {
2148                 printk(KERN_INFO "btrfs: balance in progress\n");
2149                 ret = -EINVAL;
2150                 goto out;
2151         }
2152
2153         vol_args = memdup_user(arg, sizeof(*vol_args));
2154         if (IS_ERR(vol_args)) {
2155                 ret = PTR_ERR(vol_args);
2156                 goto out;
2157         }
2158
2159         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2160         ret = btrfs_init_new_device(root, vol_args->name);
2161
2162         kfree(vol_args);
2163 out:
2164         mutex_unlock(&root->fs_info->volume_mutex);
2165         return ret;
2166 }
2167
2168 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2169 {
2170         struct btrfs_ioctl_vol_args *vol_args;
2171         int ret;
2172
2173         if (!capable(CAP_SYS_ADMIN))
2174                 return -EPERM;
2175
2176         if (root->fs_info->sb->s_flags & MS_RDONLY)
2177                 return -EROFS;
2178
2179         mutex_lock(&root->fs_info->volume_mutex);
2180         if (root->fs_info->balance_ctl) {
2181                 printk(KERN_INFO "btrfs: balance in progress\n");
2182                 ret = -EINVAL;
2183                 goto out;
2184         }
2185
2186         vol_args = memdup_user(arg, sizeof(*vol_args));
2187         if (IS_ERR(vol_args)) {
2188                 ret = PTR_ERR(vol_args);
2189                 goto out;
2190         }
2191
2192         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2193         ret = btrfs_rm_device(root, vol_args->name);
2194
2195         kfree(vol_args);
2196 out:
2197         mutex_unlock(&root->fs_info->volume_mutex);
2198         return ret;
2199 }
2200
2201 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2202 {
2203         struct btrfs_ioctl_fs_info_args *fi_args;
2204         struct btrfs_device *device;
2205         struct btrfs_device *next;
2206         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2207         int ret = 0;
2208
2209         if (!capable(CAP_SYS_ADMIN))
2210                 return -EPERM;
2211
2212         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2213         if (!fi_args)
2214                 return -ENOMEM;
2215
2216         fi_args->num_devices = fs_devices->num_devices;
2217         memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2218
2219         mutex_lock(&fs_devices->device_list_mutex);
2220         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2221                 if (device->devid > fi_args->max_id)
2222                         fi_args->max_id = device->devid;
2223         }
2224         mutex_unlock(&fs_devices->device_list_mutex);
2225
2226         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2227                 ret = -EFAULT;
2228
2229         kfree(fi_args);
2230         return ret;
2231 }
2232
2233 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2234 {
2235         struct btrfs_ioctl_dev_info_args *di_args;
2236         struct btrfs_device *dev;
2237         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2238         int ret = 0;
2239         char *s_uuid = NULL;
2240         char empty_uuid[BTRFS_UUID_SIZE] = {0};
2241
2242         if (!capable(CAP_SYS_ADMIN))
2243                 return -EPERM;
2244
2245         di_args = memdup_user(arg, sizeof(*di_args));
2246         if (IS_ERR(di_args))
2247                 return PTR_ERR(di_args);
2248
2249         if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2250                 s_uuid = di_args->uuid;
2251
2252         mutex_lock(&fs_devices->device_list_mutex);
2253         dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2254         mutex_unlock(&fs_devices->device_list_mutex);
2255
2256         if (!dev) {
2257                 ret = -ENODEV;
2258                 goto out;
2259         }
2260
2261         di_args->devid = dev->devid;
2262         di_args->bytes_used = dev->bytes_used;
2263         di_args->total_bytes = dev->total_bytes;
2264         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2265         if (dev->name)
2266                 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2267         else
2268                 di_args->path[0] = '\0';
2269
2270 out:
2271         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2272                 ret = -EFAULT;
2273
2274         kfree(di_args);
2275         return ret;
2276 }
2277
2278 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2279                                        u64 off, u64 olen, u64 destoff)
2280 {
2281         struct inode *inode = fdentry(file)->d_inode;
2282         struct btrfs_root *root = BTRFS_I(inode)->root;
2283         struct file *src_file;
2284         struct inode *src;
2285         struct btrfs_trans_handle *trans;
2286         struct btrfs_path *path;
2287         struct extent_buffer *leaf;
2288         char *buf;
2289         struct btrfs_key key;
2290         u32 nritems;
2291         int slot;
2292         int ret;
2293         u64 len = olen;
2294         u64 bs = root->fs_info->sb->s_blocksize;
2295         u64 hint_byte;
2296
2297         /*
2298          * TODO:
2299          * - split compressed inline extents.  annoying: we need to
2300          *   decompress into destination's address_space (the file offset
2301          *   may change, so source mapping won't do), then recompress (or
2302          *   otherwise reinsert) a subrange.
2303          * - allow ranges within the same file to be cloned (provided
2304          *   they don't overlap)?
2305          */
2306
2307         /* the destination must be opened for writing */
2308         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2309                 return -EINVAL;
2310
2311         if (btrfs_root_readonly(root))
2312                 return -EROFS;
2313
2314         ret = mnt_want_write_file(file);
2315         if (ret)
2316                 return ret;
2317
2318         src_file = fget(srcfd);
2319         if (!src_file) {
2320                 ret = -EBADF;
2321                 goto out_drop_write;
2322         }
2323
2324         src = src_file->f_dentry->d_inode;
2325
2326         ret = -EINVAL;
2327         if (src == inode)
2328                 goto out_fput;
2329
2330         /* the src must be open for reading */
2331         if (!(src_file->f_mode & FMODE_READ))
2332                 goto out_fput;
2333
2334         /* don't make the dst file partly checksummed */
2335         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2336             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2337                 goto out_fput;
2338
2339         ret = -EISDIR;
2340         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2341                 goto out_fput;
2342
2343         ret = -EXDEV;
2344         if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2345                 goto out_fput;
2346
2347         ret = -ENOMEM;
2348         buf = vmalloc(btrfs_level_size(root, 0));
2349         if (!buf)
2350                 goto out_fput;
2351
2352         path = btrfs_alloc_path();
2353         if (!path) {
2354                 vfree(buf);
2355                 goto out_fput;
2356         }
2357         path->reada = 2;
2358
2359         if (inode < src) {
2360                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2361                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2362         } else {
2363                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2364                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2365         }
2366
2367         /* determine range to clone */
2368         ret = -EINVAL;
2369         if (off + len > src->i_size || off + len < off)
2370                 goto out_unlock;
2371         if (len == 0)
2372                 olen = len = src->i_size - off;
2373         /* if we extend to eof, continue to block boundary */
2374         if (off + len == src->i_size)
2375                 len = ALIGN(src->i_size, bs) - off;
2376
2377         /* verify the end result is block aligned */
2378         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2379             !IS_ALIGNED(destoff, bs))
2380                 goto out_unlock;
2381
2382         if (destoff > inode->i_size) {
2383                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2384                 if (ret)
2385                         goto out_unlock;
2386         }
2387
2388         /* truncate page cache pages from target inode range */
2389         truncate_inode_pages_range(&inode->i_data, destoff,
2390                                    PAGE_CACHE_ALIGN(destoff + len) - 1);
2391
2392         /* do any pending delalloc/csum calc on src, one way or
2393            another, and lock file content */
2394         while (1) {
2395                 struct btrfs_ordered_extent *ordered;
2396                 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2397                 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2398                 if (!ordered &&
2399                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2400                                    EXTENT_DELALLOC, 0, NULL))
2401                         break;
2402                 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2403                 if (ordered)
2404                         btrfs_put_ordered_extent(ordered);
2405                 btrfs_wait_ordered_range(src, off, len);
2406         }
2407
2408         /* clone data */
2409         key.objectid = btrfs_ino(src);
2410         key.type = BTRFS_EXTENT_DATA_KEY;
2411         key.offset = 0;
2412
2413         while (1) {
2414                 /*
2415                  * note the key will change type as we walk through the
2416                  * tree.
2417                  */
2418                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2419                 if (ret < 0)
2420                         goto out;
2421
2422                 nritems = btrfs_header_nritems(path->nodes[0]);
2423                 if (path->slots[0] >= nritems) {
2424                         ret = btrfs_next_leaf(root, path);
2425                         if (ret < 0)
2426                                 goto out;
2427                         if (ret > 0)
2428                                 break;
2429                         nritems = btrfs_header_nritems(path->nodes[0]);
2430                 }
2431                 leaf = path->nodes[0];
2432                 slot = path->slots[0];
2433
2434                 btrfs_item_key_to_cpu(leaf, &key, slot);
2435                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2436                     key.objectid != btrfs_ino(src))
2437                         break;
2438
2439                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2440                         struct btrfs_file_extent_item *extent;
2441                         int type;
2442                         u32 size;
2443                         struct btrfs_key new_key;
2444                         u64 disko = 0, diskl = 0;
2445                         u64 datao = 0, datal = 0;
2446                         u8 comp;
2447                         u64 endoff;
2448
2449                         size = btrfs_item_size_nr(leaf, slot);
2450                         read_extent_buffer(leaf, buf,
2451                                            btrfs_item_ptr_offset(leaf, slot),
2452                                            size);
2453
2454                         extent = btrfs_item_ptr(leaf, slot,
2455                                                 struct btrfs_file_extent_item);
2456                         comp = btrfs_file_extent_compression(leaf, extent);
2457                         type = btrfs_file_extent_type(leaf, extent);
2458                         if (type == BTRFS_FILE_EXTENT_REG ||
2459                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2460                                 disko = btrfs_file_extent_disk_bytenr(leaf,
2461                                                                       extent);
2462                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2463                                                                  extent);
2464                                 datao = btrfs_file_extent_offset(leaf, extent);
2465                                 datal = btrfs_file_extent_num_bytes(leaf,
2466                                                                     extent);
2467                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2468                                 /* take upper bound, may be compressed */
2469                                 datal = btrfs_file_extent_ram_bytes(leaf,
2470                                                                     extent);
2471                         }
2472                         btrfs_release_path(path);
2473
2474                         if (key.offset + datal <= off ||
2475                             key.offset >= off+len)
2476                                 goto next;
2477
2478                         memcpy(&new_key, &key, sizeof(new_key));
2479                         new_key.objectid = btrfs_ino(inode);
2480                         if (off <= key.offset)
2481                                 new_key.offset = key.offset + destoff - off;
2482                         else
2483                                 new_key.offset = destoff;
2484
2485                         /*
2486                          * 1 - adjusting old extent (we may have to split it)
2487                          * 1 - add new extent
2488                          * 1 - inode update
2489                          */
2490                         trans = btrfs_start_transaction(root, 3);
2491                         if (IS_ERR(trans)) {
2492                                 ret = PTR_ERR(trans);
2493                                 goto out;
2494                         }
2495
2496                         if (type == BTRFS_FILE_EXTENT_REG ||
2497                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2498                                 /*
2499                                  *    a  | --- range to clone ---|  b
2500                                  * | ------------- extent ------------- |
2501                                  */
2502
2503                                 /* substract range b */
2504                                 if (key.offset + datal > off + len)
2505                                         datal = off + len - key.offset;
2506
2507                                 /* substract range a */
2508                                 if (off > key.offset) {
2509                                         datao += off - key.offset;
2510                                         datal -= off - key.offset;
2511                                 }
2512
2513                                 ret = btrfs_drop_extents(trans, inode,
2514                                                          new_key.offset,
2515                                                          new_key.offset + datal,
2516                                                          &hint_byte, 1);
2517                                 if (ret) {
2518                                         btrfs_abort_transaction(trans, root,
2519                                                                 ret);
2520                                         btrfs_end_transaction(trans, root);
2521                                         goto out;
2522                                 }
2523
2524                                 ret = btrfs_insert_empty_item(trans, root, path,
2525                                                               &new_key, size);
2526                                 if (ret) {
2527                                         btrfs_abort_transaction(trans, root,
2528                                                                 ret);
2529                                         btrfs_end_transaction(trans, root);
2530                                         goto out;
2531                                 }
2532
2533                                 leaf = path->nodes[0];
2534                                 slot = path->slots[0];
2535                                 write_extent_buffer(leaf, buf,
2536                                             btrfs_item_ptr_offset(leaf, slot),
2537                                             size);
2538
2539                                 extent = btrfs_item_ptr(leaf, slot,
2540                                                 struct btrfs_file_extent_item);
2541
2542                                 /* disko == 0 means it's a hole */
2543                                 if (!disko)
2544                                         datao = 0;
2545
2546                                 btrfs_set_file_extent_offset(leaf, extent,
2547                                                              datao);
2548                                 btrfs_set_file_extent_num_bytes(leaf, extent,
2549                                                                 datal);
2550                                 if (disko) {
2551                                         inode_add_bytes(inode, datal);
2552                                         ret = btrfs_inc_extent_ref(trans, root,
2553                                                         disko, diskl, 0,
2554                                                         root->root_key.objectid,
2555                                                         btrfs_ino(inode),
2556                                                         new_key.offset - datao,
2557                                                         0);
2558                                         if (ret) {
2559                                                 btrfs_abort_transaction(trans,
2560                                                                         root,
2561                                                                         ret);
2562                                                 btrfs_end_transaction(trans,
2563                                                                       root);
2564                                                 goto out;
2565
2566                                         }
2567                                 }
2568                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2569                                 u64 skip = 0;
2570                                 u64 trim = 0;
2571                                 if (off > key.offset) {
2572                                         skip = off - key.offset;
2573                                         new_key.offset += skip;
2574                                 }
2575
2576                                 if (key.offset + datal > off+len)
2577                                         trim = key.offset + datal - (off+len);
2578
2579                                 if (comp && (skip || trim)) {
2580                                         ret = -EINVAL;
2581                                         btrfs_end_transaction(trans, root);
2582                                         goto out;
2583                                 }
2584                                 size -= skip + trim;
2585                                 datal -= skip + trim;
2586
2587                                 ret = btrfs_drop_extents(trans, inode,
2588                                                          new_key.offset,
2589                                                          new_key.offset + datal,
2590                                                          &hint_byte, 1);
2591                                 if (ret) {
2592                                         btrfs_abort_transaction(trans, root,
2593                                                                 ret);
2594                                         btrfs_end_transaction(trans, root);
2595                                         goto out;
2596                                 }
2597
2598                                 ret = btrfs_insert_empty_item(trans, root, path,
2599                                                               &new_key, size);
2600                                 if (ret) {
2601                                         btrfs_abort_transaction(trans, root,
2602                                                                 ret);
2603                                         btrfs_end_transaction(trans, root);
2604                                         goto out;
2605                                 }
2606
2607                                 if (skip) {
2608                                         u32 start =
2609                                           btrfs_file_extent_calc_inline_size(0);
2610                                         memmove(buf+start, buf+start+skip,
2611                                                 datal);
2612                                 }
2613
2614                                 leaf = path->nodes[0];
2615                                 slot = path->slots[0];
2616                                 write_extent_buffer(leaf, buf,
2617                                             btrfs_item_ptr_offset(leaf, slot),
2618                                             size);
2619                                 inode_add_bytes(inode, datal);
2620                         }
2621
2622                         btrfs_mark_buffer_dirty(leaf);
2623                         btrfs_release_path(path);
2624
2625                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2626
2627                         /*
2628                          * we round up to the block size at eof when
2629                          * determining which extents to clone above,
2630                          * but shouldn't round up the file size
2631                          */
2632                         endoff = new_key.offset + datal;
2633                         if (endoff > destoff+olen)
2634                                 endoff = destoff+olen;
2635                         if (endoff > inode->i_size)
2636                                 btrfs_i_size_write(inode, endoff);
2637
2638                         ret = btrfs_update_inode(trans, root, inode);
2639                         if (ret) {
2640                                 btrfs_abort_transaction(trans, root, ret);
2641                                 btrfs_end_transaction(trans, root);
2642                                 goto out;
2643                         }
2644                         ret = btrfs_end_transaction(trans, root);
2645                 }
2646 next:
2647                 btrfs_release_path(path);
2648                 key.offset++;
2649         }
2650         ret = 0;
2651 out:
2652         btrfs_release_path(path);
2653         unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2654 out_unlock:
2655         mutex_unlock(&src->i_mutex);
2656         mutex_unlock(&inode->i_mutex);
2657         vfree(buf);
2658         btrfs_free_path(path);
2659 out_fput:
2660         fput(src_file);
2661 out_drop_write:
2662         mnt_drop_write_file(file);
2663         return ret;
2664 }
2665
2666 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2667 {
2668         struct btrfs_ioctl_clone_range_args args;
2669
2670         if (copy_from_user(&args, argp, sizeof(args)))
2671                 return -EFAULT;
2672         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2673                                  args.src_length, args.dest_offset);
2674 }
2675
2676 /*
2677  * there are many ways the trans_start and trans_end ioctls can lead
2678  * to deadlocks.  They should only be used by applications that
2679  * basically own the machine, and have a very in depth understanding
2680  * of all the possible deadlocks and enospc problems.
2681  */
2682 static long btrfs_ioctl_trans_start(struct file *file)
2683 {
2684         struct inode *inode = fdentry(file)->d_inode;
2685         struct btrfs_root *root = BTRFS_I(inode)->root;
2686         struct btrfs_trans_handle *trans;
2687         int ret;
2688
2689         ret = -EPERM;
2690         if (!capable(CAP_SYS_ADMIN))
2691                 goto out;
2692
2693         ret = -EINPROGRESS;
2694         if (file->private_data)
2695                 goto out;
2696
2697         ret = -EROFS;
2698         if (btrfs_root_readonly(root))
2699                 goto out;
2700
2701         ret = mnt_want_write_file(file);
2702         if (ret)
2703                 goto out;
2704
2705         atomic_inc(&root->fs_info->open_ioctl_trans);
2706
2707         ret = -ENOMEM;
2708         trans = btrfs_start_ioctl_transaction(root);
2709         if (IS_ERR(trans))
2710                 goto out_drop;
2711
2712         file->private_data = trans;
2713         return 0;
2714
2715 out_drop:
2716         atomic_dec(&root->fs_info->open_ioctl_trans);
2717         mnt_drop_write_file(file);
2718 out:
2719         return ret;
2720 }
2721
2722 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2723 {
2724         struct inode *inode = fdentry(file)->d_inode;
2725         struct btrfs_root *root = BTRFS_I(inode)->root;
2726         struct btrfs_root *new_root;
2727         struct btrfs_dir_item *di;
2728         struct btrfs_trans_handle *trans;
2729         struct btrfs_path *path;
2730         struct btrfs_key location;
2731         struct btrfs_disk_key disk_key;
2732         struct btrfs_super_block *disk_super;
2733         u64 features;
2734         u64 objectid = 0;
2735         u64 dir_id;
2736
2737         if (!capable(CAP_SYS_ADMIN))
2738                 return -EPERM;
2739
2740         if (copy_from_user(&objectid, argp, sizeof(objectid)))
2741                 return -EFAULT;
2742
2743         if (!objectid)
2744                 objectid = root->root_key.objectid;
2745
2746         location.objectid = objectid;
2747         location.type = BTRFS_ROOT_ITEM_KEY;
2748         location.offset = (u64)-1;
2749
2750         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2751         if (IS_ERR(new_root))
2752                 return PTR_ERR(new_root);
2753
2754         if (btrfs_root_refs(&new_root->root_item) == 0)
2755                 return -ENOENT;
2756
2757         path = btrfs_alloc_path();
2758         if (!path)
2759                 return -ENOMEM;
2760         path->leave_spinning = 1;
2761
2762         trans = btrfs_start_transaction(root, 1);
2763         if (IS_ERR(trans)) {
2764                 btrfs_free_path(path);
2765                 return PTR_ERR(trans);
2766         }
2767
2768         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2769         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2770                                    dir_id, "default", 7, 1);
2771         if (IS_ERR_OR_NULL(di)) {
2772                 btrfs_free_path(path);
2773                 btrfs_end_transaction(trans, root);
2774                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2775                        "this isn't going to work\n");
2776                 return -ENOENT;
2777         }
2778
2779         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2780         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2781         btrfs_mark_buffer_dirty(path->nodes[0]);
2782         btrfs_free_path(path);
2783
2784         disk_super = root->fs_info->super_copy;
2785         features = btrfs_super_incompat_flags(disk_super);
2786         if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2787                 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2788                 btrfs_set_super_incompat_flags(disk_super, features);
2789         }
2790         btrfs_end_transaction(trans, root);
2791
2792         return 0;
2793 }
2794
2795 static void get_block_group_info(struct list_head *groups_list,
2796                                  struct btrfs_ioctl_space_info *space)
2797 {
2798         struct btrfs_block_group_cache *block_group;
2799
2800         space->total_bytes = 0;
2801         space->used_bytes = 0;
2802         space->flags = 0;
2803         list_for_each_entry(block_group, groups_list, list) {
2804                 space->flags = block_group->flags;
2805                 space->total_bytes += block_group->key.offset;
2806                 space->used_bytes +=
2807                         btrfs_block_group_used(&block_group->item);
2808         }
2809 }
2810
2811 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2812 {
2813         struct btrfs_ioctl_space_args space_args;
2814         struct btrfs_ioctl_space_info space;
2815         struct btrfs_ioctl_space_info *dest;
2816         struct btrfs_ioctl_space_info *dest_orig;
2817         struct btrfs_ioctl_space_info __user *user_dest;
2818         struct btrfs_space_info *info;
2819         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2820                        BTRFS_BLOCK_GROUP_SYSTEM,
2821                        BTRFS_BLOCK_GROUP_METADATA,
2822                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2823         int num_types = 4;
2824         int alloc_size;
2825         int ret = 0;
2826         u64 slot_count = 0;
2827         int i, c;
2828
2829         if (copy_from_user(&space_args,
2830                            (struct btrfs_ioctl_space_args __user *)arg,
2831                            sizeof(space_args)))
2832                 return -EFAULT;
2833
2834         for (i = 0; i < num_types; i++) {
2835                 struct btrfs_space_info *tmp;
2836
2837                 info = NULL;
2838                 rcu_read_lock();
2839                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2840                                         list) {
2841                         if (tmp->flags == types[i]) {
2842                                 info = tmp;
2843                                 break;
2844                         }
2845                 }
2846                 rcu_read_unlock();
2847
2848                 if (!info)
2849                         continue;
2850
2851                 down_read(&info->groups_sem);
2852                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2853                         if (!list_empty(&info->block_groups[c]))
2854                                 slot_count++;
2855                 }
2856                 up_read(&info->groups_sem);
2857         }
2858
2859         /* space_slots == 0 means they are asking for a count */
2860         if (space_args.space_slots == 0) {
2861                 space_args.total_spaces = slot_count;
2862                 goto out;
2863         }
2864
2865         slot_count = min_t(u64, space_args.space_slots, slot_count);
2866
2867         alloc_size = sizeof(*dest) * slot_count;
2868
2869         /* we generally have at most 6 or so space infos, one for each raid
2870          * level.  So, a whole page should be more than enough for everyone
2871          */
2872         if (alloc_size > PAGE_CACHE_SIZE)
2873                 return -ENOMEM;
2874
2875         space_args.total_spaces = 0;
2876         dest = kmalloc(alloc_size, GFP_NOFS);
2877         if (!dest)
2878                 return -ENOMEM;
2879         dest_orig = dest;
2880
2881         /* now we have a buffer to copy into */
2882         for (i = 0; i < num_types; i++) {
2883                 struct btrfs_space_info *tmp;
2884
2885                 if (!slot_count)
2886                         break;
2887
2888                 info = NULL;
2889                 rcu_read_lock();
2890                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2891                                         list) {
2892                         if (tmp->flags == types[i]) {
2893                                 info = tmp;
2894                                 break;
2895                         }
2896                 }
2897                 rcu_read_unlock();
2898
2899                 if (!info)
2900                         continue;
2901                 down_read(&info->groups_sem);
2902                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2903                         if (!list_empty(&info->block_groups[c])) {
2904                                 get_block_group_info(&info->block_groups[c],
2905                                                      &space);
2906                                 memcpy(dest, &space, sizeof(space));
2907                                 dest++;
2908                                 space_args.total_spaces++;
2909                                 slot_count--;
2910                         }
2911                         if (!slot_count)
2912                                 break;
2913                 }
2914                 up_read(&info->groups_sem);
2915         }
2916
2917         user_dest = (struct btrfs_ioctl_space_info *)
2918                 (arg + sizeof(struct btrfs_ioctl_space_args));
2919
2920         if (copy_to_user(user_dest, dest_orig, alloc_size))
2921                 ret = -EFAULT;
2922
2923         kfree(dest_orig);
2924 out:
2925         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2926                 ret = -EFAULT;
2927
2928         return ret;
2929 }
2930
2931 /*
2932  * there are many ways the trans_start and trans_end ioctls can lead
2933  * to deadlocks.  They should only be used by applications that
2934  * basically own the machine, and have a very in depth understanding
2935  * of all the possible deadlocks and enospc problems.
2936  */
2937 long btrfs_ioctl_trans_end(struct file *file)
2938 {
2939         struct inode *inode = fdentry(file)->d_inode;
2940         struct btrfs_root *root = BTRFS_I(inode)->root;
2941         struct btrfs_trans_handle *trans;
2942
2943         trans = file->private_data;
2944         if (!trans)
2945                 return -EINVAL;
2946         file->private_data = NULL;
2947
2948         btrfs_end_transaction(trans, root);
2949
2950         atomic_dec(&root->fs_info->open_ioctl_trans);
2951
2952         mnt_drop_write_file(file);
2953         return 0;
2954 }
2955
2956 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2957 {
2958         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2959         struct btrfs_trans_handle *trans;
2960         u64 transid;
2961         int ret;
2962
2963         trans = btrfs_start_transaction(root, 0);
2964         if (IS_ERR(trans))
2965                 return PTR_ERR(trans);
2966         transid = trans->transid;
2967         ret = btrfs_commit_transaction_async(trans, root, 0);
2968         if (ret) {
2969                 btrfs_end_transaction(trans, root);
2970                 return ret;
2971         }
2972
2973         if (argp)
2974                 if (copy_to_user(argp, &transid, sizeof(transid)))
2975                         return -EFAULT;
2976         return 0;
2977 }
2978
2979 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2980 {
2981         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2982         u64 transid;
2983
2984         if (argp) {
2985                 if (copy_from_user(&transid, argp, sizeof(transid)))
2986                         return -EFAULT;
2987         } else {
2988                 transid = 0;  /* current trans */
2989         }
2990         return btrfs_wait_for_commit(root, transid);
2991 }
2992
2993 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2994 {
2995         int ret;
2996         struct btrfs_ioctl_scrub_args *sa;
2997
2998         if (!capable(CAP_SYS_ADMIN))
2999                 return -EPERM;
3000
3001         sa = memdup_user(arg, sizeof(*sa));
3002         if (IS_ERR(sa))
3003                 return PTR_ERR(sa);
3004
3005         ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3006                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3007
3008         if (copy_to_user(arg, sa, sizeof(*sa)))
3009                 ret = -EFAULT;
3010
3011         kfree(sa);
3012         return ret;
3013 }
3014
3015 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3016 {
3017         if (!capable(CAP_SYS_ADMIN))
3018                 return -EPERM;
3019
3020         return btrfs_scrub_cancel(root);
3021 }
3022
3023 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3024                                        void __user *arg)
3025 {
3026         struct btrfs_ioctl_scrub_args *sa;
3027         int ret;
3028
3029         if (!capable(CAP_SYS_ADMIN))
3030                 return -EPERM;
3031
3032         sa = memdup_user(arg, sizeof(*sa));
3033         if (IS_ERR(sa))
3034                 return PTR_ERR(sa);
3035
3036         ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3037
3038         if (copy_to_user(arg, sa, sizeof(*sa)))
3039                 ret = -EFAULT;
3040
3041         kfree(sa);
3042         return ret;
3043 }
3044
3045 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3046 {
3047         int ret = 0;
3048         int i;
3049         u64 rel_ptr;
3050         int size;
3051         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3052         struct inode_fs_paths *ipath = NULL;
3053         struct btrfs_path *path;
3054
3055         if (!capable(CAP_SYS_ADMIN))
3056                 return -EPERM;
3057
3058         path = btrfs_alloc_path();
3059         if (!path) {
3060                 ret = -ENOMEM;
3061                 goto out;
3062         }
3063
3064         ipa = memdup_user(arg, sizeof(*ipa));
3065         if (IS_ERR(ipa)) {
3066                 ret = PTR_ERR(ipa);
3067                 ipa = NULL;
3068                 goto out;
3069         }
3070
3071         size = min_t(u32, ipa->size, 4096);
3072         ipath = init_ipath(size, root, path);
3073         if (IS_ERR(ipath)) {
3074                 ret = PTR_ERR(ipath);
3075                 ipath = NULL;
3076                 goto out;
3077         }
3078
3079         ret = paths_from_inode(ipa->inum, ipath);
3080         if (ret < 0)
3081                 goto out;
3082
3083         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3084                 rel_ptr = ipath->fspath->val[i] -
3085                           (u64)(unsigned long)ipath->fspath->val;
3086                 ipath->fspath->val[i] = rel_ptr;
3087         }
3088
3089         ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3090                            (void *)(unsigned long)ipath->fspath, size);
3091         if (ret) {
3092                 ret = -EFAULT;
3093                 goto out;
3094         }
3095
3096 out:
3097         btrfs_free_path(path);
3098         free_ipath(ipath);
3099         kfree(ipa);
3100
3101         return ret;
3102 }
3103
3104 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3105 {
3106         struct btrfs_data_container *inodes = ctx;
3107         const size_t c = 3 * sizeof(u64);
3108
3109         if (inodes->bytes_left >= c) {
3110                 inodes->bytes_left -= c;
3111                 inodes->val[inodes->elem_cnt] = inum;
3112                 inodes->val[inodes->elem_cnt + 1] = offset;
3113                 inodes->val[inodes->elem_cnt + 2] = root;
3114                 inodes->elem_cnt += 3;
3115         } else {
3116                 inodes->bytes_missing += c - inodes->bytes_left;
3117                 inodes->bytes_left = 0;
3118                 inodes->elem_missed += 3;
3119         }
3120
3121         return 0;
3122 }
3123
3124 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3125                                         void __user *arg)
3126 {
3127         int ret = 0;
3128         int size;
3129         u64 extent_item_pos;
3130         struct btrfs_ioctl_logical_ino_args *loi;
3131         struct btrfs_data_container *inodes = NULL;
3132         struct btrfs_path *path = NULL;
3133         struct btrfs_key key;
3134
3135         if (!capable(CAP_SYS_ADMIN))
3136                 return -EPERM;
3137
3138         loi = memdup_user(arg, sizeof(*loi));
3139         if (IS_ERR(loi)) {
3140                 ret = PTR_ERR(loi);
3141                 loi = NULL;
3142                 goto out;
3143         }
3144
3145         path = btrfs_alloc_path();
3146         if (!path) {
3147                 ret = -ENOMEM;
3148                 goto out;
3149         }
3150
3151         size = min_t(u32, loi->size, 4096);
3152         inodes = init_data_container(size);
3153         if (IS_ERR(inodes)) {
3154                 ret = PTR_ERR(inodes);
3155                 inodes = NULL;
3156                 goto out;
3157         }
3158
3159         ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3160         btrfs_release_path(path);
3161
3162         if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3163                 ret = -ENOENT;
3164         if (ret < 0)
3165                 goto out;
3166
3167         extent_item_pos = loi->logical - key.objectid;
3168         ret = iterate_extent_inodes(root->fs_info, key.objectid,
3169                                         extent_item_pos, 0, build_ino_list,
3170                                         inodes);
3171
3172         if (ret < 0)
3173                 goto out;
3174
3175         ret = copy_to_user((void *)(unsigned long)loi->inodes,
3176                            (void *)(unsigned long)inodes, size);
3177         if (ret)
3178                 ret = -EFAULT;
3179
3180 out:
3181         btrfs_free_path(path);
3182         kfree(inodes);
3183         kfree(loi);
3184
3185         return ret;
3186 }
3187
3188 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3189                                struct btrfs_ioctl_balance_args *bargs)
3190 {
3191         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3192
3193         bargs->flags = bctl->flags;
3194
3195         if (atomic_read(&fs_info->balance_running))
3196                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3197         if (atomic_read(&fs_info->balance_pause_req))
3198                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3199         if (atomic_read(&fs_info->balance_cancel_req))
3200                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3201
3202         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3203         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3204         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3205
3206         if (lock) {
3207                 spin_lock(&fs_info->balance_lock);
3208                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3209                 spin_unlock(&fs_info->balance_lock);
3210         } else {
3211                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3212         }
3213 }
3214
3215 static long btrfs_ioctl_balance(struct btrfs_root *root, void __user *arg)
3216 {
3217         struct btrfs_fs_info *fs_info = root->fs_info;
3218         struct btrfs_ioctl_balance_args *bargs;
3219         struct btrfs_balance_control *bctl;
3220         int ret;
3221
3222         if (!capable(CAP_SYS_ADMIN))
3223                 return -EPERM;
3224
3225         if (fs_info->sb->s_flags & MS_RDONLY)
3226                 return -EROFS;
3227
3228         mutex_lock(&fs_info->volume_mutex);
3229         mutex_lock(&fs_info->balance_mutex);
3230
3231         if (arg) {
3232                 bargs = memdup_user(arg, sizeof(*bargs));
3233                 if (IS_ERR(bargs)) {
3234                         ret = PTR_ERR(bargs);
3235                         goto out;
3236                 }
3237
3238                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3239                         if (!fs_info->balance_ctl) {
3240                                 ret = -ENOTCONN;
3241                                 goto out_bargs;
3242                         }
3243
3244                         bctl = fs_info->balance_ctl;
3245                         spin_lock(&fs_info->balance_lock);
3246                         bctl->flags |= BTRFS_BALANCE_RESUME;
3247                         spin_unlock(&fs_info->balance_lock);
3248
3249                         goto do_balance;
3250                 }
3251         } else {
3252                 bargs = NULL;
3253         }
3254
3255         if (fs_info->balance_ctl) {
3256                 ret = -EINPROGRESS;
3257                 goto out_bargs;
3258         }
3259
3260         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3261         if (!bctl) {
3262                 ret = -ENOMEM;
3263                 goto out_bargs;
3264         }
3265
3266         bctl->fs_info = fs_info;
3267         if (arg) {
3268                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3269                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3270                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3271
3272                 bctl->flags = bargs->flags;
3273         } else {
3274                 /* balance everything - no filters */
3275                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3276         }
3277
3278 do_balance:
3279         ret = btrfs_balance(bctl, bargs);
3280         /*
3281          * bctl is freed in __cancel_balance or in free_fs_info if
3282          * restriper was paused all the way until unmount
3283          */
3284         if (arg) {
3285                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3286                         ret = -EFAULT;
3287         }
3288
3289 out_bargs:
3290         kfree(bargs);
3291 out:
3292         mutex_unlock(&fs_info->balance_mutex);
3293         mutex_unlock(&fs_info->volume_mutex);
3294         return ret;
3295 }
3296
3297 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3298 {
3299         if (!capable(CAP_SYS_ADMIN))
3300                 return -EPERM;
3301
3302         switch (cmd) {
3303         case BTRFS_BALANCE_CTL_PAUSE:
3304                 return btrfs_pause_balance(root->fs_info);
3305         case BTRFS_BALANCE_CTL_CANCEL:
3306                 return btrfs_cancel_balance(root->fs_info);
3307         }
3308
3309         return -EINVAL;
3310 }
3311
3312 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3313                                          void __user *arg)
3314 {
3315         struct btrfs_fs_info *fs_info = root->fs_info;
3316         struct btrfs_ioctl_balance_args *bargs;
3317         int ret = 0;
3318
3319         if (!capable(CAP_SYS_ADMIN))
3320                 return -EPERM;
3321
3322         mutex_lock(&fs_info->balance_mutex);
3323         if (!fs_info->balance_ctl) {
3324                 ret = -ENOTCONN;
3325                 goto out;
3326         }
3327
3328         bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3329         if (!bargs) {
3330                 ret = -ENOMEM;
3331                 goto out;
3332         }
3333
3334         update_ioctl_balance_args(fs_info, 1, bargs);
3335
3336         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3337                 ret = -EFAULT;
3338
3339         kfree(bargs);
3340 out:
3341         mutex_unlock(&fs_info->balance_mutex);
3342         return ret;
3343 }
3344
3345 long btrfs_ioctl(struct file *file, unsigned int
3346                 cmd, unsigned long arg)
3347 {
3348         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3349         void __user *argp = (void __user *)arg;
3350
3351         switch (cmd) {
3352         case FS_IOC_GETFLAGS:
3353                 return btrfs_ioctl_getflags(file, argp);
3354         case FS_IOC_SETFLAGS:
3355                 return btrfs_ioctl_setflags(file, argp);
3356         case FS_IOC_GETVERSION:
3357                 return btrfs_ioctl_getversion(file, argp);
3358         case FITRIM:
3359                 return btrfs_ioctl_fitrim(file, argp);
3360         case BTRFS_IOC_SNAP_CREATE:
3361                 return btrfs_ioctl_snap_create(file, argp, 0);
3362         case BTRFS_IOC_SNAP_CREATE_V2:
3363                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3364         case BTRFS_IOC_SUBVOL_CREATE:
3365                 return btrfs_ioctl_snap_create(file, argp, 1);
3366         case BTRFS_IOC_SNAP_DESTROY:
3367                 return btrfs_ioctl_snap_destroy(file, argp);
3368         case BTRFS_IOC_SUBVOL_GETFLAGS:
3369                 return btrfs_ioctl_subvol_getflags(file, argp);
3370         case BTRFS_IOC_SUBVOL_SETFLAGS:
3371                 return btrfs_ioctl_subvol_setflags(file, argp);
3372         case BTRFS_IOC_DEFAULT_SUBVOL:
3373                 return btrfs_ioctl_default_subvol(file, argp);
3374         case BTRFS_IOC_DEFRAG:
3375                 return btrfs_ioctl_defrag(file, NULL);
3376         case BTRFS_IOC_DEFRAG_RANGE:
3377                 return btrfs_ioctl_defrag(file, argp);
3378         case BTRFS_IOC_RESIZE:
3379                 return btrfs_ioctl_resize(root, argp);
3380         case BTRFS_IOC_ADD_DEV:
3381                 return btrfs_ioctl_add_dev(root, argp);
3382         case BTRFS_IOC_RM_DEV:
3383                 return btrfs_ioctl_rm_dev(root, argp);
3384         case BTRFS_IOC_FS_INFO:
3385                 return btrfs_ioctl_fs_info(root, argp);
3386         case BTRFS_IOC_DEV_INFO:
3387                 return btrfs_ioctl_dev_info(root, argp);
3388         case BTRFS_IOC_BALANCE:
3389                 return btrfs_ioctl_balance(root, NULL);
3390         case BTRFS_IOC_CLONE:
3391                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3392         case BTRFS_IOC_CLONE_RANGE:
3393                 return btrfs_ioctl_clone_range(file, argp);
3394         case BTRFS_IOC_TRANS_START:
3395                 return btrfs_ioctl_trans_start(file);
3396         case BTRFS_IOC_TRANS_END:
3397                 return btrfs_ioctl_trans_end(file);
3398         case BTRFS_IOC_TREE_SEARCH:
3399                 return btrfs_ioctl_tree_search(file, argp);
3400         case BTRFS_IOC_INO_LOOKUP:
3401                 return btrfs_ioctl_ino_lookup(file, argp);
3402         case BTRFS_IOC_INO_PATHS:
3403                 return btrfs_ioctl_ino_to_path(root, argp);
3404         case BTRFS_IOC_LOGICAL_INO:
3405                 return btrfs_ioctl_logical_to_ino(root, argp);
3406         case BTRFS_IOC_SPACE_INFO:
3407                 return btrfs_ioctl_space_info(root, argp);
3408         case BTRFS_IOC_SYNC:
3409                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3410                 return 0;
3411         case BTRFS_IOC_START_SYNC:
3412                 return btrfs_ioctl_start_sync(file, argp);
3413         case BTRFS_IOC_WAIT_SYNC:
3414                 return btrfs_ioctl_wait_sync(file, argp);
3415         case BTRFS_IOC_SCRUB:
3416                 return btrfs_ioctl_scrub(root, argp);
3417         case BTRFS_IOC_SCRUB_CANCEL:
3418                 return btrfs_ioctl_scrub_cancel(root, argp);
3419         case BTRFS_IOC_SCRUB_PROGRESS:
3420                 return btrfs_ioctl_scrub_progress(root, argp);
3421         case BTRFS_IOC_BALANCE_V2:
3422                 return btrfs_ioctl_balance(root, argp);
3423         case BTRFS_IOC_BALANCE_CTL:
3424                 return btrfs_ioctl_balance_ctl(root, arg);
3425         case BTRFS_IOC_BALANCE_PROGRESS:
3426                 return btrfs_ioctl_balance_progress(root, argp);
3427         }
3428
3429         return -ENOTTY;
3430 }