- Update xen and uml patches.
[linux-flexiantxendom0-3.2.10.git] / mm / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <asm/tlbflush.h>
30
31 static mempool_t *page_pool, *isa_page_pool;
32
33 static void *page_pool_alloc_isa(gfp_t gfp_mask, void *data)
34 {
35         return alloc_page(gfp_mask | GFP_DMA);
36 }
37
38 static void page_pool_free(void *page, void *data)
39 {
40         __free_page(page);
41 }
42
43 /*
44  * Virtual_count is not a pure "count".
45  *  0 means that it is not mapped, and has not been mapped
46  *    since a TLB flush - it is usable.
47  *  1 means that there are no users, but it has been mapped
48  *    since the last TLB flush - so we can't use it.
49  *  n means that there are (n-1) current users of it.
50  */
51 #ifdef CONFIG_HIGHMEM
52
53 static void *page_pool_alloc(gfp_t gfp_mask, void *data)
54 {
55         return alloc_page(gfp_mask);
56 }
57
58 static int pkmap_count[LAST_PKMAP];
59 static unsigned int last_pkmap_nr;
60 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
61
62 pte_t * pkmap_page_table;
63
64 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
65
66 static void flush_all_zero_pkmaps(void)
67 {
68         int i;
69
70         flush_cache_kmaps();
71
72         for (i = 0; i < LAST_PKMAP; i++) {
73                 struct page *page;
74
75                 /*
76                  * zero means we don't have anything to do,
77                  * >1 means that it is still in use. Only
78                  * a count of 1 means that it is free but
79                  * needs to be unmapped
80                  */
81                 if (pkmap_count[i] != 1)
82                         continue;
83                 pkmap_count[i] = 0;
84
85                 /* sanity check */
86                 if (pte_none(pkmap_page_table[i]))
87                         BUG();
88
89                 /*
90                  * Don't need an atomic fetch-and-clear op here;
91                  * no-one has the page mapped, and cannot get at
92                  * its virtual address (and hence PTE) without first
93                  * getting the kmap_lock (which is held here).
94                  * So no dangers, even with speculative execution.
95                  */
96                 page = pte_page(pkmap_page_table[i]);
97                 pte_clear(&init_mm, (unsigned long)page_address(page),
98                           &pkmap_page_table[i]);
99
100                 set_page_address(page, NULL);
101         }
102         flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
103 }
104
105 static inline unsigned long map_new_virtual(struct page *page)
106 {
107         unsigned long vaddr;
108         int count;
109
110 start:
111         count = LAST_PKMAP;
112         /* Find an empty entry */
113         for (;;) {
114                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
115                 if (!last_pkmap_nr) {
116                         flush_all_zero_pkmaps();
117                         count = LAST_PKMAP;
118                 }
119                 if (!pkmap_count[last_pkmap_nr])
120                         break;  /* Found a usable entry */
121                 if (--count)
122                         continue;
123
124                 /*
125                  * Sleep for somebody else to unmap their entries
126                  */
127                 {
128                         DECLARE_WAITQUEUE(wait, current);
129
130                         __set_current_state(TASK_UNINTERRUPTIBLE);
131                         add_wait_queue(&pkmap_map_wait, &wait);
132                         spin_unlock(&kmap_lock);
133                         schedule();
134                         remove_wait_queue(&pkmap_map_wait, &wait);
135                         spin_lock(&kmap_lock);
136
137                         /* Somebody else might have mapped it while we slept */
138                         if (page_address(page))
139                                 return (unsigned long)page_address(page);
140
141                         /* Re-start */
142                         goto start;
143                 }
144         }
145         vaddr = PKMAP_ADDR(last_pkmap_nr);
146         set_pte_at(&init_mm, vaddr,
147                    &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
148
149         pkmap_count[last_pkmap_nr] = 1;
150         set_page_address(page, (void *)vaddr);
151
152         return vaddr;
153 }
154
155 #ifdef CONFIG_XEN
156 void kmap_flush_unused(void)
157 {
158         spin_lock(&kmap_lock);
159         flush_all_zero_pkmaps();
160         spin_unlock(&kmap_lock);
161 }
162
163 EXPORT_SYMBOL(kmap_flush_unused);
164 #endif
165
166 void fastcall *kmap_high(struct page *page)
167 {
168         unsigned long vaddr;
169
170         /*
171          * For highmem pages, we can't trust "virtual" until
172          * after we have the lock.
173          *
174          * We cannot call this from interrupts, as it may block
175          */
176         spin_lock(&kmap_lock);
177         vaddr = (unsigned long)page_address(page);
178         if (!vaddr)
179                 vaddr = map_new_virtual(page);
180         pkmap_count[PKMAP_NR(vaddr)]++;
181         if (pkmap_count[PKMAP_NR(vaddr)] < 2)
182                 BUG();
183         spin_unlock(&kmap_lock);
184         return (void*) vaddr;
185 }
186
187 EXPORT_SYMBOL(kmap_high);
188
189 void fastcall kunmap_high(struct page *page)
190 {
191         unsigned long vaddr;
192         unsigned long nr;
193         int need_wakeup;
194
195         spin_lock(&kmap_lock);
196         vaddr = (unsigned long)page_address(page);
197         if (!vaddr)
198                 BUG();
199         nr = PKMAP_NR(vaddr);
200
201         /*
202          * A count must never go down to zero
203          * without a TLB flush!
204          */
205         need_wakeup = 0;
206         switch (--pkmap_count[nr]) {
207         case 0:
208                 BUG();
209         case 1:
210                 /*
211                  * Avoid an unnecessary wake_up() function call.
212                  * The common case is pkmap_count[] == 1, but
213                  * no waiters.
214                  * The tasks queued in the wait-queue are guarded
215                  * by both the lock in the wait-queue-head and by
216                  * the kmap_lock.  As the kmap_lock is held here,
217                  * no need for the wait-queue-head's lock.  Simply
218                  * test if the queue is empty.
219                  */
220                 need_wakeup = waitqueue_active(&pkmap_map_wait);
221         }
222         spin_unlock(&kmap_lock);
223
224         /* do wake-up, if needed, race-free outside of the spin lock */
225         if (need_wakeup)
226                 wake_up(&pkmap_map_wait);
227 }
228
229 EXPORT_SYMBOL(kunmap_high);
230
231 #define POOL_SIZE       64
232
233 static __init int init_emergency_pool(void)
234 {
235         struct sysinfo i;
236         si_meminfo(&i);
237         si_swapinfo(&i);
238         
239         if (!i.totalhigh)
240                 return 0;
241
242         page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL);
243         if (!page_pool)
244                 BUG();
245         printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
246
247         return 0;
248 }
249
250 __initcall(init_emergency_pool);
251
252 /*
253  * highmem version, map in to vec
254  */
255 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
256 {
257         unsigned long flags;
258         unsigned char *vto;
259
260         local_irq_save(flags);
261         vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
262         memcpy(vto + to->bv_offset, vfrom, to->bv_len);
263         kunmap_atomic(vto, KM_BOUNCE_READ);
264         local_irq_restore(flags);
265 }
266
267 #else /* CONFIG_HIGHMEM */
268
269 #define bounce_copy_vec(to, vfrom)      \
270         memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
271
272 #endif
273
274 #define ISA_POOL_SIZE   16
275
276 /*
277  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
278  * as the max address, so check if the pool has already been created.
279  */
280 int init_emergency_isa_pool(void)
281 {
282         if (isa_page_pool)
283                 return 0;
284
285         isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc_isa, page_pool_free, NULL);
286         if (!isa_page_pool)
287                 BUG();
288
289         printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
290         return 0;
291 }
292
293 /*
294  * Simple bounce buffer support for highmem pages. Depending on the
295  * queue gfp mask set, *to may or may not be a highmem page. kmap it
296  * always, it will do the Right Thing
297  */
298 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
299 {
300         unsigned char *vfrom;
301         struct bio_vec *tovec, *fromvec;
302         int i;
303
304         __bio_for_each_segment(tovec, to, i, 0) {
305                 fromvec = from->bi_io_vec + i;
306
307                 /*
308                  * not bounced
309                  */
310                 if (tovec->bv_page == fromvec->bv_page)
311                         continue;
312
313                 /*
314                  * fromvec->bv_offset and fromvec->bv_len might have been
315                  * modified by the block layer, so use the original copy,
316                  * bounce_copy_vec already uses tovec->bv_len
317                  */
318                 vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
319
320                 flush_dcache_page(tovec->bv_page);
321                 bounce_copy_vec(tovec, vfrom);
322         }
323 }
324
325 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
326 {
327         struct bio *bio_orig = bio->bi_private;
328         struct bio_vec *bvec, *org_vec;
329         int i;
330
331         if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
332                 set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
333
334         /*
335          * free up bounce indirect pages used
336          */
337         __bio_for_each_segment(bvec, bio, i, 0) {
338                 org_vec = bio_orig->bi_io_vec + i;
339                 if (bvec->bv_page == org_vec->bv_page)
340                         continue;
341
342                 mempool_free(bvec->bv_page, pool);      
343                 dec_page_state(nr_bounce);
344         }
345
346         bio_endio(bio_orig, bio_orig->bi_size, err);
347         bio_put(bio);
348 }
349
350 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err)
351 {
352         if (bio->bi_size)
353                 return 1;
354
355         bounce_end_io(bio, page_pool, err);
356         return 0;
357 }
358
359 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
360 {
361         if (bio->bi_size)
362                 return 1;
363
364         bounce_end_io(bio, isa_page_pool, err);
365         return 0;
366 }
367
368 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
369 {
370         struct bio *bio_orig = bio->bi_private;
371
372         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
373                 copy_to_high_bio_irq(bio_orig, bio);
374
375         bounce_end_io(bio, pool, err);
376 }
377
378 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
379 {
380         if (bio->bi_size)
381                 return 1;
382
383         __bounce_end_io_read(bio, page_pool, err);
384         return 0;
385 }
386
387 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
388 {
389         if (bio->bi_size)
390                 return 1;
391
392         __bounce_end_io_read(bio, isa_page_pool, err);
393         return 0;
394 }
395
396 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
397                         mempool_t *pool)
398 {
399         struct page *page;
400         struct bio *bio = NULL;
401         int i, rw = bio_data_dir(*bio_orig);
402         struct bio_vec *to, *from;
403
404         bio_for_each_segment(from, *bio_orig, i) {
405                 page = from->bv_page;
406
407                 /*
408                  * is destination page below bounce pfn?
409                  */
410                 if (page_to_pfn(page) < q->bounce_pfn)
411                         continue;
412
413                 /*
414                  * irk, bounce it
415                  */
416                 if (!bio)
417                         bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
418
419                 to = bio->bi_io_vec + i;
420
421                 to->bv_page = mempool_alloc(pool, q->bounce_gfp);
422                 to->bv_len = from->bv_len;
423                 to->bv_offset = from->bv_offset;
424                 inc_page_state(nr_bounce);
425
426                 if (rw == WRITE) {
427                         char *vto, *vfrom;
428
429                         flush_dcache_page(from->bv_page);
430                         vto = page_address(to->bv_page) + to->bv_offset;
431                         vfrom = kmap(from->bv_page) + from->bv_offset;
432                         memcpy(vto, vfrom, to->bv_len);
433                         kunmap(from->bv_page);
434                 }
435         }
436
437         /*
438          * no pages bounced
439          */
440         if (!bio)
441                 return;
442
443         /*
444          * at least one page was bounced, fill in possible non-highmem
445          * pages
446          */
447         __bio_for_each_segment(from, *bio_orig, i, 0) {
448                 to = bio_iovec_idx(bio, i);
449                 if (!to->bv_page) {
450                         to->bv_page = from->bv_page;
451                         to->bv_len = from->bv_len;
452                         to->bv_offset = from->bv_offset;
453                 }
454         }
455
456         bio->bi_bdev = (*bio_orig)->bi_bdev;
457         bio->bi_flags |= (1 << BIO_BOUNCED);
458         bio->bi_sector = (*bio_orig)->bi_sector;
459         bio->bi_rw = (*bio_orig)->bi_rw;
460
461         bio->bi_vcnt = (*bio_orig)->bi_vcnt;
462         bio->bi_idx = (*bio_orig)->bi_idx;
463         bio->bi_size = (*bio_orig)->bi_size;
464
465         if (pool == page_pool) {
466                 bio->bi_end_io = bounce_end_io_write;
467                 if (rw == READ)
468                         bio->bi_end_io = bounce_end_io_read;
469         } else {
470                 bio->bi_end_io = bounce_end_io_write_isa;
471                 if (rw == READ)
472                         bio->bi_end_io = bounce_end_io_read_isa;
473         }
474
475         bio->bi_private = *bio_orig;
476         *bio_orig = bio;
477 }
478
479 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
480 {
481         mempool_t *pool;
482
483         /*
484          * for non-isa bounce case, just check if the bounce pfn is equal
485          * to or bigger than the highest pfn in the system -- in that case,
486          * don't waste time iterating over bio segments
487          */
488         if (!(q->bounce_gfp & GFP_DMA)) {
489                 if (q->bounce_pfn >= blk_max_pfn)
490                         return;
491                 pool = page_pool;
492         } else {
493                 BUG_ON(!isa_page_pool);
494                 pool = isa_page_pool;
495         }
496
497         /*
498          * slow path
499          */
500         __blk_queue_bounce(q, bio_orig, pool);
501 }
502
503 EXPORT_SYMBOL(blk_queue_bounce);
504
505 #if defined(HASHED_PAGE_VIRTUAL)
506
507 #define PA_HASH_ORDER   7
508
509 /*
510  * Describes one page->virtual association
511  */
512 struct page_address_map {
513         struct page *page;
514         void *virtual;
515         struct list_head list;
516 };
517
518 /*
519  * page_address_map freelist, allocated from page_address_maps.
520  */
521 static struct list_head page_address_pool;      /* freelist */
522 static spinlock_t pool_lock;                    /* protects page_address_pool */
523
524 /*
525  * Hash table bucket
526  */
527 static struct page_address_slot {
528         struct list_head lh;                    /* List of page_address_maps */
529         spinlock_t lock;                        /* Protect this bucket's list */
530 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
531
532 static struct page_address_slot *page_slot(struct page *page)
533 {
534         return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
535 }
536
537 void *page_address(struct page *page)
538 {
539         unsigned long flags;
540         void *ret;
541         struct page_address_slot *pas;
542
543         if (!PageHighMem(page))
544                 return lowmem_page_address(page);
545
546         pas = page_slot(page);
547         ret = NULL;
548         spin_lock_irqsave(&pas->lock, flags);
549         if (!list_empty(&pas->lh)) {
550                 struct page_address_map *pam;
551
552                 list_for_each_entry(pam, &pas->lh, list) {
553                         if (pam->page == page) {
554                                 ret = pam->virtual;
555                                 goto done;
556                         }
557                 }
558         }
559 done:
560         spin_unlock_irqrestore(&pas->lock, flags);
561         return ret;
562 }
563
564 EXPORT_SYMBOL(page_address);
565
566 void set_page_address(struct page *page, void *virtual)
567 {
568         unsigned long flags;
569         struct page_address_slot *pas;
570         struct page_address_map *pam;
571
572         BUG_ON(!PageHighMem(page));
573
574         pas = page_slot(page);
575         if (virtual) {          /* Add */
576                 BUG_ON(list_empty(&page_address_pool));
577
578                 spin_lock_irqsave(&pool_lock, flags);
579                 pam = list_entry(page_address_pool.next,
580                                 struct page_address_map, list);
581                 list_del(&pam->list);
582                 spin_unlock_irqrestore(&pool_lock, flags);
583
584                 pam->page = page;
585                 pam->virtual = virtual;
586
587                 spin_lock_irqsave(&pas->lock, flags);
588                 list_add_tail(&pam->list, &pas->lh);
589                 spin_unlock_irqrestore(&pas->lock, flags);
590         } else {                /* Remove */
591                 spin_lock_irqsave(&pas->lock, flags);
592                 list_for_each_entry(pam, &pas->lh, list) {
593                         if (pam->page == page) {
594                                 list_del(&pam->list);
595                                 spin_unlock_irqrestore(&pas->lock, flags);
596                                 spin_lock_irqsave(&pool_lock, flags);
597                                 list_add_tail(&pam->list, &page_address_pool);
598                                 spin_unlock_irqrestore(&pool_lock, flags);
599                                 goto done;
600                         }
601                 }
602                 spin_unlock_irqrestore(&pas->lock, flags);
603         }
604 done:
605         return;
606 }
607
608 static struct page_address_map page_address_maps[LAST_PKMAP];
609
610 void __init page_address_init(void)
611 {
612         int i;
613
614         INIT_LIST_HEAD(&page_address_pool);
615         for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
616                 list_add(&page_address_maps[i].list, &page_address_pool);
617         for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
618                 INIT_LIST_HEAD(&page_address_htable[i].lh);
619                 spin_lock_init(&page_address_htable[i].lock);
620         }
621         spin_lock_init(&pool_lock);
622 }
623
624 #endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */