KVM: x86: get_msr support for HV_X64_MSR_APIC_ASSIST_PAGE
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66 #define emul_to_vcpu(ctxt) \
67         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
68
69 /* EFER defaults:
70  * - enable syscall per default because its emulated by KVM
71  * - enable LME and LMA per default on 64 bit KVM
72  */
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85                                     struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32  kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
97
98 #define KVM_NR_SHARED_MSRS 16
99
100 struct kvm_shared_msrs_global {
101         int nr;
102         u32 msrs[KVM_NR_SHARED_MSRS];
103 };
104
105 struct kvm_shared_msrs {
106         struct user_return_notifier urn;
107         bool registered;
108         struct kvm_shared_msr_values {
109                 u64 host;
110                 u64 curr;
111         } values[KVM_NR_SHARED_MSRS];
112 };
113
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
116
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118         { "pf_fixed", VCPU_STAT(pf_fixed) },
119         { "pf_guest", VCPU_STAT(pf_guest) },
120         { "tlb_flush", VCPU_STAT(tlb_flush) },
121         { "invlpg", VCPU_STAT(invlpg) },
122         { "exits", VCPU_STAT(exits) },
123         { "io_exits", VCPU_STAT(io_exits) },
124         { "mmio_exits", VCPU_STAT(mmio_exits) },
125         { "signal_exits", VCPU_STAT(signal_exits) },
126         { "irq_window", VCPU_STAT(irq_window_exits) },
127         { "nmi_window", VCPU_STAT(nmi_window_exits) },
128         { "halt_exits", VCPU_STAT(halt_exits) },
129         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130         { "hypercalls", VCPU_STAT(hypercalls) },
131         { "request_irq", VCPU_STAT(request_irq_exits) },
132         { "irq_exits", VCPU_STAT(irq_exits) },
133         { "host_state_reload", VCPU_STAT(host_state_reload) },
134         { "efer_reload", VCPU_STAT(efer_reload) },
135         { "fpu_reload", VCPU_STAT(fpu_reload) },
136         { "insn_emulation", VCPU_STAT(insn_emulation) },
137         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138         { "irq_injections", VCPU_STAT(irq_injections) },
139         { "nmi_injections", VCPU_STAT(nmi_injections) },
140         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144         { "mmu_flooded", VM_STAT(mmu_flooded) },
145         { "mmu_recycled", VM_STAT(mmu_recycled) },
146         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147         { "mmu_unsync", VM_STAT(mmu_unsync) },
148         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149         { "largepages", VM_STAT(lpages) },
150         { NULL }
151 };
152
153 u64 __read_mostly host_xcr0;
154
155 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
156
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
158 {
159         int i;
160         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161                 vcpu->arch.apf.gfns[i] = ~0;
162 }
163
164 static void kvm_on_user_return(struct user_return_notifier *urn)
165 {
166         unsigned slot;
167         struct kvm_shared_msrs *locals
168                 = container_of(urn, struct kvm_shared_msrs, urn);
169         struct kvm_shared_msr_values *values;
170
171         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172                 values = &locals->values[slot];
173                 if (values->host != values->curr) {
174                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
175                         values->curr = values->host;
176                 }
177         }
178         locals->registered = false;
179         user_return_notifier_unregister(urn);
180 }
181
182 static void shared_msr_update(unsigned slot, u32 msr)
183 {
184         struct kvm_shared_msrs *smsr;
185         u64 value;
186
187         smsr = &__get_cpu_var(shared_msrs);
188         /* only read, and nobody should modify it at this time,
189          * so don't need lock */
190         if (slot >= shared_msrs_global.nr) {
191                 printk(KERN_ERR "kvm: invalid MSR slot!");
192                 return;
193         }
194         rdmsrl_safe(msr, &value);
195         smsr->values[slot].host = value;
196         smsr->values[slot].curr = value;
197 }
198
199 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 {
201         if (slot >= shared_msrs_global.nr)
202                 shared_msrs_global.nr = slot + 1;
203         shared_msrs_global.msrs[slot] = msr;
204         /* we need ensured the shared_msr_global have been updated */
205         smp_wmb();
206 }
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208
209 static void kvm_shared_msr_cpu_online(void)
210 {
211         unsigned i;
212
213         for (i = 0; i < shared_msrs_global.nr; ++i)
214                 shared_msr_update(i, shared_msrs_global.msrs[i]);
215 }
216
217 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 {
219         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221         if (((value ^ smsr->values[slot].curr) & mask) == 0)
222                 return;
223         smsr->values[slot].curr = value;
224         wrmsrl(shared_msrs_global.msrs[slot], value);
225         if (!smsr->registered) {
226                 smsr->urn.on_user_return = kvm_on_user_return;
227                 user_return_notifier_register(&smsr->urn);
228                 smsr->registered = true;
229         }
230 }
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232
233 static void drop_user_return_notifiers(void *ignore)
234 {
235         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236
237         if (smsr->registered)
238                 kvm_on_user_return(&smsr->urn);
239 }
240
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 {
243         if (irqchip_in_kernel(vcpu->kvm))
244                 return vcpu->arch.apic_base;
245         else
246                 return vcpu->arch.apic_base;
247 }
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 {
252         /* TODO: reserve bits check */
253         if (irqchip_in_kernel(vcpu->kvm))
254                 kvm_lapic_set_base(vcpu, data);
255         else
256                 vcpu->arch.apic_base = data;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260 #define EXCPT_BENIGN            0
261 #define EXCPT_CONTRIBUTORY      1
262 #define EXCPT_PF                2
263
264 static int exception_class(int vector)
265 {
266         switch (vector) {
267         case PF_VECTOR:
268                 return EXCPT_PF;
269         case DE_VECTOR:
270         case TS_VECTOR:
271         case NP_VECTOR:
272         case SS_VECTOR:
273         case GP_VECTOR:
274                 return EXCPT_CONTRIBUTORY;
275         default:
276                 break;
277         }
278         return EXCPT_BENIGN;
279 }
280
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282                 unsigned nr, bool has_error, u32 error_code,
283                 bool reinject)
284 {
285         u32 prev_nr;
286         int class1, class2;
287
288         kvm_make_request(KVM_REQ_EVENT, vcpu);
289
290         if (!vcpu->arch.exception.pending) {
291         queue:
292                 vcpu->arch.exception.pending = true;
293                 vcpu->arch.exception.has_error_code = has_error;
294                 vcpu->arch.exception.nr = nr;
295                 vcpu->arch.exception.error_code = error_code;
296                 vcpu->arch.exception.reinject = reinject;
297                 return;
298         }
299
300         /* to check exception */
301         prev_nr = vcpu->arch.exception.nr;
302         if (prev_nr == DF_VECTOR) {
303                 /* triple fault -> shutdown */
304                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305                 return;
306         }
307         class1 = exception_class(prev_nr);
308         class2 = exception_class(nr);
309         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311                 /* generate double fault per SDM Table 5-5 */
312                 vcpu->arch.exception.pending = true;
313                 vcpu->arch.exception.has_error_code = true;
314                 vcpu->arch.exception.nr = DF_VECTOR;
315                 vcpu->arch.exception.error_code = 0;
316         } else
317                 /* replace previous exception with a new one in a hope
318                    that instruction re-execution will regenerate lost
319                    exception */
320                 goto queue;
321 }
322
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325         kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
328
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337         if (err)
338                 kvm_inject_gp(vcpu, 0);
339         else
340                 kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345 {
346         ++vcpu->stat.pf_guest;
347         vcpu->arch.cr2 = fault->address;
348         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
351
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
353 {
354         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356         else
357                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
358 }
359
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
361 {
362         kvm_make_request(KVM_REQ_EVENT, vcpu);
363         vcpu->arch.nmi_pending = 1;
364 }
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
366
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
368 {
369         kvm_multiple_exception(vcpu, nr, true, error_code, false);
370 }
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
372
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, true);
376 }
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
378
379 /*
380  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
381  * a #GP and return false.
382  */
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
384 {
385         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386                 return true;
387         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388         return false;
389 }
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
391
392 /*
393  * This function will be used to read from the physical memory of the currently
394  * running guest. The difference to kvm_read_guest_page is that this function
395  * can read from guest physical or from the guest's guest physical memory.
396  */
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398                             gfn_t ngfn, void *data, int offset, int len,
399                             u32 access)
400 {
401         gfn_t real_gfn;
402         gpa_t ngpa;
403
404         ngpa     = gfn_to_gpa(ngfn);
405         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406         if (real_gfn == UNMAPPED_GVA)
407                 return -EFAULT;
408
409         real_gfn = gpa_to_gfn(real_gfn);
410
411         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
412 }
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
414
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416                                void *data, int offset, int len, u32 access)
417 {
418         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419                                        data, offset, len, access);
420 }
421
422 /*
423  * Load the pae pdptrs.  Return true is they are all valid.
424  */
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
426 {
427         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429         int i;
430         int ret;
431         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
432
433         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434                                       offset * sizeof(u64), sizeof(pdpte),
435                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
436         if (ret < 0) {
437                 ret = 0;
438                 goto out;
439         }
440         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441                 if (is_present_gpte(pdpte[i]) &&
442                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443                         ret = 0;
444                         goto out;
445                 }
446         }
447         ret = 1;
448
449         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450         __set_bit(VCPU_EXREG_PDPTR,
451                   (unsigned long *)&vcpu->arch.regs_avail);
452         __set_bit(VCPU_EXREG_PDPTR,
453                   (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
455
456         return ret;
457 }
458 EXPORT_SYMBOL_GPL(load_pdptrs);
459
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 {
462         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463         bool changed = true;
464         int offset;
465         gfn_t gfn;
466         int r;
467
468         if (is_long_mode(vcpu) || !is_pae(vcpu))
469                 return false;
470
471         if (!test_bit(VCPU_EXREG_PDPTR,
472                       (unsigned long *)&vcpu->arch.regs_avail))
473                 return true;
474
475         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
479         if (r < 0)
480                 goto out;
481         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
483
484         return changed;
485 }
486
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
488 {
489         unsigned long old_cr0 = kvm_read_cr0(vcpu);
490         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491                                     X86_CR0_CD | X86_CR0_NW;
492
493         cr0 |= X86_CR0_ET;
494
495 #ifdef CONFIG_X86_64
496         if (cr0 & 0xffffffff00000000UL)
497                 return 1;
498 #endif
499
500         cr0 &= ~CR0_RESERVED_BITS;
501
502         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503                 return 1;
504
505         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506                 return 1;
507
508         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510                 if ((vcpu->arch.efer & EFER_LME)) {
511                         int cs_db, cs_l;
512
513                         if (!is_pae(vcpu))
514                                 return 1;
515                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516                         if (cs_l)
517                                 return 1;
518                 } else
519 #endif
520                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521                                                  kvm_read_cr3(vcpu)))
522                         return 1;
523         }
524
525         kvm_x86_ops->set_cr0(vcpu, cr0);
526
527         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
528                 kvm_clear_async_pf_completion_queue(vcpu);
529                 kvm_async_pf_hash_reset(vcpu);
530         }
531
532         if ((cr0 ^ old_cr0) & update_bits)
533                 kvm_mmu_reset_context(vcpu);
534         return 0;
535 }
536 EXPORT_SYMBOL_GPL(kvm_set_cr0);
537
538 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539 {
540         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
541 }
542 EXPORT_SYMBOL_GPL(kvm_lmsw);
543
544 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
545 {
546         u64 xcr0;
547
548         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
549         if (index != XCR_XFEATURE_ENABLED_MASK)
550                 return 1;
551         xcr0 = xcr;
552         if (kvm_x86_ops->get_cpl(vcpu) != 0)
553                 return 1;
554         if (!(xcr0 & XSTATE_FP))
555                 return 1;
556         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
557                 return 1;
558         if (xcr0 & ~host_xcr0)
559                 return 1;
560         vcpu->arch.xcr0 = xcr0;
561         vcpu->guest_xcr0_loaded = 0;
562         return 0;
563 }
564
565 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
566 {
567         if (__kvm_set_xcr(vcpu, index, xcr)) {
568                 kvm_inject_gp(vcpu, 0);
569                 return 1;
570         }
571         return 0;
572 }
573 EXPORT_SYMBOL_GPL(kvm_set_xcr);
574
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
576 {
577         struct kvm_cpuid_entry2 *best;
578
579         best = kvm_find_cpuid_entry(vcpu, 1, 0);
580         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
581 }
582
583 static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
584 {
585         struct kvm_cpuid_entry2 *best;
586
587         best = kvm_find_cpuid_entry(vcpu, 7, 0);
588         return best && (best->ebx & bit(X86_FEATURE_SMEP));
589 }
590
591 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
592 {
593         struct kvm_cpuid_entry2 *best;
594
595         best = kvm_find_cpuid_entry(vcpu, 7, 0);
596         return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
597 }
598
599 static void update_cpuid(struct kvm_vcpu *vcpu)
600 {
601         struct kvm_cpuid_entry2 *best;
602
603         best = kvm_find_cpuid_entry(vcpu, 1, 0);
604         if (!best)
605                 return;
606
607         /* Update OSXSAVE bit */
608         if (cpu_has_xsave && best->function == 0x1) {
609                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
610                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
611                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
612         }
613 }
614
615 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
616 {
617         unsigned long old_cr4 = kvm_read_cr4(vcpu);
618         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
619                                    X86_CR4_PAE | X86_CR4_SMEP;
620         if (cr4 & CR4_RESERVED_BITS)
621                 return 1;
622
623         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
624                 return 1;
625
626         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
627                 return 1;
628
629         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
630                 return 1;
631
632         if (is_long_mode(vcpu)) {
633                 if (!(cr4 & X86_CR4_PAE))
634                         return 1;
635         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
636                    && ((cr4 ^ old_cr4) & pdptr_bits)
637                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
638                                    kvm_read_cr3(vcpu)))
639                 return 1;
640
641         if (kvm_x86_ops->set_cr4(vcpu, cr4))
642                 return 1;
643
644         if ((cr4 ^ old_cr4) & pdptr_bits)
645                 kvm_mmu_reset_context(vcpu);
646
647         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
648                 update_cpuid(vcpu);
649
650         return 0;
651 }
652 EXPORT_SYMBOL_GPL(kvm_set_cr4);
653
654 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
655 {
656         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
657                 kvm_mmu_sync_roots(vcpu);
658                 kvm_mmu_flush_tlb(vcpu);
659                 return 0;
660         }
661
662         if (is_long_mode(vcpu)) {
663                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
664                         return 1;
665         } else {
666                 if (is_pae(vcpu)) {
667                         if (cr3 & CR3_PAE_RESERVED_BITS)
668                                 return 1;
669                         if (is_paging(vcpu) &&
670                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
671                                 return 1;
672                 }
673                 /*
674                  * We don't check reserved bits in nonpae mode, because
675                  * this isn't enforced, and VMware depends on this.
676                  */
677         }
678
679         /*
680          * Does the new cr3 value map to physical memory? (Note, we
681          * catch an invalid cr3 even in real-mode, because it would
682          * cause trouble later on when we turn on paging anyway.)
683          *
684          * A real CPU would silently accept an invalid cr3 and would
685          * attempt to use it - with largely undefined (and often hard
686          * to debug) behavior on the guest side.
687          */
688         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
689                 return 1;
690         vcpu->arch.cr3 = cr3;
691         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
692         vcpu->arch.mmu.new_cr3(vcpu);
693         return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_cr3);
696
697 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
698 {
699         if (cr8 & CR8_RESERVED_BITS)
700                 return 1;
701         if (irqchip_in_kernel(vcpu->kvm))
702                 kvm_lapic_set_tpr(vcpu, cr8);
703         else
704                 vcpu->arch.cr8 = cr8;
705         return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr8);
708
709 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
710 {
711         if (irqchip_in_kernel(vcpu->kvm))
712                 return kvm_lapic_get_cr8(vcpu);
713         else
714                 return vcpu->arch.cr8;
715 }
716 EXPORT_SYMBOL_GPL(kvm_get_cr8);
717
718 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         switch (dr) {
721         case 0 ... 3:
722                 vcpu->arch.db[dr] = val;
723                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
724                         vcpu->arch.eff_db[dr] = val;
725                 break;
726         case 4:
727                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728                         return 1; /* #UD */
729                 /* fall through */
730         case 6:
731                 if (val & 0xffffffff00000000ULL)
732                         return -1; /* #GP */
733                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
734                 break;
735         case 5:
736                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737                         return 1; /* #UD */
738                 /* fall through */
739         default: /* 7 */
740                 if (val & 0xffffffff00000000ULL)
741                         return -1; /* #GP */
742                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
743                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
744                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
745                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
746                 }
747                 break;
748         }
749
750         return 0;
751 }
752
753 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
754 {
755         int res;
756
757         res = __kvm_set_dr(vcpu, dr, val);
758         if (res > 0)
759                 kvm_queue_exception(vcpu, UD_VECTOR);
760         else if (res < 0)
761                 kvm_inject_gp(vcpu, 0);
762
763         return res;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_dr);
766
767 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769         switch (dr) {
770         case 0 ... 3:
771                 *val = vcpu->arch.db[dr];
772                 break;
773         case 4:
774                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
775                         return 1;
776                 /* fall through */
777         case 6:
778                 *val = vcpu->arch.dr6;
779                 break;
780         case 5:
781                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
782                         return 1;
783                 /* fall through */
784         default: /* 7 */
785                 *val = vcpu->arch.dr7;
786                 break;
787         }
788
789         return 0;
790 }
791
792 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
793 {
794         if (_kvm_get_dr(vcpu, dr, val)) {
795                 kvm_queue_exception(vcpu, UD_VECTOR);
796                 return 1;
797         }
798         return 0;
799 }
800 EXPORT_SYMBOL_GPL(kvm_get_dr);
801
802 /*
803  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
804  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
805  *
806  * This list is modified at module load time to reflect the
807  * capabilities of the host cpu. This capabilities test skips MSRs that are
808  * kvm-specific. Those are put in the beginning of the list.
809  */
810
811 #define KVM_SAVE_MSRS_BEGIN     9
812 static u32 msrs_to_save[] = {
813         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
814         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
815         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
816         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
817         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
818         MSR_STAR,
819 #ifdef CONFIG_X86_64
820         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
821 #endif
822         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
823 };
824
825 static unsigned num_msrs_to_save;
826
827 static u32 emulated_msrs[] = {
828         MSR_IA32_MISC_ENABLE,
829         MSR_IA32_MCG_STATUS,
830         MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835         u64 old_efer = vcpu->arch.efer;
836
837         if (efer & efer_reserved_bits)
838                 return 1;
839
840         if (is_paging(vcpu)
841             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842                 return 1;
843
844         if (efer & EFER_FFXSR) {
845                 struct kvm_cpuid_entry2 *feat;
846
847                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849                         return 1;
850         }
851
852         if (efer & EFER_SVME) {
853                 struct kvm_cpuid_entry2 *feat;
854
855                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857                         return 1;
858         }
859
860         efer &= ~EFER_LMA;
861         efer |= vcpu->arch.efer & EFER_LMA;
862
863         kvm_x86_ops->set_efer(vcpu, efer);
864
865         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867         /* Update reserved bits */
868         if ((efer ^ old_efer) & EFER_NX)
869                 kvm_mmu_reset_context(vcpu);
870
871         return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876        efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882  * Writes msr value into into the appropriate "register".
883  * Returns 0 on success, non-0 otherwise.
884  * Assumes vcpu_load() was already called.
885  */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892  * Adapt set_msr() to msr_io()'s calling convention
893  */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896         return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901         int version;
902         int r;
903         struct pvclock_wall_clock wc;
904         struct timespec boot;
905
906         if (!wall_clock)
907                 return;
908
909         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910         if (r)
911                 return;
912
913         if (version & 1)
914                 ++version;  /* first time write, random junk */
915
916         ++version;
917
918         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920         /*
921          * The guest calculates current wall clock time by adding
922          * system time (updated by kvm_guest_time_update below) to the
923          * wall clock specified here.  guest system time equals host
924          * system time for us, thus we must fill in host boot time here.
925          */
926         getboottime(&boot);
927
928         wc.sec = boot.tv_sec;
929         wc.nsec = boot.tv_nsec;
930         wc.version = version;
931
932         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
933
934         version++;
935         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
936 }
937
938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
939 {
940         uint32_t quotient, remainder;
941
942         /* Don't try to replace with do_div(), this one calculates
943          * "(dividend << 32) / divisor" */
944         __asm__ ( "divl %4"
945                   : "=a" (quotient), "=d" (remainder)
946                   : "0" (0), "1" (dividend), "r" (divisor) );
947         return quotient;
948 }
949
950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
951                                s8 *pshift, u32 *pmultiplier)
952 {
953         uint64_t scaled64;
954         int32_t  shift = 0;
955         uint64_t tps64;
956         uint32_t tps32;
957
958         tps64 = base_khz * 1000LL;
959         scaled64 = scaled_khz * 1000LL;
960         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
961                 tps64 >>= 1;
962                 shift--;
963         }
964
965         tps32 = (uint32_t)tps64;
966         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
967                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
968                         scaled64 >>= 1;
969                 else
970                         tps32 <<= 1;
971                 shift++;
972         }
973
974         *pshift = shift;
975         *pmultiplier = div_frac(scaled64, tps32);
976
977         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
979 }
980
981 static inline u64 get_kernel_ns(void)
982 {
983         struct timespec ts;
984
985         WARN_ON(preemptible());
986         ktime_get_ts(&ts);
987         monotonic_to_bootbased(&ts);
988         return timespec_to_ns(&ts);
989 }
990
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
992 unsigned long max_tsc_khz;
993
994 static inline int kvm_tsc_changes_freq(void)
995 {
996         int cpu = get_cpu();
997         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
998                   cpufreq_quick_get(cpu) != 0;
999         put_cpu();
1000         return ret;
1001 }
1002
1003 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1004 {
1005         if (vcpu->arch.virtual_tsc_khz)
1006                 return vcpu->arch.virtual_tsc_khz;
1007         else
1008                 return __this_cpu_read(cpu_tsc_khz);
1009 }
1010
1011 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1012 {
1013         u64 ret;
1014
1015         WARN_ON(preemptible());
1016         if (kvm_tsc_changes_freq())
1017                 printk_once(KERN_WARNING
1018                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1019         ret = nsec * vcpu_tsc_khz(vcpu);
1020         do_div(ret, USEC_PER_SEC);
1021         return ret;
1022 }
1023
1024 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1025 {
1026         /* Compute a scale to convert nanoseconds in TSC cycles */
1027         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1028                            &vcpu->arch.tsc_catchup_shift,
1029                            &vcpu->arch.tsc_catchup_mult);
1030 }
1031
1032 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1033 {
1034         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1035                                       vcpu->arch.tsc_catchup_mult,
1036                                       vcpu->arch.tsc_catchup_shift);
1037         tsc += vcpu->arch.last_tsc_write;
1038         return tsc;
1039 }
1040
1041 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1042 {
1043         struct kvm *kvm = vcpu->kvm;
1044         u64 offset, ns, elapsed;
1045         unsigned long flags;
1046         s64 sdiff;
1047
1048         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1049         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1050         ns = get_kernel_ns();
1051         elapsed = ns - kvm->arch.last_tsc_nsec;
1052         sdiff = data - kvm->arch.last_tsc_write;
1053         if (sdiff < 0)
1054                 sdiff = -sdiff;
1055
1056         /*
1057          * Special case: close write to TSC within 5 seconds of
1058          * another CPU is interpreted as an attempt to synchronize
1059          * The 5 seconds is to accommodate host load / swapping as
1060          * well as any reset of TSC during the boot process.
1061          *
1062          * In that case, for a reliable TSC, we can match TSC offsets,
1063          * or make a best guest using elapsed value.
1064          */
1065         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1066             elapsed < 5ULL * NSEC_PER_SEC) {
1067                 if (!check_tsc_unstable()) {
1068                         offset = kvm->arch.last_tsc_offset;
1069                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1070                 } else {
1071                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1072                         offset += delta;
1073                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1074                 }
1075                 ns = kvm->arch.last_tsc_nsec;
1076         }
1077         kvm->arch.last_tsc_nsec = ns;
1078         kvm->arch.last_tsc_write = data;
1079         kvm->arch.last_tsc_offset = offset;
1080         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1081         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1082
1083         /* Reset of TSC must disable overshoot protection below */
1084         vcpu->arch.hv_clock.tsc_timestamp = 0;
1085         vcpu->arch.last_tsc_write = data;
1086         vcpu->arch.last_tsc_nsec = ns;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1089
1090 static int kvm_guest_time_update(struct kvm_vcpu *v)
1091 {
1092         unsigned long flags;
1093         struct kvm_vcpu_arch *vcpu = &v->arch;
1094         void *shared_kaddr;
1095         unsigned long this_tsc_khz;
1096         s64 kernel_ns, max_kernel_ns;
1097         u64 tsc_timestamp;
1098
1099         /* Keep irq disabled to prevent changes to the clock */
1100         local_irq_save(flags);
1101         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1102         kernel_ns = get_kernel_ns();
1103         this_tsc_khz = vcpu_tsc_khz(v);
1104         if (unlikely(this_tsc_khz == 0)) {
1105                 local_irq_restore(flags);
1106                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1107                 return 1;
1108         }
1109
1110         /*
1111          * We may have to catch up the TSC to match elapsed wall clock
1112          * time for two reasons, even if kvmclock is used.
1113          *   1) CPU could have been running below the maximum TSC rate
1114          *   2) Broken TSC compensation resets the base at each VCPU
1115          *      entry to avoid unknown leaps of TSC even when running
1116          *      again on the same CPU.  This may cause apparent elapsed
1117          *      time to disappear, and the guest to stand still or run
1118          *      very slowly.
1119          */
1120         if (vcpu->tsc_catchup) {
1121                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1122                 if (tsc > tsc_timestamp) {
1123                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1124                         tsc_timestamp = tsc;
1125                 }
1126         }
1127
1128         local_irq_restore(flags);
1129
1130         if (!vcpu->time_page)
1131                 return 0;
1132
1133         /*
1134          * Time as measured by the TSC may go backwards when resetting the base
1135          * tsc_timestamp.  The reason for this is that the TSC resolution is
1136          * higher than the resolution of the other clock scales.  Thus, many
1137          * possible measurments of the TSC correspond to one measurement of any
1138          * other clock, and so a spread of values is possible.  This is not a
1139          * problem for the computation of the nanosecond clock; with TSC rates
1140          * around 1GHZ, there can only be a few cycles which correspond to one
1141          * nanosecond value, and any path through this code will inevitably
1142          * take longer than that.  However, with the kernel_ns value itself,
1143          * the precision may be much lower, down to HZ granularity.  If the
1144          * first sampling of TSC against kernel_ns ends in the low part of the
1145          * range, and the second in the high end of the range, we can get:
1146          *
1147          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1148          *
1149          * As the sampling errors potentially range in the thousands of cycles,
1150          * it is possible such a time value has already been observed by the
1151          * guest.  To protect against this, we must compute the system time as
1152          * observed by the guest and ensure the new system time is greater.
1153          */
1154         max_kernel_ns = 0;
1155         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1156                 max_kernel_ns = vcpu->last_guest_tsc -
1157                                 vcpu->hv_clock.tsc_timestamp;
1158                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1159                                     vcpu->hv_clock.tsc_to_system_mul,
1160                                     vcpu->hv_clock.tsc_shift);
1161                 max_kernel_ns += vcpu->last_kernel_ns;
1162         }
1163
1164         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1165                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1166                                    &vcpu->hv_clock.tsc_shift,
1167                                    &vcpu->hv_clock.tsc_to_system_mul);
1168                 vcpu->hw_tsc_khz = this_tsc_khz;
1169         }
1170
1171         if (max_kernel_ns > kernel_ns)
1172                 kernel_ns = max_kernel_ns;
1173
1174         /* With all the info we got, fill in the values */
1175         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1176         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1177         vcpu->last_kernel_ns = kernel_ns;
1178         vcpu->last_guest_tsc = tsc_timestamp;
1179         vcpu->hv_clock.flags = 0;
1180
1181         /*
1182          * The interface expects us to write an even number signaling that the
1183          * update is finished. Since the guest won't see the intermediate
1184          * state, we just increase by 2 at the end.
1185          */
1186         vcpu->hv_clock.version += 2;
1187
1188         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1189
1190         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1191                sizeof(vcpu->hv_clock));
1192
1193         kunmap_atomic(shared_kaddr, KM_USER0);
1194
1195         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1196         return 0;
1197 }
1198
1199 static bool msr_mtrr_valid(unsigned msr)
1200 {
1201         switch (msr) {
1202         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1203         case MSR_MTRRfix64K_00000:
1204         case MSR_MTRRfix16K_80000:
1205         case MSR_MTRRfix16K_A0000:
1206         case MSR_MTRRfix4K_C0000:
1207         case MSR_MTRRfix4K_C8000:
1208         case MSR_MTRRfix4K_D0000:
1209         case MSR_MTRRfix4K_D8000:
1210         case MSR_MTRRfix4K_E0000:
1211         case MSR_MTRRfix4K_E8000:
1212         case MSR_MTRRfix4K_F0000:
1213         case MSR_MTRRfix4K_F8000:
1214         case MSR_MTRRdefType:
1215         case MSR_IA32_CR_PAT:
1216                 return true;
1217         case 0x2f8:
1218                 return true;
1219         }
1220         return false;
1221 }
1222
1223 static bool valid_pat_type(unsigned t)
1224 {
1225         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1226 }
1227
1228 static bool valid_mtrr_type(unsigned t)
1229 {
1230         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1231 }
1232
1233 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235         int i;
1236
1237         if (!msr_mtrr_valid(msr))
1238                 return false;
1239
1240         if (msr == MSR_IA32_CR_PAT) {
1241                 for (i = 0; i < 8; i++)
1242                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1243                                 return false;
1244                 return true;
1245         } else if (msr == MSR_MTRRdefType) {
1246                 if (data & ~0xcff)
1247                         return false;
1248                 return valid_mtrr_type(data & 0xff);
1249         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1250                 for (i = 0; i < 8 ; i++)
1251                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1252                                 return false;
1253                 return true;
1254         }
1255
1256         /* variable MTRRs */
1257         return valid_mtrr_type(data & 0xff);
1258 }
1259
1260 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1261 {
1262         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1263
1264         if (!mtrr_valid(vcpu, msr, data))
1265                 return 1;
1266
1267         if (msr == MSR_MTRRdefType) {
1268                 vcpu->arch.mtrr_state.def_type = data;
1269                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1270         } else if (msr == MSR_MTRRfix64K_00000)
1271                 p[0] = data;
1272         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1273                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1274         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1275                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1276         else if (msr == MSR_IA32_CR_PAT)
1277                 vcpu->arch.pat = data;
1278         else {  /* Variable MTRRs */
1279                 int idx, is_mtrr_mask;
1280                 u64 *pt;
1281
1282                 idx = (msr - 0x200) / 2;
1283                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1284                 if (!is_mtrr_mask)
1285                         pt =
1286                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1287                 else
1288                         pt =
1289                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1290                 *pt = data;
1291         }
1292
1293         kvm_mmu_reset_context(vcpu);
1294         return 0;
1295 }
1296
1297 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1298 {
1299         u64 mcg_cap = vcpu->arch.mcg_cap;
1300         unsigned bank_num = mcg_cap & 0xff;
1301
1302         switch (msr) {
1303         case MSR_IA32_MCG_STATUS:
1304                 vcpu->arch.mcg_status = data;
1305                 break;
1306         case MSR_IA32_MCG_CTL:
1307                 if (!(mcg_cap & MCG_CTL_P))
1308                         return 1;
1309                 if (data != 0 && data != ~(u64)0)
1310                         return -1;
1311                 vcpu->arch.mcg_ctl = data;
1312                 break;
1313         default:
1314                 if (msr >= MSR_IA32_MC0_CTL &&
1315                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1316                         u32 offset = msr - MSR_IA32_MC0_CTL;
1317                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1318                          * some Linux kernels though clear bit 10 in bank 4 to
1319                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1320                          * this to avoid an uncatched #GP in the guest
1321                          */
1322                         if ((offset & 0x3) == 0 &&
1323                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1324                                 return -1;
1325                         vcpu->arch.mce_banks[offset] = data;
1326                         break;
1327                 }
1328                 return 1;
1329         }
1330         return 0;
1331 }
1332
1333 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1334 {
1335         struct kvm *kvm = vcpu->kvm;
1336         int lm = is_long_mode(vcpu);
1337         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1338                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1339         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1340                 : kvm->arch.xen_hvm_config.blob_size_32;
1341         u32 page_num = data & ~PAGE_MASK;
1342         u64 page_addr = data & PAGE_MASK;
1343         u8 *page;
1344         int r;
1345
1346         r = -E2BIG;
1347         if (page_num >= blob_size)
1348                 goto out;
1349         r = -ENOMEM;
1350         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1351         if (!page)
1352                 goto out;
1353         r = -EFAULT;
1354         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1355                 goto out_free;
1356         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1357                 goto out_free;
1358         r = 0;
1359 out_free:
1360         kfree(page);
1361 out:
1362         return r;
1363 }
1364
1365 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1366 {
1367         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1368 }
1369
1370 static bool kvm_hv_msr_partition_wide(u32 msr)
1371 {
1372         bool r = false;
1373         switch (msr) {
1374         case HV_X64_MSR_GUEST_OS_ID:
1375         case HV_X64_MSR_HYPERCALL:
1376                 r = true;
1377                 break;
1378         }
1379
1380         return r;
1381 }
1382
1383 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1384 {
1385         struct kvm *kvm = vcpu->kvm;
1386
1387         switch (msr) {
1388         case HV_X64_MSR_GUEST_OS_ID:
1389                 kvm->arch.hv_guest_os_id = data;
1390                 /* setting guest os id to zero disables hypercall page */
1391                 if (!kvm->arch.hv_guest_os_id)
1392                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1393                 break;
1394         case HV_X64_MSR_HYPERCALL: {
1395                 u64 gfn;
1396                 unsigned long addr;
1397                 u8 instructions[4];
1398
1399                 /* if guest os id is not set hypercall should remain disabled */
1400                 if (!kvm->arch.hv_guest_os_id)
1401                         break;
1402                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1403                         kvm->arch.hv_hypercall = data;
1404                         break;
1405                 }
1406                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1407                 addr = gfn_to_hva(kvm, gfn);
1408                 if (kvm_is_error_hva(addr))
1409                         return 1;
1410                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1411                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1412                 if (__copy_to_user((void __user *)addr, instructions, 4))
1413                         return 1;
1414                 kvm->arch.hv_hypercall = data;
1415                 break;
1416         }
1417         default:
1418                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1419                           "data 0x%llx\n", msr, data);
1420                 return 1;
1421         }
1422         return 0;
1423 }
1424
1425 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1426 {
1427         switch (msr) {
1428         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1429                 unsigned long addr;
1430
1431                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1432                         vcpu->arch.hv_vapic = data;
1433                         break;
1434                 }
1435                 addr = gfn_to_hva(vcpu->kvm, data >>
1436                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1437                 if (kvm_is_error_hva(addr))
1438                         return 1;
1439                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1440                         return 1;
1441                 vcpu->arch.hv_vapic = data;
1442                 break;
1443         }
1444         case HV_X64_MSR_EOI:
1445                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1446         case HV_X64_MSR_ICR:
1447                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1448         case HV_X64_MSR_TPR:
1449                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1450         default:
1451                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1452                           "data 0x%llx\n", msr, data);
1453                 return 1;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1460 {
1461         gpa_t gpa = data & ~0x3f;
1462
1463         /* Bits 2:5 are resrved, Should be zero */
1464         if (data & 0x3c)
1465                 return 1;
1466
1467         vcpu->arch.apf.msr_val = data;
1468
1469         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1470                 kvm_clear_async_pf_completion_queue(vcpu);
1471                 kvm_async_pf_hash_reset(vcpu);
1472                 return 0;
1473         }
1474
1475         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1476                 return 1;
1477
1478         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1479         kvm_async_pf_wakeup_all(vcpu);
1480         return 0;
1481 }
1482
1483 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1484 {
1485         if (vcpu->arch.time_page) {
1486                 kvm_release_page_dirty(vcpu->arch.time_page);
1487                 vcpu->arch.time_page = NULL;
1488         }
1489 }
1490
1491 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1492 {
1493         u64 delta;
1494
1495         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1496                 return;
1497
1498         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1499         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1500         vcpu->arch.st.accum_steal = delta;
1501 }
1502
1503 static void record_steal_time(struct kvm_vcpu *vcpu)
1504 {
1505         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1506                 return;
1507
1508         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1509                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1510                 return;
1511
1512         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1513         vcpu->arch.st.steal.version += 2;
1514         vcpu->arch.st.accum_steal = 0;
1515
1516         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1517                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1518 }
1519
1520 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1521 {
1522         switch (msr) {
1523         case MSR_EFER:
1524                 return set_efer(vcpu, data);
1525         case MSR_K7_HWCR:
1526                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1527                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1528                 if (data != 0) {
1529                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1530                                 data);
1531                         return 1;
1532                 }
1533                 break;
1534         case MSR_FAM10H_MMIO_CONF_BASE:
1535                 if (data != 0) {
1536                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1537                                 "0x%llx\n", data);
1538                         return 1;
1539                 }
1540                 break;
1541         case MSR_AMD64_NB_CFG:
1542                 break;
1543         case MSR_IA32_DEBUGCTLMSR:
1544                 if (!data) {
1545                         /* We support the non-activated case already */
1546                         break;
1547                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1548                         /* Values other than LBR and BTF are vendor-specific,
1549                            thus reserved and should throw a #GP */
1550                         return 1;
1551                 }
1552                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1553                         __func__, data);
1554                 break;
1555         case MSR_IA32_UCODE_REV:
1556         case MSR_IA32_UCODE_WRITE:
1557         case MSR_VM_HSAVE_PA:
1558         case MSR_AMD64_PATCH_LOADER:
1559                 break;
1560         case 0x200 ... 0x2ff:
1561                 return set_msr_mtrr(vcpu, msr, data);
1562         case MSR_IA32_APICBASE:
1563                 kvm_set_apic_base(vcpu, data);
1564                 break;
1565         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1566                 return kvm_x2apic_msr_write(vcpu, msr, data);
1567         case MSR_IA32_MISC_ENABLE:
1568                 vcpu->arch.ia32_misc_enable_msr = data;
1569                 break;
1570         case MSR_KVM_WALL_CLOCK_NEW:
1571         case MSR_KVM_WALL_CLOCK:
1572                 vcpu->kvm->arch.wall_clock = data;
1573                 kvm_write_wall_clock(vcpu->kvm, data);
1574                 break;
1575         case MSR_KVM_SYSTEM_TIME_NEW:
1576         case MSR_KVM_SYSTEM_TIME: {
1577                 kvmclock_reset(vcpu);
1578
1579                 vcpu->arch.time = data;
1580                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1581
1582                 /* we verify if the enable bit is set... */
1583                 if (!(data & 1))
1584                         break;
1585
1586                 /* ...but clean it before doing the actual write */
1587                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1588
1589                 vcpu->arch.time_page =
1590                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1591
1592                 if (is_error_page(vcpu->arch.time_page)) {
1593                         kvm_release_page_clean(vcpu->arch.time_page);
1594                         vcpu->arch.time_page = NULL;
1595                 }
1596                 break;
1597         }
1598         case MSR_KVM_ASYNC_PF_EN:
1599                 if (kvm_pv_enable_async_pf(vcpu, data))
1600                         return 1;
1601                 break;
1602         case MSR_KVM_STEAL_TIME:
1603
1604                 if (unlikely(!sched_info_on()))
1605                         return 1;
1606
1607                 if (data & KVM_STEAL_RESERVED_MASK)
1608                         return 1;
1609
1610                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1611                                                         data & KVM_STEAL_VALID_BITS))
1612                         return 1;
1613
1614                 vcpu->arch.st.msr_val = data;
1615
1616                 if (!(data & KVM_MSR_ENABLED))
1617                         break;
1618
1619                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1620
1621                 preempt_disable();
1622                 accumulate_steal_time(vcpu);
1623                 preempt_enable();
1624
1625                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1626
1627                 break;
1628
1629         case MSR_IA32_MCG_CTL:
1630         case MSR_IA32_MCG_STATUS:
1631         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1632                 return set_msr_mce(vcpu, msr, data);
1633
1634         /* Performance counters are not protected by a CPUID bit,
1635          * so we should check all of them in the generic path for the sake of
1636          * cross vendor migration.
1637          * Writing a zero into the event select MSRs disables them,
1638          * which we perfectly emulate ;-). Any other value should be at least
1639          * reported, some guests depend on them.
1640          */
1641         case MSR_P6_EVNTSEL0:
1642         case MSR_P6_EVNTSEL1:
1643         case MSR_K7_EVNTSEL0:
1644         case MSR_K7_EVNTSEL1:
1645         case MSR_K7_EVNTSEL2:
1646         case MSR_K7_EVNTSEL3:
1647                 if (data != 0)
1648                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1649                                 "0x%x data 0x%llx\n", msr, data);
1650                 break;
1651         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1652          * so we ignore writes to make it happy.
1653          */
1654         case MSR_P6_PERFCTR0:
1655         case MSR_P6_PERFCTR1:
1656         case MSR_K7_PERFCTR0:
1657         case MSR_K7_PERFCTR1:
1658         case MSR_K7_PERFCTR2:
1659         case MSR_K7_PERFCTR3:
1660                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1661                         "0x%x data 0x%llx\n", msr, data);
1662                 break;
1663         case MSR_K7_CLK_CTL:
1664                 /*
1665                  * Ignore all writes to this no longer documented MSR.
1666                  * Writes are only relevant for old K7 processors,
1667                  * all pre-dating SVM, but a recommended workaround from
1668                  * AMD for these chips. It is possible to speicify the
1669                  * affected processor models on the command line, hence
1670                  * the need to ignore the workaround.
1671                  */
1672                 break;
1673         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1674                 if (kvm_hv_msr_partition_wide(msr)) {
1675                         int r;
1676                         mutex_lock(&vcpu->kvm->lock);
1677                         r = set_msr_hyperv_pw(vcpu, msr, data);
1678                         mutex_unlock(&vcpu->kvm->lock);
1679                         return r;
1680                 } else
1681                         return set_msr_hyperv(vcpu, msr, data);
1682                 break;
1683         case MSR_IA32_BBL_CR_CTL3:
1684                 /* Drop writes to this legacy MSR -- see rdmsr
1685                  * counterpart for further detail.
1686                  */
1687                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1688                 break;
1689         default:
1690                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1691                         return xen_hvm_config(vcpu, data);
1692                 if (!ignore_msrs) {
1693                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1694                                 msr, data);
1695                         return 1;
1696                 } else {
1697                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1698                                 msr, data);
1699                         break;
1700                 }
1701         }
1702         return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1705
1706
1707 /*
1708  * Reads an msr value (of 'msr_index') into 'pdata'.
1709  * Returns 0 on success, non-0 otherwise.
1710  * Assumes vcpu_load() was already called.
1711  */
1712 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1713 {
1714         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1715 }
1716
1717 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1718 {
1719         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1720
1721         if (!msr_mtrr_valid(msr))
1722                 return 1;
1723
1724         if (msr == MSR_MTRRdefType)
1725                 *pdata = vcpu->arch.mtrr_state.def_type +
1726                          (vcpu->arch.mtrr_state.enabled << 10);
1727         else if (msr == MSR_MTRRfix64K_00000)
1728                 *pdata = p[0];
1729         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1730                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1731         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1732                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1733         else if (msr == MSR_IA32_CR_PAT)
1734                 *pdata = vcpu->arch.pat;
1735         else {  /* Variable MTRRs */
1736                 int idx, is_mtrr_mask;
1737                 u64 *pt;
1738
1739                 idx = (msr - 0x200) / 2;
1740                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1741                 if (!is_mtrr_mask)
1742                         pt =
1743                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1744                 else
1745                         pt =
1746                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1747                 *pdata = *pt;
1748         }
1749
1750         return 0;
1751 }
1752
1753 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1754 {
1755         u64 data;
1756         u64 mcg_cap = vcpu->arch.mcg_cap;
1757         unsigned bank_num = mcg_cap & 0xff;
1758
1759         switch (msr) {
1760         case MSR_IA32_P5_MC_ADDR:
1761         case MSR_IA32_P5_MC_TYPE:
1762                 data = 0;
1763                 break;
1764         case MSR_IA32_MCG_CAP:
1765                 data = vcpu->arch.mcg_cap;
1766                 break;
1767         case MSR_IA32_MCG_CTL:
1768                 if (!(mcg_cap & MCG_CTL_P))
1769                         return 1;
1770                 data = vcpu->arch.mcg_ctl;
1771                 break;
1772         case MSR_IA32_MCG_STATUS:
1773                 data = vcpu->arch.mcg_status;
1774                 break;
1775         default:
1776                 if (msr >= MSR_IA32_MC0_CTL &&
1777                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1778                         u32 offset = msr - MSR_IA32_MC0_CTL;
1779                         data = vcpu->arch.mce_banks[offset];
1780                         break;
1781                 }
1782                 return 1;
1783         }
1784         *pdata = data;
1785         return 0;
1786 }
1787
1788 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1789 {
1790         u64 data = 0;
1791         struct kvm *kvm = vcpu->kvm;
1792
1793         switch (msr) {
1794         case HV_X64_MSR_GUEST_OS_ID:
1795                 data = kvm->arch.hv_guest_os_id;
1796                 break;
1797         case HV_X64_MSR_HYPERCALL:
1798                 data = kvm->arch.hv_hypercall;
1799                 break;
1800         default:
1801                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1802                 return 1;
1803         }
1804
1805         *pdata = data;
1806         return 0;
1807 }
1808
1809 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1810 {
1811         u64 data = 0;
1812
1813         switch (msr) {
1814         case HV_X64_MSR_VP_INDEX: {
1815                 int r;
1816                 struct kvm_vcpu *v;
1817                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1818                         if (v == vcpu)
1819                                 data = r;
1820                 break;
1821         }
1822         case HV_X64_MSR_EOI:
1823                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1824         case HV_X64_MSR_ICR:
1825                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1826         case HV_X64_MSR_TPR:
1827                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1828         case HV_X64_MSR_APIC_ASSIST_PAGE:
1829                 return vcpu->arch.hv_vapic;
1830         default:
1831                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1832                 return 1;
1833         }
1834         *pdata = data;
1835         return 0;
1836 }
1837
1838 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1839 {
1840         u64 data;
1841
1842         switch (msr) {
1843         case MSR_IA32_PLATFORM_ID:
1844         case MSR_IA32_UCODE_REV:
1845         case MSR_IA32_EBL_CR_POWERON:
1846         case MSR_IA32_DEBUGCTLMSR:
1847         case MSR_IA32_LASTBRANCHFROMIP:
1848         case MSR_IA32_LASTBRANCHTOIP:
1849         case MSR_IA32_LASTINTFROMIP:
1850         case MSR_IA32_LASTINTTOIP:
1851         case MSR_K8_SYSCFG:
1852         case MSR_K7_HWCR:
1853         case MSR_VM_HSAVE_PA:
1854         case MSR_P6_PERFCTR0:
1855         case MSR_P6_PERFCTR1:
1856         case MSR_P6_EVNTSEL0:
1857         case MSR_P6_EVNTSEL1:
1858         case MSR_K7_EVNTSEL0:
1859         case MSR_K7_PERFCTR0:
1860         case MSR_K8_INT_PENDING_MSG:
1861         case MSR_AMD64_NB_CFG:
1862         case MSR_FAM10H_MMIO_CONF_BASE:
1863                 data = 0;
1864                 break;
1865         case MSR_MTRRcap:
1866                 data = 0x500 | KVM_NR_VAR_MTRR;
1867                 break;
1868         case 0x200 ... 0x2ff:
1869                 return get_msr_mtrr(vcpu, msr, pdata);
1870         case 0xcd: /* fsb frequency */
1871                 data = 3;
1872                 break;
1873                 /*
1874                  * MSR_EBC_FREQUENCY_ID
1875                  * Conservative value valid for even the basic CPU models.
1876                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1877                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1878                  * and 266MHz for model 3, or 4. Set Core Clock
1879                  * Frequency to System Bus Frequency Ratio to 1 (bits
1880                  * 31:24) even though these are only valid for CPU
1881                  * models > 2, however guests may end up dividing or
1882                  * multiplying by zero otherwise.
1883                  */
1884         case MSR_EBC_FREQUENCY_ID:
1885                 data = 1 << 24;
1886                 break;
1887         case MSR_IA32_APICBASE:
1888                 data = kvm_get_apic_base(vcpu);
1889                 break;
1890         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1891                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1892                 break;
1893         case MSR_IA32_MISC_ENABLE:
1894                 data = vcpu->arch.ia32_misc_enable_msr;
1895                 break;
1896         case MSR_IA32_PERF_STATUS:
1897                 /* TSC increment by tick */
1898                 data = 1000ULL;
1899                 /* CPU multiplier */
1900                 data |= (((uint64_t)4ULL) << 40);
1901                 break;
1902         case MSR_EFER:
1903                 data = vcpu->arch.efer;
1904                 break;
1905         case MSR_KVM_WALL_CLOCK:
1906         case MSR_KVM_WALL_CLOCK_NEW:
1907                 data = vcpu->kvm->arch.wall_clock;
1908                 break;
1909         case MSR_KVM_SYSTEM_TIME:
1910         case MSR_KVM_SYSTEM_TIME_NEW:
1911                 data = vcpu->arch.time;
1912                 break;
1913         case MSR_KVM_ASYNC_PF_EN:
1914                 data = vcpu->arch.apf.msr_val;
1915                 break;
1916         case MSR_KVM_STEAL_TIME:
1917                 data = vcpu->arch.st.msr_val;
1918                 break;
1919         case MSR_IA32_P5_MC_ADDR:
1920         case MSR_IA32_P5_MC_TYPE:
1921         case MSR_IA32_MCG_CAP:
1922         case MSR_IA32_MCG_CTL:
1923         case MSR_IA32_MCG_STATUS:
1924         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1925                 return get_msr_mce(vcpu, msr, pdata);
1926         case MSR_K7_CLK_CTL:
1927                 /*
1928                  * Provide expected ramp-up count for K7. All other
1929                  * are set to zero, indicating minimum divisors for
1930                  * every field.
1931                  *
1932                  * This prevents guest kernels on AMD host with CPU
1933                  * type 6, model 8 and higher from exploding due to
1934                  * the rdmsr failing.
1935                  */
1936                 data = 0x20000000;
1937                 break;
1938         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1939                 if (kvm_hv_msr_partition_wide(msr)) {
1940                         int r;
1941                         mutex_lock(&vcpu->kvm->lock);
1942                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1943                         mutex_unlock(&vcpu->kvm->lock);
1944                         return r;
1945                 } else
1946                         return get_msr_hyperv(vcpu, msr, pdata);
1947                 break;
1948         case MSR_IA32_BBL_CR_CTL3:
1949                 /* This legacy MSR exists but isn't fully documented in current
1950                  * silicon.  It is however accessed by winxp in very narrow
1951                  * scenarios where it sets bit #19, itself documented as
1952                  * a "reserved" bit.  Best effort attempt to source coherent
1953                  * read data here should the balance of the register be
1954                  * interpreted by the guest:
1955                  *
1956                  * L2 cache control register 3: 64GB range, 256KB size,
1957                  * enabled, latency 0x1, configured
1958                  */
1959                 data = 0xbe702111;
1960                 break;
1961         default:
1962                 if (!ignore_msrs) {
1963                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1964                         return 1;
1965                 } else {
1966                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1967                         data = 0;
1968                 }
1969                 break;
1970         }
1971         *pdata = data;
1972         return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1975
1976 /*
1977  * Read or write a bunch of msrs. All parameters are kernel addresses.
1978  *
1979  * @return number of msrs set successfully.
1980  */
1981 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1982                     struct kvm_msr_entry *entries,
1983                     int (*do_msr)(struct kvm_vcpu *vcpu,
1984                                   unsigned index, u64 *data))
1985 {
1986         int i, idx;
1987
1988         idx = srcu_read_lock(&vcpu->kvm->srcu);
1989         for (i = 0; i < msrs->nmsrs; ++i)
1990                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1991                         break;
1992         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1993
1994         return i;
1995 }
1996
1997 /*
1998  * Read or write a bunch of msrs. Parameters are user addresses.
1999  *
2000  * @return number of msrs set successfully.
2001  */
2002 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2003                   int (*do_msr)(struct kvm_vcpu *vcpu,
2004                                 unsigned index, u64 *data),
2005                   int writeback)
2006 {
2007         struct kvm_msrs msrs;
2008         struct kvm_msr_entry *entries;
2009         int r, n;
2010         unsigned size;
2011
2012         r = -EFAULT;
2013         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2014                 goto out;
2015
2016         r = -E2BIG;
2017         if (msrs.nmsrs >= MAX_IO_MSRS)
2018                 goto out;
2019
2020         r = -ENOMEM;
2021         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2022         entries = kmalloc(size, GFP_KERNEL);
2023         if (!entries)
2024                 goto out;
2025
2026         r = -EFAULT;
2027         if (copy_from_user(entries, user_msrs->entries, size))
2028                 goto out_free;
2029
2030         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2031         if (r < 0)
2032                 goto out_free;
2033
2034         r = -EFAULT;
2035         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2036                 goto out_free;
2037
2038         r = n;
2039
2040 out_free:
2041         kfree(entries);
2042 out:
2043         return r;
2044 }
2045
2046 int kvm_dev_ioctl_check_extension(long ext)
2047 {
2048         int r;
2049
2050         switch (ext) {
2051         case KVM_CAP_IRQCHIP:
2052         case KVM_CAP_HLT:
2053         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2054         case KVM_CAP_SET_TSS_ADDR:
2055         case KVM_CAP_EXT_CPUID:
2056         case KVM_CAP_CLOCKSOURCE:
2057         case KVM_CAP_PIT:
2058         case KVM_CAP_NOP_IO_DELAY:
2059         case KVM_CAP_MP_STATE:
2060         case KVM_CAP_SYNC_MMU:
2061         case KVM_CAP_USER_NMI:
2062         case KVM_CAP_REINJECT_CONTROL:
2063         case KVM_CAP_IRQ_INJECT_STATUS:
2064         case KVM_CAP_ASSIGN_DEV_IRQ:
2065         case KVM_CAP_IRQFD:
2066         case KVM_CAP_IOEVENTFD:
2067         case KVM_CAP_PIT2:
2068         case KVM_CAP_PIT_STATE2:
2069         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2070         case KVM_CAP_XEN_HVM:
2071         case KVM_CAP_ADJUST_CLOCK:
2072         case KVM_CAP_VCPU_EVENTS:
2073         case KVM_CAP_HYPERV:
2074         case KVM_CAP_HYPERV_VAPIC:
2075         case KVM_CAP_HYPERV_SPIN:
2076         case KVM_CAP_PCI_SEGMENT:
2077         case KVM_CAP_DEBUGREGS:
2078         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2079         case KVM_CAP_XSAVE:
2080         case KVM_CAP_ASYNC_PF:
2081         case KVM_CAP_GET_TSC_KHZ:
2082                 r = 1;
2083                 break;
2084         case KVM_CAP_COALESCED_MMIO:
2085                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2086                 break;
2087         case KVM_CAP_VAPIC:
2088                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2089                 break;
2090         case KVM_CAP_NR_VCPUS:
2091                 r = KVM_SOFT_MAX_VCPUS;
2092                 break;
2093         case KVM_CAP_MAX_VCPUS:
2094                 r = KVM_MAX_VCPUS;
2095                 break;
2096         case KVM_CAP_NR_MEMSLOTS:
2097                 r = KVM_MEMORY_SLOTS;
2098                 break;
2099         case KVM_CAP_PV_MMU:    /* obsolete */
2100                 r = 0;
2101                 break;
2102         case KVM_CAP_IOMMU:
2103                 r = iommu_found();
2104                 break;
2105         case KVM_CAP_MCE:
2106                 r = KVM_MAX_MCE_BANKS;
2107                 break;
2108         case KVM_CAP_XCRS:
2109                 r = cpu_has_xsave;
2110                 break;
2111         case KVM_CAP_TSC_CONTROL:
2112                 r = kvm_has_tsc_control;
2113                 break;
2114         default:
2115                 r = 0;
2116                 break;
2117         }
2118         return r;
2119
2120 }
2121
2122 long kvm_arch_dev_ioctl(struct file *filp,
2123                         unsigned int ioctl, unsigned long arg)
2124 {
2125         void __user *argp = (void __user *)arg;
2126         long r;
2127
2128         switch (ioctl) {
2129         case KVM_GET_MSR_INDEX_LIST: {
2130                 struct kvm_msr_list __user *user_msr_list = argp;
2131                 struct kvm_msr_list msr_list;
2132                 unsigned n;
2133
2134                 r = -EFAULT;
2135                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2136                         goto out;
2137                 n = msr_list.nmsrs;
2138                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2139                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2140                         goto out;
2141                 r = -E2BIG;
2142                 if (n < msr_list.nmsrs)
2143                         goto out;
2144                 r = -EFAULT;
2145                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2146                                  num_msrs_to_save * sizeof(u32)))
2147                         goto out;
2148                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2149                                  &emulated_msrs,
2150                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2151                         goto out;
2152                 r = 0;
2153                 break;
2154         }
2155         case KVM_GET_SUPPORTED_CPUID: {
2156                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2157                 struct kvm_cpuid2 cpuid;
2158
2159                 r = -EFAULT;
2160                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2161                         goto out;
2162                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2163                                                       cpuid_arg->entries);
2164                 if (r)
2165                         goto out;
2166
2167                 r = -EFAULT;
2168                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2169                         goto out;
2170                 r = 0;
2171                 break;
2172         }
2173         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2174                 u64 mce_cap;
2175
2176                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2177                 r = -EFAULT;
2178                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2179                         goto out;
2180                 r = 0;
2181                 break;
2182         }
2183         default:
2184                 r = -EINVAL;
2185         }
2186 out:
2187         return r;
2188 }
2189
2190 static void wbinvd_ipi(void *garbage)
2191 {
2192         wbinvd();
2193 }
2194
2195 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2196 {
2197         return vcpu->kvm->arch.iommu_domain &&
2198                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2199 }
2200
2201 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2202 {
2203         /* Address WBINVD may be executed by guest */
2204         if (need_emulate_wbinvd(vcpu)) {
2205                 if (kvm_x86_ops->has_wbinvd_exit())
2206                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2207                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2208                         smp_call_function_single(vcpu->cpu,
2209                                         wbinvd_ipi, NULL, 1);
2210         }
2211
2212         kvm_x86_ops->vcpu_load(vcpu, cpu);
2213         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2214                 /* Make sure TSC doesn't go backwards */
2215                 s64 tsc_delta;
2216                 u64 tsc;
2217
2218                 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2219                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2220                              tsc - vcpu->arch.last_guest_tsc;
2221
2222                 if (tsc_delta < 0)
2223                         mark_tsc_unstable("KVM discovered backwards TSC");
2224                 if (check_tsc_unstable()) {
2225                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2226                         vcpu->arch.tsc_catchup = 1;
2227                 }
2228                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2229                 if (vcpu->cpu != cpu)
2230                         kvm_migrate_timers(vcpu);
2231                 vcpu->cpu = cpu;
2232         }
2233
2234         accumulate_steal_time(vcpu);
2235         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2236 }
2237
2238 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2239 {
2240         kvm_x86_ops->vcpu_put(vcpu);
2241         kvm_put_guest_fpu(vcpu);
2242         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2243 }
2244
2245 static int is_efer_nx(void)
2246 {
2247         unsigned long long efer = 0;
2248
2249         rdmsrl_safe(MSR_EFER, &efer);
2250         return efer & EFER_NX;
2251 }
2252
2253 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2254 {
2255         int i;
2256         struct kvm_cpuid_entry2 *e, *entry;
2257
2258         entry = NULL;
2259         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2260                 e = &vcpu->arch.cpuid_entries[i];
2261                 if (e->function == 0x80000001) {
2262                         entry = e;
2263                         break;
2264                 }
2265         }
2266         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2267                 entry->edx &= ~(1 << 20);
2268                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2269         }
2270 }
2271
2272 /* when an old userspace process fills a new kernel module */
2273 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2274                                     struct kvm_cpuid *cpuid,
2275                                     struct kvm_cpuid_entry __user *entries)
2276 {
2277         int r, i;
2278         struct kvm_cpuid_entry *cpuid_entries;
2279
2280         r = -E2BIG;
2281         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2282                 goto out;
2283         r = -ENOMEM;
2284         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2285         if (!cpuid_entries)
2286                 goto out;
2287         r = -EFAULT;
2288         if (copy_from_user(cpuid_entries, entries,
2289                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2290                 goto out_free;
2291         for (i = 0; i < cpuid->nent; i++) {
2292                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2293                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2294                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2295                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2296                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2297                 vcpu->arch.cpuid_entries[i].index = 0;
2298                 vcpu->arch.cpuid_entries[i].flags = 0;
2299                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2300                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2301                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2302         }
2303         vcpu->arch.cpuid_nent = cpuid->nent;
2304         cpuid_fix_nx_cap(vcpu);
2305         r = 0;
2306         kvm_apic_set_version(vcpu);
2307         kvm_x86_ops->cpuid_update(vcpu);
2308         update_cpuid(vcpu);
2309
2310 out_free:
2311         vfree(cpuid_entries);
2312 out:
2313         return r;
2314 }
2315
2316 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2317                                      struct kvm_cpuid2 *cpuid,
2318                                      struct kvm_cpuid_entry2 __user *entries)
2319 {
2320         int r;
2321
2322         r = -E2BIG;
2323         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2324                 goto out;
2325         r = -EFAULT;
2326         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2327                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2328                 goto out;
2329         vcpu->arch.cpuid_nent = cpuid->nent;
2330         kvm_apic_set_version(vcpu);
2331         kvm_x86_ops->cpuid_update(vcpu);
2332         update_cpuid(vcpu);
2333         return 0;
2334
2335 out:
2336         return r;
2337 }
2338
2339 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2340                                      struct kvm_cpuid2 *cpuid,
2341                                      struct kvm_cpuid_entry2 __user *entries)
2342 {
2343         int r;
2344
2345         r = -E2BIG;
2346         if (cpuid->nent < vcpu->arch.cpuid_nent)
2347                 goto out;
2348         r = -EFAULT;
2349         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2350                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2351                 goto out;
2352         return 0;
2353
2354 out:
2355         cpuid->nent = vcpu->arch.cpuid_nent;
2356         return r;
2357 }
2358
2359 static void cpuid_mask(u32 *word, int wordnum)
2360 {
2361         *word &= boot_cpu_data.x86_capability[wordnum];
2362 }
2363
2364 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2365                            u32 index)
2366 {
2367         entry->function = function;
2368         entry->index = index;
2369         cpuid_count(entry->function, entry->index,
2370                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2371         entry->flags = 0;
2372 }
2373
2374 static bool supported_xcr0_bit(unsigned bit)
2375 {
2376         u64 mask = ((u64)1 << bit);
2377
2378         return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2379 }
2380
2381 #define F(x) bit(X86_FEATURE_##x)
2382
2383 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2384                          u32 index, int *nent, int maxnent)
2385 {
2386         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2387 #ifdef CONFIG_X86_64
2388         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2389                                 ? F(GBPAGES) : 0;
2390         unsigned f_lm = F(LM);
2391 #else
2392         unsigned f_gbpages = 0;
2393         unsigned f_lm = 0;
2394 #endif
2395         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2396
2397         /* cpuid 1.edx */
2398         const u32 kvm_supported_word0_x86_features =
2399                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2400                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2401                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2402                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2403                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2404                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2405                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2406                 0 /* HTT, TM, Reserved, PBE */;
2407         /* cpuid 0x80000001.edx */
2408         const u32 kvm_supported_word1_x86_features =
2409                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2410                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2411                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2412                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2413                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2414                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2415                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2416                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2417         /* cpuid 1.ecx */
2418         const u32 kvm_supported_word4_x86_features =
2419                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2420                 0 /* DS-CPL, VMX, SMX, EST */ |
2421                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2422                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2423                 0 /* Reserved, DCA */ | F(XMM4_1) |
2424                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2425                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2426                 F(F16C) | F(RDRAND);
2427         /* cpuid 0x80000001.ecx */
2428         const u32 kvm_supported_word6_x86_features =
2429                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2430                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2431                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2432                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2433
2434         /* cpuid 0xC0000001.edx */
2435         const u32 kvm_supported_word5_x86_features =
2436                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2437                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2438                 F(PMM) | F(PMM_EN);
2439
2440         /* cpuid 7.0.ebx */
2441         const u32 kvm_supported_word9_x86_features =
2442                 F(SMEP) | F(FSGSBASE) | F(ERMS);
2443
2444         /* all calls to cpuid_count() should be made on the same cpu */
2445         get_cpu();
2446         do_cpuid_1_ent(entry, function, index);
2447         ++*nent;
2448
2449         switch (function) {
2450         case 0:
2451                 entry->eax = min(entry->eax, (u32)0xd);
2452                 break;
2453         case 1:
2454                 entry->edx &= kvm_supported_word0_x86_features;
2455                 cpuid_mask(&entry->edx, 0);
2456                 entry->ecx &= kvm_supported_word4_x86_features;
2457                 cpuid_mask(&entry->ecx, 4);
2458                 /* we support x2apic emulation even if host does not support
2459                  * it since we emulate x2apic in software */
2460                 entry->ecx |= F(X2APIC);
2461                 break;
2462         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2463          * may return different values. This forces us to get_cpu() before
2464          * issuing the first command, and also to emulate this annoying behavior
2465          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2466         case 2: {
2467                 int t, times = entry->eax & 0xff;
2468
2469                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2470                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2471                 for (t = 1; t < times && *nent < maxnent; ++t) {
2472                         do_cpuid_1_ent(&entry[t], function, 0);
2473                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2474                         ++*nent;
2475                 }
2476                 break;
2477         }
2478         /* function 4 has additional index. */
2479         case 4: {
2480                 int i, cache_type;
2481
2482                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2483                 /* read more entries until cache_type is zero */
2484                 for (i = 1; *nent < maxnent; ++i) {
2485                         cache_type = entry[i - 1].eax & 0x1f;
2486                         if (!cache_type)
2487                                 break;
2488                         do_cpuid_1_ent(&entry[i], function, i);
2489                         entry[i].flags |=
2490                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2491                         ++*nent;
2492                 }
2493                 break;
2494         }
2495         case 7: {
2496                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2497                 /* Mask ebx against host capbability word 9 */
2498                 if (index == 0) {
2499                         entry->ebx &= kvm_supported_word9_x86_features;
2500                         cpuid_mask(&entry->ebx, 9);
2501                 } else
2502                         entry->ebx = 0;
2503                 entry->eax = 0;
2504                 entry->ecx = 0;
2505                 entry->edx = 0;
2506                 break;
2507         }
2508         case 9:
2509                 break;
2510         /* function 0xb has additional index. */
2511         case 0xb: {
2512                 int i, level_type;
2513
2514                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2515                 /* read more entries until level_type is zero */
2516                 for (i = 1; *nent < maxnent; ++i) {
2517                         level_type = entry[i - 1].ecx & 0xff00;
2518                         if (!level_type)
2519                                 break;
2520                         do_cpuid_1_ent(&entry[i], function, i);
2521                         entry[i].flags |=
2522                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2523                         ++*nent;
2524                 }
2525                 break;
2526         }
2527         case 0xd: {
2528                 int idx, i;
2529
2530                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2531                 for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2532                         do_cpuid_1_ent(&entry[i], function, idx);
2533                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2534                                 continue;
2535                         entry[i].flags |=
2536                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2537                         ++*nent;
2538                         ++i;
2539                 }
2540                 break;
2541         }
2542         case KVM_CPUID_SIGNATURE: {
2543                 char signature[12] = "KVMKVMKVM\0\0";
2544                 u32 *sigptr = (u32 *)signature;
2545                 entry->eax = 0;
2546                 entry->ebx = sigptr[0];
2547                 entry->ecx = sigptr[1];
2548                 entry->edx = sigptr[2];
2549                 break;
2550         }
2551         case KVM_CPUID_FEATURES:
2552                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2553                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2554                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2555                              (1 << KVM_FEATURE_ASYNC_PF) |
2556                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2557
2558                 if (sched_info_on())
2559                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2560
2561                 entry->ebx = 0;
2562                 entry->ecx = 0;
2563                 entry->edx = 0;
2564                 break;
2565         case 0x80000000:
2566                 entry->eax = min(entry->eax, 0x8000001a);
2567                 break;
2568         case 0x80000001:
2569                 entry->edx &= kvm_supported_word1_x86_features;
2570                 cpuid_mask(&entry->edx, 1);
2571                 entry->ecx &= kvm_supported_word6_x86_features;
2572                 cpuid_mask(&entry->ecx, 6);
2573                 break;
2574         case 0x80000008: {
2575                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2576                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2577                 unsigned phys_as = entry->eax & 0xff;
2578
2579                 if (!g_phys_as)
2580                         g_phys_as = phys_as;
2581                 entry->eax = g_phys_as | (virt_as << 8);
2582                 entry->ebx = entry->edx = 0;
2583                 break;
2584         }
2585         case 0x80000019:
2586                 entry->ecx = entry->edx = 0;
2587                 break;
2588         case 0x8000001a:
2589                 break;
2590         case 0x8000001d:
2591                 break;
2592         /*Add support for Centaur's CPUID instruction*/
2593         case 0xC0000000:
2594                 /*Just support up to 0xC0000004 now*/
2595                 entry->eax = min(entry->eax, 0xC0000004);
2596                 break;
2597         case 0xC0000001:
2598                 entry->edx &= kvm_supported_word5_x86_features;
2599                 cpuid_mask(&entry->edx, 5);
2600                 break;
2601         case 3: /* Processor serial number */
2602         case 5: /* MONITOR/MWAIT */
2603         case 6: /* Thermal management */
2604         case 0xA: /* Architectural Performance Monitoring */
2605         case 0x80000007: /* Advanced power management */
2606         case 0xC0000002:
2607         case 0xC0000003:
2608         case 0xC0000004:
2609         default:
2610                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2611                 break;
2612         }
2613
2614         kvm_x86_ops->set_supported_cpuid(function, entry);
2615
2616         put_cpu();
2617 }
2618
2619 #undef F
2620
2621 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2622                                      struct kvm_cpuid_entry2 __user *entries)
2623 {
2624         struct kvm_cpuid_entry2 *cpuid_entries;
2625         int limit, nent = 0, r = -E2BIG;
2626         u32 func;
2627
2628         if (cpuid->nent < 1)
2629                 goto out;
2630         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2631                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2632         r = -ENOMEM;
2633         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2634         if (!cpuid_entries)
2635                 goto out;
2636
2637         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2638         limit = cpuid_entries[0].eax;
2639         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2640                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2641                              &nent, cpuid->nent);
2642         r = -E2BIG;
2643         if (nent >= cpuid->nent)
2644                 goto out_free;
2645
2646         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2647         limit = cpuid_entries[nent - 1].eax;
2648         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2649                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2650                              &nent, cpuid->nent);
2651
2652
2653
2654         r = -E2BIG;
2655         if (nent >= cpuid->nent)
2656                 goto out_free;
2657
2658         /* Add support for Centaur's CPUID instruction. */
2659         if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2660                 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2661                                 &nent, cpuid->nent);
2662
2663                 r = -E2BIG;
2664                 if (nent >= cpuid->nent)
2665                         goto out_free;
2666
2667                 limit = cpuid_entries[nent - 1].eax;
2668                 for (func = 0xC0000001;
2669                         func <= limit && nent < cpuid->nent; ++func)
2670                         do_cpuid_ent(&cpuid_entries[nent], func, 0,
2671                                         &nent, cpuid->nent);
2672
2673                 r = -E2BIG;
2674                 if (nent >= cpuid->nent)
2675                         goto out_free;
2676         }
2677
2678         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2679                      cpuid->nent);
2680
2681         r = -E2BIG;
2682         if (nent >= cpuid->nent)
2683                 goto out_free;
2684
2685         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2686                      cpuid->nent);
2687
2688         r = -E2BIG;
2689         if (nent >= cpuid->nent)
2690                 goto out_free;
2691
2692         r = -EFAULT;
2693         if (copy_to_user(entries, cpuid_entries,
2694                          nent * sizeof(struct kvm_cpuid_entry2)))
2695                 goto out_free;
2696         cpuid->nent = nent;
2697         r = 0;
2698
2699 out_free:
2700         vfree(cpuid_entries);
2701 out:
2702         return r;
2703 }
2704
2705 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2706                                     struct kvm_lapic_state *s)
2707 {
2708         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2709
2710         return 0;
2711 }
2712
2713 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2714                                     struct kvm_lapic_state *s)
2715 {
2716         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2717         kvm_apic_post_state_restore(vcpu);
2718         update_cr8_intercept(vcpu);
2719
2720         return 0;
2721 }
2722
2723 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2724                                     struct kvm_interrupt *irq)
2725 {
2726         if (irq->irq < 0 || irq->irq >= 256)
2727                 return -EINVAL;
2728         if (irqchip_in_kernel(vcpu->kvm))
2729                 return -ENXIO;
2730
2731         kvm_queue_interrupt(vcpu, irq->irq, false);
2732         kvm_make_request(KVM_REQ_EVENT, vcpu);
2733
2734         return 0;
2735 }
2736
2737 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2738 {
2739         kvm_inject_nmi(vcpu);
2740
2741         return 0;
2742 }
2743
2744 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2745                                            struct kvm_tpr_access_ctl *tac)
2746 {
2747         if (tac->flags)
2748                 return -EINVAL;
2749         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2750         return 0;
2751 }
2752
2753 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2754                                         u64 mcg_cap)
2755 {
2756         int r;
2757         unsigned bank_num = mcg_cap & 0xff, bank;
2758
2759         r = -EINVAL;
2760         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2761                 goto out;
2762         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2763                 goto out;
2764         r = 0;
2765         vcpu->arch.mcg_cap = mcg_cap;
2766         /* Init IA32_MCG_CTL to all 1s */
2767         if (mcg_cap & MCG_CTL_P)
2768                 vcpu->arch.mcg_ctl = ~(u64)0;
2769         /* Init IA32_MCi_CTL to all 1s */
2770         for (bank = 0; bank < bank_num; bank++)
2771                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2772 out:
2773         return r;
2774 }
2775
2776 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2777                                       struct kvm_x86_mce *mce)
2778 {
2779         u64 mcg_cap = vcpu->arch.mcg_cap;
2780         unsigned bank_num = mcg_cap & 0xff;
2781         u64 *banks = vcpu->arch.mce_banks;
2782
2783         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2784                 return -EINVAL;
2785         /*
2786          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2787          * reporting is disabled
2788          */
2789         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2790             vcpu->arch.mcg_ctl != ~(u64)0)
2791                 return 0;
2792         banks += 4 * mce->bank;
2793         /*
2794          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2795          * reporting is disabled for the bank
2796          */
2797         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2798                 return 0;
2799         if (mce->status & MCI_STATUS_UC) {
2800                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2801                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2802                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2803                         return 0;
2804                 }
2805                 if (banks[1] & MCI_STATUS_VAL)
2806                         mce->status |= MCI_STATUS_OVER;
2807                 banks[2] = mce->addr;
2808                 banks[3] = mce->misc;
2809                 vcpu->arch.mcg_status = mce->mcg_status;
2810                 banks[1] = mce->status;
2811                 kvm_queue_exception(vcpu, MC_VECTOR);
2812         } else if (!(banks[1] & MCI_STATUS_VAL)
2813                    || !(banks[1] & MCI_STATUS_UC)) {
2814                 if (banks[1] & MCI_STATUS_VAL)
2815                         mce->status |= MCI_STATUS_OVER;
2816                 banks[2] = mce->addr;
2817                 banks[3] = mce->misc;
2818                 banks[1] = mce->status;
2819         } else
2820                 banks[1] |= MCI_STATUS_OVER;
2821         return 0;
2822 }
2823
2824 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2825                                                struct kvm_vcpu_events *events)
2826 {
2827         events->exception.injected =
2828                 vcpu->arch.exception.pending &&
2829                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2830         events->exception.nr = vcpu->arch.exception.nr;
2831         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2832         events->exception.pad = 0;
2833         events->exception.error_code = vcpu->arch.exception.error_code;
2834
2835         events->interrupt.injected =
2836                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2837         events->interrupt.nr = vcpu->arch.interrupt.nr;
2838         events->interrupt.soft = 0;
2839         events->interrupt.shadow =
2840                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2841                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2842
2843         events->nmi.injected = vcpu->arch.nmi_injected;
2844         events->nmi.pending = vcpu->arch.nmi_pending;
2845         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2846         events->nmi.pad = 0;
2847
2848         events->sipi_vector = vcpu->arch.sipi_vector;
2849
2850         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2851                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2852                          | KVM_VCPUEVENT_VALID_SHADOW);
2853         memset(&events->reserved, 0, sizeof(events->reserved));
2854 }
2855
2856 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2857                                               struct kvm_vcpu_events *events)
2858 {
2859         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2860                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2861                               | KVM_VCPUEVENT_VALID_SHADOW))
2862                 return -EINVAL;
2863
2864         vcpu->arch.exception.pending = events->exception.injected;
2865         vcpu->arch.exception.nr = events->exception.nr;
2866         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2867         vcpu->arch.exception.error_code = events->exception.error_code;
2868
2869         vcpu->arch.interrupt.pending = events->interrupt.injected;
2870         vcpu->arch.interrupt.nr = events->interrupt.nr;
2871         vcpu->arch.interrupt.soft = events->interrupt.soft;
2872         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2873                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2874                                                   events->interrupt.shadow);
2875
2876         vcpu->arch.nmi_injected = events->nmi.injected;
2877         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2878                 vcpu->arch.nmi_pending = events->nmi.pending;
2879         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2880
2881         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2882                 vcpu->arch.sipi_vector = events->sipi_vector;
2883
2884         kvm_make_request(KVM_REQ_EVENT, vcpu);
2885
2886         return 0;
2887 }
2888
2889 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2890                                              struct kvm_debugregs *dbgregs)
2891 {
2892         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2893         dbgregs->dr6 = vcpu->arch.dr6;
2894         dbgregs->dr7 = vcpu->arch.dr7;
2895         dbgregs->flags = 0;
2896         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2897 }
2898
2899 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2900                                             struct kvm_debugregs *dbgregs)
2901 {
2902         if (dbgregs->flags)
2903                 return -EINVAL;
2904
2905         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2906         vcpu->arch.dr6 = dbgregs->dr6;
2907         vcpu->arch.dr7 = dbgregs->dr7;
2908
2909         return 0;
2910 }
2911
2912 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2913                                          struct kvm_xsave *guest_xsave)
2914 {
2915         if (cpu_has_xsave)
2916                 memcpy(guest_xsave->region,
2917                         &vcpu->arch.guest_fpu.state->xsave,
2918                         xstate_size);
2919         else {
2920                 memcpy(guest_xsave->region,
2921                         &vcpu->arch.guest_fpu.state->fxsave,
2922                         sizeof(struct i387_fxsave_struct));
2923                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2924                         XSTATE_FPSSE;
2925         }
2926 }
2927
2928 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2929                                         struct kvm_xsave *guest_xsave)
2930 {
2931         u64 xstate_bv =
2932                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2933
2934         if (cpu_has_xsave)
2935                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2936                         guest_xsave->region, xstate_size);
2937         else {
2938                 if (xstate_bv & ~XSTATE_FPSSE)
2939                         return -EINVAL;
2940                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2941                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2942         }
2943         return 0;
2944 }
2945
2946 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2947                                         struct kvm_xcrs *guest_xcrs)
2948 {
2949         if (!cpu_has_xsave) {
2950                 guest_xcrs->nr_xcrs = 0;
2951                 return;
2952         }
2953
2954         guest_xcrs->nr_xcrs = 1;
2955         guest_xcrs->flags = 0;
2956         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2957         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2958 }
2959
2960 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2961                                        struct kvm_xcrs *guest_xcrs)
2962 {
2963         int i, r = 0;
2964
2965         if (!cpu_has_xsave)
2966                 return -EINVAL;
2967
2968         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2969                 return -EINVAL;
2970
2971         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2972                 /* Only support XCR0 currently */
2973                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2974                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2975                                 guest_xcrs->xcrs[0].value);
2976                         break;
2977                 }
2978         if (r)
2979                 r = -EINVAL;
2980         return r;
2981 }
2982
2983 long kvm_arch_vcpu_ioctl(struct file *filp,
2984                          unsigned int ioctl, unsigned long arg)
2985 {
2986         struct kvm_vcpu *vcpu = filp->private_data;
2987         void __user *argp = (void __user *)arg;
2988         int r;
2989         union {
2990                 struct kvm_lapic_state *lapic;
2991                 struct kvm_xsave *xsave;
2992                 struct kvm_xcrs *xcrs;
2993                 void *buffer;
2994         } u;
2995
2996         u.buffer = NULL;
2997         switch (ioctl) {
2998         case KVM_GET_LAPIC: {
2999                 r = -EINVAL;
3000                 if (!vcpu->arch.apic)
3001                         goto out;
3002                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3003
3004                 r = -ENOMEM;
3005                 if (!u.lapic)
3006                         goto out;
3007                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3008                 if (r)
3009                         goto out;
3010                 r = -EFAULT;
3011                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3012                         goto out;
3013                 r = 0;
3014                 break;
3015         }
3016         case KVM_SET_LAPIC: {
3017                 r = -EINVAL;
3018                 if (!vcpu->arch.apic)
3019                         goto out;
3020                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3021                 r = -ENOMEM;
3022                 if (!u.lapic)
3023                         goto out;
3024                 r = -EFAULT;
3025                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3026                         goto out;
3027                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3028                 if (r)
3029                         goto out;
3030                 r = 0;
3031                 break;
3032         }
3033         case KVM_INTERRUPT: {
3034                 struct kvm_interrupt irq;
3035
3036                 r = -EFAULT;
3037                 if (copy_from_user(&irq, argp, sizeof irq))
3038                         goto out;
3039                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3040                 if (r)
3041                         goto out;
3042                 r = 0;
3043                 break;
3044         }
3045         case KVM_NMI: {
3046                 r = kvm_vcpu_ioctl_nmi(vcpu);
3047                 if (r)
3048                         goto out;
3049                 r = 0;
3050                 break;
3051         }
3052         case KVM_SET_CPUID: {
3053                 struct kvm_cpuid __user *cpuid_arg = argp;
3054                 struct kvm_cpuid cpuid;
3055
3056                 r = -EFAULT;
3057                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3058                         goto out;
3059                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3060                 if (r)
3061                         goto out;
3062                 break;
3063         }
3064         case KVM_SET_CPUID2: {
3065                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3066                 struct kvm_cpuid2 cpuid;
3067
3068                 r = -EFAULT;
3069                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3070                         goto out;
3071                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3072                                               cpuid_arg->entries);
3073                 if (r)
3074                         goto out;
3075                 break;
3076         }
3077         case KVM_GET_CPUID2: {
3078                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3079                 struct kvm_cpuid2 cpuid;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3083                         goto out;
3084                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3085                                               cpuid_arg->entries);
3086                 if (r)
3087                         goto out;
3088                 r = -EFAULT;
3089                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3090                         goto out;
3091                 r = 0;
3092                 break;
3093         }
3094         case KVM_GET_MSRS:
3095                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3096                 break;
3097         case KVM_SET_MSRS:
3098                 r = msr_io(vcpu, argp, do_set_msr, 0);
3099                 break;
3100         case KVM_TPR_ACCESS_REPORTING: {
3101                 struct kvm_tpr_access_ctl tac;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&tac, argp, sizeof tac))
3105                         goto out;
3106                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3107                 if (r)
3108                         goto out;
3109                 r = -EFAULT;
3110                 if (copy_to_user(argp, &tac, sizeof tac))
3111                         goto out;
3112                 r = 0;
3113                 break;
3114         };
3115         case KVM_SET_VAPIC_ADDR: {
3116                 struct kvm_vapic_addr va;
3117
3118                 r = -EINVAL;
3119                 if (!irqchip_in_kernel(vcpu->kvm))
3120                         goto out;
3121                 r = -EFAULT;
3122                 if (copy_from_user(&va, argp, sizeof va))
3123                         goto out;
3124                 r = 0;
3125                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3126                 break;
3127         }
3128         case KVM_X86_SETUP_MCE: {
3129                 u64 mcg_cap;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3133                         goto out;
3134                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3135                 break;
3136         }
3137         case KVM_X86_SET_MCE: {
3138                 struct kvm_x86_mce mce;
3139
3140                 r = -EFAULT;
3141                 if (copy_from_user(&mce, argp, sizeof mce))
3142                         goto out;
3143                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3144                 break;
3145         }
3146         case KVM_GET_VCPU_EVENTS: {
3147                 struct kvm_vcpu_events events;
3148
3149                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3150
3151                 r = -EFAULT;
3152                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3153                         break;
3154                 r = 0;
3155                 break;
3156         }
3157         case KVM_SET_VCPU_EVENTS: {
3158                 struct kvm_vcpu_events events;
3159
3160                 r = -EFAULT;
3161                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3162                         break;
3163
3164                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3165                 break;
3166         }
3167         case KVM_GET_DEBUGREGS: {
3168                 struct kvm_debugregs dbgregs;
3169
3170                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3171
3172                 r = -EFAULT;
3173                 if (copy_to_user(argp, &dbgregs,
3174                                  sizeof(struct kvm_debugregs)))
3175                         break;
3176                 r = 0;
3177                 break;
3178         }
3179         case KVM_SET_DEBUGREGS: {
3180                 struct kvm_debugregs dbgregs;
3181
3182                 r = -EFAULT;
3183                 if (copy_from_user(&dbgregs, argp,
3184                                    sizeof(struct kvm_debugregs)))
3185                         break;
3186
3187                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3188                 break;
3189         }
3190         case KVM_GET_XSAVE: {
3191                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3192                 r = -ENOMEM;
3193                 if (!u.xsave)
3194                         break;
3195
3196                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3200                         break;
3201                 r = 0;
3202                 break;
3203         }
3204         case KVM_SET_XSAVE: {
3205                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3206                 r = -ENOMEM;
3207                 if (!u.xsave)
3208                         break;
3209
3210                 r = -EFAULT;
3211                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3212                         break;
3213
3214                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3215                 break;
3216         }
3217         case KVM_GET_XCRS: {
3218                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3219                 r = -ENOMEM;
3220                 if (!u.xcrs)
3221                         break;
3222
3223                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3224
3225                 r = -EFAULT;
3226                 if (copy_to_user(argp, u.xcrs,
3227                                  sizeof(struct kvm_xcrs)))
3228                         break;
3229                 r = 0;
3230                 break;
3231         }
3232         case KVM_SET_XCRS: {
3233                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3234                 r = -ENOMEM;
3235                 if (!u.xcrs)
3236                         break;
3237
3238                 r = -EFAULT;
3239                 if (copy_from_user(u.xcrs, argp,
3240                                    sizeof(struct kvm_xcrs)))
3241                         break;
3242
3243                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3244                 break;
3245         }
3246         case KVM_SET_TSC_KHZ: {
3247                 u32 user_tsc_khz;
3248
3249                 r = -EINVAL;
3250                 if (!kvm_has_tsc_control)
3251                         break;
3252
3253                 user_tsc_khz = (u32)arg;
3254
3255                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3256                         goto out;
3257
3258                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3259
3260                 r = 0;
3261                 goto out;
3262         }
3263         case KVM_GET_TSC_KHZ: {
3264                 r = -EIO;
3265                 if (check_tsc_unstable())
3266                         goto out;
3267
3268                 r = vcpu_tsc_khz(vcpu);
3269
3270                 goto out;
3271         }
3272         default:
3273                 r = -EINVAL;
3274         }
3275 out:
3276         kfree(u.buffer);
3277         return r;
3278 }
3279
3280 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3281 {
3282         int ret;
3283
3284         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3285                 return -1;
3286         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3287         return ret;
3288 }
3289
3290 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3291                                               u64 ident_addr)
3292 {
3293         kvm->arch.ept_identity_map_addr = ident_addr;
3294         return 0;
3295 }
3296
3297 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3298                                           u32 kvm_nr_mmu_pages)
3299 {
3300         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3301                 return -EINVAL;
3302
3303         mutex_lock(&kvm->slots_lock);
3304         spin_lock(&kvm->mmu_lock);
3305
3306         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3307         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3308
3309         spin_unlock(&kvm->mmu_lock);
3310         mutex_unlock(&kvm->slots_lock);
3311         return 0;
3312 }
3313
3314 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3315 {
3316         return kvm->arch.n_max_mmu_pages;
3317 }
3318
3319 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3320 {
3321         int r;
3322
3323         r = 0;
3324         switch (chip->chip_id) {
3325         case KVM_IRQCHIP_PIC_MASTER:
3326                 memcpy(&chip->chip.pic,
3327                         &pic_irqchip(kvm)->pics[0],
3328                         sizeof(struct kvm_pic_state));
3329                 break;
3330         case KVM_IRQCHIP_PIC_SLAVE:
3331                 memcpy(&chip->chip.pic,
3332                         &pic_irqchip(kvm)->pics[1],
3333                         sizeof(struct kvm_pic_state));
3334                 break;
3335         case KVM_IRQCHIP_IOAPIC:
3336                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3337                 break;
3338         default:
3339                 r = -EINVAL;
3340                 break;
3341         }
3342         return r;
3343 }
3344
3345 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3346 {
3347         int r;
3348
3349         r = 0;
3350         switch (chip->chip_id) {
3351         case KVM_IRQCHIP_PIC_MASTER:
3352                 spin_lock(&pic_irqchip(kvm)->lock);
3353                 memcpy(&pic_irqchip(kvm)->pics[0],
3354                         &chip->chip.pic,
3355                         sizeof(struct kvm_pic_state));
3356                 spin_unlock(&pic_irqchip(kvm)->lock);
3357                 break;
3358         case KVM_IRQCHIP_PIC_SLAVE:
3359                 spin_lock(&pic_irqchip(kvm)->lock);
3360                 memcpy(&pic_irqchip(kvm)->pics[1],
3361                         &chip->chip.pic,
3362                         sizeof(struct kvm_pic_state));
3363                 spin_unlock(&pic_irqchip(kvm)->lock);
3364                 break;
3365         case KVM_IRQCHIP_IOAPIC:
3366                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3367                 break;
3368         default:
3369                 r = -EINVAL;
3370                 break;
3371         }
3372         kvm_pic_update_irq(pic_irqchip(kvm));
3373         return r;
3374 }
3375
3376 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3377 {
3378         int r = 0;
3379
3380         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3381         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3382         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3383         return r;
3384 }
3385
3386 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3387 {
3388         int r = 0;
3389
3390         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3391         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3392         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3393         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3394         return r;
3395 }
3396
3397 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3398 {
3399         int r = 0;
3400
3401         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3402         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3403                 sizeof(ps->channels));
3404         ps->flags = kvm->arch.vpit->pit_state.flags;
3405         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3406         memset(&ps->reserved, 0, sizeof(ps->reserved));
3407         return r;
3408 }
3409
3410 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3411 {
3412         int r = 0, start = 0;
3413         u32 prev_legacy, cur_legacy;
3414         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3415         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3416         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3417         if (!prev_legacy && cur_legacy)
3418                 start = 1;
3419         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3420                sizeof(kvm->arch.vpit->pit_state.channels));
3421         kvm->arch.vpit->pit_state.flags = ps->flags;
3422         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3423         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3424         return r;
3425 }
3426
3427 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3428                                  struct kvm_reinject_control *control)
3429 {
3430         if (!kvm->arch.vpit)
3431                 return -ENXIO;
3432         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3433         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3434         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3435         return 0;
3436 }
3437
3438 /*
3439  * Get (and clear) the dirty memory log for a memory slot.
3440  */
3441 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3442                                       struct kvm_dirty_log *log)
3443 {
3444         int r, i;
3445         struct kvm_memory_slot *memslot;
3446         unsigned long n;
3447         unsigned long is_dirty = 0;
3448
3449         mutex_lock(&kvm->slots_lock);
3450
3451         r = -EINVAL;
3452         if (log->slot >= KVM_MEMORY_SLOTS)
3453                 goto out;
3454
3455         memslot = &kvm->memslots->memslots[log->slot];
3456         r = -ENOENT;
3457         if (!memslot->dirty_bitmap)
3458                 goto out;
3459
3460         n = kvm_dirty_bitmap_bytes(memslot);
3461
3462         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3463                 is_dirty = memslot->dirty_bitmap[i];
3464
3465         /* If nothing is dirty, don't bother messing with page tables. */
3466         if (is_dirty) {
3467                 struct kvm_memslots *slots, *old_slots;
3468                 unsigned long *dirty_bitmap;
3469
3470                 dirty_bitmap = memslot->dirty_bitmap_head;
3471                 if (memslot->dirty_bitmap == dirty_bitmap)
3472                         dirty_bitmap += n / sizeof(long);
3473                 memset(dirty_bitmap, 0, n);
3474
3475                 r = -ENOMEM;
3476                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3477                 if (!slots)
3478                         goto out;
3479                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3480                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3481                 slots->generation++;
3482
3483                 old_slots = kvm->memslots;
3484                 rcu_assign_pointer(kvm->memslots, slots);
3485                 synchronize_srcu_expedited(&kvm->srcu);
3486                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3487                 kfree(old_slots);
3488
3489                 spin_lock(&kvm->mmu_lock);
3490                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3491                 spin_unlock(&kvm->mmu_lock);
3492
3493                 r = -EFAULT;
3494                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3495                         goto out;
3496         } else {
3497                 r = -EFAULT;
3498                 if (clear_user(log->dirty_bitmap, n))
3499                         goto out;
3500         }
3501
3502         r = 0;
3503 out:
3504         mutex_unlock(&kvm->slots_lock);
3505         return r;
3506 }
3507
3508 long kvm_arch_vm_ioctl(struct file *filp,
3509                        unsigned int ioctl, unsigned long arg)
3510 {
3511         struct kvm *kvm = filp->private_data;
3512         void __user *argp = (void __user *)arg;
3513         int r = -ENOTTY;
3514         /*
3515          * This union makes it completely explicit to gcc-3.x
3516          * that these two variables' stack usage should be
3517          * combined, not added together.
3518          */
3519         union {
3520                 struct kvm_pit_state ps;
3521                 struct kvm_pit_state2 ps2;
3522                 struct kvm_pit_config pit_config;
3523         } u;
3524
3525         switch (ioctl) {
3526         case KVM_SET_TSS_ADDR:
3527                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3528                 if (r < 0)
3529                         goto out;
3530                 break;
3531         case KVM_SET_IDENTITY_MAP_ADDR: {
3532                 u64 ident_addr;
3533
3534                 r = -EFAULT;
3535                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3536                         goto out;
3537                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3538                 if (r < 0)
3539                         goto out;
3540                 break;
3541         }
3542         case KVM_SET_NR_MMU_PAGES:
3543                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3544                 if (r)
3545                         goto out;
3546                 break;
3547         case KVM_GET_NR_MMU_PAGES:
3548                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3549                 break;
3550         case KVM_CREATE_IRQCHIP: {
3551                 struct kvm_pic *vpic;
3552
3553                 mutex_lock(&kvm->lock);
3554                 r = -EEXIST;
3555                 if (kvm->arch.vpic)
3556                         goto create_irqchip_unlock;
3557                 r = -ENOMEM;
3558                 vpic = kvm_create_pic(kvm);
3559                 if (vpic) {
3560                         r = kvm_ioapic_init(kvm);
3561                         if (r) {
3562                                 mutex_lock(&kvm->slots_lock);
3563                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3564                                                           &vpic->dev);
3565                                 mutex_unlock(&kvm->slots_lock);
3566                                 kfree(vpic);
3567                                 goto create_irqchip_unlock;
3568                         }
3569                 } else
3570                         goto create_irqchip_unlock;
3571                 smp_wmb();
3572                 kvm->arch.vpic = vpic;
3573                 smp_wmb();
3574                 r = kvm_setup_default_irq_routing(kvm);
3575                 if (r) {
3576                         mutex_lock(&kvm->slots_lock);
3577                         mutex_lock(&kvm->irq_lock);
3578                         kvm_ioapic_destroy(kvm);
3579                         kvm_destroy_pic(kvm);
3580                         mutex_unlock(&kvm->irq_lock);
3581                         mutex_unlock(&kvm->slots_lock);
3582                 }
3583         create_irqchip_unlock:
3584                 mutex_unlock(&kvm->lock);
3585                 break;
3586         }
3587         case KVM_CREATE_PIT:
3588                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3589                 goto create_pit;
3590         case KVM_CREATE_PIT2:
3591                 r = -EFAULT;
3592                 if (copy_from_user(&u.pit_config, argp,
3593                                    sizeof(struct kvm_pit_config)))
3594                         goto out;
3595         create_pit:
3596                 mutex_lock(&kvm->slots_lock);
3597                 r = -EEXIST;
3598                 if (kvm->arch.vpit)
3599                         goto create_pit_unlock;
3600                 r = -ENOMEM;
3601                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3602                 if (kvm->arch.vpit)
3603                         r = 0;
3604         create_pit_unlock:
3605                 mutex_unlock(&kvm->slots_lock);
3606                 break;
3607         case KVM_IRQ_LINE_STATUS:
3608         case KVM_IRQ_LINE: {
3609                 struct kvm_irq_level irq_event;
3610
3611                 r = -EFAULT;
3612                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3613                         goto out;
3614                 r = -ENXIO;
3615                 if (irqchip_in_kernel(kvm)) {
3616                         __s32 status;
3617                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3618                                         irq_event.irq, irq_event.level);
3619                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3620                                 r = -EFAULT;
3621                                 irq_event.status = status;
3622                                 if (copy_to_user(argp, &irq_event,
3623                                                         sizeof irq_event))
3624                                         goto out;
3625                         }
3626                         r = 0;
3627                 }
3628                 break;
3629         }
3630         case KVM_GET_IRQCHIP: {
3631                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3632                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3633
3634                 r = -ENOMEM;
3635                 if (!chip)
3636                         goto out;
3637                 r = -EFAULT;
3638                 if (copy_from_user(chip, argp, sizeof *chip))
3639                         goto get_irqchip_out;
3640                 r = -ENXIO;
3641                 if (!irqchip_in_kernel(kvm))
3642                         goto get_irqchip_out;
3643                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3644                 if (r)
3645                         goto get_irqchip_out;
3646                 r = -EFAULT;
3647                 if (copy_to_user(argp, chip, sizeof *chip))
3648                         goto get_irqchip_out;
3649                 r = 0;
3650         get_irqchip_out:
3651                 kfree(chip);
3652                 if (r)
3653                         goto out;
3654                 break;
3655         }
3656         case KVM_SET_IRQCHIP: {
3657                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3658                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3659
3660                 r = -ENOMEM;
3661                 if (!chip)
3662                         goto out;
3663                 r = -EFAULT;
3664                 if (copy_from_user(chip, argp, sizeof *chip))
3665                         goto set_irqchip_out;
3666                 r = -ENXIO;
3667                 if (!irqchip_in_kernel(kvm))
3668                         goto set_irqchip_out;
3669                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3670                 if (r)
3671                         goto set_irqchip_out;
3672                 r = 0;
3673         set_irqchip_out:
3674                 kfree(chip);
3675                 if (r)
3676                         goto out;
3677                 break;
3678         }
3679         case KVM_GET_PIT: {
3680                 r = -EFAULT;
3681                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3682                         goto out;
3683                 r = -ENXIO;
3684                 if (!kvm->arch.vpit)
3685                         goto out;
3686                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3687                 if (r)
3688                         goto out;
3689                 r = -EFAULT;
3690                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3691                         goto out;
3692                 r = 0;
3693                 break;
3694         }
3695         case KVM_SET_PIT: {
3696                 r = -EFAULT;
3697                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3698                         goto out;
3699                 r = -ENXIO;
3700                 if (!kvm->arch.vpit)
3701                         goto out;
3702                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3703                 if (r)
3704                         goto out;
3705                 r = 0;
3706                 break;
3707         }
3708         case KVM_GET_PIT2: {
3709                 r = -ENXIO;
3710                 if (!kvm->arch.vpit)
3711                         goto out;
3712                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3713                 if (r)
3714                         goto out;
3715                 r = -EFAULT;
3716                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3717                         goto out;
3718                 r = 0;
3719                 break;
3720         }
3721         case KVM_SET_PIT2: {
3722                 r = -EFAULT;
3723                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3724                         goto out;
3725                 r = -ENXIO;
3726                 if (!kvm->arch.vpit)
3727                         goto out;
3728                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3729                 if (r)
3730                         goto out;
3731                 r = 0;
3732                 break;
3733         }
3734         case KVM_REINJECT_CONTROL: {
3735                 struct kvm_reinject_control control;
3736                 r =  -EFAULT;
3737                 if (copy_from_user(&control, argp, sizeof(control)))
3738                         goto out;
3739                 r = kvm_vm_ioctl_reinject(kvm, &control);
3740                 if (r)
3741                         goto out;
3742                 r = 0;
3743                 break;
3744         }
3745         case KVM_XEN_HVM_CONFIG: {
3746                 r = -EFAULT;
3747                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3748                                    sizeof(struct kvm_xen_hvm_config)))
3749                         goto out;
3750                 r = -EINVAL;
3751                 if (kvm->arch.xen_hvm_config.flags)
3752                         goto out;
3753                 r = 0;
3754                 break;
3755         }
3756         case KVM_SET_CLOCK: {
3757                 struct kvm_clock_data user_ns;
3758                 u64 now_ns;
3759                 s64 delta;
3760
3761                 r = -EFAULT;
3762                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3763                         goto out;
3764
3765                 r = -EINVAL;
3766                 if (user_ns.flags)
3767                         goto out;
3768
3769                 r = 0;
3770                 local_irq_disable();
3771                 now_ns = get_kernel_ns();
3772                 delta = user_ns.clock - now_ns;
3773                 local_irq_enable();
3774                 kvm->arch.kvmclock_offset = delta;
3775                 break;
3776         }
3777         case KVM_GET_CLOCK: {
3778                 struct kvm_clock_data user_ns;
3779                 u64 now_ns;
3780
3781                 local_irq_disable();
3782                 now_ns = get_kernel_ns();
3783                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3784                 local_irq_enable();
3785                 user_ns.flags = 0;
3786                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3787
3788                 r = -EFAULT;
3789                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3790                         goto out;
3791                 r = 0;
3792                 break;
3793         }
3794
3795         default:
3796                 ;
3797         }
3798 out:
3799         return r;
3800 }
3801
3802 static void kvm_init_msr_list(void)
3803 {
3804         u32 dummy[2];
3805         unsigned i, j;
3806
3807         /* skip the first msrs in the list. KVM-specific */
3808         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3809                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3810                         continue;
3811                 if (j < i)
3812                         msrs_to_save[j] = msrs_to_save[i];
3813                 j++;
3814         }
3815         num_msrs_to_save = j;
3816 }
3817
3818 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3819                            const void *v)
3820 {
3821         int handled = 0;
3822         int n;
3823
3824         do {
3825                 n = min(len, 8);
3826                 if (!(vcpu->arch.apic &&
3827                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3828                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3829                         break;
3830                 handled += n;
3831                 addr += n;
3832                 len -= n;
3833                 v += n;
3834         } while (len);
3835
3836         return handled;
3837 }
3838
3839 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3840 {
3841         int handled = 0;
3842         int n;
3843
3844         do {
3845                 n = min(len, 8);
3846                 if (!(vcpu->arch.apic &&
3847                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3848                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3849                         break;
3850                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3851                 handled += n;
3852                 addr += n;
3853                 len -= n;
3854                 v += n;
3855         } while (len);
3856
3857         return handled;
3858 }
3859
3860 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3861                         struct kvm_segment *var, int seg)
3862 {
3863         kvm_x86_ops->set_segment(vcpu, var, seg);
3864 }
3865
3866 void kvm_get_segment(struct kvm_vcpu *vcpu,
3867                      struct kvm_segment *var, int seg)
3868 {
3869         kvm_x86_ops->get_segment(vcpu, var, seg);
3870 }
3871
3872 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3873 {
3874         return gpa;
3875 }
3876
3877 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3878 {
3879         gpa_t t_gpa;
3880         struct x86_exception exception;
3881
3882         BUG_ON(!mmu_is_nested(vcpu));
3883
3884         /* NPT walks are always user-walks */
3885         access |= PFERR_USER_MASK;
3886         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3887
3888         return t_gpa;
3889 }
3890
3891 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3892                               struct x86_exception *exception)
3893 {
3894         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3895         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3896 }
3897
3898  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3899                                 struct x86_exception *exception)
3900 {
3901         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3902         access |= PFERR_FETCH_MASK;
3903         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3904 }
3905
3906 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3907                                struct x86_exception *exception)
3908 {
3909         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3910         access |= PFERR_WRITE_MASK;
3911         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3912 }
3913
3914 /* uses this to access any guest's mapped memory without checking CPL */
3915 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3916                                 struct x86_exception *exception)
3917 {
3918         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3919 }
3920
3921 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3922                                       struct kvm_vcpu *vcpu, u32 access,
3923                                       struct x86_exception *exception)
3924 {
3925         void *data = val;
3926         int r = X86EMUL_CONTINUE;
3927
3928         while (bytes) {
3929                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3930                                                             exception);
3931                 unsigned offset = addr & (PAGE_SIZE-1);
3932                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3933                 int ret;
3934
3935                 if (gpa == UNMAPPED_GVA)
3936                         return X86EMUL_PROPAGATE_FAULT;
3937                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3938                 if (ret < 0) {
3939                         r = X86EMUL_IO_NEEDED;
3940                         goto out;
3941                 }
3942
3943                 bytes -= toread;
3944                 data += toread;
3945                 addr += toread;
3946         }
3947 out:
3948         return r;
3949 }
3950
3951 /* used for instruction fetching */
3952 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3953                                 gva_t addr, void *val, unsigned int bytes,
3954                                 struct x86_exception *exception)
3955 {
3956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3957         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958
3959         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3960                                           access | PFERR_FETCH_MASK,
3961                                           exception);
3962 }
3963
3964 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3965                                gva_t addr, void *val, unsigned int bytes,
3966                                struct x86_exception *exception)
3967 {
3968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3969         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3970
3971         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3972                                           exception);
3973 }
3974 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3975
3976 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3977                                       gva_t addr, void *val, unsigned int bytes,
3978                                       struct x86_exception *exception)
3979 {
3980         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3981         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3982 }
3983
3984 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3985                                        gva_t addr, void *val,
3986                                        unsigned int bytes,
3987                                        struct x86_exception *exception)
3988 {
3989         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3990         void *data = val;
3991         int r = X86EMUL_CONTINUE;
3992
3993         while (bytes) {
3994                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3995                                                              PFERR_WRITE_MASK,
3996                                                              exception);
3997                 unsigned offset = addr & (PAGE_SIZE-1);
3998                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3999                 int ret;
4000
4001                 if (gpa == UNMAPPED_GVA)
4002                         return X86EMUL_PROPAGATE_FAULT;
4003                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4004                 if (ret < 0) {
4005                         r = X86EMUL_IO_NEEDED;
4006                         goto out;
4007                 }
4008
4009                 bytes -= towrite;
4010                 data += towrite;
4011                 addr += towrite;
4012         }
4013 out:
4014         return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4017
4018 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4019                                 gpa_t *gpa, struct x86_exception *exception,
4020                                 bool write)
4021 {
4022         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4023
4024         if (vcpu_match_mmio_gva(vcpu, gva) &&
4025                   check_write_user_access(vcpu, write, access,
4026                   vcpu->arch.access)) {
4027                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4028                                         (gva & (PAGE_SIZE - 1));
4029                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4030                 return 1;
4031         }
4032
4033         if (write)
4034                 access |= PFERR_WRITE_MASK;
4035
4036         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4037
4038         if (*gpa == UNMAPPED_GVA)
4039                 return -1;
4040
4041         /* For APIC access vmexit */
4042         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4043                 return 1;
4044
4045         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4046                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4047                 return 1;
4048         }
4049
4050         return 0;
4051 }
4052
4053 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4054                         const void *val, int bytes)
4055 {
4056         int ret;
4057
4058         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4059         if (ret < 0)
4060                 return 0;
4061         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4062         return 1;
4063 }
4064
4065 struct read_write_emulator_ops {
4066         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4067                                   int bytes);
4068         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4069                                   void *val, int bytes);
4070         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4071                                int bytes, void *val);
4072         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4073                                     void *val, int bytes);
4074         bool write;
4075 };
4076
4077 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4078 {
4079         if (vcpu->mmio_read_completed) {
4080                 memcpy(val, vcpu->mmio_data, bytes);
4081                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4082                                vcpu->mmio_phys_addr, *(u64 *)val);
4083                 vcpu->mmio_read_completed = 0;
4084                 return 1;
4085         }
4086
4087         return 0;
4088 }
4089
4090 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4091                         void *val, int bytes)
4092 {
4093         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4094 }
4095
4096 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4097                          void *val, int bytes)
4098 {
4099         return emulator_write_phys(vcpu, gpa, val, bytes);
4100 }
4101
4102 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4103 {
4104         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4105         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4106 }
4107
4108 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4109                           void *val, int bytes)
4110 {
4111         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4112         return X86EMUL_IO_NEEDED;
4113 }
4114
4115 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4116                            void *val, int bytes)
4117 {
4118         memcpy(vcpu->mmio_data, val, bytes);
4119         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4120         return X86EMUL_CONTINUE;
4121 }
4122
4123 static struct read_write_emulator_ops read_emultor = {
4124         .read_write_prepare = read_prepare,
4125         .read_write_emulate = read_emulate,
4126         .read_write_mmio = vcpu_mmio_read,
4127         .read_write_exit_mmio = read_exit_mmio,
4128 };
4129
4130 static struct read_write_emulator_ops write_emultor = {
4131         .read_write_emulate = write_emulate,
4132         .read_write_mmio = write_mmio,
4133         .read_write_exit_mmio = write_exit_mmio,
4134         .write = true,
4135 };
4136
4137 static int emulator_read_write_onepage(unsigned long addr, void *val,
4138                                        unsigned int bytes,
4139                                        struct x86_exception *exception,
4140                                        struct kvm_vcpu *vcpu,
4141                                        struct read_write_emulator_ops *ops)
4142 {
4143         gpa_t gpa;
4144         int handled, ret;
4145         bool write = ops->write;
4146
4147         if (ops->read_write_prepare &&
4148                   ops->read_write_prepare(vcpu, val, bytes))
4149                 return X86EMUL_CONTINUE;
4150
4151         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4152
4153         if (ret < 0)
4154                 return X86EMUL_PROPAGATE_FAULT;
4155
4156         /* For APIC access vmexit */
4157         if (ret)
4158                 goto mmio;
4159
4160         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4161                 return X86EMUL_CONTINUE;
4162
4163 mmio:
4164         /*
4165          * Is this MMIO handled locally?
4166          */
4167         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4168         if (handled == bytes)
4169                 return X86EMUL_CONTINUE;
4170
4171         gpa += handled;
4172         bytes -= handled;
4173         val += handled;
4174
4175         vcpu->mmio_needed = 1;
4176         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4177         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4178         vcpu->mmio_size = bytes;
4179         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4180         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
4181         vcpu->mmio_index = 0;
4182
4183         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4184 }
4185
4186 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4187                         void *val, unsigned int bytes,
4188                         struct x86_exception *exception,
4189                         struct read_write_emulator_ops *ops)
4190 {
4191         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4192
4193         /* Crossing a page boundary? */
4194         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4195                 int rc, now;
4196
4197                 now = -addr & ~PAGE_MASK;
4198                 rc = emulator_read_write_onepage(addr, val, now, exception,
4199                                                  vcpu, ops);
4200
4201                 if (rc != X86EMUL_CONTINUE)
4202                         return rc;
4203                 addr += now;
4204                 val += now;
4205                 bytes -= now;
4206         }
4207
4208         return emulator_read_write_onepage(addr, val, bytes, exception,
4209                                            vcpu, ops);
4210 }
4211
4212 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4213                                   unsigned long addr,
4214                                   void *val,
4215                                   unsigned int bytes,
4216                                   struct x86_exception *exception)
4217 {
4218         return emulator_read_write(ctxt, addr, val, bytes,
4219                                    exception, &read_emultor);
4220 }
4221
4222 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4223                             unsigned long addr,
4224                             const void *val,
4225                             unsigned int bytes,
4226                             struct x86_exception *exception)
4227 {
4228         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4229                                    exception, &write_emultor);
4230 }
4231
4232 #define CMPXCHG_TYPE(t, ptr, old, new) \
4233         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4234
4235 #ifdef CONFIG_X86_64
4236 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4237 #else
4238 #  define CMPXCHG64(ptr, old, new) \
4239         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4240 #endif
4241
4242 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4243                                      unsigned long addr,
4244                                      const void *old,
4245                                      const void *new,
4246                                      unsigned int bytes,
4247                                      struct x86_exception *exception)
4248 {
4249         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250         gpa_t gpa;
4251         struct page *page;
4252         char *kaddr;
4253         bool exchanged;
4254
4255         /* guests cmpxchg8b have to be emulated atomically */
4256         if (bytes > 8 || (bytes & (bytes - 1)))
4257                 goto emul_write;
4258
4259         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4260
4261         if (gpa == UNMAPPED_GVA ||
4262             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4263                 goto emul_write;
4264
4265         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4266                 goto emul_write;
4267
4268         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4269         if (is_error_page(page)) {
4270                 kvm_release_page_clean(page);
4271                 goto emul_write;
4272         }
4273
4274         kaddr = kmap_atomic(page, KM_USER0);
4275         kaddr += offset_in_page(gpa);
4276         switch (bytes) {
4277         case 1:
4278                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4279                 break;
4280         case 2:
4281                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4282                 break;
4283         case 4:
4284                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4285                 break;
4286         case 8:
4287                 exchanged = CMPXCHG64(kaddr, old, new);
4288                 break;
4289         default:
4290                 BUG();
4291         }
4292         kunmap_atomic(kaddr, KM_USER0);
4293         kvm_release_page_dirty(page);
4294
4295         if (!exchanged)
4296                 return X86EMUL_CMPXCHG_FAILED;
4297
4298         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4299
4300         return X86EMUL_CONTINUE;
4301
4302 emul_write:
4303         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4304
4305         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4306 }
4307
4308 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4309 {
4310         /* TODO: String I/O for in kernel device */
4311         int r;
4312
4313         if (vcpu->arch.pio.in)
4314                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4315                                     vcpu->arch.pio.size, pd);
4316         else
4317                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4318                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4319                                      pd);
4320         return r;
4321 }
4322
4323
4324 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4325                                     int size, unsigned short port, void *val,
4326                                     unsigned int count)
4327 {
4328         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4329
4330         if (vcpu->arch.pio.count)
4331                 goto data_avail;
4332
4333         trace_kvm_pio(0, port, size, count);
4334
4335         vcpu->arch.pio.port = port;
4336         vcpu->arch.pio.in = 1;
4337         vcpu->arch.pio.count  = count;
4338         vcpu->arch.pio.size = size;
4339
4340         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4341         data_avail:
4342                 memcpy(val, vcpu->arch.pio_data, size * count);
4343                 vcpu->arch.pio.count = 0;
4344                 return 1;
4345         }
4346
4347         vcpu->run->exit_reason = KVM_EXIT_IO;
4348         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4349         vcpu->run->io.size = size;
4350         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4351         vcpu->run->io.count = count;
4352         vcpu->run->io.port = port;
4353
4354         return 0;
4355 }
4356
4357 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4358                                      int size, unsigned short port,
4359                                      const void *val, unsigned int count)
4360 {
4361         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4362
4363         trace_kvm_pio(1, port, size, count);
4364
4365         vcpu->arch.pio.port = port;
4366         vcpu->arch.pio.in = 0;
4367         vcpu->arch.pio.count = count;
4368         vcpu->arch.pio.size = size;
4369
4370         memcpy(vcpu->arch.pio_data, val, size * count);
4371
4372         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4373                 vcpu->arch.pio.count = 0;
4374                 return 1;
4375         }
4376
4377         vcpu->run->exit_reason = KVM_EXIT_IO;
4378         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4379         vcpu->run->io.size = size;
4380         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4381         vcpu->run->io.count = count;
4382         vcpu->run->io.port = port;
4383
4384         return 0;
4385 }
4386
4387 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4388 {
4389         return kvm_x86_ops->get_segment_base(vcpu, seg);
4390 }
4391
4392 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4393 {
4394         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4395 }
4396
4397 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4398 {
4399         if (!need_emulate_wbinvd(vcpu))
4400                 return X86EMUL_CONTINUE;
4401
4402         if (kvm_x86_ops->has_wbinvd_exit()) {
4403                 int cpu = get_cpu();
4404
4405                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4406                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4407                                 wbinvd_ipi, NULL, 1);
4408                 put_cpu();
4409                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4410         } else
4411                 wbinvd();
4412         return X86EMUL_CONTINUE;
4413 }
4414 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4415
4416 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4417 {
4418         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4419 }
4420
4421 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4422 {
4423         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4424 }
4425
4426 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4427 {
4428
4429         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4430 }
4431
4432 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4433 {
4434         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4435 }
4436
4437 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4438 {
4439         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4440         unsigned long value;
4441
4442         switch (cr) {
4443         case 0:
4444                 value = kvm_read_cr0(vcpu);
4445                 break;
4446         case 2:
4447                 value = vcpu->arch.cr2;
4448                 break;
4449         case 3:
4450                 value = kvm_read_cr3(vcpu);
4451                 break;
4452         case 4:
4453                 value = kvm_read_cr4(vcpu);
4454                 break;
4455         case 8:
4456                 value = kvm_get_cr8(vcpu);
4457                 break;
4458         default:
4459                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4460                 return 0;
4461         }
4462
4463         return value;
4464 }
4465
4466 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4467 {
4468         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469         int res = 0;
4470
4471         switch (cr) {
4472         case 0:
4473                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4474                 break;
4475         case 2:
4476                 vcpu->arch.cr2 = val;
4477                 break;
4478         case 3:
4479                 res = kvm_set_cr3(vcpu, val);
4480                 break;
4481         case 4:
4482                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4483                 break;
4484         case 8:
4485                 res = kvm_set_cr8(vcpu, val);
4486                 break;
4487         default:
4488                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4489                 res = -1;
4490         }
4491
4492         return res;
4493 }
4494
4495 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4496 {
4497         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4498 }
4499
4500 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4501 {
4502         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4503 }
4504
4505 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4506 {
4507         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4508 }
4509
4510 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4511 {
4512         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4513 }
4514
4515 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4516 {
4517         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4518 }
4519
4520 static unsigned long emulator_get_cached_segment_base(
4521         struct x86_emulate_ctxt *ctxt, int seg)
4522 {
4523         return get_segment_base(emul_to_vcpu(ctxt), seg);
4524 }
4525
4526 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4527                                  struct desc_struct *desc, u32 *base3,
4528                                  int seg)
4529 {
4530         struct kvm_segment var;
4531
4532         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4533         *selector = var.selector;
4534
4535         if (var.unusable)
4536                 return false;
4537
4538         if (var.g)
4539                 var.limit >>= 12;
4540         set_desc_limit(desc, var.limit);
4541         set_desc_base(desc, (unsigned long)var.base);
4542 #ifdef CONFIG_X86_64
4543         if (base3)
4544                 *base3 = var.base >> 32;
4545 #endif
4546         desc->type = var.type;
4547         desc->s = var.s;
4548         desc->dpl = var.dpl;
4549         desc->p = var.present;
4550         desc->avl = var.avl;
4551         desc->l = var.l;
4552         desc->d = var.db;
4553         desc->g = var.g;
4554
4555         return true;
4556 }
4557
4558 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4559                                  struct desc_struct *desc, u32 base3,
4560                                  int seg)
4561 {
4562         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4563         struct kvm_segment var;
4564
4565         var.selector = selector;
4566         var.base = get_desc_base(desc);
4567 #ifdef CONFIG_X86_64
4568         var.base |= ((u64)base3) << 32;
4569 #endif
4570         var.limit = get_desc_limit(desc);
4571         if (desc->g)
4572                 var.limit = (var.limit << 12) | 0xfff;
4573         var.type = desc->type;
4574         var.present = desc->p;
4575         var.dpl = desc->dpl;
4576         var.db = desc->d;
4577         var.s = desc->s;
4578         var.l = desc->l;
4579         var.g = desc->g;
4580         var.avl = desc->avl;
4581         var.present = desc->p;
4582         var.unusable = !var.present;
4583         var.padding = 0;
4584
4585         kvm_set_segment(vcpu, &var, seg);
4586         return;
4587 }
4588
4589 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4590                             u32 msr_index, u64 *pdata)
4591 {
4592         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4593 }
4594
4595 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4596                             u32 msr_index, u64 data)
4597 {
4598         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4599 }
4600
4601 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4602 {
4603         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4604 }
4605
4606 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4607 {
4608         preempt_disable();
4609         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4610         /*
4611          * CR0.TS may reference the host fpu state, not the guest fpu state,
4612          * so it may be clear at this point.
4613          */
4614         clts();
4615 }
4616
4617 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4618 {
4619         preempt_enable();
4620 }
4621
4622 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4623                               struct x86_instruction_info *info,
4624                               enum x86_intercept_stage stage)
4625 {
4626         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4627 }
4628
4629 static struct x86_emulate_ops emulate_ops = {
4630         .read_std            = kvm_read_guest_virt_system,
4631         .write_std           = kvm_write_guest_virt_system,
4632         .fetch               = kvm_fetch_guest_virt,
4633         .read_emulated       = emulator_read_emulated,
4634         .write_emulated      = emulator_write_emulated,
4635         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4636         .invlpg              = emulator_invlpg,
4637         .pio_in_emulated     = emulator_pio_in_emulated,
4638         .pio_out_emulated    = emulator_pio_out_emulated,
4639         .get_segment         = emulator_get_segment,
4640         .set_segment         = emulator_set_segment,
4641         .get_cached_segment_base = emulator_get_cached_segment_base,
4642         .get_gdt             = emulator_get_gdt,
4643         .get_idt             = emulator_get_idt,
4644         .set_gdt             = emulator_set_gdt,
4645         .set_idt             = emulator_set_idt,
4646         .get_cr              = emulator_get_cr,
4647         .set_cr              = emulator_set_cr,
4648         .cpl                 = emulator_get_cpl,
4649         .get_dr              = emulator_get_dr,
4650         .set_dr              = emulator_set_dr,
4651         .set_msr             = emulator_set_msr,
4652         .get_msr             = emulator_get_msr,
4653         .halt                = emulator_halt,
4654         .wbinvd              = emulator_wbinvd,
4655         .fix_hypercall       = emulator_fix_hypercall,
4656         .get_fpu             = emulator_get_fpu,
4657         .put_fpu             = emulator_put_fpu,
4658         .intercept           = emulator_intercept,
4659 };
4660
4661 static void cache_all_regs(struct kvm_vcpu *vcpu)
4662 {
4663         kvm_register_read(vcpu, VCPU_REGS_RAX);
4664         kvm_register_read(vcpu, VCPU_REGS_RSP);
4665         kvm_register_read(vcpu, VCPU_REGS_RIP);
4666         vcpu->arch.regs_dirty = ~0;
4667 }
4668
4669 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4670 {
4671         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4672         /*
4673          * an sti; sti; sequence only disable interrupts for the first
4674          * instruction. So, if the last instruction, be it emulated or
4675          * not, left the system with the INT_STI flag enabled, it
4676          * means that the last instruction is an sti. We should not
4677          * leave the flag on in this case. The same goes for mov ss
4678          */
4679         if (!(int_shadow & mask))
4680                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4681 }
4682
4683 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4684 {
4685         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4686         if (ctxt->exception.vector == PF_VECTOR)
4687                 kvm_propagate_fault(vcpu, &ctxt->exception);
4688         else if (ctxt->exception.error_code_valid)
4689                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4690                                       ctxt->exception.error_code);
4691         else
4692                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4693 }
4694
4695 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4696                               const unsigned long *regs)
4697 {
4698         memset(&ctxt->twobyte, 0,
4699                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4700         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4701
4702         ctxt->fetch.start = 0;
4703         ctxt->fetch.end = 0;
4704         ctxt->io_read.pos = 0;
4705         ctxt->io_read.end = 0;
4706         ctxt->mem_read.pos = 0;
4707         ctxt->mem_read.end = 0;
4708 }
4709
4710 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4711 {
4712         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713         int cs_db, cs_l;
4714
4715         /*
4716          * TODO: fix emulate.c to use guest_read/write_register
4717          * instead of direct ->regs accesses, can save hundred cycles
4718          * on Intel for instructions that don't read/change RSP, for
4719          * for example.
4720          */
4721         cache_all_regs(vcpu);
4722
4723         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4724
4725         ctxt->eflags = kvm_get_rflags(vcpu);
4726         ctxt->eip = kvm_rip_read(vcpu);
4727         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4728                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4729                      cs_l                               ? X86EMUL_MODE_PROT64 :
4730                      cs_db                              ? X86EMUL_MODE_PROT32 :
4731                                                           X86EMUL_MODE_PROT16;
4732         ctxt->guest_mode = is_guest_mode(vcpu);
4733
4734         init_decode_cache(ctxt, vcpu->arch.regs);
4735         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4736 }
4737
4738 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4739 {
4740         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4741         int ret;
4742
4743         init_emulate_ctxt(vcpu);
4744
4745         ctxt->op_bytes = 2;
4746         ctxt->ad_bytes = 2;
4747         ctxt->_eip = ctxt->eip + inc_eip;
4748         ret = emulate_int_real(ctxt, irq);
4749
4750         if (ret != X86EMUL_CONTINUE)
4751                 return EMULATE_FAIL;
4752
4753         ctxt->eip = ctxt->_eip;
4754         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4755         kvm_rip_write(vcpu, ctxt->eip);
4756         kvm_set_rflags(vcpu, ctxt->eflags);
4757
4758         if (irq == NMI_VECTOR)
4759                 vcpu->arch.nmi_pending = false;
4760         else
4761                 vcpu->arch.interrupt.pending = false;
4762
4763         return EMULATE_DONE;
4764 }
4765 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4766
4767 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4768 {
4769         int r = EMULATE_DONE;
4770
4771         ++vcpu->stat.insn_emulation_fail;
4772         trace_kvm_emulate_insn_failed(vcpu);
4773         if (!is_guest_mode(vcpu)) {
4774                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4775                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4776                 vcpu->run->internal.ndata = 0;
4777                 r = EMULATE_FAIL;
4778         }
4779         kvm_queue_exception(vcpu, UD_VECTOR);
4780
4781         return r;
4782 }
4783
4784 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4785 {
4786         gpa_t gpa;
4787
4788         if (tdp_enabled)
4789                 return false;
4790
4791         /*
4792          * if emulation was due to access to shadowed page table
4793          * and it failed try to unshadow page and re-entetr the
4794          * guest to let CPU execute the instruction.
4795          */
4796         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4797                 return true;
4798
4799         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4800
4801         if (gpa == UNMAPPED_GVA)
4802                 return true; /* let cpu generate fault */
4803
4804         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4805                 return true;
4806
4807         return false;
4808 }
4809
4810 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4811                             unsigned long cr2,
4812                             int emulation_type,
4813                             void *insn,
4814                             int insn_len)
4815 {
4816         int r;
4817         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4818         bool writeback = true;
4819
4820         kvm_clear_exception_queue(vcpu);
4821
4822         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4823                 init_emulate_ctxt(vcpu);
4824                 ctxt->interruptibility = 0;
4825                 ctxt->have_exception = false;
4826                 ctxt->perm_ok = false;
4827
4828                 ctxt->only_vendor_specific_insn
4829                         = emulation_type & EMULTYPE_TRAP_UD;
4830
4831                 r = x86_decode_insn(ctxt, insn, insn_len);
4832
4833                 trace_kvm_emulate_insn_start(vcpu);
4834                 ++vcpu->stat.insn_emulation;
4835                 if (r)  {
4836                         if (emulation_type & EMULTYPE_TRAP_UD)
4837                                 return EMULATE_FAIL;
4838                         if (reexecute_instruction(vcpu, cr2))
4839                                 return EMULATE_DONE;
4840                         if (emulation_type & EMULTYPE_SKIP)
4841                                 return EMULATE_FAIL;
4842                         return handle_emulation_failure(vcpu);
4843                 }
4844         }
4845
4846         if (emulation_type & EMULTYPE_SKIP) {
4847                 kvm_rip_write(vcpu, ctxt->_eip);
4848                 return EMULATE_DONE;
4849         }
4850
4851         /* this is needed for vmware backdoor interface to work since it
4852            changes registers values  during IO operation */
4853         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4854                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4855                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4856         }
4857
4858 restart:
4859         r = x86_emulate_insn(ctxt);
4860
4861         if (r == EMULATION_INTERCEPTED)
4862                 return EMULATE_DONE;
4863
4864         if (r == EMULATION_FAILED) {
4865                 if (reexecute_instruction(vcpu, cr2))
4866                         return EMULATE_DONE;
4867
4868                 return handle_emulation_failure(vcpu);
4869         }
4870
4871         if (ctxt->have_exception) {
4872                 inject_emulated_exception(vcpu);
4873                 r = EMULATE_DONE;
4874         } else if (vcpu->arch.pio.count) {
4875                 if (!vcpu->arch.pio.in)
4876                         vcpu->arch.pio.count = 0;
4877                 else
4878                         writeback = false;
4879                 r = EMULATE_DO_MMIO;
4880         } else if (vcpu->mmio_needed) {
4881                 if (!vcpu->mmio_is_write)
4882                         writeback = false;
4883                 r = EMULATE_DO_MMIO;
4884         } else if (r == EMULATION_RESTART)
4885                 goto restart;
4886         else
4887                 r = EMULATE_DONE;
4888
4889         if (writeback) {
4890                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4891                 kvm_set_rflags(vcpu, ctxt->eflags);
4892                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4893                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4894                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4895                 kvm_rip_write(vcpu, ctxt->eip);
4896         } else
4897                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4898
4899         return r;
4900 }
4901 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4902
4903 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4904 {
4905         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4906         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4907                                             size, port, &val, 1);
4908         /* do not return to emulator after return from userspace */
4909         vcpu->arch.pio.count = 0;
4910         return ret;
4911 }
4912 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4913
4914 static void tsc_bad(void *info)
4915 {
4916         __this_cpu_write(cpu_tsc_khz, 0);
4917 }
4918
4919 static void tsc_khz_changed(void *data)
4920 {
4921         struct cpufreq_freqs *freq = data;
4922         unsigned long khz = 0;
4923
4924         if (data)
4925                 khz = freq->new;
4926         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4927                 khz = cpufreq_quick_get(raw_smp_processor_id());
4928         if (!khz)
4929                 khz = tsc_khz;
4930         __this_cpu_write(cpu_tsc_khz, khz);
4931 }
4932
4933 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4934                                      void *data)
4935 {
4936         struct cpufreq_freqs *freq = data;
4937         struct kvm *kvm;
4938         struct kvm_vcpu *vcpu;
4939         int i, send_ipi = 0;
4940
4941         /*
4942          * We allow guests to temporarily run on slowing clocks,
4943          * provided we notify them after, or to run on accelerating
4944          * clocks, provided we notify them before.  Thus time never
4945          * goes backwards.
4946          *
4947          * However, we have a problem.  We can't atomically update
4948          * the frequency of a given CPU from this function; it is
4949          * merely a notifier, which can be called from any CPU.
4950          * Changing the TSC frequency at arbitrary points in time
4951          * requires a recomputation of local variables related to
4952          * the TSC for each VCPU.  We must flag these local variables
4953          * to be updated and be sure the update takes place with the
4954          * new frequency before any guests proceed.
4955          *
4956          * Unfortunately, the combination of hotplug CPU and frequency
4957          * change creates an intractable locking scenario; the order
4958          * of when these callouts happen is undefined with respect to
4959          * CPU hotplug, and they can race with each other.  As such,
4960          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4961          * undefined; you can actually have a CPU frequency change take
4962          * place in between the computation of X and the setting of the
4963          * variable.  To protect against this problem, all updates of
4964          * the per_cpu tsc_khz variable are done in an interrupt
4965          * protected IPI, and all callers wishing to update the value
4966          * must wait for a synchronous IPI to complete (which is trivial
4967          * if the caller is on the CPU already).  This establishes the
4968          * necessary total order on variable updates.
4969          *
4970          * Note that because a guest time update may take place
4971          * anytime after the setting of the VCPU's request bit, the
4972          * correct TSC value must be set before the request.  However,
4973          * to ensure the update actually makes it to any guest which
4974          * starts running in hardware virtualization between the set
4975          * and the acquisition of the spinlock, we must also ping the
4976          * CPU after setting the request bit.
4977          *
4978          */
4979
4980         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4981                 return 0;
4982         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4983                 return 0;
4984
4985         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4986
4987         raw_spin_lock(&kvm_lock);
4988         list_for_each_entry(kvm, &vm_list, vm_list) {
4989                 kvm_for_each_vcpu(i, vcpu, kvm) {
4990                         if (vcpu->cpu != freq->cpu)
4991                                 continue;
4992                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4993                         if (vcpu->cpu != smp_processor_id())
4994                                 send_ipi = 1;
4995                 }
4996         }
4997         raw_spin_unlock(&kvm_lock);
4998
4999         if (freq->old < freq->new && send_ipi) {
5000                 /*
5001                  * We upscale the frequency.  Must make the guest
5002                  * doesn't see old kvmclock values while running with
5003                  * the new frequency, otherwise we risk the guest sees
5004                  * time go backwards.
5005                  *
5006                  * In case we update the frequency for another cpu
5007                  * (which might be in guest context) send an interrupt
5008                  * to kick the cpu out of guest context.  Next time
5009                  * guest context is entered kvmclock will be updated,
5010                  * so the guest will not see stale values.
5011                  */
5012                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5013         }
5014         return 0;
5015 }
5016
5017 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5018         .notifier_call  = kvmclock_cpufreq_notifier
5019 };
5020
5021 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5022                                         unsigned long action, void *hcpu)
5023 {
5024         unsigned int cpu = (unsigned long)hcpu;
5025
5026         switch (action) {
5027                 case CPU_ONLINE:
5028                 case CPU_DOWN_FAILED:
5029                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5030                         break;
5031                 case CPU_DOWN_PREPARE:
5032                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5033                         break;
5034         }
5035         return NOTIFY_OK;
5036 }
5037
5038 static struct notifier_block kvmclock_cpu_notifier_block = {
5039         .notifier_call  = kvmclock_cpu_notifier,
5040         .priority = -INT_MAX
5041 };
5042
5043 static void kvm_timer_init(void)
5044 {
5045         int cpu;
5046
5047         max_tsc_khz = tsc_khz;
5048         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5049         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5050 #ifdef CONFIG_CPU_FREQ
5051                 struct cpufreq_policy policy;
5052                 memset(&policy, 0, sizeof(policy));
5053                 cpu = get_cpu();
5054                 cpufreq_get_policy(&policy, cpu);
5055                 if (policy.cpuinfo.max_freq)
5056                         max_tsc_khz = policy.cpuinfo.max_freq;
5057                 put_cpu();
5058 #endif
5059                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5060                                           CPUFREQ_TRANSITION_NOTIFIER);
5061         }
5062         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5063         for_each_online_cpu(cpu)
5064                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5065 }
5066
5067 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5068
5069 static int kvm_is_in_guest(void)
5070 {
5071         return percpu_read(current_vcpu) != NULL;
5072 }
5073
5074 static int kvm_is_user_mode(void)
5075 {
5076         int user_mode = 3;
5077
5078         if (percpu_read(current_vcpu))
5079                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5080
5081         return user_mode != 0;
5082 }
5083
5084 static unsigned long kvm_get_guest_ip(void)
5085 {
5086         unsigned long ip = 0;
5087
5088         if (percpu_read(current_vcpu))
5089                 ip = kvm_rip_read(percpu_read(current_vcpu));
5090
5091         return ip;
5092 }
5093
5094 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5095         .is_in_guest            = kvm_is_in_guest,
5096         .is_user_mode           = kvm_is_user_mode,
5097         .get_guest_ip           = kvm_get_guest_ip,
5098 };
5099
5100 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5101 {
5102         percpu_write(current_vcpu, vcpu);
5103 }
5104 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5105
5106 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5107 {
5108         percpu_write(current_vcpu, NULL);
5109 }
5110 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5111
5112 static void kvm_set_mmio_spte_mask(void)
5113 {
5114         u64 mask;
5115         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5116
5117         /*
5118          * Set the reserved bits and the present bit of an paging-structure
5119          * entry to generate page fault with PFER.RSV = 1.
5120          */
5121         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5122         mask |= 1ull;
5123
5124 #ifdef CONFIG_X86_64
5125         /*
5126          * If reserved bit is not supported, clear the present bit to disable
5127          * mmio page fault.
5128          */
5129         if (maxphyaddr == 52)
5130                 mask &= ~1ull;
5131 #endif
5132
5133         kvm_mmu_set_mmio_spte_mask(mask);
5134 }
5135
5136 int kvm_arch_init(void *opaque)
5137 {
5138         int r;
5139         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5140
5141         if (kvm_x86_ops) {
5142                 printk(KERN_ERR "kvm: already loaded the other module\n");
5143                 r = -EEXIST;
5144                 goto out;
5145         }
5146
5147         if (!ops->cpu_has_kvm_support()) {
5148                 printk(KERN_ERR "kvm: no hardware support\n");
5149                 r = -EOPNOTSUPP;
5150                 goto out;
5151         }
5152         if (ops->disabled_by_bios()) {
5153                 printk(KERN_ERR "kvm: disabled by bios\n");
5154                 r = -EOPNOTSUPP;
5155                 goto out;
5156         }
5157
5158         r = kvm_mmu_module_init();
5159         if (r)
5160                 goto out;
5161
5162         kvm_set_mmio_spte_mask();
5163         kvm_init_msr_list();
5164
5165         kvm_x86_ops = ops;
5166         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5167                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5168
5169         kvm_timer_init();
5170
5171         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5172
5173         if (cpu_has_xsave)
5174                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5175
5176         return 0;
5177
5178 out:
5179         return r;
5180 }
5181
5182 void kvm_arch_exit(void)
5183 {
5184         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5185
5186         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5187                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5188                                             CPUFREQ_TRANSITION_NOTIFIER);
5189         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5190         kvm_x86_ops = NULL;
5191         kvm_mmu_module_exit();
5192 }
5193
5194 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5195 {
5196         ++vcpu->stat.halt_exits;
5197         if (irqchip_in_kernel(vcpu->kvm)) {
5198                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5199                 return 1;
5200         } else {
5201                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5202                 return 0;
5203         }
5204 }
5205 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5206
5207 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5208                            unsigned long a1)
5209 {
5210         if (is_long_mode(vcpu))
5211                 return a0;
5212         else
5213                 return a0 | ((gpa_t)a1 << 32);
5214 }
5215
5216 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5217 {
5218         u64 param, ingpa, outgpa, ret;
5219         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5220         bool fast, longmode;
5221         int cs_db, cs_l;
5222
5223         /*
5224          * hypercall generates UD from non zero cpl and real mode
5225          * per HYPER-V spec
5226          */
5227         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5228                 kvm_queue_exception(vcpu, UD_VECTOR);
5229                 return 0;
5230         }
5231
5232         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5233         longmode = is_long_mode(vcpu) && cs_l == 1;
5234
5235         if (!longmode) {
5236                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5237                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5238                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5239                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5240                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5241                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5242         }
5243 #ifdef CONFIG_X86_64
5244         else {
5245                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5246                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5247                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5248         }
5249 #endif
5250
5251         code = param & 0xffff;
5252         fast = (param >> 16) & 0x1;
5253         rep_cnt = (param >> 32) & 0xfff;
5254         rep_idx = (param >> 48) & 0xfff;
5255
5256         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5257
5258         switch (code) {
5259         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5260                 kvm_vcpu_on_spin(vcpu);
5261                 break;
5262         default:
5263                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5264                 break;
5265         }
5266
5267         ret = res | (((u64)rep_done & 0xfff) << 32);
5268         if (longmode) {
5269                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5270         } else {
5271                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5272                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5273         }
5274
5275         return 1;
5276 }
5277
5278 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5279 {
5280         unsigned long nr, a0, a1, a2, a3, ret;
5281         int r = 1;
5282
5283         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5284                 return kvm_hv_hypercall(vcpu);
5285
5286         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5287         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5288         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5289         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5290         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5291
5292         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5293
5294         if (!is_long_mode(vcpu)) {
5295                 nr &= 0xFFFFFFFF;
5296                 a0 &= 0xFFFFFFFF;
5297                 a1 &= 0xFFFFFFFF;
5298                 a2 &= 0xFFFFFFFF;
5299                 a3 &= 0xFFFFFFFF;
5300         }
5301
5302         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5303                 ret = -KVM_EPERM;
5304                 goto out;
5305         }
5306
5307         switch (nr) {
5308         case KVM_HC_VAPIC_POLL_IRQ:
5309                 ret = 0;
5310                 break;
5311         case KVM_HC_MMU_OP:
5312                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5313                 break;
5314         default:
5315                 ret = -KVM_ENOSYS;
5316                 break;
5317         }
5318 out:
5319         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5320         ++vcpu->stat.hypercalls;
5321         return r;
5322 }
5323 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5324
5325 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5326 {
5327         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5328         char instruction[3];
5329         unsigned long rip = kvm_rip_read(vcpu);
5330
5331         /*
5332          * Blow out the MMU to ensure that no other VCPU has an active mapping
5333          * to ensure that the updated hypercall appears atomically across all
5334          * VCPUs.
5335          */
5336         kvm_mmu_zap_all(vcpu->kvm);
5337
5338         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5339
5340         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5341 }
5342
5343 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5344 {
5345         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5346         int j, nent = vcpu->arch.cpuid_nent;
5347
5348         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5349         /* when no next entry is found, the current entry[i] is reselected */
5350         for (j = i + 1; ; j = (j + 1) % nent) {
5351                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5352                 if (ej->function == e->function) {
5353                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5354                         return j;
5355                 }
5356         }
5357         return 0; /* silence gcc, even though control never reaches here */
5358 }
5359
5360 /* find an entry with matching function, matching index (if needed), and that
5361  * should be read next (if it's stateful) */
5362 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5363         u32 function, u32 index)
5364 {
5365         if (e->function != function)
5366                 return 0;
5367         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5368                 return 0;
5369         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5370             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5371                 return 0;
5372         return 1;
5373 }
5374
5375 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5376                                               u32 function, u32 index)
5377 {
5378         int i;
5379         struct kvm_cpuid_entry2 *best = NULL;
5380
5381         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5382                 struct kvm_cpuid_entry2 *e;
5383
5384                 e = &vcpu->arch.cpuid_entries[i];
5385                 if (is_matching_cpuid_entry(e, function, index)) {
5386                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5387                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5388                         best = e;
5389                         break;
5390                 }
5391         }
5392         return best;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5395
5396 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5397 {
5398         struct kvm_cpuid_entry2 *best;
5399
5400         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5401         if (!best || best->eax < 0x80000008)
5402                 goto not_found;
5403         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5404         if (best)
5405                 return best->eax & 0xff;
5406 not_found:
5407         return 36;
5408 }
5409
5410 /*
5411  * If no match is found, check whether we exceed the vCPU's limit
5412  * and return the content of the highest valid _standard_ leaf instead.
5413  * This is to satisfy the CPUID specification.
5414  */
5415 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5416                                                   u32 function, u32 index)
5417 {
5418         struct kvm_cpuid_entry2 *maxlevel;
5419
5420         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5421         if (!maxlevel || maxlevel->eax >= function)
5422                 return NULL;
5423         if (function & 0x80000000) {
5424                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5425                 if (!maxlevel)
5426                         return NULL;
5427         }
5428         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5429 }
5430
5431 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5432 {
5433         u32 function, index;
5434         struct kvm_cpuid_entry2 *best;
5435
5436         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5437         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5438         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5439         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5440         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5441         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5442         best = kvm_find_cpuid_entry(vcpu, function, index);
5443
5444         if (!best)
5445                 best = check_cpuid_limit(vcpu, function, index);
5446
5447         if (best) {
5448                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5449                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5450                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5451                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5452         }
5453         kvm_x86_ops->skip_emulated_instruction(vcpu);
5454         trace_kvm_cpuid(function,
5455                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5456                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5457                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5458                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5459 }
5460 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5461
5462 /*
5463  * Check if userspace requested an interrupt window, and that the
5464  * interrupt window is open.
5465  *
5466  * No need to exit to userspace if we already have an interrupt queued.
5467  */
5468 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5469 {
5470         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5471                 vcpu->run->request_interrupt_window &&
5472                 kvm_arch_interrupt_allowed(vcpu));
5473 }
5474
5475 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5476 {
5477         struct kvm_run *kvm_run = vcpu->run;
5478
5479         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5480         kvm_run->cr8 = kvm_get_cr8(vcpu);
5481         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5482         if (irqchip_in_kernel(vcpu->kvm))
5483                 kvm_run->ready_for_interrupt_injection = 1;
5484         else
5485                 kvm_run->ready_for_interrupt_injection =
5486                         kvm_arch_interrupt_allowed(vcpu) &&
5487                         !kvm_cpu_has_interrupt(vcpu) &&
5488                         !kvm_event_needs_reinjection(vcpu);
5489 }
5490
5491 static void vapic_enter(struct kvm_vcpu *vcpu)
5492 {
5493         struct kvm_lapic *apic = vcpu->arch.apic;
5494         struct page *page;
5495
5496         if (!apic || !apic->vapic_addr)
5497                 return;
5498
5499         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5500
5501         vcpu->arch.apic->vapic_page = page;
5502 }
5503
5504 static void vapic_exit(struct kvm_vcpu *vcpu)
5505 {
5506         struct kvm_lapic *apic = vcpu->arch.apic;
5507         int idx;
5508
5509         if (!apic || !apic->vapic_addr)
5510                 return;
5511
5512         idx = srcu_read_lock(&vcpu->kvm->srcu);
5513         kvm_release_page_dirty(apic->vapic_page);
5514         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5515         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5516 }
5517
5518 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5519 {
5520         int max_irr, tpr;
5521
5522         if (!kvm_x86_ops->update_cr8_intercept)
5523                 return;
5524
5525         if (!vcpu->arch.apic)
5526                 return;
5527
5528         if (!vcpu->arch.apic->vapic_addr)
5529                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5530         else
5531                 max_irr = -1;
5532
5533         if (max_irr != -1)
5534                 max_irr >>= 4;
5535
5536         tpr = kvm_lapic_get_cr8(vcpu);
5537
5538         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5539 }
5540
5541 static void inject_pending_event(struct kvm_vcpu *vcpu)
5542 {
5543         /* try to reinject previous events if any */
5544         if (vcpu->arch.exception.pending) {
5545                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5546                                         vcpu->arch.exception.has_error_code,
5547                                         vcpu->arch.exception.error_code);
5548                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5549                                           vcpu->arch.exception.has_error_code,
5550                                           vcpu->arch.exception.error_code,
5551                                           vcpu->arch.exception.reinject);
5552                 return;
5553         }
5554
5555         if (vcpu->arch.nmi_injected) {
5556                 kvm_x86_ops->set_nmi(vcpu);
5557                 return;
5558         }
5559
5560         if (vcpu->arch.interrupt.pending) {
5561                 kvm_x86_ops->set_irq(vcpu);
5562                 return;
5563         }
5564
5565         /* try to inject new event if pending */
5566         if (vcpu->arch.nmi_pending) {
5567                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5568                         vcpu->arch.nmi_pending = false;
5569                         vcpu->arch.nmi_injected = true;
5570                         kvm_x86_ops->set_nmi(vcpu);
5571                 }
5572         } else if (kvm_cpu_has_interrupt(vcpu)) {
5573                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5574                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5575                                             false);
5576                         kvm_x86_ops->set_irq(vcpu);
5577                 }
5578         }
5579 }
5580
5581 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5582 {
5583         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5584                         !vcpu->guest_xcr0_loaded) {
5585                 /* kvm_set_xcr() also depends on this */
5586                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5587                 vcpu->guest_xcr0_loaded = 1;
5588         }
5589 }
5590
5591 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5592 {
5593         if (vcpu->guest_xcr0_loaded) {
5594                 if (vcpu->arch.xcr0 != host_xcr0)
5595                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5596                 vcpu->guest_xcr0_loaded = 0;
5597         }
5598 }
5599
5600 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5601 {
5602         int r;
5603         bool nmi_pending;
5604         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5605                 vcpu->run->request_interrupt_window;
5606
5607         if (vcpu->requests) {
5608                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5609                         kvm_mmu_unload(vcpu);
5610                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5611                         __kvm_migrate_timers(vcpu);
5612                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5613                         r = kvm_guest_time_update(vcpu);
5614                         if (unlikely(r))
5615                                 goto out;
5616                 }
5617                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5618                         kvm_mmu_sync_roots(vcpu);
5619                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5620                         kvm_x86_ops->tlb_flush(vcpu);
5621                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5622                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5623                         r = 0;
5624                         goto out;
5625                 }
5626                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5627                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5628                         r = 0;
5629                         goto out;
5630                 }
5631                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5632                         vcpu->fpu_active = 0;
5633                         kvm_x86_ops->fpu_deactivate(vcpu);
5634                 }
5635                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5636                         /* Page is swapped out. Do synthetic halt */
5637                         vcpu->arch.apf.halted = true;
5638                         r = 1;
5639                         goto out;
5640                 }
5641                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5642                         record_steal_time(vcpu);
5643
5644         }
5645
5646         r = kvm_mmu_reload(vcpu);
5647         if (unlikely(r))
5648                 goto out;
5649
5650         /*
5651          * An NMI can be injected between local nmi_pending read and
5652          * vcpu->arch.nmi_pending read inside inject_pending_event().
5653          * But in that case, KVM_REQ_EVENT will be set, which makes
5654          * the race described above benign.
5655          */
5656         nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5657
5658         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5659                 inject_pending_event(vcpu);
5660
5661                 /* enable NMI/IRQ window open exits if needed */
5662                 if (nmi_pending)
5663                         kvm_x86_ops->enable_nmi_window(vcpu);
5664                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5665                         kvm_x86_ops->enable_irq_window(vcpu);
5666
5667                 if (kvm_lapic_enabled(vcpu)) {
5668                         update_cr8_intercept(vcpu);
5669                         kvm_lapic_sync_to_vapic(vcpu);
5670                 }
5671         }
5672
5673         preempt_disable();
5674
5675         kvm_x86_ops->prepare_guest_switch(vcpu);
5676         if (vcpu->fpu_active)
5677                 kvm_load_guest_fpu(vcpu);
5678         kvm_load_guest_xcr0(vcpu);
5679
5680         vcpu->mode = IN_GUEST_MODE;
5681
5682         /* We should set ->mode before check ->requests,
5683          * see the comment in make_all_cpus_request.
5684          */
5685         smp_mb();
5686
5687         local_irq_disable();
5688
5689         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5690             || need_resched() || signal_pending(current)) {
5691                 vcpu->mode = OUTSIDE_GUEST_MODE;
5692                 smp_wmb();
5693                 local_irq_enable();
5694                 preempt_enable();
5695                 kvm_x86_ops->cancel_injection(vcpu);
5696                 r = 1;
5697                 goto out;
5698         }
5699
5700         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5701
5702         kvm_guest_enter();
5703
5704         if (unlikely(vcpu->arch.switch_db_regs)) {
5705                 set_debugreg(0, 7);
5706                 set_debugreg(vcpu->arch.eff_db[0], 0);
5707                 set_debugreg(vcpu->arch.eff_db[1], 1);
5708                 set_debugreg(vcpu->arch.eff_db[2], 2);
5709                 set_debugreg(vcpu->arch.eff_db[3], 3);
5710         }
5711
5712         trace_kvm_entry(vcpu->vcpu_id);
5713         kvm_x86_ops->run(vcpu);
5714
5715         /*
5716          * If the guest has used debug registers, at least dr7
5717          * will be disabled while returning to the host.
5718          * If we don't have active breakpoints in the host, we don't
5719          * care about the messed up debug address registers. But if
5720          * we have some of them active, restore the old state.
5721          */
5722         if (hw_breakpoint_active())
5723                 hw_breakpoint_restore();
5724
5725         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5726
5727         vcpu->mode = OUTSIDE_GUEST_MODE;
5728         smp_wmb();
5729         local_irq_enable();
5730
5731         ++vcpu->stat.exits;
5732
5733         /*
5734          * We must have an instruction between local_irq_enable() and
5735          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5736          * the interrupt shadow.  The stat.exits increment will do nicely.
5737          * But we need to prevent reordering, hence this barrier():
5738          */
5739         barrier();
5740
5741         kvm_guest_exit();
5742
5743         preempt_enable();
5744
5745         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5746
5747         /*
5748          * Profile KVM exit RIPs:
5749          */
5750         if (unlikely(prof_on == KVM_PROFILING)) {
5751                 unsigned long rip = kvm_rip_read(vcpu);
5752                 profile_hit(KVM_PROFILING, (void *)rip);
5753         }
5754
5755
5756         kvm_lapic_sync_from_vapic(vcpu);
5757
5758         r = kvm_x86_ops->handle_exit(vcpu);
5759 out:
5760         return r;
5761 }
5762
5763
5764 static int __vcpu_run(struct kvm_vcpu *vcpu)
5765 {
5766         int r;
5767         struct kvm *kvm = vcpu->kvm;
5768
5769         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5770                 pr_debug("vcpu %d received sipi with vector # %x\n",
5771                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5772                 kvm_lapic_reset(vcpu);
5773                 r = kvm_arch_vcpu_reset(vcpu);
5774                 if (r)
5775                         return r;
5776                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5777         }
5778
5779         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5780         vapic_enter(vcpu);
5781
5782         r = 1;
5783         while (r > 0) {
5784                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5785                     !vcpu->arch.apf.halted)
5786                         r = vcpu_enter_guest(vcpu);
5787                 else {
5788                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5789                         kvm_vcpu_block(vcpu);
5790                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5791                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5792                         {
5793                                 switch(vcpu->arch.mp_state) {
5794                                 case KVM_MP_STATE_HALTED:
5795                                         vcpu->arch.mp_state =
5796                                                 KVM_MP_STATE_RUNNABLE;
5797                                 case KVM_MP_STATE_RUNNABLE:
5798                                         vcpu->arch.apf.halted = false;
5799                                         break;
5800                                 case KVM_MP_STATE_SIPI_RECEIVED:
5801                                 default:
5802                                         r = -EINTR;
5803                                         break;
5804                                 }
5805                         }
5806                 }
5807
5808                 if (r <= 0)
5809                         break;
5810
5811                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5812                 if (kvm_cpu_has_pending_timer(vcpu))
5813                         kvm_inject_pending_timer_irqs(vcpu);
5814
5815                 if (dm_request_for_irq_injection(vcpu)) {
5816                         r = -EINTR;
5817                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5818                         ++vcpu->stat.request_irq_exits;
5819                 }
5820
5821                 kvm_check_async_pf_completion(vcpu);
5822
5823                 if (signal_pending(current)) {
5824                         r = -EINTR;
5825                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5826                         ++vcpu->stat.signal_exits;
5827                 }
5828                 if (need_resched()) {
5829                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5830                         kvm_resched(vcpu);
5831                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5832                 }
5833         }
5834
5835         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5836
5837         vapic_exit(vcpu);
5838
5839         return r;
5840 }
5841
5842 static int complete_mmio(struct kvm_vcpu *vcpu)
5843 {
5844         struct kvm_run *run = vcpu->run;
5845         int r;
5846
5847         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5848                 return 1;
5849
5850         if (vcpu->mmio_needed) {
5851                 vcpu->mmio_needed = 0;
5852                 if (!vcpu->mmio_is_write)
5853                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5854                                run->mmio.data, 8);
5855                 vcpu->mmio_index += 8;
5856                 if (vcpu->mmio_index < vcpu->mmio_size) {
5857                         run->exit_reason = KVM_EXIT_MMIO;
5858                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5859                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5860                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5861                         run->mmio.is_write = vcpu->mmio_is_write;
5862                         vcpu->mmio_needed = 1;
5863                         return 0;
5864                 }
5865                 if (vcpu->mmio_is_write)
5866                         return 1;
5867                 vcpu->mmio_read_completed = 1;
5868         }
5869         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5870         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5871         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5872         if (r != EMULATE_DONE)
5873                 return 0;
5874         return 1;
5875 }
5876
5877 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5878 {
5879         int r;
5880         sigset_t sigsaved;
5881
5882         if (!tsk_used_math(current) && init_fpu(current))
5883                 return -ENOMEM;
5884
5885         if (vcpu->sigset_active)
5886                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5887
5888         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5889                 kvm_vcpu_block(vcpu);
5890                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5891                 r = -EAGAIN;
5892                 goto out;
5893         }
5894
5895         /* re-sync apic's tpr */
5896         if (!irqchip_in_kernel(vcpu->kvm)) {
5897                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5898                         r = -EINVAL;
5899                         goto out;
5900                 }
5901         }
5902
5903         r = complete_mmio(vcpu);
5904         if (r <= 0)
5905                 goto out;
5906
5907         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5908                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5909                                      kvm_run->hypercall.ret);
5910
5911         r = __vcpu_run(vcpu);
5912
5913 out:
5914         post_kvm_run_save(vcpu);
5915         if (vcpu->sigset_active)
5916                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5917
5918         return r;
5919 }
5920
5921 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5922 {
5923         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5924                 /*
5925                  * We are here if userspace calls get_regs() in the middle of
5926                  * instruction emulation. Registers state needs to be copied
5927                  * back from emulation context to vcpu. Usrapace shouldn't do
5928                  * that usually, but some bad designed PV devices (vmware
5929                  * backdoor interface) need this to work
5930                  */
5931                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5932                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5933                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5934         }
5935         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5936         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5937         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5938         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5939         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5940         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5941         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5942         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5943 #ifdef CONFIG_X86_64
5944         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5945         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5946         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5947         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5948         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5949         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5950         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5951         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5952 #endif
5953
5954         regs->rip = kvm_rip_read(vcpu);
5955         regs->rflags = kvm_get_rflags(vcpu);
5956
5957         return 0;
5958 }
5959
5960 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5961 {
5962         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5963         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5964
5965         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5966         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5967         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5968         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5969         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5970         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5971         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5972         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5973 #ifdef CONFIG_X86_64
5974         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5975         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5976         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5977         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5978         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5979         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5980         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5981         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5982 #endif
5983
5984         kvm_rip_write(vcpu, regs->rip);
5985         kvm_set_rflags(vcpu, regs->rflags);
5986
5987         vcpu->arch.exception.pending = false;
5988
5989         kvm_make_request(KVM_REQ_EVENT, vcpu);
5990
5991         return 0;
5992 }
5993
5994 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5995 {
5996         struct kvm_segment cs;
5997
5998         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5999         *db = cs.db;
6000         *l = cs.l;
6001 }
6002 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6003
6004 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6005                                   struct kvm_sregs *sregs)
6006 {
6007         struct desc_ptr dt;
6008
6009         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6010         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6011         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6012         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6013         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6014         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6015
6016         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6017         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6018
6019         kvm_x86_ops->get_idt(vcpu, &dt);
6020         sregs->idt.limit = dt.size;
6021         sregs->idt.base = dt.address;
6022         kvm_x86_ops->get_gdt(vcpu, &dt);
6023         sregs->gdt.limit = dt.size;
6024         sregs->gdt.base = dt.address;
6025
6026         sregs->cr0 = kvm_read_cr0(vcpu);
6027         sregs->cr2 = vcpu->arch.cr2;
6028         sregs->cr3 = kvm_read_cr3(vcpu);
6029         sregs->cr4 = kvm_read_cr4(vcpu);
6030         sregs->cr8 = kvm_get_cr8(vcpu);
6031         sregs->efer = vcpu->arch.efer;
6032         sregs->apic_base = kvm_get_apic_base(vcpu);
6033
6034         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6035
6036         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6037                 set_bit(vcpu->arch.interrupt.nr,
6038                         (unsigned long *)sregs->interrupt_bitmap);
6039
6040         return 0;
6041 }
6042
6043 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6044                                     struct kvm_mp_state *mp_state)
6045 {
6046         mp_state->mp_state = vcpu->arch.mp_state;
6047         return 0;
6048 }
6049
6050 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6051                                     struct kvm_mp_state *mp_state)
6052 {
6053         vcpu->arch.mp_state = mp_state->mp_state;
6054         kvm_make_request(KVM_REQ_EVENT, vcpu);
6055         return 0;
6056 }
6057
6058 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6059                     bool has_error_code, u32 error_code)
6060 {
6061         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6062         int ret;
6063
6064         init_emulate_ctxt(vcpu);
6065
6066         ret = emulator_task_switch(ctxt, tss_selector, reason,
6067                                    has_error_code, error_code);
6068
6069         if (ret)
6070                 return EMULATE_FAIL;
6071
6072         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6073         kvm_rip_write(vcpu, ctxt->eip);
6074         kvm_set_rflags(vcpu, ctxt->eflags);
6075         kvm_make_request(KVM_REQ_EVENT, vcpu);
6076         return EMULATE_DONE;
6077 }
6078 EXPORT_SYMBOL_GPL(kvm_task_switch);
6079
6080 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6081                                   struct kvm_sregs *sregs)
6082 {
6083         int mmu_reset_needed = 0;
6084         int pending_vec, max_bits, idx;
6085         struct desc_ptr dt;
6086
6087         dt.size = sregs->idt.limit;
6088         dt.address = sregs->idt.base;
6089         kvm_x86_ops->set_idt(vcpu, &dt);
6090         dt.size = sregs->gdt.limit;
6091         dt.address = sregs->gdt.base;
6092         kvm_x86_ops->set_gdt(vcpu, &dt);
6093
6094         vcpu->arch.cr2 = sregs->cr2;
6095         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6096         vcpu->arch.cr3 = sregs->cr3;
6097         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6098
6099         kvm_set_cr8(vcpu, sregs->cr8);
6100
6101         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6102         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6103         kvm_set_apic_base(vcpu, sregs->apic_base);
6104
6105         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6106         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6107         vcpu->arch.cr0 = sregs->cr0;
6108
6109         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6110         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6111         if (sregs->cr4 & X86_CR4_OSXSAVE)
6112                 update_cpuid(vcpu);
6113
6114         idx = srcu_read_lock(&vcpu->kvm->srcu);
6115         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6116                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6117                 mmu_reset_needed = 1;
6118         }
6119         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6120
6121         if (mmu_reset_needed)
6122                 kvm_mmu_reset_context(vcpu);
6123
6124         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6125         pending_vec = find_first_bit(
6126                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6127         if (pending_vec < max_bits) {
6128                 kvm_queue_interrupt(vcpu, pending_vec, false);
6129                 pr_debug("Set back pending irq %d\n", pending_vec);
6130         }
6131
6132         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6133         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6134         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6135         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6136         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6137         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6138
6139         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6140         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6141
6142         update_cr8_intercept(vcpu);
6143
6144         /* Older userspace won't unhalt the vcpu on reset. */
6145         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6146             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6147             !is_protmode(vcpu))
6148                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6149
6150         kvm_make_request(KVM_REQ_EVENT, vcpu);
6151
6152         return 0;
6153 }
6154
6155 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6156                                         struct kvm_guest_debug *dbg)
6157 {
6158         unsigned long rflags;
6159         int i, r;
6160
6161         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6162                 r = -EBUSY;
6163                 if (vcpu->arch.exception.pending)
6164                         goto out;
6165                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6166                         kvm_queue_exception(vcpu, DB_VECTOR);
6167                 else
6168                         kvm_queue_exception(vcpu, BP_VECTOR);
6169         }
6170
6171         /*
6172          * Read rflags as long as potentially injected trace flags are still
6173          * filtered out.
6174          */
6175         rflags = kvm_get_rflags(vcpu);
6176
6177         vcpu->guest_debug = dbg->control;
6178         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6179                 vcpu->guest_debug = 0;
6180
6181         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6182                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6183                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6184                 vcpu->arch.switch_db_regs =
6185                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6186         } else {
6187                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6188                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6189                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6190         }
6191
6192         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6193                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6194                         get_segment_base(vcpu, VCPU_SREG_CS);
6195
6196         /*
6197          * Trigger an rflags update that will inject or remove the trace
6198          * flags.
6199          */
6200         kvm_set_rflags(vcpu, rflags);
6201
6202         kvm_x86_ops->set_guest_debug(vcpu, dbg);
6203
6204         r = 0;
6205
6206 out:
6207
6208         return r;
6209 }
6210
6211 /*
6212  * Translate a guest virtual address to a guest physical address.
6213  */
6214 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6215                                     struct kvm_translation *tr)
6216 {
6217         unsigned long vaddr = tr->linear_address;
6218         gpa_t gpa;
6219         int idx;
6220
6221         idx = srcu_read_lock(&vcpu->kvm->srcu);
6222         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6223         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6224         tr->physical_address = gpa;
6225         tr->valid = gpa != UNMAPPED_GVA;
6226         tr->writeable = 1;
6227         tr->usermode = 0;
6228
6229         return 0;
6230 }
6231
6232 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6233 {
6234         struct i387_fxsave_struct *fxsave =
6235                         &vcpu->arch.guest_fpu.state->fxsave;
6236
6237         memcpy(fpu->fpr, fxsave->st_space, 128);
6238         fpu->fcw = fxsave->cwd;
6239         fpu->fsw = fxsave->swd;
6240         fpu->ftwx = fxsave->twd;
6241         fpu->last_opcode = fxsave->fop;
6242         fpu->last_ip = fxsave->rip;
6243         fpu->last_dp = fxsave->rdp;
6244         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6245
6246         return 0;
6247 }
6248
6249 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6250 {
6251         struct i387_fxsave_struct *fxsave =
6252                         &vcpu->arch.guest_fpu.state->fxsave;
6253
6254         memcpy(fxsave->st_space, fpu->fpr, 128);
6255         fxsave->cwd = fpu->fcw;
6256         fxsave->swd = fpu->fsw;
6257         fxsave->twd = fpu->ftwx;
6258         fxsave->fop = fpu->last_opcode;
6259         fxsave->rip = fpu->last_ip;
6260         fxsave->rdp = fpu->last_dp;
6261         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6262
6263         return 0;
6264 }
6265
6266 int fx_init(struct kvm_vcpu *vcpu)
6267 {
6268         int err;
6269
6270         err = fpu_alloc(&vcpu->arch.guest_fpu);
6271         if (err)
6272                 return err;
6273
6274         fpu_finit(&vcpu->arch.guest_fpu);
6275
6276         /*
6277          * Ensure guest xcr0 is valid for loading
6278          */
6279         vcpu->arch.xcr0 = XSTATE_FP;
6280
6281         vcpu->arch.cr0 |= X86_CR0_ET;
6282
6283         return 0;
6284 }
6285 EXPORT_SYMBOL_GPL(fx_init);
6286
6287 static void fx_free(struct kvm_vcpu *vcpu)
6288 {
6289         fpu_free(&vcpu->arch.guest_fpu);
6290 }
6291
6292 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6293 {
6294         if (vcpu->guest_fpu_loaded)
6295                 return;
6296
6297         /*
6298          * Restore all possible states in the guest,
6299          * and assume host would use all available bits.
6300          * Guest xcr0 would be loaded later.
6301          */
6302         kvm_put_guest_xcr0(vcpu);
6303         vcpu->guest_fpu_loaded = 1;
6304         unlazy_fpu(current);
6305         fpu_restore_checking(&vcpu->arch.guest_fpu);
6306         trace_kvm_fpu(1);
6307 }
6308
6309 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6310 {
6311         kvm_put_guest_xcr0(vcpu);
6312
6313         if (!vcpu->guest_fpu_loaded)
6314                 return;
6315
6316         vcpu->guest_fpu_loaded = 0;
6317         fpu_save_init(&vcpu->arch.guest_fpu);
6318         ++vcpu->stat.fpu_reload;
6319         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6320         trace_kvm_fpu(0);
6321 }
6322
6323 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6324 {
6325         kvmclock_reset(vcpu);
6326
6327         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6328         fx_free(vcpu);
6329         kvm_x86_ops->vcpu_free(vcpu);
6330 }
6331
6332 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6333                                                 unsigned int id)
6334 {
6335         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6336                 printk_once(KERN_WARNING
6337                 "kvm: SMP vm created on host with unstable TSC; "
6338                 "guest TSC will not be reliable\n");
6339         return kvm_x86_ops->vcpu_create(kvm, id);
6340 }
6341
6342 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6343 {
6344         int r;
6345
6346         vcpu->arch.mtrr_state.have_fixed = 1;
6347         vcpu_load(vcpu);
6348         r = kvm_arch_vcpu_reset(vcpu);
6349         if (r == 0)
6350                 r = kvm_mmu_setup(vcpu);
6351         vcpu_put(vcpu);
6352
6353         return r;
6354 }
6355
6356 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6357 {
6358         vcpu->arch.apf.msr_val = 0;
6359
6360         vcpu_load(vcpu);
6361         kvm_mmu_unload(vcpu);
6362         vcpu_put(vcpu);
6363
6364         fx_free(vcpu);
6365         kvm_x86_ops->vcpu_free(vcpu);
6366 }
6367
6368 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6369 {
6370         vcpu->arch.nmi_pending = false;
6371         vcpu->arch.nmi_injected = false;
6372
6373         vcpu->arch.switch_db_regs = 0;
6374         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6375         vcpu->arch.dr6 = DR6_FIXED_1;
6376         vcpu->arch.dr7 = DR7_FIXED_1;
6377
6378         kvm_make_request(KVM_REQ_EVENT, vcpu);
6379         vcpu->arch.apf.msr_val = 0;
6380         vcpu->arch.st.msr_val = 0;
6381
6382         kvmclock_reset(vcpu);
6383
6384         kvm_clear_async_pf_completion_queue(vcpu);
6385         kvm_async_pf_hash_reset(vcpu);
6386         vcpu->arch.apf.halted = false;
6387
6388         return kvm_x86_ops->vcpu_reset(vcpu);
6389 }
6390
6391 int kvm_arch_hardware_enable(void *garbage)
6392 {
6393         struct kvm *kvm;
6394         struct kvm_vcpu *vcpu;
6395         int i;
6396
6397         kvm_shared_msr_cpu_online();
6398         list_for_each_entry(kvm, &vm_list, vm_list)
6399                 kvm_for_each_vcpu(i, vcpu, kvm)
6400                         if (vcpu->cpu == smp_processor_id())
6401                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6402         return kvm_x86_ops->hardware_enable(garbage);
6403 }
6404
6405 void kvm_arch_hardware_disable(void *garbage)
6406 {
6407         kvm_x86_ops->hardware_disable(garbage);
6408         drop_user_return_notifiers(garbage);
6409 }
6410
6411 int kvm_arch_hardware_setup(void)
6412 {
6413         return kvm_x86_ops->hardware_setup();
6414 }
6415
6416 void kvm_arch_hardware_unsetup(void)
6417 {
6418         kvm_x86_ops->hardware_unsetup();
6419 }
6420
6421 void kvm_arch_check_processor_compat(void *rtn)
6422 {
6423         kvm_x86_ops->check_processor_compatibility(rtn);
6424 }
6425
6426 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6427 {
6428         struct page *page;
6429         struct kvm *kvm;
6430         int r;
6431
6432         BUG_ON(vcpu->kvm == NULL);
6433         kvm = vcpu->kvm;
6434
6435         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6436         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6437         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6438         vcpu->arch.mmu.translate_gpa = translate_gpa;
6439         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6440         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6441                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6442         else
6443                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6444
6445         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6446         if (!page) {
6447                 r = -ENOMEM;
6448                 goto fail;
6449         }
6450         vcpu->arch.pio_data = page_address(page);
6451
6452         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6453
6454         r = kvm_mmu_create(vcpu);
6455         if (r < 0)
6456                 goto fail_free_pio_data;
6457
6458         if (irqchip_in_kernel(kvm)) {
6459                 r = kvm_create_lapic(vcpu);
6460                 if (r < 0)
6461                         goto fail_mmu_destroy;
6462         }
6463
6464         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6465                                        GFP_KERNEL);
6466         if (!vcpu->arch.mce_banks) {
6467                 r = -ENOMEM;
6468                 goto fail_free_lapic;
6469         }
6470         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6471
6472         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6473                 goto fail_free_mce_banks;
6474
6475         kvm_async_pf_hash_reset(vcpu);
6476
6477         return 0;
6478 fail_free_mce_banks:
6479         kfree(vcpu->arch.mce_banks);
6480 fail_free_lapic:
6481         kvm_free_lapic(vcpu);
6482 fail_mmu_destroy:
6483         kvm_mmu_destroy(vcpu);
6484 fail_free_pio_data:
6485         free_page((unsigned long)vcpu->arch.pio_data);
6486 fail:
6487         return r;
6488 }
6489
6490 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6491 {
6492         int idx;
6493
6494         kfree(vcpu->arch.mce_banks);
6495         kvm_free_lapic(vcpu);
6496         idx = srcu_read_lock(&vcpu->kvm->srcu);
6497         kvm_mmu_destroy(vcpu);
6498         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6499         free_page((unsigned long)vcpu->arch.pio_data);
6500 }
6501
6502 int kvm_arch_init_vm(struct kvm *kvm)
6503 {
6504         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6505         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6506
6507         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6508         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6509
6510         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6511
6512         return 0;
6513 }
6514
6515 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6516 {
6517         vcpu_load(vcpu);
6518         kvm_mmu_unload(vcpu);
6519         vcpu_put(vcpu);
6520 }
6521
6522 static void kvm_free_vcpus(struct kvm *kvm)
6523 {
6524         unsigned int i;
6525         struct kvm_vcpu *vcpu;
6526
6527         /*
6528          * Unpin any mmu pages first.
6529          */
6530         kvm_for_each_vcpu(i, vcpu, kvm) {
6531                 kvm_clear_async_pf_completion_queue(vcpu);
6532                 kvm_unload_vcpu_mmu(vcpu);
6533         }
6534         kvm_for_each_vcpu(i, vcpu, kvm)
6535                 kvm_arch_vcpu_free(vcpu);
6536
6537         mutex_lock(&kvm->lock);
6538         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6539                 kvm->vcpus[i] = NULL;
6540
6541         atomic_set(&kvm->online_vcpus, 0);
6542         mutex_unlock(&kvm->lock);
6543 }
6544
6545 void kvm_arch_sync_events(struct kvm *kvm)
6546 {
6547         kvm_free_all_assigned_devices(kvm);
6548         kvm_free_pit(kvm);
6549 }
6550
6551 void kvm_arch_destroy_vm(struct kvm *kvm)
6552 {
6553         kvm_iommu_unmap_guest(kvm);
6554         kfree(kvm->arch.vpic);
6555         kfree(kvm->arch.vioapic);
6556         kvm_free_vcpus(kvm);
6557         if (kvm->arch.apic_access_page)
6558                 put_page(kvm->arch.apic_access_page);
6559         if (kvm->arch.ept_identity_pagetable)
6560                 put_page(kvm->arch.ept_identity_pagetable);
6561 }
6562
6563 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6564                                 struct kvm_memory_slot *memslot,
6565                                 struct kvm_memory_slot old,
6566                                 struct kvm_userspace_memory_region *mem,
6567                                 int user_alloc)
6568 {
6569         int npages = memslot->npages;
6570         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6571
6572         /* Prevent internal slot pages from being moved by fork()/COW. */
6573         if (memslot->id >= KVM_MEMORY_SLOTS)
6574                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6575
6576         /*To keep backward compatibility with older userspace,
6577          *x86 needs to hanlde !user_alloc case.
6578          */
6579         if (!user_alloc) {
6580                 if (npages && !old.rmap) {
6581                         unsigned long userspace_addr;
6582
6583                         down_write(&current->mm->mmap_sem);
6584                         userspace_addr = do_mmap(NULL, 0,
6585                                                  npages * PAGE_SIZE,
6586                                                  PROT_READ | PROT_WRITE,
6587                                                  map_flags,
6588                                                  0);
6589                         up_write(&current->mm->mmap_sem);
6590
6591                         if (IS_ERR((void *)userspace_addr))
6592                                 return PTR_ERR((void *)userspace_addr);
6593
6594                         memslot->userspace_addr = userspace_addr;
6595                 }
6596         }
6597
6598
6599         return 0;
6600 }
6601
6602 void kvm_arch_commit_memory_region(struct kvm *kvm,
6603                                 struct kvm_userspace_memory_region *mem,
6604                                 struct kvm_memory_slot old,
6605                                 int user_alloc)
6606 {
6607
6608         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6609
6610         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6611                 int ret;
6612
6613                 down_write(&current->mm->mmap_sem);
6614                 ret = do_munmap(current->mm, old.userspace_addr,
6615                                 old.npages * PAGE_SIZE);
6616                 up_write(&current->mm->mmap_sem);
6617                 if (ret < 0)
6618                         printk(KERN_WARNING
6619                                "kvm_vm_ioctl_set_memory_region: "
6620                                "failed to munmap memory\n");
6621         }
6622
6623         if (!kvm->arch.n_requested_mmu_pages)
6624                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6625
6626         spin_lock(&kvm->mmu_lock);
6627         if (nr_mmu_pages)
6628                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6629         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6630         spin_unlock(&kvm->mmu_lock);
6631 }
6632
6633 void kvm_arch_flush_shadow(struct kvm *kvm)
6634 {
6635         kvm_mmu_zap_all(kvm);
6636         kvm_reload_remote_mmus(kvm);
6637 }
6638
6639 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6640 {
6641         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6642                 !vcpu->arch.apf.halted)
6643                 || !list_empty_careful(&vcpu->async_pf.done)
6644                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6645                 || vcpu->arch.nmi_pending ||
6646                 (kvm_arch_interrupt_allowed(vcpu) &&
6647                  kvm_cpu_has_interrupt(vcpu));
6648 }
6649
6650 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6651 {
6652         int me;
6653         int cpu = vcpu->cpu;
6654
6655         if (waitqueue_active(&vcpu->wq)) {
6656                 wake_up_interruptible(&vcpu->wq);
6657                 ++vcpu->stat.halt_wakeup;
6658         }
6659
6660         me = get_cpu();
6661         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6662                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6663                         smp_send_reschedule(cpu);
6664         put_cpu();
6665 }
6666
6667 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6668 {
6669         return kvm_x86_ops->interrupt_allowed(vcpu);
6670 }
6671
6672 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6673 {
6674         unsigned long current_rip = kvm_rip_read(vcpu) +
6675                 get_segment_base(vcpu, VCPU_SREG_CS);
6676
6677         return current_rip == linear_rip;
6678 }
6679 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6680
6681 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6682 {
6683         unsigned long rflags;
6684
6685         rflags = kvm_x86_ops->get_rflags(vcpu);
6686         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6687                 rflags &= ~X86_EFLAGS_TF;
6688         return rflags;
6689 }
6690 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6691
6692 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6693 {
6694         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6695             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6696                 rflags |= X86_EFLAGS_TF;
6697         kvm_x86_ops->set_rflags(vcpu, rflags);
6698         kvm_make_request(KVM_REQ_EVENT, vcpu);
6699 }
6700 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6701
6702 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6703 {
6704         int r;
6705
6706         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6707               is_error_page(work->page))
6708                 return;
6709
6710         r = kvm_mmu_reload(vcpu);
6711         if (unlikely(r))
6712                 return;
6713
6714         if (!vcpu->arch.mmu.direct_map &&
6715               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6716                 return;
6717
6718         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6719 }
6720
6721 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6722 {
6723         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6724 }
6725
6726 static inline u32 kvm_async_pf_next_probe(u32 key)
6727 {
6728         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6729 }
6730
6731 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6732 {
6733         u32 key = kvm_async_pf_hash_fn(gfn);
6734
6735         while (vcpu->arch.apf.gfns[key] != ~0)
6736                 key = kvm_async_pf_next_probe(key);
6737
6738         vcpu->arch.apf.gfns[key] = gfn;
6739 }
6740
6741 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6742 {
6743         int i;
6744         u32 key = kvm_async_pf_hash_fn(gfn);
6745
6746         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6747                      (vcpu->arch.apf.gfns[key] != gfn &&
6748                       vcpu->arch.apf.gfns[key] != ~0); i++)
6749                 key = kvm_async_pf_next_probe(key);
6750
6751         return key;
6752 }
6753
6754 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6755 {
6756         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6757 }
6758
6759 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6760 {
6761         u32 i, j, k;
6762
6763         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6764         while (true) {
6765                 vcpu->arch.apf.gfns[i] = ~0;
6766                 do {
6767                         j = kvm_async_pf_next_probe(j);
6768                         if (vcpu->arch.apf.gfns[j] == ~0)
6769                                 return;
6770                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6771                         /*
6772                          * k lies cyclically in ]i,j]
6773                          * |    i.k.j |
6774                          * |....j i.k.| or  |.k..j i...|
6775                          */
6776                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6777                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6778                 i = j;
6779         }
6780 }
6781
6782 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6783 {
6784
6785         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6786                                       sizeof(val));
6787 }
6788
6789 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6790                                      struct kvm_async_pf *work)
6791 {
6792         struct x86_exception fault;
6793
6794         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6795         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6796
6797         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6798             (vcpu->arch.apf.send_user_only &&
6799              kvm_x86_ops->get_cpl(vcpu) == 0))
6800                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6801         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6802                 fault.vector = PF_VECTOR;
6803                 fault.error_code_valid = true;
6804                 fault.error_code = 0;
6805                 fault.nested_page_fault = false;
6806                 fault.address = work->arch.token;
6807                 kvm_inject_page_fault(vcpu, &fault);
6808         }
6809 }
6810
6811 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6812                                  struct kvm_async_pf *work)
6813 {
6814         struct x86_exception fault;
6815
6816         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6817         if (is_error_page(work->page))
6818                 work->arch.token = ~0; /* broadcast wakeup */
6819         else
6820                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6821
6822         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6823             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6824                 fault.vector = PF_VECTOR;
6825                 fault.error_code_valid = true;
6826                 fault.error_code = 0;
6827                 fault.nested_page_fault = false;
6828                 fault.address = work->arch.token;
6829                 kvm_inject_page_fault(vcpu, &fault);
6830         }
6831         vcpu->arch.apf.halted = false;
6832 }
6833
6834 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6835 {
6836         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6837                 return true;
6838         else
6839                 return !kvm_event_needs_reinjection(vcpu) &&
6840                         kvm_x86_ops->interrupt_allowed(vcpu);
6841 }
6842
6843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);