e1000: cleanup CE4100 MDIO registers access
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
168 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
169 static void e1000_restore_vlan(struct e1000_adapter *adapter);
170
171 #ifdef CONFIG_PM
172 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
173 static int e1000_resume(struct pci_dev *pdev);
174 #endif
175 static void e1000_shutdown(struct pci_dev *pdev);
176
177 #ifdef CONFIG_NET_POLL_CONTROLLER
178 /* for netdump / net console */
179 static void e1000_netpoll (struct net_device *netdev);
180 #endif
181
182 #define COPYBREAK_DEFAULT 256
183 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
184 module_param(copybreak, uint, 0644);
185 MODULE_PARM_DESC(copybreak,
186         "Maximum size of packet that is copied to a new buffer on receive");
187
188 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
189                      pci_channel_state_t state);
190 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
191 static void e1000_io_resume(struct pci_dev *pdev);
192
193 static struct pci_error_handlers e1000_err_handler = {
194         .error_detected = e1000_io_error_detected,
195         .slot_reset = e1000_io_slot_reset,
196         .resume = e1000_io_resume,
197 };
198
199 static struct pci_driver e1000_driver = {
200         .name     = e1000_driver_name,
201         .id_table = e1000_pci_tbl,
202         .probe    = e1000_probe,
203         .remove   = __devexit_p(e1000_remove),
204 #ifdef CONFIG_PM
205         /* Power Management Hooks */
206         .suspend  = e1000_suspend,
207         .resume   = e1000_resume,
208 #endif
209         .shutdown = e1000_shutdown,
210         .err_handler = &e1000_err_handler
211 };
212
213 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
214 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
215 MODULE_LICENSE("GPL");
216 MODULE_VERSION(DRV_VERSION);
217
218 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
219 module_param(debug, int, 0);
220 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
221
222 /**
223  * e1000_get_hw_dev - return device
224  * used by hardware layer to print debugging information
225  *
226  **/
227 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
228 {
229         struct e1000_adapter *adapter = hw->back;
230         return adapter->netdev;
231 }
232
233 /**
234  * e1000_init_module - Driver Registration Routine
235  *
236  * e1000_init_module is the first routine called when the driver is
237  * loaded. All it does is register with the PCI subsystem.
238  **/
239
240 static int __init e1000_init_module(void)
241 {
242         int ret;
243         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
244
245         pr_info("%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248         if (copybreak != COPYBREAK_DEFAULT) {
249                 if (copybreak == 0)
250                         pr_info("copybreak disabled\n");
251                 else
252                         pr_info("copybreak enabled for "
253                                    "packets <= %u bytes\n", copybreak);
254         }
255         return ret;
256 }
257
258 module_init(e1000_init_module);
259
260 /**
261  * e1000_exit_module - Driver Exit Cleanup Routine
262  *
263  * e1000_exit_module is called just before the driver is removed
264  * from memory.
265  **/
266
267 static void __exit e1000_exit_module(void)
268 {
269         pci_unregister_driver(&e1000_driver);
270 }
271
272 module_exit(e1000_exit_module);
273
274 static int e1000_request_irq(struct e1000_adapter *adapter)
275 {
276         struct net_device *netdev = adapter->netdev;
277         irq_handler_t handler = e1000_intr;
278         int irq_flags = IRQF_SHARED;
279         int err;
280
281         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
282                           netdev);
283         if (err) {
284                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
285         }
286
287         return err;
288 }
289
290 static void e1000_free_irq(struct e1000_adapter *adapter)
291 {
292         struct net_device *netdev = adapter->netdev;
293
294         free_irq(adapter->pdev->irq, netdev);
295 }
296
297 /**
298  * e1000_irq_disable - Mask off interrupt generation on the NIC
299  * @adapter: board private structure
300  **/
301
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304         struct e1000_hw *hw = &adapter->hw;
305
306         ew32(IMC, ~0);
307         E1000_WRITE_FLUSH();
308         synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312  * e1000_irq_enable - Enable default interrupt generation settings
313  * @adapter: board private structure
314  **/
315
316 static void e1000_irq_enable(struct e1000_adapter *adapter)
317 {
318         struct e1000_hw *hw = &adapter->hw;
319
320         ew32(IMS, IMS_ENABLE_MASK);
321         E1000_WRITE_FLUSH();
322 }
323
324 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
325 {
326         struct e1000_hw *hw = &adapter->hw;
327         struct net_device *netdev = adapter->netdev;
328         u16 vid = hw->mng_cookie.vlan_id;
329         u16 old_vid = adapter->mng_vlan_id;
330
331         if (!e1000_vlan_used(adapter))
332                 return;
333
334         if (!test_bit(vid, adapter->active_vlans)) {
335                 if (hw->mng_cookie.status &
336                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
337                         e1000_vlan_rx_add_vid(netdev, vid);
338                         adapter->mng_vlan_id = vid;
339                 } else {
340                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
341                 }
342                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
343                     (vid != old_vid) &&
344                     !test_bit(old_vid, adapter->active_vlans))
345                         e1000_vlan_rx_kill_vid(netdev, old_vid);
346         } else {
347                 adapter->mng_vlan_id = vid;
348         }
349 }
350
351 static void e1000_init_manageability(struct e1000_adapter *adapter)
352 {
353         struct e1000_hw *hw = &adapter->hw;
354
355         if (adapter->en_mng_pt) {
356                 u32 manc = er32(MANC);
357
358                 /* disable hardware interception of ARP */
359                 manc &= ~(E1000_MANC_ARP_EN);
360
361                 ew32(MANC, manc);
362         }
363 }
364
365 static void e1000_release_manageability(struct e1000_adapter *adapter)
366 {
367         struct e1000_hw *hw = &adapter->hw;
368
369         if (adapter->en_mng_pt) {
370                 u32 manc = er32(MANC);
371
372                 /* re-enable hardware interception of ARP */
373                 manc |= E1000_MANC_ARP_EN;
374
375                 ew32(MANC, manc);
376         }
377 }
378
379 /**
380  * e1000_configure - configure the hardware for RX and TX
381  * @adapter = private board structure
382  **/
383 static void e1000_configure(struct e1000_adapter *adapter)
384 {
385         struct net_device *netdev = adapter->netdev;
386         int i;
387
388         e1000_set_rx_mode(netdev);
389
390         e1000_restore_vlan(adapter);
391         e1000_init_manageability(adapter);
392
393         e1000_configure_tx(adapter);
394         e1000_setup_rctl(adapter);
395         e1000_configure_rx(adapter);
396         /* call E1000_DESC_UNUSED which always leaves
397          * at least 1 descriptor unused to make sure
398          * next_to_use != next_to_clean */
399         for (i = 0; i < adapter->num_rx_queues; i++) {
400                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
401                 adapter->alloc_rx_buf(adapter, ring,
402                                       E1000_DESC_UNUSED(ring));
403         }
404 }
405
406 int e1000_up(struct e1000_adapter *adapter)
407 {
408         struct e1000_hw *hw = &adapter->hw;
409
410         /* hardware has been reset, we need to reload some things */
411         e1000_configure(adapter);
412
413         clear_bit(__E1000_DOWN, &adapter->flags);
414
415         napi_enable(&adapter->napi);
416
417         e1000_irq_enable(adapter);
418
419         netif_wake_queue(adapter->netdev);
420
421         /* fire a link change interrupt to start the watchdog */
422         ew32(ICS, E1000_ICS_LSC);
423         return 0;
424 }
425
426 /**
427  * e1000_power_up_phy - restore link in case the phy was powered down
428  * @adapter: address of board private structure
429  *
430  * The phy may be powered down to save power and turn off link when the
431  * driver is unloaded and wake on lan is not enabled (among others)
432  * *** this routine MUST be followed by a call to e1000_reset ***
433  *
434  **/
435
436 void e1000_power_up_phy(struct e1000_adapter *adapter)
437 {
438         struct e1000_hw *hw = &adapter->hw;
439         u16 mii_reg = 0;
440
441         /* Just clear the power down bit to wake the phy back up */
442         if (hw->media_type == e1000_media_type_copper) {
443                 /* according to the manual, the phy will retain its
444                  * settings across a power-down/up cycle */
445                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
446                 mii_reg &= ~MII_CR_POWER_DOWN;
447                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
448         }
449 }
450
451 static void e1000_power_down_phy(struct e1000_adapter *adapter)
452 {
453         struct e1000_hw *hw = &adapter->hw;
454
455         /* Power down the PHY so no link is implied when interface is down *
456          * The PHY cannot be powered down if any of the following is true *
457          * (a) WoL is enabled
458          * (b) AMT is active
459          * (c) SoL/IDER session is active */
460         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461            hw->media_type == e1000_media_type_copper) {
462                 u16 mii_reg = 0;
463
464                 switch (hw->mac_type) {
465                 case e1000_82540:
466                 case e1000_82545:
467                 case e1000_82545_rev_3:
468                 case e1000_82546:
469                 case e1000_ce4100:
470                 case e1000_82546_rev_3:
471                 case e1000_82541:
472                 case e1000_82541_rev_2:
473                 case e1000_82547:
474                 case e1000_82547_rev_2:
475                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
476                                 goto out;
477                         break;
478                 default:
479                         goto out;
480                 }
481                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
482                 mii_reg |= MII_CR_POWER_DOWN;
483                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
484                 msleep(1);
485         }
486 out:
487         return;
488 }
489
490 static void e1000_down_and_stop(struct e1000_adapter *adapter)
491 {
492         set_bit(__E1000_DOWN, &adapter->flags);
493         cancel_work_sync(&adapter->reset_task);
494         cancel_delayed_work_sync(&adapter->watchdog_task);
495         cancel_delayed_work_sync(&adapter->phy_info_task);
496         cancel_delayed_work_sync(&adapter->fifo_stall_task);
497 }
498
499 void e1000_down(struct e1000_adapter *adapter)
500 {
501         struct e1000_hw *hw = &adapter->hw;
502         struct net_device *netdev = adapter->netdev;
503         u32 rctl, tctl;
504
505
506         /* disable receives in the hardware */
507         rctl = er32(RCTL);
508         ew32(RCTL, rctl & ~E1000_RCTL_EN);
509         /* flush and sleep below */
510
511         netif_tx_disable(netdev);
512
513         /* disable transmits in the hardware */
514         tctl = er32(TCTL);
515         tctl &= ~E1000_TCTL_EN;
516         ew32(TCTL, tctl);
517         /* flush both disables and wait for them to finish */
518         E1000_WRITE_FLUSH();
519         msleep(10);
520
521         napi_disable(&adapter->napi);
522
523         e1000_irq_disable(adapter);
524
525         /*
526          * Setting DOWN must be after irq_disable to prevent
527          * a screaming interrupt.  Setting DOWN also prevents
528          * tasks from rescheduling.
529          */
530         e1000_down_and_stop(adapter);
531
532         adapter->link_speed = 0;
533         adapter->link_duplex = 0;
534         netif_carrier_off(netdev);
535
536         e1000_reset(adapter);
537         e1000_clean_all_tx_rings(adapter);
538         e1000_clean_all_rx_rings(adapter);
539 }
540
541 static void e1000_reinit_safe(struct e1000_adapter *adapter)
542 {
543         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544                 msleep(1);
545         mutex_lock(&adapter->mutex);
546         e1000_down(adapter);
547         e1000_up(adapter);
548         mutex_unlock(&adapter->mutex);
549         clear_bit(__E1000_RESETTING, &adapter->flags);
550 }
551
552 void e1000_reinit_locked(struct e1000_adapter *adapter)
553 {
554         /* if rtnl_lock is not held the call path is bogus */
555         ASSERT_RTNL();
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB. */
624                 pba = er32(PBA);
625                 /* upper 16 bits has Tx packet buffer allocation size in KB */
626                 tx_space = pba >> 16;
627                 /* lower 16 bits has Rx packet buffer allocation size in KB */
628                 pba &= 0xffff;
629                 /*
630                  * the tx fifo also stores 16 bytes of information about the tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation */
646                 if (tx_space < min_tx_space &&
647                     ((min_tx_space - tx_space) < pba)) {
648                         pba = pba - (min_tx_space - tx_space);
649
650                         /* PCI/PCIx hardware has PBA alignment constraints */
651                         switch (hw->mac_type) {
652                         case e1000_82545 ... e1000_82546_rev_3:
653                                 pba &= ~(E1000_PBA_8K - 1);
654                                 break;
655                         default:
656                                 break;
657                         }
658
659                         /* if short on rx space, rx wins and must trump tx
660                          * adjustment or use Early Receive if available */
661                         if (pba < min_rx_space)
662                                 pba = min_rx_space;
663                 }
664         }
665
666         ew32(PBA, pba);
667
668         /*
669          * flow control settings:
670          * The high water mark must be low enough to fit one full frame
671          * (or the size used for early receive) above it in the Rx FIFO.
672          * Set it to the lower of:
673          * - 90% of the Rx FIFO size, and
674          * - the full Rx FIFO size minus the early receive size (for parts
675          *   with ERT support assuming ERT set to E1000_ERT_2048), or
676          * - the full Rx FIFO size minus one full frame
677          */
678         hwm = min(((pba << 10) * 9 / 10),
679                   ((pba << 10) - hw->max_frame_size));
680
681         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
682         hw->fc_low_water = hw->fc_high_water - 8;
683         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
684         hw->fc_send_xon = 1;
685         hw->fc = hw->original_fc;
686
687         /* Allow time for pending master requests to run */
688         e1000_reset_hw(hw);
689         if (hw->mac_type >= e1000_82544)
690                 ew32(WUC, 0);
691
692         if (e1000_init_hw(hw))
693                 e_dev_err("Hardware Error\n");
694         e1000_update_mng_vlan(adapter);
695
696         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
697         if (hw->mac_type >= e1000_82544 &&
698             hw->autoneg == 1 &&
699             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
700                 u32 ctrl = er32(CTRL);
701                 /* clear phy power management bit if we are in gig only mode,
702                  * which if enabled will attempt negotiation to 100Mb, which
703                  * can cause a loss of link at power off or driver unload */
704                 ctrl &= ~E1000_CTRL_SWDPIN3;
705                 ew32(CTRL, ctrl);
706         }
707
708         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
709         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
710
711         e1000_reset_adaptive(hw);
712         e1000_phy_get_info(hw, &adapter->phy_info);
713
714         e1000_release_manageability(adapter);
715 }
716
717 /**
718  *  Dump the eeprom for users having checksum issues
719  **/
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data) {
734                 pr_err("Unable to allocate memory to dump EEPROM data\n");
735                 return;
736         }
737
738         ops->get_eeprom(netdev, &eeprom, data);
739
740         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
741                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
742         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
743                 csum_new += data[i] + (data[i + 1] << 8);
744         csum_new = EEPROM_SUM - csum_new;
745
746         pr_err("/*********************/\n");
747         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
748         pr_err("Calculated              : 0x%04x\n", csum_new);
749
750         pr_err("Offset    Values\n");
751         pr_err("========  ======\n");
752         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
753
754         pr_err("Include this output when contacting your support provider.\n");
755         pr_err("This is not a software error! Something bad happened to\n");
756         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
757         pr_err("result in further problems, possibly loss of data,\n");
758         pr_err("corruption or system hangs!\n");
759         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
760         pr_err("which is invalid and requires you to set the proper MAC\n");
761         pr_err("address manually before continuing to enable this network\n");
762         pr_err("device. Please inspect the EEPROM dump and report the\n");
763         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
764         pr_err("/*********************/\n");
765
766         kfree(data);
767 }
768
769 /**
770  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
771  * @pdev: PCI device information struct
772  *
773  * Return true if an adapter needs ioport resources
774  **/
775 static int e1000_is_need_ioport(struct pci_dev *pdev)
776 {
777         switch (pdev->device) {
778         case E1000_DEV_ID_82540EM:
779         case E1000_DEV_ID_82540EM_LOM:
780         case E1000_DEV_ID_82540EP:
781         case E1000_DEV_ID_82540EP_LOM:
782         case E1000_DEV_ID_82540EP_LP:
783         case E1000_DEV_ID_82541EI:
784         case E1000_DEV_ID_82541EI_MOBILE:
785         case E1000_DEV_ID_82541ER:
786         case E1000_DEV_ID_82541ER_LOM:
787         case E1000_DEV_ID_82541GI:
788         case E1000_DEV_ID_82541GI_LF:
789         case E1000_DEV_ID_82541GI_MOBILE:
790         case E1000_DEV_ID_82544EI_COPPER:
791         case E1000_DEV_ID_82544EI_FIBER:
792         case E1000_DEV_ID_82544GC_COPPER:
793         case E1000_DEV_ID_82544GC_LOM:
794         case E1000_DEV_ID_82545EM_COPPER:
795         case E1000_DEV_ID_82545EM_FIBER:
796         case E1000_DEV_ID_82546EB_COPPER:
797         case E1000_DEV_ID_82546EB_FIBER:
798         case E1000_DEV_ID_82546EB_QUAD_COPPER:
799                 return true;
800         default:
801                 return false;
802         }
803 }
804
805 static netdev_features_t e1000_fix_features(struct net_device *netdev,
806         netdev_features_t features)
807 {
808         /*
809          * Since there is no support for separate rx/tx vlan accel
810          * enable/disable make sure tx flag is always in same state as rx.
811          */
812         if (features & NETIF_F_HW_VLAN_RX)
813                 features |= NETIF_F_HW_VLAN_TX;
814         else
815                 features &= ~NETIF_F_HW_VLAN_TX;
816
817         return features;
818 }
819
820 static int e1000_set_features(struct net_device *netdev,
821         netdev_features_t features)
822 {
823         struct e1000_adapter *adapter = netdev_priv(netdev);
824         netdev_features_t changed = features ^ netdev->features;
825
826         if (changed & NETIF_F_HW_VLAN_RX)
827                 e1000_vlan_mode(netdev, features);
828
829         if (!(changed & NETIF_F_RXCSUM))
830                 return 0;
831
832         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
833
834         if (netif_running(netdev))
835                 e1000_reinit_locked(adapter);
836         else
837                 e1000_reset(adapter);
838
839         return 0;
840 }
841
842 static const struct net_device_ops e1000_netdev_ops = {
843         .ndo_open               = e1000_open,
844         .ndo_stop               = e1000_close,
845         .ndo_start_xmit         = e1000_xmit_frame,
846         .ndo_get_stats          = e1000_get_stats,
847         .ndo_set_rx_mode        = e1000_set_rx_mode,
848         .ndo_set_mac_address    = e1000_set_mac,
849         .ndo_tx_timeout         = e1000_tx_timeout,
850         .ndo_change_mtu         = e1000_change_mtu,
851         .ndo_do_ioctl           = e1000_ioctl,
852         .ndo_validate_addr      = eth_validate_addr,
853         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
854         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
855 #ifdef CONFIG_NET_POLL_CONTROLLER
856         .ndo_poll_controller    = e1000_netpoll,
857 #endif
858         .ndo_fix_features       = e1000_fix_features,
859         .ndo_set_features       = e1000_set_features,
860 };
861
862 /**
863  * e1000_init_hw_struct - initialize members of hw struct
864  * @adapter: board private struct
865  * @hw: structure used by e1000_hw.c
866  *
867  * Factors out initialization of the e1000_hw struct to its own function
868  * that can be called very early at init (just after struct allocation).
869  * Fields are initialized based on PCI device information and
870  * OS network device settings (MTU size).
871  * Returns negative error codes if MAC type setup fails.
872  */
873 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
874                                 struct e1000_hw *hw)
875 {
876         struct pci_dev *pdev = adapter->pdev;
877
878         /* PCI config space info */
879         hw->vendor_id = pdev->vendor;
880         hw->device_id = pdev->device;
881         hw->subsystem_vendor_id = pdev->subsystem_vendor;
882         hw->subsystem_id = pdev->subsystem_device;
883         hw->revision_id = pdev->revision;
884
885         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
886
887         hw->max_frame_size = adapter->netdev->mtu +
888                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
889         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
890
891         /* identify the MAC */
892         if (e1000_set_mac_type(hw)) {
893                 e_err(probe, "Unknown MAC Type\n");
894                 return -EIO;
895         }
896
897         switch (hw->mac_type) {
898         default:
899                 break;
900         case e1000_82541:
901         case e1000_82547:
902         case e1000_82541_rev_2:
903         case e1000_82547_rev_2:
904                 hw->phy_init_script = 1;
905                 break;
906         }
907
908         e1000_set_media_type(hw);
909         e1000_get_bus_info(hw);
910
911         hw->wait_autoneg_complete = false;
912         hw->tbi_compatibility_en = true;
913         hw->adaptive_ifs = true;
914
915         /* Copper options */
916
917         if (hw->media_type == e1000_media_type_copper) {
918                 hw->mdix = AUTO_ALL_MODES;
919                 hw->disable_polarity_correction = false;
920                 hw->master_slave = E1000_MASTER_SLAVE;
921         }
922
923         return 0;
924 }
925
926 /**
927  * e1000_probe - Device Initialization Routine
928  * @pdev: PCI device information struct
929  * @ent: entry in e1000_pci_tbl
930  *
931  * Returns 0 on success, negative on failure
932  *
933  * e1000_probe initializes an adapter identified by a pci_dev structure.
934  * The OS initialization, configuring of the adapter private structure,
935  * and a hardware reset occur.
936  **/
937 static int __devinit e1000_probe(struct pci_dev *pdev,
938                                  const struct pci_device_id *ent)
939 {
940         struct net_device *netdev;
941         struct e1000_adapter *adapter;
942         struct e1000_hw *hw;
943
944         static int cards_found = 0;
945         static int global_quad_port_a = 0; /* global ksp3 port a indication */
946         int i, err, pci_using_dac;
947         u16 eeprom_data = 0;
948         u16 tmp = 0;
949         u16 eeprom_apme_mask = E1000_EEPROM_APME;
950         int bars, need_ioport;
951
952         /* do not allocate ioport bars when not needed */
953         need_ioport = e1000_is_need_ioport(pdev);
954         if (need_ioport) {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
956                 err = pci_enable_device(pdev);
957         } else {
958                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
959                 err = pci_enable_device_mem(pdev);
960         }
961         if (err)
962                 return err;
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969         err = pci_save_state(pdev);
970         if (err)
971                 goto err_alloc_etherdev;
972
973         err = -ENOMEM;
974         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
975         if (!netdev)
976                 goto err_alloc_etherdev;
977
978         SET_NETDEV_DEV(netdev, &pdev->dev);
979
980         pci_set_drvdata(pdev, netdev);
981         adapter = netdev_priv(netdev);
982         adapter->netdev = netdev;
983         adapter->pdev = pdev;
984         adapter->msg_enable = (1 << debug) - 1;
985         adapter->bars = bars;
986         adapter->need_ioport = need_ioport;
987
988         hw = &adapter->hw;
989         hw->back = adapter;
990
991         err = -EIO;
992         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
993         if (!hw->hw_addr)
994                 goto err_ioremap;
995
996         if (adapter->need_ioport) {
997                 for (i = BAR_1; i <= BAR_5; i++) {
998                         if (pci_resource_len(pdev, i) == 0)
999                                 continue;
1000                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1001                                 hw->io_base = pci_resource_start(pdev, i);
1002                                 break;
1003                         }
1004                 }
1005         }
1006
1007         /* make ready for any if (hw->...) below */
1008         err = e1000_init_hw_struct(adapter, hw);
1009         if (err)
1010                 goto err_sw_init;
1011
1012         /*
1013          * there is a workaround being applied below that limits
1014          * 64-bit DMA addresses to 64-bit hardware.  There are some
1015          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1016          */
1017         pci_using_dac = 0;
1018         if ((hw->bus_type == e1000_bus_type_pcix) &&
1019             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1020                 /*
1021                  * according to DMA-API-HOWTO, coherent calls will always
1022                  * succeed if the set call did
1023                  */
1024                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1025                 pci_using_dac = 1;
1026         } else {
1027                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1028                 if (err) {
1029                         pr_err("No usable DMA config, aborting\n");
1030                         goto err_dma;
1031                 }
1032                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1033         }
1034
1035         netdev->netdev_ops = &e1000_netdev_ops;
1036         e1000_set_ethtool_ops(netdev);
1037         netdev->watchdog_timeo = 5 * HZ;
1038         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1039
1040         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1041
1042         adapter->bd_number = cards_found;
1043
1044         /* setup the private structure */
1045
1046         err = e1000_sw_init(adapter);
1047         if (err)
1048                 goto err_sw_init;
1049
1050         err = -EIO;
1051         if (hw->mac_type == e1000_ce4100) {
1052                 hw->ce4100_gbe_mdio_base_virt =
1053                                         ioremap(pci_resource_start(pdev, BAR_1),
1054                                                 pci_resource_len(pdev, BAR_1));
1055
1056                 if (!hw->ce4100_gbe_mdio_base_virt)
1057                         goto err_mdio_ioremap;
1058         }
1059
1060         if (hw->mac_type >= e1000_82543) {
1061                 netdev->hw_features = NETIF_F_SG |
1062                                    NETIF_F_HW_CSUM |
1063                                    NETIF_F_HW_VLAN_RX;
1064                 netdev->features = NETIF_F_HW_VLAN_TX |
1065                                    NETIF_F_HW_VLAN_FILTER;
1066         }
1067
1068         if ((hw->mac_type >= e1000_82544) &&
1069            (hw->mac_type != e1000_82547))
1070                 netdev->hw_features |= NETIF_F_TSO;
1071
1072         netdev->features |= netdev->hw_features;
1073         netdev->hw_features |= NETIF_F_RXCSUM;
1074
1075         if (pci_using_dac) {
1076                 netdev->features |= NETIF_F_HIGHDMA;
1077                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1078         }
1079
1080         netdev->vlan_features |= NETIF_F_TSO;
1081         netdev->vlan_features |= NETIF_F_HW_CSUM;
1082         netdev->vlan_features |= NETIF_F_SG;
1083
1084         netdev->priv_flags |= IFF_UNICAST_FLT;
1085
1086         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1087
1088         /* initialize eeprom parameters */
1089         if (e1000_init_eeprom_params(hw)) {
1090                 e_err(probe, "EEPROM initialization failed\n");
1091                 goto err_eeprom;
1092         }
1093
1094         /* before reading the EEPROM, reset the controller to
1095          * put the device in a known good starting state */
1096
1097         e1000_reset_hw(hw);
1098
1099         /* make sure the EEPROM is good */
1100         if (e1000_validate_eeprom_checksum(hw) < 0) {
1101                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1102                 e1000_dump_eeprom(adapter);
1103                 /*
1104                  * set MAC address to all zeroes to invalidate and temporary
1105                  * disable this device for the user. This blocks regular
1106                  * traffic while still permitting ethtool ioctls from reaching
1107                  * the hardware as well as allowing the user to run the
1108                  * interface after manually setting a hw addr using
1109                  * `ip set address`
1110                  */
1111                 memset(hw->mac_addr, 0, netdev->addr_len);
1112         } else {
1113                 /* copy the MAC address out of the EEPROM */
1114                 if (e1000_read_mac_addr(hw))
1115                         e_err(probe, "EEPROM Read Error\n");
1116         }
1117         /* don't block initalization here due to bad MAC address */
1118         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1119         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1120
1121         if (!is_valid_ether_addr(netdev->perm_addr))
1122                 e_err(probe, "Invalid MAC Address\n");
1123
1124
1125         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1126         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1127                           e1000_82547_tx_fifo_stall_task);
1128         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1129         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1130
1131         e1000_check_options(adapter);
1132
1133         /* Initial Wake on LAN setting
1134          * If APM wake is enabled in the EEPROM,
1135          * enable the ACPI Magic Packet filter
1136          */
1137
1138         switch (hw->mac_type) {
1139         case e1000_82542_rev2_0:
1140         case e1000_82542_rev2_1:
1141         case e1000_82543:
1142                 break;
1143         case e1000_82544:
1144                 e1000_read_eeprom(hw,
1145                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1146                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1147                 break;
1148         case e1000_82546:
1149         case e1000_82546_rev_3:
1150                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1151                         e1000_read_eeprom(hw,
1152                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1153                         break;
1154                 }
1155                 /* Fall Through */
1156         default:
1157                 e1000_read_eeprom(hw,
1158                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1159                 break;
1160         }
1161         if (eeprom_data & eeprom_apme_mask)
1162                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1163
1164         /* now that we have the eeprom settings, apply the special cases
1165          * where the eeprom may be wrong or the board simply won't support
1166          * wake on lan on a particular port */
1167         switch (pdev->device) {
1168         case E1000_DEV_ID_82546GB_PCIE:
1169                 adapter->eeprom_wol = 0;
1170                 break;
1171         case E1000_DEV_ID_82546EB_FIBER:
1172         case E1000_DEV_ID_82546GB_FIBER:
1173                 /* Wake events only supported on port A for dual fiber
1174                  * regardless of eeprom setting */
1175                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1176                         adapter->eeprom_wol = 0;
1177                 break;
1178         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1179                 /* if quad port adapter, disable WoL on all but port A */
1180                 if (global_quad_port_a != 0)
1181                         adapter->eeprom_wol = 0;
1182                 else
1183                         adapter->quad_port_a = true;
1184                 /* Reset for multiple quad port adapters */
1185                 if (++global_quad_port_a == 4)
1186                         global_quad_port_a = 0;
1187                 break;
1188         }
1189
1190         /* initialize the wol settings based on the eeprom settings */
1191         adapter->wol = adapter->eeprom_wol;
1192         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1193
1194         /* Auto detect PHY address */
1195         if (hw->mac_type == e1000_ce4100) {
1196                 for (i = 0; i < 32; i++) {
1197                         hw->phy_addr = i;
1198                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1199                         if (tmp == 0 || tmp == 0xFF) {
1200                                 if (i == 31)
1201                                         goto err_eeprom;
1202                                 continue;
1203                         } else
1204                                 break;
1205                 }
1206         }
1207
1208         /* reset the hardware with the new settings */
1209         e1000_reset(adapter);
1210
1211         strcpy(netdev->name, "eth%d");
1212         err = register_netdev(netdev);
1213         if (err)
1214                 goto err_register;
1215
1216         e1000_vlan_mode(netdev, netdev->features);
1217
1218         /* print bus type/speed/width info */
1219         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1220                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1221                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1222                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1223                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1224                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1225                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1226                netdev->dev_addr);
1227
1228         /* carrier off reporting is important to ethtool even BEFORE open */
1229         netif_carrier_off(netdev);
1230
1231         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1232
1233         cards_found++;
1234         return 0;
1235
1236 err_register:
1237 err_eeprom:
1238         e1000_phy_hw_reset(hw);
1239
1240         if (hw->flash_address)
1241                 iounmap(hw->flash_address);
1242         kfree(adapter->tx_ring);
1243         kfree(adapter->rx_ring);
1244 err_dma:
1245 err_sw_init:
1246 err_mdio_ioremap:
1247         iounmap(hw->ce4100_gbe_mdio_base_virt);
1248         iounmap(hw->hw_addr);
1249 err_ioremap:
1250         free_netdev(netdev);
1251 err_alloc_etherdev:
1252         pci_release_selected_regions(pdev, bars);
1253 err_pci_reg:
1254         pci_disable_device(pdev);
1255         return err;
1256 }
1257
1258 /**
1259  * e1000_remove - Device Removal Routine
1260  * @pdev: PCI device information struct
1261  *
1262  * e1000_remove is called by the PCI subsystem to alert the driver
1263  * that it should release a PCI device.  The could be caused by a
1264  * Hot-Plug event, or because the driver is going to be removed from
1265  * memory.
1266  **/
1267
1268 static void __devexit e1000_remove(struct pci_dev *pdev)
1269 {
1270         struct net_device *netdev = pci_get_drvdata(pdev);
1271         struct e1000_adapter *adapter = netdev_priv(netdev);
1272         struct e1000_hw *hw = &adapter->hw;
1273
1274         e1000_down_and_stop(adapter);
1275         e1000_release_manageability(adapter);
1276
1277         unregister_netdev(netdev);
1278
1279         e1000_phy_hw_reset(hw);
1280
1281         kfree(adapter->tx_ring);
1282         kfree(adapter->rx_ring);
1283
1284         if (hw->mac_type == e1000_ce4100)
1285                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1286         iounmap(hw->hw_addr);
1287         if (hw->flash_address)
1288                 iounmap(hw->flash_address);
1289         pci_release_selected_regions(pdev, adapter->bars);
1290
1291         free_netdev(netdev);
1292
1293         pci_disable_device(pdev);
1294 }
1295
1296 /**
1297  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298  * @adapter: board private structure to initialize
1299  *
1300  * e1000_sw_init initializes the Adapter private data structure.
1301  * e1000_init_hw_struct MUST be called before this function
1302  **/
1303
1304 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1305 {
1306         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307
1308         adapter->num_tx_queues = 1;
1309         adapter->num_rx_queues = 1;
1310
1311         if (e1000_alloc_queues(adapter)) {
1312                 e_err(probe, "Unable to allocate memory for queues\n");
1313                 return -ENOMEM;
1314         }
1315
1316         /* Explicitly disable IRQ since the NIC can be in any state. */
1317         e1000_irq_disable(adapter);
1318
1319         spin_lock_init(&adapter->stats_lock);
1320         mutex_init(&adapter->mutex);
1321
1322         set_bit(__E1000_DOWN, &adapter->flags);
1323
1324         return 0;
1325 }
1326
1327 /**
1328  * e1000_alloc_queues - Allocate memory for all rings
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one ring per queue at run-time since we don't know the
1332  * number of queues at compile-time.
1333  **/
1334
1335 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1336 {
1337         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1338                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1339         if (!adapter->tx_ring)
1340                 return -ENOMEM;
1341
1342         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1343                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1344         if (!adapter->rx_ring) {
1345                 kfree(adapter->tx_ring);
1346                 return -ENOMEM;
1347         }
1348
1349         return E1000_SUCCESS;
1350 }
1351
1352 /**
1353  * e1000_open - Called when a network interface is made active
1354  * @netdev: network interface device structure
1355  *
1356  * Returns 0 on success, negative value on failure
1357  *
1358  * The open entry point is called when a network interface is made
1359  * active by the system (IFF_UP).  At this point all resources needed
1360  * for transmit and receive operations are allocated, the interrupt
1361  * handler is registered with the OS, the watchdog task is started,
1362  * and the stack is notified that the interface is ready.
1363  **/
1364
1365 static int e1000_open(struct net_device *netdev)
1366 {
1367         struct e1000_adapter *adapter = netdev_priv(netdev);
1368         struct e1000_hw *hw = &adapter->hw;
1369         int err;
1370
1371         /* disallow open during test */
1372         if (test_bit(__E1000_TESTING, &adapter->flags))
1373                 return -EBUSY;
1374
1375         netif_carrier_off(netdev);
1376
1377         /* allocate transmit descriptors */
1378         err = e1000_setup_all_tx_resources(adapter);
1379         if (err)
1380                 goto err_setup_tx;
1381
1382         /* allocate receive descriptors */
1383         err = e1000_setup_all_rx_resources(adapter);
1384         if (err)
1385                 goto err_setup_rx;
1386
1387         e1000_power_up_phy(adapter);
1388
1389         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1390         if ((hw->mng_cookie.status &
1391                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1392                 e1000_update_mng_vlan(adapter);
1393         }
1394
1395         /* before we allocate an interrupt, we must be ready to handle it.
1396          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1397          * as soon as we call pci_request_irq, so we have to setup our
1398          * clean_rx handler before we do so.  */
1399         e1000_configure(adapter);
1400
1401         err = e1000_request_irq(adapter);
1402         if (err)
1403                 goto err_req_irq;
1404
1405         /* From here on the code is the same as e1000_up() */
1406         clear_bit(__E1000_DOWN, &adapter->flags);
1407
1408         napi_enable(&adapter->napi);
1409
1410         e1000_irq_enable(adapter);
1411
1412         netif_start_queue(netdev);
1413
1414         /* fire a link status change interrupt to start the watchdog */
1415         ew32(ICS, E1000_ICS_LSC);
1416
1417         return E1000_SUCCESS;
1418
1419 err_req_irq:
1420         e1000_power_down_phy(adapter);
1421         e1000_free_all_rx_resources(adapter);
1422 err_setup_rx:
1423         e1000_free_all_tx_resources(adapter);
1424 err_setup_tx:
1425         e1000_reset(adapter);
1426
1427         return err;
1428 }
1429
1430 /**
1431  * e1000_close - Disables a network interface
1432  * @netdev: network interface device structure
1433  *
1434  * Returns 0, this is not allowed to fail
1435  *
1436  * The close entry point is called when an interface is de-activated
1437  * by the OS.  The hardware is still under the drivers control, but
1438  * needs to be disabled.  A global MAC reset is issued to stop the
1439  * hardware, and all transmit and receive resources are freed.
1440  **/
1441
1442 static int e1000_close(struct net_device *netdev)
1443 {
1444         struct e1000_adapter *adapter = netdev_priv(netdev);
1445         struct e1000_hw *hw = &adapter->hw;
1446
1447         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1448         e1000_down(adapter);
1449         e1000_power_down_phy(adapter);
1450         e1000_free_irq(adapter);
1451
1452         e1000_free_all_tx_resources(adapter);
1453         e1000_free_all_rx_resources(adapter);
1454
1455         /* kill manageability vlan ID if supported, but not if a vlan with
1456          * the same ID is registered on the host OS (let 8021q kill it) */
1457         if ((hw->mng_cookie.status &
1458                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1459              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1460                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1461         }
1462
1463         return 0;
1464 }
1465
1466 /**
1467  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468  * @adapter: address of board private structure
1469  * @start: address of beginning of memory
1470  * @len: length of memory
1471  **/
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473                                   unsigned long len)
1474 {
1475         struct e1000_hw *hw = &adapter->hw;
1476         unsigned long begin = (unsigned long)start;
1477         unsigned long end = begin + len;
1478
1479         /* First rev 82545 and 82546 need to not allow any memory
1480          * write location to cross 64k boundary due to errata 23 */
1481         if (hw->mac_type == e1000_82545 ||
1482             hw->mac_type == e1000_ce4100 ||
1483             hw->mac_type == e1000_82546) {
1484                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1485         }
1486
1487         return true;
1488 }
1489
1490 /**
1491  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492  * @adapter: board private structure
1493  * @txdr:    tx descriptor ring (for a specific queue) to setup
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499                                     struct e1000_tx_ring *txdr)
1500 {
1501         struct pci_dev *pdev = adapter->pdev;
1502         int size;
1503
1504         size = sizeof(struct e1000_buffer) * txdr->count;
1505         txdr->buffer_info = vzalloc(size);
1506         if (!txdr->buffer_info) {
1507                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1508                       "ring\n");
1509                 return -ENOMEM;
1510         }
1511
1512         /* round up to nearest 4K */
1513
1514         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1515         txdr->size = ALIGN(txdr->size, 4096);
1516
1517         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1518                                         GFP_KERNEL);
1519         if (!txdr->desc) {
1520 setup_tx_desc_die:
1521                 vfree(txdr->buffer_info);
1522                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1523                       "ring\n");
1524                 return -ENOMEM;
1525         }
1526
1527         /* Fix for errata 23, can't cross 64kB boundary */
1528         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1529                 void *olddesc = txdr->desc;
1530                 dma_addr_t olddma = txdr->dma;
1531                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1532                       txdr->size, txdr->desc);
1533                 /* Try again, without freeing the previous */
1534                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1535                                                 &txdr->dma, GFP_KERNEL);
1536                 /* Failed allocation, critical failure */
1537                 if (!txdr->desc) {
1538                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539                                           olddma);
1540                         goto setup_tx_desc_die;
1541                 }
1542
1543                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544                         /* give up */
1545                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1546                                           txdr->dma);
1547                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548                                           olddma);
1549                         e_err(probe, "Unable to allocate aligned memory "
1550                               "for the transmit descriptor ring\n");
1551                         vfree(txdr->buffer_info);
1552                         return -ENOMEM;
1553                 } else {
1554                         /* Free old allocation, new allocation was successful */
1555                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556                                           olddma);
1557                 }
1558         }
1559         memset(txdr->desc, 0, txdr->size);
1560
1561         txdr->next_to_use = 0;
1562         txdr->next_to_clean = 0;
1563
1564         return 0;
1565 }
1566
1567 /**
1568  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1569  *                                (Descriptors) for all queues
1570  * @adapter: board private structure
1571  *
1572  * Return 0 on success, negative on failure
1573  **/
1574
1575 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1576 {
1577         int i, err = 0;
1578
1579         for (i = 0; i < adapter->num_tx_queues; i++) {
1580                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1581                 if (err) {
1582                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1583                         for (i-- ; i >= 0; i--)
1584                                 e1000_free_tx_resources(adapter,
1585                                                         &adapter->tx_ring[i]);
1586                         break;
1587                 }
1588         }
1589
1590         return err;
1591 }
1592
1593 /**
1594  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595  * @adapter: board private structure
1596  *
1597  * Configure the Tx unit of the MAC after a reset.
1598  **/
1599
1600 static void e1000_configure_tx(struct e1000_adapter *adapter)
1601 {
1602         u64 tdba;
1603         struct e1000_hw *hw = &adapter->hw;
1604         u32 tdlen, tctl, tipg;
1605         u32 ipgr1, ipgr2;
1606
1607         /* Setup the HW Tx Head and Tail descriptor pointers */
1608
1609         switch (adapter->num_tx_queues) {
1610         case 1:
1611         default:
1612                 tdba = adapter->tx_ring[0].dma;
1613                 tdlen = adapter->tx_ring[0].count *
1614                         sizeof(struct e1000_tx_desc);
1615                 ew32(TDLEN, tdlen);
1616                 ew32(TDBAH, (tdba >> 32));
1617                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1618                 ew32(TDT, 0);
1619                 ew32(TDH, 0);
1620                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1621                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1622                 break;
1623         }
1624
1625         /* Set the default values for the Tx Inter Packet Gap timer */
1626         if ((hw->media_type == e1000_media_type_fiber ||
1627              hw->media_type == e1000_media_type_internal_serdes))
1628                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1629         else
1630                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1631
1632         switch (hw->mac_type) {
1633         case e1000_82542_rev2_0:
1634         case e1000_82542_rev2_1:
1635                 tipg = DEFAULT_82542_TIPG_IPGT;
1636                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1637                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1638                 break;
1639         default:
1640                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1641                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1642                 break;
1643         }
1644         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1645         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1646         ew32(TIPG, tipg);
1647
1648         /* Set the Tx Interrupt Delay register */
1649
1650         ew32(TIDV, adapter->tx_int_delay);
1651         if (hw->mac_type >= e1000_82540)
1652                 ew32(TADV, adapter->tx_abs_int_delay);
1653
1654         /* Program the Transmit Control Register */
1655
1656         tctl = er32(TCTL);
1657         tctl &= ~E1000_TCTL_CT;
1658         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1659                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1660
1661         e1000_config_collision_dist(hw);
1662
1663         /* Setup Transmit Descriptor Settings for eop descriptor */
1664         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1665
1666         /* only set IDE if we are delaying interrupts using the timers */
1667         if (adapter->tx_int_delay)
1668                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1669
1670         if (hw->mac_type < e1000_82543)
1671                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1672         else
1673                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1674
1675         /* Cache if we're 82544 running in PCI-X because we'll
1676          * need this to apply a workaround later in the send path. */
1677         if (hw->mac_type == e1000_82544 &&
1678             hw->bus_type == e1000_bus_type_pcix)
1679                 adapter->pcix_82544 = true;
1680
1681         ew32(TCTL, tctl);
1682
1683 }
1684
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692
1693 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1694                                     struct e1000_rx_ring *rxdr)
1695 {
1696         struct pci_dev *pdev = adapter->pdev;
1697         int size, desc_len;
1698
1699         size = sizeof(struct e1000_buffer) * rxdr->count;
1700         rxdr->buffer_info = vzalloc(size);
1701         if (!rxdr->buffer_info) {
1702                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1703                       "ring\n");
1704                 return -ENOMEM;
1705         }
1706
1707         desc_len = sizeof(struct e1000_rx_desc);
1708
1709         /* Round up to nearest 4K */
1710
1711         rxdr->size = rxdr->count * desc_len;
1712         rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715                                         GFP_KERNEL);
1716
1717         if (!rxdr->desc) {
1718                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1719                       "ring\n");
1720 setup_rx_desc_die:
1721                 vfree(rxdr->buffer_info);
1722                 return -ENOMEM;
1723         }
1724
1725         /* Fix for errata 23, can't cross 64kB boundary */
1726         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727                 void *olddesc = rxdr->desc;
1728                 dma_addr_t olddma = rxdr->dma;
1729                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1730                       rxdr->size, rxdr->desc);
1731                 /* Try again, without freeing the previous */
1732                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1733                                                 &rxdr->dma, GFP_KERNEL);
1734                 /* Failed allocation, critical failure */
1735                 if (!rxdr->desc) {
1736                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737                                           olddma);
1738                         e_err(probe, "Unable to allocate memory for the Rx "
1739                               "descriptor ring\n");
1740                         goto setup_rx_desc_die;
1741                 }
1742
1743                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744                         /* give up */
1745                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746                                           rxdr->dma);
1747                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748                                           olddma);
1749                         e_err(probe, "Unable to allocate aligned memory for "
1750                               "the Rx descriptor ring\n");
1751                         goto setup_rx_desc_die;
1752                 } else {
1753                         /* Free old allocation, new allocation was successful */
1754                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755                                           olddma);
1756                 }
1757         }
1758         memset(rxdr->desc, 0, rxdr->size);
1759
1760         rxdr->next_to_clean = 0;
1761         rxdr->next_to_use = 0;
1762         rxdr->rx_skb_top = NULL;
1763
1764         return 0;
1765 }
1766
1767 /**
1768  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769  *                                (Descriptors) for all queues
1770  * @adapter: board private structure
1771  *
1772  * Return 0 on success, negative on failure
1773  **/
1774
1775 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1776 {
1777         int i, err = 0;
1778
1779         for (i = 0; i < adapter->num_rx_queues; i++) {
1780                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1781                 if (err) {
1782                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1783                         for (i-- ; i >= 0; i--)
1784                                 e1000_free_rx_resources(adapter,
1785                                                         &adapter->rx_ring[i]);
1786                         break;
1787                 }
1788         }
1789
1790         return err;
1791 }
1792
1793 /**
1794  * e1000_setup_rctl - configure the receive control registers
1795  * @adapter: Board private structure
1796  **/
1797 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1798 {
1799         struct e1000_hw *hw = &adapter->hw;
1800         u32 rctl;
1801
1802         rctl = er32(RCTL);
1803
1804         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1805
1806         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1807                 E1000_RCTL_RDMTS_HALF |
1808                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1809
1810         if (hw->tbi_compatibility_on == 1)
1811                 rctl |= E1000_RCTL_SBP;
1812         else
1813                 rctl &= ~E1000_RCTL_SBP;
1814
1815         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1816                 rctl &= ~E1000_RCTL_LPE;
1817         else
1818                 rctl |= E1000_RCTL_LPE;
1819
1820         /* Setup buffer sizes */
1821         rctl &= ~E1000_RCTL_SZ_4096;
1822         rctl |= E1000_RCTL_BSEX;
1823         switch (adapter->rx_buffer_len) {
1824                 case E1000_RXBUFFER_2048:
1825                 default:
1826                         rctl |= E1000_RCTL_SZ_2048;
1827                         rctl &= ~E1000_RCTL_BSEX;
1828                         break;
1829                 case E1000_RXBUFFER_4096:
1830                         rctl |= E1000_RCTL_SZ_4096;
1831                         break;
1832                 case E1000_RXBUFFER_8192:
1833                         rctl |= E1000_RCTL_SZ_8192;
1834                         break;
1835                 case E1000_RXBUFFER_16384:
1836                         rctl |= E1000_RCTL_SZ_16384;
1837                         break;
1838         }
1839
1840         ew32(RCTL, rctl);
1841 }
1842
1843 /**
1844  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1845  * @adapter: board private structure
1846  *
1847  * Configure the Rx unit of the MAC after a reset.
1848  **/
1849
1850 static void e1000_configure_rx(struct e1000_adapter *adapter)
1851 {
1852         u64 rdba;
1853         struct e1000_hw *hw = &adapter->hw;
1854         u32 rdlen, rctl, rxcsum;
1855
1856         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1857                 rdlen = adapter->rx_ring[0].count *
1858                         sizeof(struct e1000_rx_desc);
1859                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1860                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1861         } else {
1862                 rdlen = adapter->rx_ring[0].count *
1863                         sizeof(struct e1000_rx_desc);
1864                 adapter->clean_rx = e1000_clean_rx_irq;
1865                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1866         }
1867
1868         /* disable receives while setting up the descriptors */
1869         rctl = er32(RCTL);
1870         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871
1872         /* set the Receive Delay Timer Register */
1873         ew32(RDTR, adapter->rx_int_delay);
1874
1875         if (hw->mac_type >= e1000_82540) {
1876                 ew32(RADV, adapter->rx_abs_int_delay);
1877                 if (adapter->itr_setting != 0)
1878                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1879         }
1880
1881         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1882          * the Base and Length of the Rx Descriptor Ring */
1883         switch (adapter->num_rx_queues) {
1884         case 1:
1885         default:
1886                 rdba = adapter->rx_ring[0].dma;
1887                 ew32(RDLEN, rdlen);
1888                 ew32(RDBAH, (rdba >> 32));
1889                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1890                 ew32(RDT, 0);
1891                 ew32(RDH, 0);
1892                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1893                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1894                 break;
1895         }
1896
1897         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1898         if (hw->mac_type >= e1000_82543) {
1899                 rxcsum = er32(RXCSUM);
1900                 if (adapter->rx_csum)
1901                         rxcsum |= E1000_RXCSUM_TUOFL;
1902                 else
1903                         /* don't need to clear IPPCSE as it defaults to 0 */
1904                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1905                 ew32(RXCSUM, rxcsum);
1906         }
1907
1908         /* Enable Receives */
1909         ew32(RCTL, rctl | E1000_RCTL_EN);
1910 }
1911
1912 /**
1913  * e1000_free_tx_resources - Free Tx Resources per Queue
1914  * @adapter: board private structure
1915  * @tx_ring: Tx descriptor ring for a specific queue
1916  *
1917  * Free all transmit software resources
1918  **/
1919
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921                                     struct e1000_tx_ring *tx_ring)
1922 {
1923         struct pci_dev *pdev = adapter->pdev;
1924
1925         e1000_clean_tx_ring(adapter, tx_ring);
1926
1927         vfree(tx_ring->buffer_info);
1928         tx_ring->buffer_info = NULL;
1929
1930         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931                           tx_ring->dma);
1932
1933         tx_ring->desc = NULL;
1934 }
1935
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942
1943 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1944 {
1945         int i;
1946
1947         for (i = 0; i < adapter->num_tx_queues; i++)
1948                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1949 }
1950
1951 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1952                                              struct e1000_buffer *buffer_info)
1953 {
1954         if (buffer_info->dma) {
1955                 if (buffer_info->mapped_as_page)
1956                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1957                                        buffer_info->length, DMA_TO_DEVICE);
1958                 else
1959                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1960                                          buffer_info->length,
1961                                          DMA_TO_DEVICE);
1962                 buffer_info->dma = 0;
1963         }
1964         if (buffer_info->skb) {
1965                 dev_kfree_skb_any(buffer_info->skb);
1966                 buffer_info->skb = NULL;
1967         }
1968         buffer_info->time_stamp = 0;
1969         /* buffer_info must be completely set up in the transmit path */
1970 }
1971
1972 /**
1973  * e1000_clean_tx_ring - Free Tx Buffers
1974  * @adapter: board private structure
1975  * @tx_ring: ring to be cleaned
1976  **/
1977
1978 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1979                                 struct e1000_tx_ring *tx_ring)
1980 {
1981         struct e1000_hw *hw = &adapter->hw;
1982         struct e1000_buffer *buffer_info;
1983         unsigned long size;
1984         unsigned int i;
1985
1986         /* Free all the Tx ring sk_buffs */
1987
1988         for (i = 0; i < tx_ring->count; i++) {
1989                 buffer_info = &tx_ring->buffer_info[i];
1990                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1991         }
1992
1993         size = sizeof(struct e1000_buffer) * tx_ring->count;
1994         memset(tx_ring->buffer_info, 0, size);
1995
1996         /* Zero out the descriptor ring */
1997
1998         memset(tx_ring->desc, 0, tx_ring->size);
1999
2000         tx_ring->next_to_use = 0;
2001         tx_ring->next_to_clean = 0;
2002         tx_ring->last_tx_tso = false;
2003
2004         writel(0, hw->hw_addr + tx_ring->tdh);
2005         writel(0, hw->hw_addr + tx_ring->tdt);
2006 }
2007
2008 /**
2009  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2010  * @adapter: board private structure
2011  **/
2012
2013 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2014 {
2015         int i;
2016
2017         for (i = 0; i < adapter->num_tx_queues; i++)
2018                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2019 }
2020
2021 /**
2022  * e1000_free_rx_resources - Free Rx Resources
2023  * @adapter: board private structure
2024  * @rx_ring: ring to clean the resources from
2025  *
2026  * Free all receive software resources
2027  **/
2028
2029 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2030                                     struct e1000_rx_ring *rx_ring)
2031 {
2032         struct pci_dev *pdev = adapter->pdev;
2033
2034         e1000_clean_rx_ring(adapter, rx_ring);
2035
2036         vfree(rx_ring->buffer_info);
2037         rx_ring->buffer_info = NULL;
2038
2039         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2040                           rx_ring->dma);
2041
2042         rx_ring->desc = NULL;
2043 }
2044
2045 /**
2046  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2047  * @adapter: board private structure
2048  *
2049  * Free all receive software resources
2050  **/
2051
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054         int i;
2055
2056         for (i = 0; i < adapter->num_rx_queues; i++)
2057                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059
2060 /**
2061  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062  * @adapter: board private structure
2063  * @rx_ring: ring to free buffers from
2064  **/
2065
2066 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2067                                 struct e1000_rx_ring *rx_ring)
2068 {
2069         struct e1000_hw *hw = &adapter->hw;
2070         struct e1000_buffer *buffer_info;
2071         struct pci_dev *pdev = adapter->pdev;
2072         unsigned long size;
2073         unsigned int i;
2074
2075         /* Free all the Rx ring sk_buffs */
2076         for (i = 0; i < rx_ring->count; i++) {
2077                 buffer_info = &rx_ring->buffer_info[i];
2078                 if (buffer_info->dma &&
2079                     adapter->clean_rx == e1000_clean_rx_irq) {
2080                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2081                                          buffer_info->length,
2082                                          DMA_FROM_DEVICE);
2083                 } else if (buffer_info->dma &&
2084                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2085                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2086                                        buffer_info->length,
2087                                        DMA_FROM_DEVICE);
2088                 }
2089
2090                 buffer_info->dma = 0;
2091                 if (buffer_info->page) {
2092                         put_page(buffer_info->page);
2093                         buffer_info->page = NULL;
2094                 }
2095                 if (buffer_info->skb) {
2096                         dev_kfree_skb(buffer_info->skb);
2097                         buffer_info->skb = NULL;
2098                 }
2099         }
2100
2101         /* there also may be some cached data from a chained receive */
2102         if (rx_ring->rx_skb_top) {
2103                 dev_kfree_skb(rx_ring->rx_skb_top);
2104                 rx_ring->rx_skb_top = NULL;
2105         }
2106
2107         size = sizeof(struct e1000_buffer) * rx_ring->count;
2108         memset(rx_ring->buffer_info, 0, size);
2109
2110         /* Zero out the descriptor ring */
2111         memset(rx_ring->desc, 0, rx_ring->size);
2112
2113         rx_ring->next_to_clean = 0;
2114         rx_ring->next_to_use = 0;
2115
2116         writel(0, hw->hw_addr + rx_ring->rdh);
2117         writel(0, hw->hw_addr + rx_ring->rdt);
2118 }
2119
2120 /**
2121  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2122  * @adapter: board private structure
2123  **/
2124
2125 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2126 {
2127         int i;
2128
2129         for (i = 0; i < adapter->num_rx_queues; i++)
2130                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2131 }
2132
2133 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2134  * and memory write and invalidate disabled for certain operations
2135  */
2136 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2137 {
2138         struct e1000_hw *hw = &adapter->hw;
2139         struct net_device *netdev = adapter->netdev;
2140         u32 rctl;
2141
2142         e1000_pci_clear_mwi(hw);
2143
2144         rctl = er32(RCTL);
2145         rctl |= E1000_RCTL_RST;
2146         ew32(RCTL, rctl);
2147         E1000_WRITE_FLUSH();
2148         mdelay(5);
2149
2150         if (netif_running(netdev))
2151                 e1000_clean_all_rx_rings(adapter);
2152 }
2153
2154 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2155 {
2156         struct e1000_hw *hw = &adapter->hw;
2157         struct net_device *netdev = adapter->netdev;
2158         u32 rctl;
2159
2160         rctl = er32(RCTL);
2161         rctl &= ~E1000_RCTL_RST;
2162         ew32(RCTL, rctl);
2163         E1000_WRITE_FLUSH();
2164         mdelay(5);
2165
2166         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2167                 e1000_pci_set_mwi(hw);
2168
2169         if (netif_running(netdev)) {
2170                 /* No need to loop, because 82542 supports only 1 queue */
2171                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2172                 e1000_configure_rx(adapter);
2173                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2174         }
2175 }
2176
2177 /**
2178  * e1000_set_mac - Change the Ethernet Address of the NIC
2179  * @netdev: network interface device structure
2180  * @p: pointer to an address structure
2181  *
2182  * Returns 0 on success, negative on failure
2183  **/
2184
2185 static int e1000_set_mac(struct net_device *netdev, void *p)
2186 {
2187         struct e1000_adapter *adapter = netdev_priv(netdev);
2188         struct e1000_hw *hw = &adapter->hw;
2189         struct sockaddr *addr = p;
2190
2191         if (!is_valid_ether_addr(addr->sa_data))
2192                 return -EADDRNOTAVAIL;
2193
2194         /* 82542 2.0 needs to be in reset to write receive address registers */
2195
2196         if (hw->mac_type == e1000_82542_rev2_0)
2197                 e1000_enter_82542_rst(adapter);
2198
2199         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2200         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2201
2202         e1000_rar_set(hw, hw->mac_addr, 0);
2203
2204         if (hw->mac_type == e1000_82542_rev2_0)
2205                 e1000_leave_82542_rst(adapter);
2206
2207         return 0;
2208 }
2209
2210 /**
2211  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2212  * @netdev: network interface device structure
2213  *
2214  * The set_rx_mode entry point is called whenever the unicast or multicast
2215  * address lists or the network interface flags are updated. This routine is
2216  * responsible for configuring the hardware for proper unicast, multicast,
2217  * promiscuous mode, and all-multi behavior.
2218  **/
2219
2220 static void e1000_set_rx_mode(struct net_device *netdev)
2221 {
2222         struct e1000_adapter *adapter = netdev_priv(netdev);
2223         struct e1000_hw *hw = &adapter->hw;
2224         struct netdev_hw_addr *ha;
2225         bool use_uc = false;
2226         u32 rctl;
2227         u32 hash_value;
2228         int i, rar_entries = E1000_RAR_ENTRIES;
2229         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2230         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2231
2232         if (!mcarray) {
2233                 e_err(probe, "memory allocation failed\n");
2234                 return;
2235         }
2236
2237         /* Check for Promiscuous and All Multicast modes */
2238
2239         rctl = er32(RCTL);
2240
2241         if (netdev->flags & IFF_PROMISC) {
2242                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2243                 rctl &= ~E1000_RCTL_VFE;
2244         } else {
2245                 if (netdev->flags & IFF_ALLMULTI)
2246                         rctl |= E1000_RCTL_MPE;
2247                 else
2248                         rctl &= ~E1000_RCTL_MPE;
2249                 /* Enable VLAN filter if there is a VLAN */
2250                 if (e1000_vlan_used(adapter))
2251                         rctl |= E1000_RCTL_VFE;
2252         }
2253
2254         if (netdev_uc_count(netdev) > rar_entries - 1) {
2255                 rctl |= E1000_RCTL_UPE;
2256         } else if (!(netdev->flags & IFF_PROMISC)) {
2257                 rctl &= ~E1000_RCTL_UPE;
2258                 use_uc = true;
2259         }
2260
2261         ew32(RCTL, rctl);
2262
2263         /* 82542 2.0 needs to be in reset to write receive address registers */
2264
2265         if (hw->mac_type == e1000_82542_rev2_0)
2266                 e1000_enter_82542_rst(adapter);
2267
2268         /* load the first 14 addresses into the exact filters 1-14. Unicast
2269          * addresses take precedence to avoid disabling unicast filtering
2270          * when possible.
2271          *
2272          * RAR 0 is used for the station MAC address
2273          * if there are not 14 addresses, go ahead and clear the filters
2274          */
2275         i = 1;
2276         if (use_uc)
2277                 netdev_for_each_uc_addr(ha, netdev) {
2278                         if (i == rar_entries)
2279                                 break;
2280                         e1000_rar_set(hw, ha->addr, i++);
2281                 }
2282
2283         netdev_for_each_mc_addr(ha, netdev) {
2284                 if (i == rar_entries) {
2285                         /* load any remaining addresses into the hash table */
2286                         u32 hash_reg, hash_bit, mta;
2287                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2288                         hash_reg = (hash_value >> 5) & 0x7F;
2289                         hash_bit = hash_value & 0x1F;
2290                         mta = (1 << hash_bit);
2291                         mcarray[hash_reg] |= mta;
2292                 } else {
2293                         e1000_rar_set(hw, ha->addr, i++);
2294                 }
2295         }
2296
2297         for (; i < rar_entries; i++) {
2298                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2299                 E1000_WRITE_FLUSH();
2300                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2301                 E1000_WRITE_FLUSH();
2302         }
2303
2304         /* write the hash table completely, write from bottom to avoid
2305          * both stupid write combining chipsets, and flushing each write */
2306         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2307                 /*
2308                  * If we are on an 82544 has an errata where writing odd
2309                  * offsets overwrites the previous even offset, but writing
2310                  * backwards over the range solves the issue by always
2311                  * writing the odd offset first
2312                  */
2313                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2314         }
2315         E1000_WRITE_FLUSH();
2316
2317         if (hw->mac_type == e1000_82542_rev2_0)
2318                 e1000_leave_82542_rst(adapter);
2319
2320         kfree(mcarray);
2321 }
2322
2323 /**
2324  * e1000_update_phy_info_task - get phy info
2325  * @work: work struct contained inside adapter struct
2326  *
2327  * Need to wait a few seconds after link up to get diagnostic information from
2328  * the phy
2329  */
2330 static void e1000_update_phy_info_task(struct work_struct *work)
2331 {
2332         struct e1000_adapter *adapter = container_of(work,
2333                                                      struct e1000_adapter,
2334                                                      phy_info_task.work);
2335         if (test_bit(__E1000_DOWN, &adapter->flags))
2336                 return;
2337         mutex_lock(&adapter->mutex);
2338         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2339         mutex_unlock(&adapter->mutex);
2340 }
2341
2342 /**
2343  * e1000_82547_tx_fifo_stall_task - task to complete work
2344  * @work: work struct contained inside adapter struct
2345  **/
2346 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2347 {
2348         struct e1000_adapter *adapter = container_of(work,
2349                                                      struct e1000_adapter,
2350                                                      fifo_stall_task.work);
2351         struct e1000_hw *hw = &adapter->hw;
2352         struct net_device *netdev = adapter->netdev;
2353         u32 tctl;
2354
2355         if (test_bit(__E1000_DOWN, &adapter->flags))
2356                 return;
2357         mutex_lock(&adapter->mutex);
2358         if (atomic_read(&adapter->tx_fifo_stall)) {
2359                 if ((er32(TDT) == er32(TDH)) &&
2360                    (er32(TDFT) == er32(TDFH)) &&
2361                    (er32(TDFTS) == er32(TDFHS))) {
2362                         tctl = er32(TCTL);
2363                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2364                         ew32(TDFT, adapter->tx_head_addr);
2365                         ew32(TDFH, adapter->tx_head_addr);
2366                         ew32(TDFTS, adapter->tx_head_addr);
2367                         ew32(TDFHS, adapter->tx_head_addr);
2368                         ew32(TCTL, tctl);
2369                         E1000_WRITE_FLUSH();
2370
2371                         adapter->tx_fifo_head = 0;
2372                         atomic_set(&adapter->tx_fifo_stall, 0);
2373                         netif_wake_queue(netdev);
2374                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2375                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2376                 }
2377         }
2378         mutex_unlock(&adapter->mutex);
2379 }
2380
2381 bool e1000_has_link(struct e1000_adapter *adapter)
2382 {
2383         struct e1000_hw *hw = &adapter->hw;
2384         bool link_active = false;
2385
2386         /* get_link_status is set on LSC (link status) interrupt or rx
2387          * sequence error interrupt (except on intel ce4100).
2388          * get_link_status will stay false until the
2389          * e1000_check_for_link establishes link for copper adapters
2390          * ONLY
2391          */
2392         switch (hw->media_type) {
2393         case e1000_media_type_copper:
2394                 if (hw->mac_type == e1000_ce4100)
2395                         hw->get_link_status = 1;
2396                 if (hw->get_link_status) {
2397                         e1000_check_for_link(hw);
2398                         link_active = !hw->get_link_status;
2399                 } else {
2400                         link_active = true;
2401                 }
2402                 break;
2403         case e1000_media_type_fiber:
2404                 e1000_check_for_link(hw);
2405                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2406                 break;
2407         case e1000_media_type_internal_serdes:
2408                 e1000_check_for_link(hw);
2409                 link_active = hw->serdes_has_link;
2410                 break;
2411         default:
2412                 break;
2413         }
2414
2415         return link_active;
2416 }
2417
2418 /**
2419  * e1000_watchdog - work function
2420  * @work: work struct contained inside adapter struct
2421  **/
2422 static void e1000_watchdog(struct work_struct *work)
2423 {
2424         struct e1000_adapter *adapter = container_of(work,
2425                                                      struct e1000_adapter,
2426                                                      watchdog_task.work);
2427         struct e1000_hw *hw = &adapter->hw;
2428         struct net_device *netdev = adapter->netdev;
2429         struct e1000_tx_ring *txdr = adapter->tx_ring;
2430         u32 link, tctl;
2431
2432         if (test_bit(__E1000_DOWN, &adapter->flags))
2433                 return;
2434
2435         mutex_lock(&adapter->mutex);
2436         link = e1000_has_link(adapter);
2437         if ((netif_carrier_ok(netdev)) && link)
2438                 goto link_up;
2439
2440         if (link) {
2441                 if (!netif_carrier_ok(netdev)) {
2442                         u32 ctrl;
2443                         bool txb2b = true;
2444                         /* update snapshot of PHY registers on LSC */
2445                         e1000_get_speed_and_duplex(hw,
2446                                                    &adapter->link_speed,
2447                                                    &adapter->link_duplex);
2448
2449                         ctrl = er32(CTRL);
2450                         pr_info("%s NIC Link is Up %d Mbps %s, "
2451                                 "Flow Control: %s\n",
2452                                 netdev->name,
2453                                 adapter->link_speed,
2454                                 adapter->link_duplex == FULL_DUPLEX ?
2455                                 "Full Duplex" : "Half Duplex",
2456                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2460
2461                         /* adjust timeout factor according to speed/duplex */
2462                         adapter->tx_timeout_factor = 1;
2463                         switch (adapter->link_speed) {
2464                         case SPEED_10:
2465                                 txb2b = false;
2466                                 adapter->tx_timeout_factor = 16;
2467                                 break;
2468                         case SPEED_100:
2469                                 txb2b = false;
2470                                 /* maybe add some timeout factor ? */
2471                                 break;
2472                         }
2473
2474                         /* enable transmits in the hardware */
2475                         tctl = er32(TCTL);
2476                         tctl |= E1000_TCTL_EN;
2477                         ew32(TCTL, tctl);
2478
2479                         netif_carrier_on(netdev);
2480                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2481                                 schedule_delayed_work(&adapter->phy_info_task,
2482                                                       2 * HZ);
2483                         adapter->smartspeed = 0;
2484                 }
2485         } else {
2486                 if (netif_carrier_ok(netdev)) {
2487                         adapter->link_speed = 0;
2488                         adapter->link_duplex = 0;
2489                         pr_info("%s NIC Link is Down\n",
2490                                 netdev->name);
2491                         netif_carrier_off(netdev);
2492
2493                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2494                                 schedule_delayed_work(&adapter->phy_info_task,
2495                                                       2 * HZ);
2496                 }
2497
2498                 e1000_smartspeed(adapter);
2499         }
2500
2501 link_up:
2502         e1000_update_stats(adapter);
2503
2504         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2505         adapter->tpt_old = adapter->stats.tpt;
2506         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2507         adapter->colc_old = adapter->stats.colc;
2508
2509         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2510         adapter->gorcl_old = adapter->stats.gorcl;
2511         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2512         adapter->gotcl_old = adapter->stats.gotcl;
2513
2514         e1000_update_adaptive(hw);
2515
2516         if (!netif_carrier_ok(netdev)) {
2517                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2518                         /* We've lost link, so the controller stops DMA,
2519                          * but we've got queued Tx work that's never going
2520                          * to get done, so reset controller to flush Tx.
2521                          * (Do the reset outside of interrupt context). */
2522                         adapter->tx_timeout_count++;
2523                         schedule_work(&adapter->reset_task);
2524                         /* exit immediately since reset is imminent */
2525                         goto unlock;
2526                 }
2527         }
2528
2529         /* Simple mode for Interrupt Throttle Rate (ITR) */
2530         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531                 /*
2532                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2533                  * Total asymmetrical Tx or Rx gets ITR=8000;
2534                  * everyone else is between 2000-8000.
2535                  */
2536                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2537                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2538                             adapter->gotcl - adapter->gorcl :
2539                             adapter->gorcl - adapter->gotcl) / 10000;
2540                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2541
2542                 ew32(ITR, 1000000000 / (itr * 256));
2543         }
2544
2545         /* Cause software interrupt to ensure rx ring is cleaned */
2546         ew32(ICS, E1000_ICS_RXDMT0);
2547
2548         /* Force detection of hung controller every watchdog period */
2549         adapter->detect_tx_hung = true;
2550
2551         /* Reschedule the task */
2552         if (!test_bit(__E1000_DOWN, &adapter->flags))
2553                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2554
2555 unlock:
2556         mutex_unlock(&adapter->mutex);
2557 }
2558
2559 enum latency_range {
2560         lowest_latency = 0,
2561         low_latency = 1,
2562         bulk_latency = 2,
2563         latency_invalid = 255
2564 };
2565
2566 /**
2567  * e1000_update_itr - update the dynamic ITR value based on statistics
2568  * @adapter: pointer to adapter
2569  * @itr_setting: current adapter->itr
2570  * @packets: the number of packets during this measurement interval
2571  * @bytes: the number of bytes during this measurement interval
2572  *
2573  *      Stores a new ITR value based on packets and byte
2574  *      counts during the last interrupt.  The advantage of per interrupt
2575  *      computation is faster updates and more accurate ITR for the current
2576  *      traffic pattern.  Constants in this function were computed
2577  *      based on theoretical maximum wire speed and thresholds were set based
2578  *      on testing data as well as attempting to minimize response time
2579  *      while increasing bulk throughput.
2580  *      this functionality is controlled by the InterruptThrottleRate module
2581  *      parameter (see e1000_param.c)
2582  **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584                                      u16 itr_setting, int packets, int bytes)
2585 {
2586         unsigned int retval = itr_setting;
2587         struct e1000_hw *hw = &adapter->hw;
2588
2589         if (unlikely(hw->mac_type < e1000_82540))
2590                 goto update_itr_done;
2591
2592         if (packets == 0)
2593                 goto update_itr_done;
2594
2595         switch (itr_setting) {
2596         case lowest_latency:
2597                 /* jumbo frames get bulk treatment*/
2598                 if (bytes/packets > 8000)
2599                         retval = bulk_latency;
2600                 else if ((packets < 5) && (bytes > 512))
2601                         retval = low_latency;
2602                 break;
2603         case low_latency:  /* 50 usec aka 20000 ints/s */
2604                 if (bytes > 10000) {
2605                         /* jumbo frames need bulk latency setting */
2606                         if (bytes/packets > 8000)
2607                                 retval = bulk_latency;
2608                         else if ((packets < 10) || ((bytes/packets) > 1200))
2609                                 retval = bulk_latency;
2610                         else if ((packets > 35))
2611                                 retval = lowest_latency;
2612                 } else if (bytes/packets > 2000)
2613                         retval = bulk_latency;
2614                 else if (packets <= 2 && bytes < 512)
2615                         retval = lowest_latency;
2616                 break;
2617         case bulk_latency: /* 250 usec aka 4000 ints/s */
2618                 if (bytes > 25000) {
2619                         if (packets > 35)
2620                                 retval = low_latency;
2621                 } else if (bytes < 6000) {
2622                         retval = low_latency;
2623                 }
2624                 break;
2625         }
2626
2627 update_itr_done:
2628         return retval;
2629 }
2630
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633         struct e1000_hw *hw = &adapter->hw;
2634         u16 current_itr;
2635         u32 new_itr = adapter->itr;
2636
2637         if (unlikely(hw->mac_type < e1000_82540))
2638                 return;
2639
2640         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641         if (unlikely(adapter->link_speed != SPEED_1000)) {
2642                 current_itr = 0;
2643                 new_itr = 4000;
2644                 goto set_itr_now;
2645         }
2646
2647         adapter->tx_itr = e1000_update_itr(adapter,
2648                                     adapter->tx_itr,
2649                                     adapter->total_tx_packets,
2650                                     adapter->total_tx_bytes);
2651         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2652         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2653                 adapter->tx_itr = low_latency;
2654
2655         adapter->rx_itr = e1000_update_itr(adapter,
2656                                     adapter->rx_itr,
2657                                     adapter->total_rx_packets,
2658                                     adapter->total_rx_bytes);
2659         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2660         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2661                 adapter->rx_itr = low_latency;
2662
2663         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2664
2665         switch (current_itr) {
2666         /* counts and packets in update_itr are dependent on these numbers */
2667         case lowest_latency:
2668                 new_itr = 70000;
2669                 break;
2670         case low_latency:
2671                 new_itr = 20000; /* aka hwitr = ~200 */
2672                 break;
2673         case bulk_latency:
2674                 new_itr = 4000;
2675                 break;
2676         default:
2677                 break;
2678         }
2679
2680 set_itr_now:
2681         if (new_itr != adapter->itr) {
2682                 /* this attempts to bias the interrupt rate towards Bulk
2683                  * by adding intermediate steps when interrupt rate is
2684                  * increasing */
2685                 new_itr = new_itr > adapter->itr ?
2686                              min(adapter->itr + (new_itr >> 2), new_itr) :
2687                              new_itr;
2688                 adapter->itr = new_itr;
2689                 ew32(ITR, 1000000000 / (new_itr * 256));
2690         }
2691 }
2692
2693 #define E1000_TX_FLAGS_CSUM             0x00000001
2694 #define E1000_TX_FLAGS_VLAN             0x00000002
2695 #define E1000_TX_FLAGS_TSO              0x00000004
2696 #define E1000_TX_FLAGS_IPV4             0x00000008
2697 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2699
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2702 {
2703         struct e1000_context_desc *context_desc;
2704         struct e1000_buffer *buffer_info;
2705         unsigned int i;
2706         u32 cmd_length = 0;
2707         u16 ipcse = 0, tucse, mss;
2708         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2709         int err;
2710
2711         if (skb_is_gso(skb)) {
2712                 if (skb_header_cloned(skb)) {
2713                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714                         if (err)
2715                                 return err;
2716                 }
2717
2718                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719                 mss = skb_shinfo(skb)->gso_size;
2720                 if (skb->protocol == htons(ETH_P_IP)) {
2721                         struct iphdr *iph = ip_hdr(skb);
2722                         iph->tot_len = 0;
2723                         iph->check = 0;
2724                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725                                                                  iph->daddr, 0,
2726                                                                  IPPROTO_TCP,
2727                                                                  0);
2728                         cmd_length = E1000_TXD_CMD_IP;
2729                         ipcse = skb_transport_offset(skb) - 1;
2730                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2731                         ipv6_hdr(skb)->payload_len = 0;
2732                         tcp_hdr(skb)->check =
2733                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734                                                  &ipv6_hdr(skb)->daddr,
2735                                                  0, IPPROTO_TCP, 0);
2736                         ipcse = 0;
2737                 }
2738                 ipcss = skb_network_offset(skb);
2739                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740                 tucss = skb_transport_offset(skb);
2741                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742                 tucse = 0;
2743
2744                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747                 i = tx_ring->next_to_use;
2748                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749                 buffer_info = &tx_ring->buffer_info[i];
2750
2751                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761                 buffer_info->time_stamp = jiffies;
2762                 buffer_info->next_to_watch = i;
2763
2764                 if (++i == tx_ring->count) i = 0;
2765                 tx_ring->next_to_use = i;
2766
2767                 return true;
2768         }
2769         return false;
2770 }
2771
2772 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2773                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2774 {
2775         struct e1000_context_desc *context_desc;
2776         struct e1000_buffer *buffer_info;
2777         unsigned int i;
2778         u8 css;
2779         u32 cmd_len = E1000_TXD_CMD_DEXT;
2780
2781         if (skb->ip_summed != CHECKSUM_PARTIAL)
2782                 return false;
2783
2784         switch (skb->protocol) {
2785         case cpu_to_be16(ETH_P_IP):
2786                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2787                         cmd_len |= E1000_TXD_CMD_TCP;
2788                 break;
2789         case cpu_to_be16(ETH_P_IPV6):
2790                 /* XXX not handling all IPV6 headers */
2791                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2792                         cmd_len |= E1000_TXD_CMD_TCP;
2793                 break;
2794         default:
2795                 if (unlikely(net_ratelimit()))
2796                         e_warn(drv, "checksum_partial proto=%x!\n",
2797                                skb->protocol);
2798                 break;
2799         }
2800
2801         css = skb_checksum_start_offset(skb);
2802
2803         i = tx_ring->next_to_use;
2804         buffer_info = &tx_ring->buffer_info[i];
2805         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2806
2807         context_desc->lower_setup.ip_config = 0;
2808         context_desc->upper_setup.tcp_fields.tucss = css;
2809         context_desc->upper_setup.tcp_fields.tucso =
2810                 css + skb->csum_offset;
2811         context_desc->upper_setup.tcp_fields.tucse = 0;
2812         context_desc->tcp_seg_setup.data = 0;
2813         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2814
2815         buffer_info->time_stamp = jiffies;
2816         buffer_info->next_to_watch = i;
2817
2818         if (unlikely(++i == tx_ring->count)) i = 0;
2819         tx_ring->next_to_use = i;
2820
2821         return true;
2822 }
2823
2824 #define E1000_MAX_TXD_PWR       12
2825 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2826
2827 static int e1000_tx_map(struct e1000_adapter *adapter,
2828                         struct e1000_tx_ring *tx_ring,
2829                         struct sk_buff *skb, unsigned int first,
2830                         unsigned int max_per_txd, unsigned int nr_frags,
2831                         unsigned int mss)
2832 {
2833         struct e1000_hw *hw = &adapter->hw;
2834         struct pci_dev *pdev = adapter->pdev;
2835         struct e1000_buffer *buffer_info;
2836         unsigned int len = skb_headlen(skb);
2837         unsigned int offset = 0, size, count = 0, i;
2838         unsigned int f, bytecount, segs;
2839
2840         i = tx_ring->next_to_use;
2841
2842         while (len) {
2843                 buffer_info = &tx_ring->buffer_info[i];
2844                 size = min(len, max_per_txd);
2845                 /* Workaround for Controller erratum --
2846                  * descriptor for non-tso packet in a linear SKB that follows a
2847                  * tso gets written back prematurely before the data is fully
2848                  * DMA'd to the controller */
2849                 if (!skb->data_len && tx_ring->last_tx_tso &&
2850                     !skb_is_gso(skb)) {
2851                         tx_ring->last_tx_tso = false;
2852                         size -= 4;
2853                 }
2854
2855                 /* Workaround for premature desc write-backs
2856                  * in TSO mode.  Append 4-byte sentinel desc */
2857                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2858                         size -= 4;
2859                 /* work-around for errata 10 and it applies
2860                  * to all controllers in PCI-X mode
2861                  * The fix is to make sure that the first descriptor of a
2862                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863                  */
2864                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2865                                 (size > 2015) && count == 0))
2866                         size = 2015;
2867
2868                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2869                  * terminating buffers within evenly-aligned dwords. */
2870                 if (unlikely(adapter->pcix_82544 &&
2871                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2872                    size > 4))
2873                         size -= 4;
2874
2875                 buffer_info->length = size;
2876                 /* set time_stamp *before* dma to help avoid a possible race */
2877                 buffer_info->time_stamp = jiffies;
2878                 buffer_info->mapped_as_page = false;
2879                 buffer_info->dma = dma_map_single(&pdev->dev,
2880                                                   skb->data + offset,
2881                                                   size, DMA_TO_DEVICE);
2882                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2883                         goto dma_error;
2884                 buffer_info->next_to_watch = i;
2885
2886                 len -= size;
2887                 offset += size;
2888                 count++;
2889                 if (len) {
2890                         i++;
2891                         if (unlikely(i == tx_ring->count))
2892                                 i = 0;
2893                 }
2894         }
2895
2896         for (f = 0; f < nr_frags; f++) {
2897                 const struct skb_frag_struct *frag;
2898
2899                 frag = &skb_shinfo(skb)->frags[f];
2900                 len = skb_frag_size(frag);
2901                 offset = 0;
2902
2903                 while (len) {
2904                         unsigned long bufend;
2905                         i++;
2906                         if (unlikely(i == tx_ring->count))
2907                                 i = 0;
2908
2909                         buffer_info = &tx_ring->buffer_info[i];
2910                         size = min(len, max_per_txd);
2911                         /* Workaround for premature desc write-backs
2912                          * in TSO mode.  Append 4-byte sentinel desc */
2913                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2914                                 size -= 4;
2915                         /* Workaround for potential 82544 hang in PCI-X.
2916                          * Avoid terminating buffers within evenly-aligned
2917                          * dwords. */
2918                         bufend = (unsigned long)
2919                                 page_to_phys(skb_frag_page(frag));
2920                         bufend += offset + size - 1;
2921                         if (unlikely(adapter->pcix_82544 &&
2922                                      !(bufend & 4) &&
2923                                      size > 4))
2924                                 size -= 4;
2925
2926                         buffer_info->length = size;
2927                         buffer_info->time_stamp = jiffies;
2928                         buffer_info->mapped_as_page = true;
2929                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930                                                 offset, size, DMA_TO_DEVICE);
2931                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2932                                 goto dma_error;
2933                         buffer_info->next_to_watch = i;
2934
2935                         len -= size;
2936                         offset += size;
2937                         count++;
2938                 }
2939         }
2940
2941         segs = skb_shinfo(skb)->gso_segs ?: 1;
2942         /* multiply data chunks by size of headers */
2943         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944
2945         tx_ring->buffer_info[i].skb = skb;
2946         tx_ring->buffer_info[i].segs = segs;
2947         tx_ring->buffer_info[i].bytecount = bytecount;
2948         tx_ring->buffer_info[first].next_to_watch = i;
2949
2950         return count;
2951
2952 dma_error:
2953         dev_err(&pdev->dev, "TX DMA map failed\n");
2954         buffer_info->dma = 0;
2955         if (count)
2956                 count--;
2957
2958         while (count--) {
2959                 if (i==0)
2960                         i += tx_ring->count;
2961                 i--;
2962                 buffer_info = &tx_ring->buffer_info[i];
2963                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2964         }
2965
2966         return 0;
2967 }
2968
2969 static void e1000_tx_queue(struct e1000_adapter *adapter,
2970                            struct e1000_tx_ring *tx_ring, int tx_flags,
2971                            int count)
2972 {
2973         struct e1000_hw *hw = &adapter->hw;
2974         struct e1000_tx_desc *tx_desc = NULL;
2975         struct e1000_buffer *buffer_info;
2976         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977         unsigned int i;
2978
2979         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981                              E1000_TXD_CMD_TSE;
2982                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986         }
2987
2988         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991         }
2992
2993         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994                 txd_lower |= E1000_TXD_CMD_VLE;
2995                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996         }
2997
2998         i = tx_ring->next_to_use;
2999
3000         while (count--) {
3001                 buffer_info = &tx_ring->buffer_info[i];
3002                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004                 tx_desc->lower.data =
3005                         cpu_to_le32(txd_lower | buffer_info->length);
3006                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3007                 if (unlikely(++i == tx_ring->count)) i = 0;
3008         }
3009
3010         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011
3012         /* Force memory writes to complete before letting h/w
3013          * know there are new descriptors to fetch.  (Only
3014          * applicable for weak-ordered memory model archs,
3015          * such as IA-64). */
3016         wmb();
3017
3018         tx_ring->next_to_use = i;
3019         writel(i, hw->hw_addr + tx_ring->tdt);
3020         /* we need this if more than one processor can write to our tail
3021          * at a time, it syncronizes IO on IA64/Altix systems */
3022         mmiowb();
3023 }
3024
3025 /**
3026  * 82547 workaround to avoid controller hang in half-duplex environment.
3027  * The workaround is to avoid queuing a large packet that would span
3028  * the internal Tx FIFO ring boundary by notifying the stack to resend
3029  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3030  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3031  * to the beginning of the Tx FIFO.
3032  **/
3033
3034 #define E1000_FIFO_HDR                  0x10
3035 #define E1000_82547_PAD_LEN             0x3E0
3036
3037 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038                                        struct sk_buff *skb)
3039 {
3040         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3042
3043         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3044
3045         if (adapter->link_duplex != HALF_DUPLEX)
3046                 goto no_fifo_stall_required;
3047
3048         if (atomic_read(&adapter->tx_fifo_stall))
3049                 return 1;
3050
3051         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3052                 atomic_set(&adapter->tx_fifo_stall, 1);
3053                 return 1;
3054         }
3055
3056 no_fifo_stall_required:
3057         adapter->tx_fifo_head += skb_fifo_len;
3058         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3059                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060         return 0;
3061 }
3062
3063 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064 {
3065         struct e1000_adapter *adapter = netdev_priv(netdev);
3066         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067
3068         netif_stop_queue(netdev);
3069         /* Herbert's original patch had:
3070          *  smp_mb__after_netif_stop_queue();
3071          * but since that doesn't exist yet, just open code it. */
3072         smp_mb();
3073
3074         /* We need to check again in a case another CPU has just
3075          * made room available. */
3076         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3077                 return -EBUSY;
3078
3079         /* A reprieve! */
3080         netif_start_queue(netdev);
3081         ++adapter->restart_queue;
3082         return 0;
3083 }
3084
3085 static int e1000_maybe_stop_tx(struct net_device *netdev,
3086                                struct e1000_tx_ring *tx_ring, int size)
3087 {
3088         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3089                 return 0;
3090         return __e1000_maybe_stop_tx(netdev, size);
3091 }
3092
3093 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3094 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3095                                     struct net_device *netdev)
3096 {
3097         struct e1000_adapter *adapter = netdev_priv(netdev);
3098         struct e1000_hw *hw = &adapter->hw;
3099         struct e1000_tx_ring *tx_ring;
3100         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3101         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3102         unsigned int tx_flags = 0;
3103         unsigned int len = skb_headlen(skb);
3104         unsigned int nr_frags;
3105         unsigned int mss;
3106         int count = 0;
3107         int tso;
3108         unsigned int f;
3109
3110         /* This goes back to the question of how to logically map a tx queue
3111          * to a flow.  Right now, performance is impacted slightly negatively
3112          * if using multiple tx queues.  If the stack breaks away from a
3113          * single qdisc implementation, we can look at this again. */
3114         tx_ring = adapter->tx_ring;
3115
3116         if (unlikely(skb->len <= 0)) {
3117                 dev_kfree_skb_any(skb);
3118                 return NETDEV_TX_OK;
3119         }
3120
3121         mss = skb_shinfo(skb)->gso_size;
3122         /* The controller does a simple calculation to
3123          * make sure there is enough room in the FIFO before
3124          * initiating the DMA for each buffer.  The calc is:
3125          * 4 = ceil(buffer len/mss).  To make sure we don't
3126          * overrun the FIFO, adjust the max buffer len if mss
3127          * drops. */
3128         if (mss) {
3129                 u8 hdr_len;
3130                 max_per_txd = min(mss << 2, max_per_txd);
3131                 max_txd_pwr = fls(max_per_txd) - 1;
3132
3133                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3134                 if (skb->data_len && hdr_len == len) {
3135                         switch (hw->mac_type) {
3136                                 unsigned int pull_size;
3137                         case e1000_82544:
3138                                 /* Make sure we have room to chop off 4 bytes,
3139                                  * and that the end alignment will work out to
3140                                  * this hardware's requirements
3141                                  * NOTE: this is a TSO only workaround
3142                                  * if end byte alignment not correct move us
3143                                  * into the next dword */
3144                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3145                                         break;
3146                                 /* fall through */
3147                                 pull_size = min((unsigned int)4, skb->data_len);
3148                                 if (!__pskb_pull_tail(skb, pull_size)) {
3149                                         e_err(drv, "__pskb_pull_tail "
3150                                               "failed.\n");
3151                                         dev_kfree_skb_any(skb);
3152                                         return NETDEV_TX_OK;
3153                                 }
3154                                 len = skb_headlen(skb);
3155                                 break;
3156                         default:
3157                                 /* do nothing */
3158                                 break;
3159                         }
3160                 }
3161         }
3162
3163         /* reserve a descriptor for the offload context */
3164         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3165                 count++;
3166         count++;
3167
3168         /* Controller Erratum workaround */
3169         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3170                 count++;
3171
3172         count += TXD_USE_COUNT(len, max_txd_pwr);
3173
3174         if (adapter->pcix_82544)
3175                 count++;
3176
3177         /* work-around for errata 10 and it applies to all controllers
3178          * in PCI-X mode, so add one more descriptor to the count
3179          */
3180         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3181                         (len > 2015)))
3182                 count++;
3183
3184         nr_frags = skb_shinfo(skb)->nr_frags;
3185         for (f = 0; f < nr_frags; f++)
3186                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3187                                        max_txd_pwr);
3188         if (adapter->pcix_82544)
3189                 count += nr_frags;
3190
3191         /* need: count + 2 desc gap to keep tail from touching
3192          * head, otherwise try next time */
3193         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3194                 return NETDEV_TX_BUSY;
3195
3196         if (unlikely((hw->mac_type == e1000_82547) &&
3197                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3198                 netif_stop_queue(netdev);
3199                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3200                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3201                 return NETDEV_TX_BUSY;
3202         }
3203
3204         if (vlan_tx_tag_present(skb)) {
3205                 tx_flags |= E1000_TX_FLAGS_VLAN;
3206                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3207         }
3208
3209         first = tx_ring->next_to_use;
3210
3211         tso = e1000_tso(adapter, tx_ring, skb);
3212         if (tso < 0) {
3213                 dev_kfree_skb_any(skb);
3214                 return NETDEV_TX_OK;
3215         }
3216
3217         if (likely(tso)) {
3218                 if (likely(hw->mac_type != e1000_82544))
3219                         tx_ring->last_tx_tso = true;
3220                 tx_flags |= E1000_TX_FLAGS_TSO;
3221         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3222                 tx_flags |= E1000_TX_FLAGS_CSUM;
3223
3224         if (likely(skb->protocol == htons(ETH_P_IP)))
3225                 tx_flags |= E1000_TX_FLAGS_IPV4;
3226
3227         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3228                              nr_frags, mss);
3229
3230         if (count) {
3231                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3232                 /* Make sure there is space in the ring for the next send. */
3233                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3234
3235         } else {
3236                 dev_kfree_skb_any(skb);
3237                 tx_ring->buffer_info[first].time_stamp = 0;
3238                 tx_ring->next_to_use = first;
3239         }
3240
3241         return NETDEV_TX_OK;
3242 }
3243
3244 /**
3245  * e1000_tx_timeout - Respond to a Tx Hang
3246  * @netdev: network interface device structure
3247  **/
3248
3249 static void e1000_tx_timeout(struct net_device *netdev)
3250 {
3251         struct e1000_adapter *adapter = netdev_priv(netdev);
3252
3253         /* Do the reset outside of interrupt context */
3254         adapter->tx_timeout_count++;
3255         schedule_work(&adapter->reset_task);
3256 }
3257
3258 static void e1000_reset_task(struct work_struct *work)
3259 {
3260         struct e1000_adapter *adapter =
3261                 container_of(work, struct e1000_adapter, reset_task);
3262
3263         if (test_bit(__E1000_DOWN, &adapter->flags))
3264                 return;
3265         e1000_reinit_safe(adapter);
3266 }
3267
3268 /**
3269  * e1000_get_stats - Get System Network Statistics
3270  * @netdev: network interface device structure
3271  *
3272  * Returns the address of the device statistics structure.
3273  * The statistics are actually updated from the watchdog.
3274  **/
3275
3276 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3277 {
3278         /* only return the current stats */
3279         return &netdev->stats;
3280 }
3281
3282 /**
3283  * e1000_change_mtu - Change the Maximum Transfer Unit
3284  * @netdev: network interface device structure
3285  * @new_mtu: new value for maximum frame size
3286  *
3287  * Returns 0 on success, negative on failure
3288  **/
3289
3290 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3291 {
3292         struct e1000_adapter *adapter = netdev_priv(netdev);
3293         struct e1000_hw *hw = &adapter->hw;
3294         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3295
3296         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3297             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3298                 e_err(probe, "Invalid MTU setting\n");
3299                 return -EINVAL;
3300         }
3301
3302         /* Adapter-specific max frame size limits. */
3303         switch (hw->mac_type) {
3304         case e1000_undefined ... e1000_82542_rev2_1:
3305                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3306                         e_err(probe, "Jumbo Frames not supported.\n");
3307                         return -EINVAL;
3308                 }
3309                 break;
3310         default:
3311                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3312                 break;
3313         }
3314
3315         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3316                 msleep(1);
3317         /* e1000_down has a dependency on max_frame_size */
3318         hw->max_frame_size = max_frame;
3319         if (netif_running(netdev))
3320                 e1000_down(adapter);
3321
3322         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3323          * means we reserve 2 more, this pushes us to allocate from the next
3324          * larger slab size.
3325          * i.e. RXBUFFER_2048 --> size-4096 slab
3326          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3327          *  fragmented skbs */
3328
3329         if (max_frame <= E1000_RXBUFFER_2048)
3330                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3331         else
3332 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3333                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3334 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3335                 adapter->rx_buffer_len = PAGE_SIZE;
3336 #endif
3337
3338         /* adjust allocation if LPE protects us, and we aren't using SBP */
3339         if (!hw->tbi_compatibility_on &&
3340             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3341              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3342                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3343
3344         pr_info("%s changing MTU from %d to %d\n",
3345                 netdev->name, netdev->mtu, new_mtu);
3346         netdev->mtu = new_mtu;
3347
3348         if (netif_running(netdev))
3349                 e1000_up(adapter);
3350         else
3351                 e1000_reset(adapter);
3352
3353         clear_bit(__E1000_RESETTING, &adapter->flags);
3354
3355         return 0;
3356 }
3357
3358 /**
3359  * e1000_update_stats - Update the board statistics counters
3360  * @adapter: board private structure
3361  **/
3362
3363 void e1000_update_stats(struct e1000_adapter *adapter)
3364 {
3365         struct net_device *netdev = adapter->netdev;
3366         struct e1000_hw *hw = &adapter->hw;
3367         struct pci_dev *pdev = adapter->pdev;
3368         unsigned long flags;
3369         u16 phy_tmp;
3370
3371 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3372
3373         /*
3374          * Prevent stats update while adapter is being reset, or if the pci
3375          * connection is down.
3376          */
3377         if (adapter->link_speed == 0)
3378                 return;
3379         if (pci_channel_offline(pdev))
3380                 return;
3381
3382         spin_lock_irqsave(&adapter->stats_lock, flags);
3383
3384         /* these counters are modified from e1000_tbi_adjust_stats,
3385          * called from the interrupt context, so they must only
3386          * be written while holding adapter->stats_lock
3387          */
3388
3389         adapter->stats.crcerrs += er32(CRCERRS);
3390         adapter->stats.gprc += er32(GPRC);
3391         adapter->stats.gorcl += er32(GORCL);
3392         adapter->stats.gorch += er32(GORCH);
3393         adapter->stats.bprc += er32(BPRC);
3394         adapter->stats.mprc += er32(MPRC);
3395         adapter->stats.roc += er32(ROC);
3396
3397         adapter->stats.prc64 += er32(PRC64);
3398         adapter->stats.prc127 += er32(PRC127);
3399         adapter->stats.prc255 += er32(PRC255);
3400         adapter->stats.prc511 += er32(PRC511);
3401         adapter->stats.prc1023 += er32(PRC1023);
3402         adapter->stats.prc1522 += er32(PRC1522);
3403
3404         adapter->stats.symerrs += er32(SYMERRS);
3405         adapter->stats.mpc += er32(MPC);
3406         adapter->stats.scc += er32(SCC);
3407         adapter->stats.ecol += er32(ECOL);
3408         adapter->stats.mcc += er32(MCC);
3409         adapter->stats.latecol += er32(LATECOL);
3410         adapter->stats.dc += er32(DC);
3411         adapter->stats.sec += er32(SEC);
3412         adapter->stats.rlec += er32(RLEC);
3413         adapter->stats.xonrxc += er32(XONRXC);
3414         adapter->stats.xontxc += er32(XONTXC);
3415         adapter->stats.xoffrxc += er32(XOFFRXC);
3416         adapter->stats.xofftxc += er32(XOFFTXC);
3417         adapter->stats.fcruc += er32(FCRUC);
3418         adapter->stats.gptc += er32(GPTC);
3419         adapter->stats.gotcl += er32(GOTCL);
3420         adapter->stats.gotch += er32(GOTCH);
3421         adapter->stats.rnbc += er32(RNBC);
3422         adapter->stats.ruc += er32(RUC);
3423         adapter->stats.rfc += er32(RFC);
3424         adapter->stats.rjc += er32(RJC);
3425         adapter->stats.torl += er32(TORL);
3426         adapter->stats.torh += er32(TORH);
3427         adapter->stats.totl += er32(TOTL);
3428         adapter->stats.toth += er32(TOTH);
3429         adapter->stats.tpr += er32(TPR);
3430
3431         adapter->stats.ptc64 += er32(PTC64);
3432         adapter->stats.ptc127 += er32(PTC127);
3433         adapter->stats.ptc255 += er32(PTC255);
3434         adapter->stats.ptc511 += er32(PTC511);
3435         adapter->stats.ptc1023 += er32(PTC1023);
3436         adapter->stats.ptc1522 += er32(PTC1522);
3437
3438         adapter->stats.mptc += er32(MPTC);
3439         adapter->stats.bptc += er32(BPTC);
3440
3441         /* used for adaptive IFS */
3442
3443         hw->tx_packet_delta = er32(TPT);
3444         adapter->stats.tpt += hw->tx_packet_delta;
3445         hw->collision_delta = er32(COLC);
3446         adapter->stats.colc += hw->collision_delta;
3447
3448         if (hw->mac_type >= e1000_82543) {
3449                 adapter->stats.algnerrc += er32(ALGNERRC);
3450                 adapter->stats.rxerrc += er32(RXERRC);
3451                 adapter->stats.tncrs += er32(TNCRS);
3452                 adapter->stats.cexterr += er32(CEXTERR);
3453                 adapter->stats.tsctc += er32(TSCTC);
3454                 adapter->stats.tsctfc += er32(TSCTFC);
3455         }
3456
3457         /* Fill out the OS statistics structure */
3458         netdev->stats.multicast = adapter->stats.mprc;
3459         netdev->stats.collisions = adapter->stats.colc;
3460
3461         /* Rx Errors */
3462
3463         /* RLEC on some newer hardware can be incorrect so build
3464         * our own version based on RUC and ROC */
3465         netdev->stats.rx_errors = adapter->stats.rxerrc +
3466                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3467                 adapter->stats.ruc + adapter->stats.roc +
3468                 adapter->stats.cexterr;
3469         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3470         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3471         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3472         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3473         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3474
3475         /* Tx Errors */
3476         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3477         netdev->stats.tx_errors = adapter->stats.txerrc;
3478         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3479         netdev->stats.tx_window_errors = adapter->stats.latecol;
3480         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3481         if (hw->bad_tx_carr_stats_fd &&
3482             adapter->link_duplex == FULL_DUPLEX) {
3483                 netdev->stats.tx_carrier_errors = 0;
3484                 adapter->stats.tncrs = 0;
3485         }
3486
3487         /* Tx Dropped needs to be maintained elsewhere */
3488
3489         /* Phy Stats */
3490         if (hw->media_type == e1000_media_type_copper) {
3491                 if ((adapter->link_speed == SPEED_1000) &&
3492                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3493                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3494                         adapter->phy_stats.idle_errors += phy_tmp;
3495                 }
3496
3497                 if ((hw->mac_type <= e1000_82546) &&
3498                    (hw->phy_type == e1000_phy_m88) &&
3499                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3500                         adapter->phy_stats.receive_errors += phy_tmp;
3501         }
3502
3503         /* Management Stats */
3504         if (hw->has_smbus) {
3505                 adapter->stats.mgptc += er32(MGTPTC);
3506                 adapter->stats.mgprc += er32(MGTPRC);
3507                 adapter->stats.mgpdc += er32(MGTPDC);
3508         }
3509
3510         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3511 }
3512
3513 /**
3514  * e1000_intr - Interrupt Handler
3515  * @irq: interrupt number
3516  * @data: pointer to a network interface device structure
3517  **/
3518
3519 static irqreturn_t e1000_intr(int irq, void *data)
3520 {
3521         struct net_device *netdev = data;
3522         struct e1000_adapter *adapter = netdev_priv(netdev);
3523         struct e1000_hw *hw = &adapter->hw;
3524         u32 icr = er32(ICR);
3525
3526         if (unlikely((!icr)))
3527                 return IRQ_NONE;  /* Not our interrupt */
3528
3529         /*
3530          * we might have caused the interrupt, but the above
3531          * read cleared it, and just in case the driver is
3532          * down there is nothing to do so return handled
3533          */
3534         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3535                 return IRQ_HANDLED;
3536
3537         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3538                 hw->get_link_status = 1;
3539                 /* guard against interrupt when we're going down */
3540                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3541                         schedule_delayed_work(&adapter->watchdog_task, 1);
3542         }
3543
3544         /* disable interrupts, without the synchronize_irq bit */
3545         ew32(IMC, ~0);
3546         E1000_WRITE_FLUSH();
3547
3548         if (likely(napi_schedule_prep(&adapter->napi))) {
3549                 adapter->total_tx_bytes = 0;
3550                 adapter->total_tx_packets = 0;
3551                 adapter->total_rx_bytes = 0;
3552                 adapter->total_rx_packets = 0;
3553                 __napi_schedule(&adapter->napi);
3554         } else {
3555                 /* this really should not happen! if it does it is basically a
3556                  * bug, but not a hard error, so enable ints and continue */
3557                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3558                         e1000_irq_enable(adapter);
3559         }
3560
3561         return IRQ_HANDLED;
3562 }
3563
3564 /**
3565  * e1000_clean - NAPI Rx polling callback
3566  * @adapter: board private structure
3567  **/
3568 static int e1000_clean(struct napi_struct *napi, int budget)
3569 {
3570         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3571         int tx_clean_complete = 0, work_done = 0;
3572
3573         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3574
3575         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3576
3577         if (!tx_clean_complete)
3578                 work_done = budget;
3579
3580         /* If budget not fully consumed, exit the polling mode */
3581         if (work_done < budget) {
3582                 if (likely(adapter->itr_setting & 3))
3583                         e1000_set_itr(adapter);
3584                 napi_complete(napi);
3585                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3586                         e1000_irq_enable(adapter);
3587         }
3588
3589         return work_done;
3590 }
3591
3592 /**
3593  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3594  * @adapter: board private structure
3595  **/
3596 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3597                                struct e1000_tx_ring *tx_ring)
3598 {
3599         struct e1000_hw *hw = &adapter->hw;
3600         struct net_device *netdev = adapter->netdev;
3601         struct e1000_tx_desc *tx_desc, *eop_desc;
3602         struct e1000_buffer *buffer_info;
3603         unsigned int i, eop;
3604         unsigned int count = 0;
3605         unsigned int total_tx_bytes=0, total_tx_packets=0;
3606
3607         i = tx_ring->next_to_clean;
3608         eop = tx_ring->buffer_info[i].next_to_watch;
3609         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3610
3611         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3612                (count < tx_ring->count)) {
3613                 bool cleaned = false;
3614                 rmb();  /* read buffer_info after eop_desc */
3615                 for ( ; !cleaned; count++) {
3616                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3617                         buffer_info = &tx_ring->buffer_info[i];
3618                         cleaned = (i == eop);
3619
3620                         if (cleaned) {
3621                                 total_tx_packets += buffer_info->segs;
3622                                 total_tx_bytes += buffer_info->bytecount;
3623                         }
3624                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3625                         tx_desc->upper.data = 0;
3626
3627                         if (unlikely(++i == tx_ring->count)) i = 0;
3628                 }
3629
3630                 eop = tx_ring->buffer_info[i].next_to_watch;
3631                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3632         }
3633
3634         tx_ring->next_to_clean = i;
3635
3636 #define TX_WAKE_THRESHOLD 32
3637         if (unlikely(count && netif_carrier_ok(netdev) &&
3638                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3639                 /* Make sure that anybody stopping the queue after this
3640                  * sees the new next_to_clean.
3641                  */
3642                 smp_mb();
3643
3644                 if (netif_queue_stopped(netdev) &&
3645                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3646                         netif_wake_queue(netdev);
3647                         ++adapter->restart_queue;
3648                 }
3649         }
3650
3651         if (adapter->detect_tx_hung) {
3652                 /* Detect a transmit hang in hardware, this serializes the
3653                  * check with the clearing of time_stamp and movement of i */
3654                 adapter->detect_tx_hung = false;
3655                 if (tx_ring->buffer_info[eop].time_stamp &&
3656                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3657                                (adapter->tx_timeout_factor * HZ)) &&
3658                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3659
3660                         /* detected Tx unit hang */
3661                         e_err(drv, "Detected Tx Unit Hang\n"
3662                               "  Tx Queue             <%lu>\n"
3663                               "  TDH                  <%x>\n"
3664                               "  TDT                  <%x>\n"
3665                               "  next_to_use          <%x>\n"
3666                               "  next_to_clean        <%x>\n"
3667                               "buffer_info[next_to_clean]\n"
3668                               "  time_stamp           <%lx>\n"
3669                               "  next_to_watch        <%x>\n"
3670                               "  jiffies              <%lx>\n"
3671                               "  next_to_watch.status <%x>\n",
3672                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3673                                         sizeof(struct e1000_tx_ring)),
3674                                 readl(hw->hw_addr + tx_ring->tdh),
3675                                 readl(hw->hw_addr + tx_ring->tdt),
3676                                 tx_ring->next_to_use,
3677                                 tx_ring->next_to_clean,
3678                                 tx_ring->buffer_info[eop].time_stamp,
3679                                 eop,
3680                                 jiffies,
3681                                 eop_desc->upper.fields.status);
3682                         netif_stop_queue(netdev);
3683                 }
3684         }
3685         adapter->total_tx_bytes += total_tx_bytes;
3686         adapter->total_tx_packets += total_tx_packets;
3687         netdev->stats.tx_bytes += total_tx_bytes;
3688         netdev->stats.tx_packets += total_tx_packets;
3689         return count < tx_ring->count;
3690 }
3691
3692 /**
3693  * e1000_rx_checksum - Receive Checksum Offload for 82543
3694  * @adapter:     board private structure
3695  * @status_err:  receive descriptor status and error fields
3696  * @csum:        receive descriptor csum field
3697  * @sk_buff:     socket buffer with received data
3698  **/
3699
3700 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3701                               u32 csum, struct sk_buff *skb)
3702 {
3703         struct e1000_hw *hw = &adapter->hw;
3704         u16 status = (u16)status_err;
3705         u8 errors = (u8)(status_err >> 24);
3706
3707         skb_checksum_none_assert(skb);
3708
3709         /* 82543 or newer only */
3710         if (unlikely(hw->mac_type < e1000_82543)) return;
3711         /* Ignore Checksum bit is set */
3712         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3713         /* TCP/UDP checksum error bit is set */
3714         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3715                 /* let the stack verify checksum errors */
3716                 adapter->hw_csum_err++;
3717                 return;
3718         }
3719         /* TCP/UDP Checksum has not been calculated */
3720         if (!(status & E1000_RXD_STAT_TCPCS))
3721                 return;
3722
3723         /* It must be a TCP or UDP packet with a valid checksum */
3724         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3725                 /* TCP checksum is good */
3726                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3727         }
3728         adapter->hw_csum_good++;
3729 }
3730
3731 /**
3732  * e1000_consume_page - helper function
3733  **/
3734 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3735                                u16 length)
3736 {
3737         bi->page = NULL;
3738         skb->len += length;
3739         skb->data_len += length;
3740         skb->truesize += PAGE_SIZE;
3741 }
3742
3743 /**
3744  * e1000_receive_skb - helper function to handle rx indications
3745  * @adapter: board private structure
3746  * @status: descriptor status field as written by hardware
3747  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3748  * @skb: pointer to sk_buff to be indicated to stack
3749  */
3750 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3751                               __le16 vlan, struct sk_buff *skb)
3752 {
3753         skb->protocol = eth_type_trans(skb, adapter->netdev);
3754
3755         if (status & E1000_RXD_STAT_VP) {
3756                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3757
3758                 __vlan_hwaccel_put_tag(skb, vid);
3759         }
3760         napi_gro_receive(&adapter->napi, skb);
3761 }
3762
3763 /**
3764  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3765  * @adapter: board private structure
3766  * @rx_ring: ring to clean
3767  * @work_done: amount of napi work completed this call
3768  * @work_to_do: max amount of work allowed for this call to do
3769  *
3770  * the return value indicates whether actual cleaning was done, there
3771  * is no guarantee that everything was cleaned
3772  */
3773 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3774                                      struct e1000_rx_ring *rx_ring,
3775                                      int *work_done, int work_to_do)
3776 {
3777         struct e1000_hw *hw = &adapter->hw;
3778         struct net_device *netdev = adapter->netdev;
3779         struct pci_dev *pdev = adapter->pdev;
3780         struct e1000_rx_desc *rx_desc, *next_rxd;
3781         struct e1000_buffer *buffer_info, *next_buffer;
3782         unsigned long irq_flags;
3783         u32 length;
3784         unsigned int i;
3785         int cleaned_count = 0;
3786         bool cleaned = false;
3787         unsigned int total_rx_bytes=0, total_rx_packets=0;
3788
3789         i = rx_ring->next_to_clean;
3790         rx_desc = E1000_RX_DESC(*rx_ring, i);
3791         buffer_info = &rx_ring->buffer_info[i];
3792
3793         while (rx_desc->status & E1000_RXD_STAT_DD) {
3794                 struct sk_buff *skb;
3795                 u8 status;
3796
3797                 if (*work_done >= work_to_do)
3798                         break;
3799                 (*work_done)++;
3800                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3801
3802                 status = rx_desc->status;
3803                 skb = buffer_info->skb;
3804                 buffer_info->skb = NULL;
3805
3806                 if (++i == rx_ring->count) i = 0;
3807                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3808                 prefetch(next_rxd);
3809
3810                 next_buffer = &rx_ring->buffer_info[i];
3811
3812                 cleaned = true;
3813                 cleaned_count++;
3814                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3815                                buffer_info->length, DMA_FROM_DEVICE);
3816                 buffer_info->dma = 0;
3817
3818                 length = le16_to_cpu(rx_desc->length);
3819
3820                 /* errors is only valid for DD + EOP descriptors */
3821                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3822                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3823                         u8 last_byte = *(skb->data + length - 1);
3824                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3825                                        last_byte)) {
3826                                 spin_lock_irqsave(&adapter->stats_lock,
3827                                                   irq_flags);
3828                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3829                                                        length, skb->data);
3830                                 spin_unlock_irqrestore(&adapter->stats_lock,
3831                                                        irq_flags);
3832                                 length--;
3833                         } else {
3834                                 /* recycle both page and skb */
3835                                 buffer_info->skb = skb;
3836                                 /* an error means any chain goes out the window
3837                                  * too */
3838                                 if (rx_ring->rx_skb_top)
3839                                         dev_kfree_skb(rx_ring->rx_skb_top);
3840                                 rx_ring->rx_skb_top = NULL;
3841                                 goto next_desc;
3842                         }
3843                 }
3844
3845 #define rxtop rx_ring->rx_skb_top
3846                 if (!(status & E1000_RXD_STAT_EOP)) {
3847                         /* this descriptor is only the beginning (or middle) */
3848                         if (!rxtop) {
3849                                 /* this is the beginning of a chain */
3850                                 rxtop = skb;
3851                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3852                                                    0, length);
3853                         } else {
3854                                 /* this is the middle of a chain */
3855                                 skb_fill_page_desc(rxtop,
3856                                     skb_shinfo(rxtop)->nr_frags,
3857                                     buffer_info->page, 0, length);
3858                                 /* re-use the skb, only consumed the page */
3859                                 buffer_info->skb = skb;
3860                         }
3861                         e1000_consume_page(buffer_info, rxtop, length);
3862                         goto next_desc;
3863                 } else {
3864                         if (rxtop) {
3865                                 /* end of the chain */
3866                                 skb_fill_page_desc(rxtop,
3867                                     skb_shinfo(rxtop)->nr_frags,
3868                                     buffer_info->page, 0, length);
3869                                 /* re-use the current skb, we only consumed the
3870                                  * page */
3871                                 buffer_info->skb = skb;
3872                                 skb = rxtop;
3873                                 rxtop = NULL;
3874                                 e1000_consume_page(buffer_info, skb, length);
3875                         } else {
3876                                 /* no chain, got EOP, this buf is the packet
3877                                  * copybreak to save the put_page/alloc_page */
3878                                 if (length <= copybreak &&
3879                                     skb_tailroom(skb) >= length) {
3880                                         u8 *vaddr;
3881                                         vaddr = kmap_atomic(buffer_info->page,
3882                                                             KM_SKB_DATA_SOFTIRQ);
3883                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3884                                         kunmap_atomic(vaddr,
3885                                                       KM_SKB_DATA_SOFTIRQ);
3886                                         /* re-use the page, so don't erase
3887                                          * buffer_info->page */
3888                                         skb_put(skb, length);
3889                                 } else {
3890                                         skb_fill_page_desc(skb, 0,
3891                                                            buffer_info->page, 0,
3892                                                            length);
3893                                         e1000_consume_page(buffer_info, skb,
3894                                                            length);
3895                                 }
3896                         }
3897                 }
3898
3899                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3900                 e1000_rx_checksum(adapter,
3901                                   (u32)(status) |
3902                                   ((u32)(rx_desc->errors) << 24),
3903                                   le16_to_cpu(rx_desc->csum), skb);
3904
3905                 pskb_trim(skb, skb->len - 4);
3906
3907                 /* probably a little skewed due to removing CRC */
3908                 total_rx_bytes += skb->len;
3909                 total_rx_packets++;
3910
3911                 /* eth type trans needs skb->data to point to something */
3912                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3913                         e_err(drv, "pskb_may_pull failed.\n");
3914                         dev_kfree_skb(skb);
3915                         goto next_desc;
3916                 }
3917
3918                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3919
3920 next_desc:
3921                 rx_desc->status = 0;
3922
3923                 /* return some buffers to hardware, one at a time is too slow */
3924                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3925                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3926                         cleaned_count = 0;
3927                 }
3928
3929                 /* use prefetched values */
3930                 rx_desc = next_rxd;
3931                 buffer_info = next_buffer;
3932         }
3933         rx_ring->next_to_clean = i;
3934
3935         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3936         if (cleaned_count)
3937                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3938
3939         adapter->total_rx_packets += total_rx_packets;
3940         adapter->total_rx_bytes += total_rx_bytes;
3941         netdev->stats.rx_bytes += total_rx_bytes;
3942         netdev->stats.rx_packets += total_rx_packets;
3943         return cleaned;
3944 }
3945
3946 /*
3947  * this should improve performance for small packets with large amounts
3948  * of reassembly being done in the stack
3949  */
3950 static void e1000_check_copybreak(struct net_device *netdev,
3951                                  struct e1000_buffer *buffer_info,
3952                                  u32 length, struct sk_buff **skb)
3953 {
3954         struct sk_buff *new_skb;
3955
3956         if (length > copybreak)
3957                 return;
3958
3959         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3960         if (!new_skb)
3961                 return;
3962
3963         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3964                                        (*skb)->data - NET_IP_ALIGN,
3965                                        length + NET_IP_ALIGN);
3966         /* save the skb in buffer_info as good */
3967         buffer_info->skb = *skb;
3968         *skb = new_skb;
3969 }
3970
3971 /**
3972  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3973  * @adapter: board private structure
3974  * @rx_ring: ring to clean
3975  * @work_done: amount of napi work completed this call
3976  * @work_to_do: max amount of work allowed for this call to do
3977  */
3978 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3979                                struct e1000_rx_ring *rx_ring,
3980                                int *work_done, int work_to_do)
3981 {
3982         struct e1000_hw *hw = &adapter->hw;
3983         struct net_device *netdev = adapter->netdev;
3984         struct pci_dev *pdev = adapter->pdev;
3985         struct e1000_rx_desc *rx_desc, *next_rxd;
3986         struct e1000_buffer *buffer_info, *next_buffer;
3987         unsigned long flags;
3988         u32 length;
3989         unsigned int i;
3990         int cleaned_count = 0;
3991         bool cleaned = false;
3992         unsigned int total_rx_bytes=0, total_rx_packets=0;
3993
3994         i = rx_ring->next_to_clean;
3995         rx_desc = E1000_RX_DESC(*rx_ring, i);
3996         buffer_info = &rx_ring->buffer_info[i];
3997
3998         while (rx_desc->status & E1000_RXD_STAT_DD) {
3999                 struct sk_buff *skb;
4000                 u8 status;
4001
4002                 if (*work_done >= work_to_do)
4003                         break;
4004                 (*work_done)++;
4005                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4006
4007                 status = rx_desc->status;
4008                 skb = buffer_info->skb;
4009                 buffer_info->skb = NULL;
4010
4011                 prefetch(skb->data - NET_IP_ALIGN);
4012
4013                 if (++i == rx_ring->count) i = 0;
4014                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4015                 prefetch(next_rxd);
4016
4017                 next_buffer = &rx_ring->buffer_info[i];
4018
4019                 cleaned = true;
4020                 cleaned_count++;
4021                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4022                                  buffer_info->length, DMA_FROM_DEVICE);
4023                 buffer_info->dma = 0;
4024
4025                 length = le16_to_cpu(rx_desc->length);
4026                 /* !EOP means multiple descriptors were used to store a single
4027                  * packet, if thats the case we need to toss it.  In fact, we
4028                  * to toss every packet with the EOP bit clear and the next
4029                  * frame that _does_ have the EOP bit set, as it is by
4030                  * definition only a frame fragment
4031                  */
4032                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4033                         adapter->discarding = true;
4034
4035                 if (adapter->discarding) {
4036                         /* All receives must fit into a single buffer */
4037                         e_dbg("Receive packet consumed multiple buffers\n");
4038                         /* recycle */
4039                         buffer_info->skb = skb;
4040                         if (status & E1000_RXD_STAT_EOP)
4041                                 adapter->discarding = false;
4042                         goto next_desc;
4043                 }
4044
4045                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4046                         u8 last_byte = *(skb->data + length - 1);
4047                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4048                                        last_byte)) {
4049                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4050                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4051                                                        length, skb->data);
4052                                 spin_unlock_irqrestore(&adapter->stats_lock,
4053                                                        flags);
4054                                 length--;
4055                         } else {
4056                                 /* recycle */
4057                                 buffer_info->skb = skb;
4058                                 goto next_desc;
4059                         }
4060                 }
4061
4062                 /* adjust length to remove Ethernet CRC, this must be
4063                  * done after the TBI_ACCEPT workaround above */
4064                 length -= 4;
4065
4066                 /* probably a little skewed due to removing CRC */
4067                 total_rx_bytes += length;
4068                 total_rx_packets++;
4069
4070                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4071
4072                 skb_put(skb, length);
4073
4074                 /* Receive Checksum Offload */
4075                 e1000_rx_checksum(adapter,
4076                                   (u32)(status) |
4077                                   ((u32)(rx_desc->errors) << 24),
4078                                   le16_to_cpu(rx_desc->csum), skb);
4079
4080                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4081
4082 next_desc:
4083                 rx_desc->status = 0;
4084
4085                 /* return some buffers to hardware, one at a time is too slow */
4086                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4087                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4088                         cleaned_count = 0;
4089                 }
4090
4091                 /* use prefetched values */
4092                 rx_desc = next_rxd;
4093                 buffer_info = next_buffer;
4094         }
4095         rx_ring->next_to_clean = i;
4096
4097         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4098         if (cleaned_count)
4099                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4100
4101         adapter->total_rx_packets += total_rx_packets;
4102         adapter->total_rx_bytes += total_rx_bytes;
4103         netdev->stats.rx_bytes += total_rx_bytes;
4104         netdev->stats.rx_packets += total_rx_packets;
4105         return cleaned;
4106 }
4107
4108 /**
4109  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4110  * @adapter: address of board private structure
4111  * @rx_ring: pointer to receive ring structure
4112  * @cleaned_count: number of buffers to allocate this pass
4113  **/
4114
4115 static void
4116 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4117                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4118 {
4119         struct net_device *netdev = adapter->netdev;
4120         struct pci_dev *pdev = adapter->pdev;
4121         struct e1000_rx_desc *rx_desc;
4122         struct e1000_buffer *buffer_info;
4123         struct sk_buff *skb;
4124         unsigned int i;
4125         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4126
4127         i = rx_ring->next_to_use;
4128         buffer_info = &rx_ring->buffer_info[i];
4129
4130         while (cleaned_count--) {
4131                 skb = buffer_info->skb;
4132                 if (skb) {
4133                         skb_trim(skb, 0);
4134                         goto check_page;
4135                 }
4136
4137                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4138                 if (unlikely(!skb)) {
4139                         /* Better luck next round */
4140                         adapter->alloc_rx_buff_failed++;
4141                         break;
4142                 }
4143
4144                 /* Fix for errata 23, can't cross 64kB boundary */
4145                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4146                         struct sk_buff *oldskb = skb;
4147                         e_err(rx_err, "skb align check failed: %u bytes at "
4148                               "%p\n", bufsz, skb->data);
4149                         /* Try again, without freeing the previous */
4150                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4151                         /* Failed allocation, critical failure */
4152                         if (!skb) {
4153                                 dev_kfree_skb(oldskb);
4154                                 adapter->alloc_rx_buff_failed++;
4155                                 break;
4156                         }
4157
4158                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4159                                 /* give up */
4160                                 dev_kfree_skb(skb);
4161                                 dev_kfree_skb(oldskb);
4162                                 break; /* while (cleaned_count--) */
4163                         }
4164
4165                         /* Use new allocation */
4166                         dev_kfree_skb(oldskb);
4167                 }
4168                 buffer_info->skb = skb;
4169                 buffer_info->length = adapter->rx_buffer_len;
4170 check_page:
4171                 /* allocate a new page if necessary */
4172                 if (!buffer_info->page) {
4173                         buffer_info->page = alloc_page(GFP_ATOMIC);
4174                         if (unlikely(!buffer_info->page)) {
4175                                 adapter->alloc_rx_buff_failed++;
4176                                 break;
4177                         }
4178                 }
4179
4180                 if (!buffer_info->dma) {
4181                         buffer_info->dma = dma_map_page(&pdev->dev,
4182                                                         buffer_info->page, 0,
4183                                                         buffer_info->length,
4184                                                         DMA_FROM_DEVICE);
4185                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4186                                 put_page(buffer_info->page);
4187                                 dev_kfree_skb(skb);
4188                                 buffer_info->page = NULL;
4189                                 buffer_info->skb = NULL;
4190                                 buffer_info->dma = 0;
4191                                 adapter->alloc_rx_buff_failed++;
4192                                 break; /* while !buffer_info->skb */
4193                         }
4194                 }
4195
4196                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4197                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4198
4199                 if (unlikely(++i == rx_ring->count))
4200                         i = 0;
4201                 buffer_info = &rx_ring->buffer_info[i];
4202         }
4203
4204         if (likely(rx_ring->next_to_use != i)) {
4205                 rx_ring->next_to_use = i;
4206                 if (unlikely(i-- == 0))
4207                         i = (rx_ring->count - 1);
4208
4209                 /* Force memory writes to complete before letting h/w
4210                  * know there are new descriptors to fetch.  (Only
4211                  * applicable for weak-ordered memory model archs,
4212                  * such as IA-64). */
4213                 wmb();
4214                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4215         }
4216 }
4217
4218 /**
4219  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4220  * @adapter: address of board private structure
4221  **/
4222
4223 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4224                                    struct e1000_rx_ring *rx_ring,
4225                                    int cleaned_count)
4226 {
4227         struct e1000_hw *hw = &adapter->hw;
4228         struct net_device *netdev = adapter->netdev;
4229         struct pci_dev *pdev = adapter->pdev;
4230         struct e1000_rx_desc *rx_desc;
4231         struct e1000_buffer *buffer_info;
4232         struct sk_buff *skb;
4233         unsigned int i;
4234         unsigned int bufsz = adapter->rx_buffer_len;
4235
4236         i = rx_ring->next_to_use;
4237         buffer_info = &rx_ring->buffer_info[i];
4238
4239         while (cleaned_count--) {
4240                 skb = buffer_info->skb;
4241                 if (skb) {
4242                         skb_trim(skb, 0);
4243                         goto map_skb;
4244                 }
4245
4246                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4247                 if (unlikely(!skb)) {
4248                         /* Better luck next round */
4249                         adapter->alloc_rx_buff_failed++;
4250                         break;
4251                 }
4252
4253                 /* Fix for errata 23, can't cross 64kB boundary */
4254                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4255                         struct sk_buff *oldskb = skb;
4256                         e_err(rx_err, "skb align check failed: %u bytes at "
4257                               "%p\n", bufsz, skb->data);
4258                         /* Try again, without freeing the previous */
4259                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4260                         /* Failed allocation, critical failure */
4261                         if (!skb) {
4262                                 dev_kfree_skb(oldskb);
4263                                 adapter->alloc_rx_buff_failed++;
4264                                 break;
4265                         }
4266
4267                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4268                                 /* give up */
4269                                 dev_kfree_skb(skb);
4270                                 dev_kfree_skb(oldskb);
4271                                 adapter->alloc_rx_buff_failed++;
4272                                 break; /* while !buffer_info->skb */
4273                         }
4274
4275                         /* Use new allocation */
4276                         dev_kfree_skb(oldskb);
4277                 }
4278                 buffer_info->skb = skb;
4279                 buffer_info->length = adapter->rx_buffer_len;
4280 map_skb:
4281                 buffer_info->dma = dma_map_single(&pdev->dev,
4282                                                   skb->data,
4283                                                   buffer_info->length,
4284                                                   DMA_FROM_DEVICE);
4285                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4286                         dev_kfree_skb(skb);
4287                         buffer_info->skb = NULL;
4288                         buffer_info->dma = 0;
4289                         adapter->alloc_rx_buff_failed++;
4290                         break; /* while !buffer_info->skb */
4291                 }
4292
4293                 /*
4294                  * XXX if it was allocated cleanly it will never map to a
4295                  * boundary crossing
4296                  */
4297
4298                 /* Fix for errata 23, can't cross 64kB boundary */
4299                 if (!e1000_check_64k_bound(adapter,
4300                                         (void *)(unsigned long)buffer_info->dma,
4301                                         adapter->rx_buffer_len)) {
4302                         e_err(rx_err, "dma align check failed: %u bytes at "
4303                               "%p\n", adapter->rx_buffer_len,
4304                               (void *)(unsigned long)buffer_info->dma);
4305                         dev_kfree_skb(skb);
4306                         buffer_info->skb = NULL;
4307
4308                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4309                                          adapter->rx_buffer_len,
4310                                          DMA_FROM_DEVICE);
4311                         buffer_info->dma = 0;
4312
4313                         adapter->alloc_rx_buff_failed++;
4314                         break; /* while !buffer_info->skb */
4315                 }
4316                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4317                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4318
4319                 if (unlikely(++i == rx_ring->count))
4320                         i = 0;
4321                 buffer_info = &rx_ring->buffer_info[i];
4322         }
4323
4324         if (likely(rx_ring->next_to_use != i)) {
4325                 rx_ring->next_to_use = i;
4326                 if (unlikely(i-- == 0))
4327                         i = (rx_ring->count - 1);
4328
4329                 /* Force memory writes to complete before letting h/w
4330                  * know there are new descriptors to fetch.  (Only
4331                  * applicable for weak-ordered memory model archs,
4332                  * such as IA-64). */
4333                 wmb();
4334                 writel(i, hw->hw_addr + rx_ring->rdt);
4335         }
4336 }
4337
4338 /**
4339  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4340  * @adapter:
4341  **/
4342
4343 static void e1000_smartspeed(struct e1000_adapter *adapter)
4344 {
4345         struct e1000_hw *hw = &adapter->hw;
4346         u16 phy_status;
4347         u16 phy_ctrl;
4348
4349         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4350            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4351                 return;
4352
4353         if (adapter->smartspeed == 0) {
4354                 /* If Master/Slave config fault is asserted twice,
4355                  * we assume back-to-back */
4356                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4357                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4358                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4359                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4360                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4361                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4362                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4363                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4364                                             phy_ctrl);
4365                         adapter->smartspeed++;
4366                         if (!e1000_phy_setup_autoneg(hw) &&
4367                            !e1000_read_phy_reg(hw, PHY_CTRL,
4368                                                &phy_ctrl)) {
4369                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4370                                              MII_CR_RESTART_AUTO_NEG);
4371                                 e1000_write_phy_reg(hw, PHY_CTRL,
4372                                                     phy_ctrl);
4373                         }
4374                 }
4375                 return;
4376         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4377                 /* If still no link, perhaps using 2/3 pair cable */
4378                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4379                 phy_ctrl |= CR_1000T_MS_ENABLE;
4380                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4381                 if (!e1000_phy_setup_autoneg(hw) &&
4382                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4383                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4384                                      MII_CR_RESTART_AUTO_NEG);
4385                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4386                 }
4387         }
4388         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4389         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4390                 adapter->smartspeed = 0;
4391 }
4392
4393 /**
4394  * e1000_ioctl -
4395  * @netdev:
4396  * @ifreq:
4397  * @cmd:
4398  **/
4399
4400 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4401 {
4402         switch (cmd) {
4403         case SIOCGMIIPHY:
4404         case SIOCGMIIREG:
4405         case SIOCSMIIREG:
4406                 return e1000_mii_ioctl(netdev, ifr, cmd);
4407         default:
4408                 return -EOPNOTSUPP;
4409         }
4410 }
4411
4412 /**
4413  * e1000_mii_ioctl -
4414  * @netdev:
4415  * @ifreq:
4416  * @cmd:
4417  **/
4418
4419 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4420                            int cmd)
4421 {
4422         struct e1000_adapter *adapter = netdev_priv(netdev);
4423         struct e1000_hw *hw = &adapter->hw;
4424         struct mii_ioctl_data *data = if_mii(ifr);
4425         int retval;
4426         u16 mii_reg;
4427         unsigned long flags;
4428
4429         if (hw->media_type != e1000_media_type_copper)
4430                 return -EOPNOTSUPP;
4431
4432         switch (cmd) {
4433         case SIOCGMIIPHY:
4434                 data->phy_id = hw->phy_addr;
4435                 break;
4436         case SIOCGMIIREG:
4437                 spin_lock_irqsave(&adapter->stats_lock, flags);
4438                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4439                                    &data->val_out)) {
4440                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4441                         return -EIO;
4442                 }
4443                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4444                 break;
4445         case SIOCSMIIREG:
4446                 if (data->reg_num & ~(0x1F))
4447                         return -EFAULT;
4448                 mii_reg = data->val_in;
4449                 spin_lock_irqsave(&adapter->stats_lock, flags);
4450                 if (e1000_write_phy_reg(hw, data->reg_num,
4451                                         mii_reg)) {
4452                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4453                         return -EIO;
4454                 }
4455                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4456                 if (hw->media_type == e1000_media_type_copper) {
4457                         switch (data->reg_num) {
4458                         case PHY_CTRL:
4459                                 if (mii_reg & MII_CR_POWER_DOWN)
4460                                         break;
4461                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4462                                         hw->autoneg = 1;
4463                                         hw->autoneg_advertised = 0x2F;
4464                                 } else {
4465                                         u32 speed;
4466                                         if (mii_reg & 0x40)
4467                                                 speed = SPEED_1000;
4468                                         else if (mii_reg & 0x2000)
4469                                                 speed = SPEED_100;
4470                                         else
4471                                                 speed = SPEED_10;
4472                                         retval = e1000_set_spd_dplx(
4473                                                 adapter, speed,
4474                                                 ((mii_reg & 0x100)
4475                                                  ? DUPLEX_FULL :
4476                                                  DUPLEX_HALF));
4477                                         if (retval)
4478                                                 return retval;
4479                                 }
4480                                 if (netif_running(adapter->netdev))
4481                                         e1000_reinit_locked(adapter);
4482                                 else
4483                                         e1000_reset(adapter);
4484                                 break;
4485                         case M88E1000_PHY_SPEC_CTRL:
4486                         case M88E1000_EXT_PHY_SPEC_CTRL:
4487                                 if (e1000_phy_reset(hw))
4488                                         return -EIO;
4489                                 break;
4490                         }
4491                 } else {
4492                         switch (data->reg_num) {
4493                         case PHY_CTRL:
4494                                 if (mii_reg & MII_CR_POWER_DOWN)
4495                                         break;
4496                                 if (netif_running(adapter->netdev))
4497                                         e1000_reinit_locked(adapter);
4498                                 else
4499                                         e1000_reset(adapter);
4500                                 break;
4501                         }
4502                 }
4503                 break;
4504         default:
4505                 return -EOPNOTSUPP;
4506         }
4507         return E1000_SUCCESS;
4508 }
4509
4510 void e1000_pci_set_mwi(struct e1000_hw *hw)
4511 {
4512         struct e1000_adapter *adapter = hw->back;
4513         int ret_val = pci_set_mwi(adapter->pdev);
4514
4515         if (ret_val)
4516                 e_err(probe, "Error in setting MWI\n");
4517 }
4518
4519 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4520 {
4521         struct e1000_adapter *adapter = hw->back;
4522
4523         pci_clear_mwi(adapter->pdev);
4524 }
4525
4526 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4527 {
4528         struct e1000_adapter *adapter = hw->back;
4529         return pcix_get_mmrbc(adapter->pdev);
4530 }
4531
4532 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4533 {
4534         struct e1000_adapter *adapter = hw->back;
4535         pcix_set_mmrbc(adapter->pdev, mmrbc);
4536 }
4537
4538 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4539 {
4540         outl(value, port);
4541 }
4542
4543 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4544 {
4545         u16 vid;
4546
4547         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4548                 return true;
4549         return false;
4550 }
4551
4552 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4553                                      bool filter_on)
4554 {
4555         struct e1000_hw *hw = &adapter->hw;
4556         u32 rctl;
4557
4558         if (!test_bit(__E1000_DOWN, &adapter->flags))
4559                 e1000_irq_disable(adapter);
4560
4561         if (filter_on) {
4562                 /* enable VLAN receive filtering */
4563                 rctl = er32(RCTL);
4564                 rctl &= ~E1000_RCTL_CFIEN;
4565                 if (!(adapter->netdev->flags & IFF_PROMISC))
4566                         rctl |= E1000_RCTL_VFE;
4567                 ew32(RCTL, rctl);
4568                 e1000_update_mng_vlan(adapter);
4569         } else {
4570                 /* disable VLAN receive filtering */
4571                 rctl = er32(RCTL);
4572                 rctl &= ~E1000_RCTL_VFE;
4573                 ew32(RCTL, rctl);
4574         }
4575
4576         if (!test_bit(__E1000_DOWN, &adapter->flags))
4577                 e1000_irq_enable(adapter);
4578 }
4579
4580 static void e1000_vlan_mode(struct net_device *netdev,
4581         netdev_features_t features)
4582 {
4583         struct e1000_adapter *adapter = netdev_priv(netdev);
4584         struct e1000_hw *hw = &adapter->hw;
4585         u32 ctrl;
4586
4587         if (!test_bit(__E1000_DOWN, &adapter->flags))
4588                 e1000_irq_disable(adapter);
4589
4590         ctrl = er32(CTRL);
4591         if (features & NETIF_F_HW_VLAN_RX) {
4592                 /* enable VLAN tag insert/strip */
4593                 ctrl |= E1000_CTRL_VME;
4594         } else {
4595                 /* disable VLAN tag insert/strip */
4596                 ctrl &= ~E1000_CTRL_VME;
4597         }
4598         ew32(CTRL, ctrl);
4599
4600         if (!test_bit(__E1000_DOWN, &adapter->flags))
4601                 e1000_irq_enable(adapter);
4602 }
4603
4604 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4605 {
4606         struct e1000_adapter *adapter = netdev_priv(netdev);
4607         struct e1000_hw *hw = &adapter->hw;
4608         u32 vfta, index;
4609
4610         if ((hw->mng_cookie.status &
4611              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4612             (vid == adapter->mng_vlan_id))
4613                 return 0;
4614
4615         if (!e1000_vlan_used(adapter))
4616                 e1000_vlan_filter_on_off(adapter, true);
4617
4618         /* add VID to filter table */
4619         index = (vid >> 5) & 0x7F;
4620         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4621         vfta |= (1 << (vid & 0x1F));
4622         e1000_write_vfta(hw, index, vfta);
4623
4624         set_bit(vid, adapter->active_vlans);
4625
4626         return 0;
4627 }
4628
4629 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4630 {
4631         struct e1000_adapter *adapter = netdev_priv(netdev);
4632         struct e1000_hw *hw = &adapter->hw;
4633         u32 vfta, index;
4634
4635         if (!test_bit(__E1000_DOWN, &adapter->flags))
4636                 e1000_irq_disable(adapter);
4637         if (!test_bit(__E1000_DOWN, &adapter->flags))
4638                 e1000_irq_enable(adapter);
4639
4640         /* remove VID from filter table */
4641         index = (vid >> 5) & 0x7F;
4642         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4643         vfta &= ~(1 << (vid & 0x1F));
4644         e1000_write_vfta(hw, index, vfta);
4645
4646         clear_bit(vid, adapter->active_vlans);
4647
4648         if (!e1000_vlan_used(adapter))
4649                 e1000_vlan_filter_on_off(adapter, false);
4650
4651         return 0;
4652 }
4653
4654 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4655 {
4656         u16 vid;
4657
4658         if (!e1000_vlan_used(adapter))
4659                 return;
4660
4661         e1000_vlan_filter_on_off(adapter, true);
4662         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4663                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4664 }
4665
4666 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4667 {
4668         struct e1000_hw *hw = &adapter->hw;
4669
4670         hw->autoneg = 0;
4671
4672         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4673          * for the switch() below to work */
4674         if ((spd & 1) || (dplx & ~1))
4675                 goto err_inval;
4676
4677         /* Fiber NICs only allow 1000 gbps Full duplex */
4678         if ((hw->media_type == e1000_media_type_fiber) &&
4679             spd != SPEED_1000 &&
4680             dplx != DUPLEX_FULL)
4681                 goto err_inval;
4682
4683         switch (spd + dplx) {
4684         case SPEED_10 + DUPLEX_HALF:
4685                 hw->forced_speed_duplex = e1000_10_half;
4686                 break;
4687         case SPEED_10 + DUPLEX_FULL:
4688                 hw->forced_speed_duplex = e1000_10_full;
4689                 break;
4690         case SPEED_100 + DUPLEX_HALF:
4691                 hw->forced_speed_duplex = e1000_100_half;
4692                 break;
4693         case SPEED_100 + DUPLEX_FULL:
4694                 hw->forced_speed_duplex = e1000_100_full;
4695                 break;
4696         case SPEED_1000 + DUPLEX_FULL:
4697                 hw->autoneg = 1;
4698                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4699                 break;
4700         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4701         default:
4702                 goto err_inval;
4703         }
4704         return 0;
4705
4706 err_inval:
4707         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4708         return -EINVAL;
4709 }
4710
4711 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4712 {
4713         struct net_device *netdev = pci_get_drvdata(pdev);
4714         struct e1000_adapter *adapter = netdev_priv(netdev);
4715         struct e1000_hw *hw = &adapter->hw;
4716         u32 ctrl, ctrl_ext, rctl, status;
4717         u32 wufc = adapter->wol;
4718 #ifdef CONFIG_PM
4719         int retval = 0;
4720 #endif
4721
4722         netif_device_detach(netdev);
4723
4724         if (netif_running(netdev)) {
4725                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4726                 e1000_down(adapter);
4727         }
4728
4729 #ifdef CONFIG_PM
4730         retval = pci_save_state(pdev);
4731         if (retval)
4732                 return retval;
4733 #endif
4734
4735         status = er32(STATUS);
4736         if (status & E1000_STATUS_LU)
4737                 wufc &= ~E1000_WUFC_LNKC;
4738
4739         if (wufc) {
4740                 e1000_setup_rctl(adapter);
4741                 e1000_set_rx_mode(netdev);
4742
4743                 /* turn on all-multi mode if wake on multicast is enabled */
4744                 if (wufc & E1000_WUFC_MC) {
4745                         rctl = er32(RCTL);
4746                         rctl |= E1000_RCTL_MPE;
4747                         ew32(RCTL, rctl);
4748                 }
4749
4750                 if (hw->mac_type >= e1000_82540) {
4751                         ctrl = er32(CTRL);
4752                         /* advertise wake from D3Cold */
4753                         #define E1000_CTRL_ADVD3WUC 0x00100000
4754                         /* phy power management enable */
4755                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4756                         ctrl |= E1000_CTRL_ADVD3WUC |
4757                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4758                         ew32(CTRL, ctrl);
4759                 }
4760
4761                 if (hw->media_type == e1000_media_type_fiber ||
4762                     hw->media_type == e1000_media_type_internal_serdes) {
4763                         /* keep the laser running in D3 */
4764                         ctrl_ext = er32(CTRL_EXT);
4765                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4766                         ew32(CTRL_EXT, ctrl_ext);
4767                 }
4768
4769                 ew32(WUC, E1000_WUC_PME_EN);
4770                 ew32(WUFC, wufc);
4771         } else {
4772                 ew32(WUC, 0);
4773                 ew32(WUFC, 0);
4774         }
4775
4776         e1000_release_manageability(adapter);
4777
4778         *enable_wake = !!wufc;
4779
4780         /* make sure adapter isn't asleep if manageability is enabled */
4781         if (adapter->en_mng_pt)
4782                 *enable_wake = true;
4783
4784         if (netif_running(netdev))
4785                 e1000_free_irq(adapter);
4786
4787         pci_disable_device(pdev);
4788
4789         return 0;
4790 }
4791
4792 #ifdef CONFIG_PM
4793 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4794 {
4795         int retval;
4796         bool wake;
4797
4798         retval = __e1000_shutdown(pdev, &wake);
4799         if (retval)
4800                 return retval;
4801
4802         if (wake) {
4803                 pci_prepare_to_sleep(pdev);
4804         } else {
4805                 pci_wake_from_d3(pdev, false);
4806                 pci_set_power_state(pdev, PCI_D3hot);
4807         }
4808
4809         return 0;
4810 }
4811
4812 static int e1000_resume(struct pci_dev *pdev)
4813 {
4814         struct net_device *netdev = pci_get_drvdata(pdev);
4815         struct e1000_adapter *adapter = netdev_priv(netdev);
4816         struct e1000_hw *hw = &adapter->hw;
4817         u32 err;
4818
4819         pci_set_power_state(pdev, PCI_D0);
4820         pci_restore_state(pdev);
4821         pci_save_state(pdev);
4822
4823         if (adapter->need_ioport)
4824                 err = pci_enable_device(pdev);
4825         else
4826                 err = pci_enable_device_mem(pdev);
4827         if (err) {
4828                 pr_err("Cannot enable PCI device from suspend\n");
4829                 return err;
4830         }
4831         pci_set_master(pdev);
4832
4833         pci_enable_wake(pdev, PCI_D3hot, 0);
4834         pci_enable_wake(pdev, PCI_D3cold, 0);
4835
4836         if (netif_running(netdev)) {
4837                 err = e1000_request_irq(adapter);
4838                 if (err)
4839                         return err;
4840         }
4841
4842         e1000_power_up_phy(adapter);
4843         e1000_reset(adapter);
4844         ew32(WUS, ~0);
4845
4846         e1000_init_manageability(adapter);
4847
4848         if (netif_running(netdev))
4849                 e1000_up(adapter);
4850
4851         netif_device_attach(netdev);
4852
4853         return 0;
4854 }
4855 #endif
4856
4857 static void e1000_shutdown(struct pci_dev *pdev)
4858 {
4859         bool wake;
4860
4861         __e1000_shutdown(pdev, &wake);
4862
4863         if (system_state == SYSTEM_POWER_OFF) {
4864                 pci_wake_from_d3(pdev, wake);
4865                 pci_set_power_state(pdev, PCI_D3hot);
4866         }
4867 }
4868
4869 #ifdef CONFIG_NET_POLL_CONTROLLER
4870 /*
4871  * Polling 'interrupt' - used by things like netconsole to send skbs
4872  * without having to re-enable interrupts. It's not called while
4873  * the interrupt routine is executing.
4874  */
4875 static void e1000_netpoll(struct net_device *netdev)
4876 {
4877         struct e1000_adapter *adapter = netdev_priv(netdev);
4878
4879         disable_irq(adapter->pdev->irq);
4880         e1000_intr(adapter->pdev->irq, netdev);
4881         enable_irq(adapter->pdev->irq);
4882 }
4883 #endif
4884
4885 /**
4886  * e1000_io_error_detected - called when PCI error is detected
4887  * @pdev: Pointer to PCI device
4888  * @state: The current pci connection state
4889  *
4890  * This function is called after a PCI bus error affecting
4891  * this device has been detected.
4892  */
4893 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4894                                                 pci_channel_state_t state)
4895 {
4896         struct net_device *netdev = pci_get_drvdata(pdev);
4897         struct e1000_adapter *adapter = netdev_priv(netdev);
4898
4899         netif_device_detach(netdev);
4900
4901         if (state == pci_channel_io_perm_failure)
4902                 return PCI_ERS_RESULT_DISCONNECT;
4903
4904         if (netif_running(netdev))
4905                 e1000_down(adapter);
4906         pci_disable_device(pdev);
4907
4908         /* Request a slot slot reset. */
4909         return PCI_ERS_RESULT_NEED_RESET;
4910 }
4911
4912 /**
4913  * e1000_io_slot_reset - called after the pci bus has been reset.
4914  * @pdev: Pointer to PCI device
4915  *
4916  * Restart the card from scratch, as if from a cold-boot. Implementation
4917  * resembles the first-half of the e1000_resume routine.
4918  */
4919 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4920 {
4921         struct net_device *netdev = pci_get_drvdata(pdev);
4922         struct e1000_adapter *adapter = netdev_priv(netdev);
4923         struct e1000_hw *hw = &adapter->hw;
4924         int err;
4925
4926         if (adapter->need_ioport)
4927                 err = pci_enable_device(pdev);
4928         else
4929                 err = pci_enable_device_mem(pdev);
4930         if (err) {
4931                 pr_err("Cannot re-enable PCI device after reset.\n");
4932                 return PCI_ERS_RESULT_DISCONNECT;
4933         }
4934         pci_set_master(pdev);
4935
4936         pci_enable_wake(pdev, PCI_D3hot, 0);
4937         pci_enable_wake(pdev, PCI_D3cold, 0);
4938
4939         e1000_reset(adapter);
4940         ew32(WUS, ~0);
4941
4942         return PCI_ERS_RESULT_RECOVERED;
4943 }
4944
4945 /**
4946  * e1000_io_resume - called when traffic can start flowing again.
4947  * @pdev: Pointer to PCI device
4948  *
4949  * This callback is called when the error recovery driver tells us that
4950  * its OK to resume normal operation. Implementation resembles the
4951  * second-half of the e1000_resume routine.
4952  */
4953 static void e1000_io_resume(struct pci_dev *pdev)
4954 {
4955         struct net_device *netdev = pci_get_drvdata(pdev);
4956         struct e1000_adapter *adapter = netdev_priv(netdev);
4957
4958         e1000_init_manageability(adapter);
4959
4960         if (netif_running(netdev)) {
4961                 if (e1000_up(adapter)) {
4962                         pr_info("can't bring device back up after reset\n");
4963                         return;
4964                 }
4965         }
4966
4967         netif_device_attach(netdev);
4968 }
4969
4970 /* e1000_main.c */