- Updated to 3.2-rc7.
[linux-flexiantxendom0-3.2.10.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
101                 struct rpc_task *task,
102                 unsigned char queue_priority)
103 {
104         struct list_head *q;
105         struct rpc_task *t;
106
107         INIT_LIST_HEAD(&task->u.tk_wait.links);
108         q = &queue->tasks[queue_priority];
109         if (unlikely(queue_priority > queue->maxpriority))
110                 q = &queue->tasks[queue->maxpriority];
111         list_for_each_entry(t, q, u.tk_wait.list) {
112                 if (t->tk_owner == task->tk_owner) {
113                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
114                         return;
115                 }
116         }
117         list_add_tail(&task->u.tk_wait.list, q);
118 }
119
120 /*
121  * Add new request to wait queue.
122  *
123  * Swapper tasks always get inserted at the head of the queue.
124  * This should avoid many nasty memory deadlocks and hopefully
125  * improve overall performance.
126  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127  */
128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
129                 struct rpc_task *task,
130                 unsigned char queue_priority)
131 {
132         BUG_ON (RPC_IS_QUEUED(task));
133
134         if (RPC_IS_PRIORITY(queue))
135                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
136         else if (RPC_IS_SWAPPER(task))
137                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
138         else
139                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
140         task->tk_waitqueue = queue;
141         queue->qlen++;
142         rpc_set_queued(task);
143
144         dprintk("RPC: %5u added to queue %p \"%s\"\n",
145                         task->tk_pid, queue, rpc_qname(queue));
146 }
147
148 /*
149  * Remove request from a priority queue.
150  */
151 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
152 {
153         struct rpc_task *t;
154
155         if (!list_empty(&task->u.tk_wait.links)) {
156                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
157                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
158                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159         }
160 }
161
162 /*
163  * Remove request from queue.
164  * Note: must be called with spin lock held.
165  */
166 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
167 {
168         __rpc_disable_timer(queue, task);
169         if (RPC_IS_PRIORITY(queue))
170                 __rpc_remove_wait_queue_priority(task);
171         list_del(&task->u.tk_wait.list);
172         queue->qlen--;
173         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
174                         task->tk_pid, queue, rpc_qname(queue));
175 }
176
177 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
178 {
179         queue->priority = priority;
180         queue->count = 1 << (priority * 2);
181 }
182
183 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
184 {
185         queue->owner = pid;
186         queue->nr = RPC_BATCH_COUNT;
187 }
188
189 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
190 {
191         rpc_set_waitqueue_priority(queue, queue->maxpriority);
192         rpc_set_waitqueue_owner(queue, 0);
193 }
194
195 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
196 {
197         int i;
198
199         spin_lock_init(&queue->lock);
200         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
201                 INIT_LIST_HEAD(&queue->tasks[i]);
202         queue->maxpriority = nr_queues - 1;
203         rpc_reset_waitqueue_priority(queue);
204         queue->qlen = 0;
205         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
206         INIT_LIST_HEAD(&queue->timer_list.list);
207 #ifdef RPC_DEBUG
208         queue->name = qname;
209 #endif
210 }
211
212 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
213 {
214         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
215 }
216 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
217
218 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
219 {
220         __rpc_init_priority_wait_queue(queue, qname, 1);
221 }
222 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
223
224 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
225 {
226         del_timer_sync(&queue->timer_list.timer);
227 }
228 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
229
230 static int rpc_wait_bit_killable(void *word)
231 {
232         if (fatal_signal_pending(current))
233                 return -ERESTARTSYS;
234         schedule();
235         return 0;
236 }
237
238 #ifdef RPC_DEBUG
239 static void rpc_task_set_debuginfo(struct rpc_task *task)
240 {
241         static atomic_t rpc_pid;
242
243         task->tk_pid = atomic_inc_return(&rpc_pid);
244 }
245 #else
246 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
247 {
248 }
249 #endif
250
251 static void rpc_set_active(struct rpc_task *task)
252 {
253         rpc_task_set_debuginfo(task);
254         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
255 }
256
257 /*
258  * Mark an RPC call as having completed by clearing the 'active' bit
259  * and then waking up all tasks that were sleeping.
260  */
261 static int rpc_complete_task(struct rpc_task *task)
262 {
263         void *m = &task->tk_runstate;
264         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
265         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
266         unsigned long flags;
267         int ret;
268
269         spin_lock_irqsave(&wq->lock, flags);
270         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271         ret = atomic_dec_and_test(&task->tk_count);
272         if (waitqueue_active(wq))
273                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
274         spin_unlock_irqrestore(&wq->lock, flags);
275         return ret;
276 }
277
278 /*
279  * Allow callers to wait for completion of an RPC call
280  *
281  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
282  * to enforce taking of the wq->lock and hence avoid races with
283  * rpc_complete_task().
284  */
285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
286 {
287         if (action == NULL)
288                 action = rpc_wait_bit_killable;
289         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
290                         action, TASK_KILLABLE);
291 }
292 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
293
294 /*
295  * Make an RPC task runnable.
296  *
297  * Note: If the task is ASYNC, this must be called with
298  * the spinlock held to protect the wait queue operation.
299  */
300 static void rpc_make_runnable(struct rpc_task *task)
301 {
302         rpc_clear_queued(task);
303         if (rpc_test_and_set_running(task))
304                 return;
305         if (RPC_IS_ASYNC(task)) {
306                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
307                 queue_work(rpciod_workqueue, &task->u.tk_work);
308         } else
309                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311
312 /*
313  * Prepare for sleeping on a wait queue.
314  * By always appending tasks to the list we ensure FIFO behavior.
315  * NB: An RPC task will only receive interrupt-driven events as long
316  * as it's on a wait queue.
317  */
318 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
319                 struct rpc_task *task,
320                 rpc_action action,
321                 unsigned char queue_priority)
322 {
323         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
324                         task->tk_pid, rpc_qname(q), jiffies);
325
326         __rpc_add_wait_queue(q, task, queue_priority);
327
328         BUG_ON(task->tk_callback != NULL);
329         task->tk_callback = action;
330         __rpc_add_timer(q, task);
331 }
332
333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
334                                 rpc_action action)
335 {
336         /* We shouldn't ever put an inactive task to sleep */
337         BUG_ON(!RPC_IS_ACTIVATED(task));
338
339         /*
340          * Protect the queue operations.
341          */
342         spin_lock_bh(&q->lock);
343         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
344         spin_unlock_bh(&q->lock);
345 }
346 EXPORT_SYMBOL_GPL(rpc_sleep_on);
347
348 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
349                 rpc_action action, int priority)
350 {
351         /* We shouldn't ever put an inactive task to sleep */
352         BUG_ON(!RPC_IS_ACTIVATED(task));
353
354         /*
355          * Protect the queue operations.
356          */
357         spin_lock_bh(&q->lock);
358         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
359         spin_unlock_bh(&q->lock);
360 }
361
362 /**
363  * __rpc_do_wake_up_task - wake up a single rpc_task
364  * @queue: wait queue
365  * @task: task to be woken up
366  *
367  * Caller must hold queue->lock, and have cleared the task queued flag.
368  */
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
370 {
371         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372                         task->tk_pid, jiffies);
373
374         /* Has the task been executed yet? If not, we cannot wake it up! */
375         if (!RPC_IS_ACTIVATED(task)) {
376                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
377                 return;
378         }
379
380         __rpc_remove_wait_queue(queue, task);
381
382         rpc_make_runnable(task);
383
384         dprintk("RPC:       __rpc_wake_up_task done\n");
385 }
386
387 /*
388  * Wake up a queued task while the queue lock is being held
389  */
390 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
391 {
392         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
393                 __rpc_do_wake_up_task(queue, task);
394 }
395
396 /*
397  * Tests whether rpc queue is empty
398  */
399 int rpc_queue_empty(struct rpc_wait_queue *queue)
400 {
401         int res;
402
403         spin_lock_bh(&queue->lock);
404         res = queue->qlen;
405         spin_unlock_bh(&queue->lock);
406         return res == 0;
407 }
408 EXPORT_SYMBOL_GPL(rpc_queue_empty);
409
410 /*
411  * Wake up a task on a specific queue
412  */
413 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
414 {
415         spin_lock_bh(&queue->lock);
416         rpc_wake_up_task_queue_locked(queue, task);
417         spin_unlock_bh(&queue->lock);
418 }
419 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
420
421 /*
422  * Wake up the next task on a priority queue.
423  */
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
425 {
426         struct list_head *q;
427         struct rpc_task *task;
428
429         /*
430          * Service a batch of tasks from a single owner.
431          */
432         q = &queue->tasks[queue->priority];
433         if (!list_empty(q)) {
434                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435                 if (queue->owner == task->tk_owner) {
436                         if (--queue->nr)
437                                 goto out;
438                         list_move_tail(&task->u.tk_wait.list, q);
439                 }
440                 /*
441                  * Check if we need to switch queues.
442                  */
443                 if (--queue->count)
444                         goto new_owner;
445         }
446
447         /*
448          * Service the next queue.
449          */
450         do {
451                 if (q == &queue->tasks[0])
452                         q = &queue->tasks[queue->maxpriority];
453                 else
454                         q = q - 1;
455                 if (!list_empty(q)) {
456                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457                         goto new_queue;
458                 }
459         } while (q != &queue->tasks[queue->priority]);
460
461         rpc_reset_waitqueue_priority(queue);
462         return NULL;
463
464 new_queue:
465         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467         rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469         rpc_wake_up_task_queue_locked(queue, task);
470         return task;
471 }
472
473 /*
474  * Wake up the next task on the wait queue.
475  */
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
477 {
478         struct rpc_task *task = NULL;
479
480         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
481                         queue, rpc_qname(queue));
482         spin_lock_bh(&queue->lock);
483         if (RPC_IS_PRIORITY(queue))
484                 task = __rpc_wake_up_next_priority(queue);
485         else {
486                 task_for_first(task, &queue->tasks[0])
487                         rpc_wake_up_task_queue_locked(queue, task);
488         }
489         spin_unlock_bh(&queue->lock);
490
491         return task;
492 }
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
494
495 /**
496  * rpc_wake_up - wake up all rpc_tasks
497  * @queue: rpc_wait_queue on which the tasks are sleeping
498  *
499  * Grabs queue->lock
500  */
501 void rpc_wake_up(struct rpc_wait_queue *queue)
502 {
503         struct rpc_task *task, *next;
504         struct list_head *head;
505
506         spin_lock_bh(&queue->lock);
507         head = &queue->tasks[queue->maxpriority];
508         for (;;) {
509                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510                         rpc_wake_up_task_queue_locked(queue, task);
511                 if (head == &queue->tasks[0])
512                         break;
513                 head--;
514         }
515         spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
518
519 /**
520  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521  * @queue: rpc_wait_queue on which the tasks are sleeping
522  * @status: status value to set
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528         struct rpc_task *task, *next;
529         struct list_head *head;
530
531         spin_lock_bh(&queue->lock);
532         head = &queue->tasks[queue->maxpriority];
533         for (;;) {
534                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535                         task->tk_status = status;
536                         rpc_wake_up_task_queue_locked(queue, task);
537                 }
538                 if (head == &queue->tasks[0])
539                         break;
540                 head--;
541         }
542         spin_unlock_bh(&queue->lock);
543 }
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
545
546 /**
547  * rpc_wake_up_softconn_status - wake up all SOFTCONN rpc_tasks and set their
548  * status value.
549  * @queue: rpc_wait_queue on which the tasks are sleeping
550  * @status: status value to set
551  *
552  * Grabs queue->lock
553  */
554 void rpc_wake_up_softconn_status(struct rpc_wait_queue *queue, int status)
555 {
556         struct rpc_task *task, *next;
557         struct list_head *head;
558
559         spin_lock_bh(&queue->lock);
560         head = &queue->tasks[queue->maxpriority];
561         for (;;) {
562                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
563                         if (RPC_IS_SOFTCONN(task)) {
564                                 task->tk_status = status;
565                                 rpc_wake_up_task_queue_locked(queue, task);
566                         }
567                 if (head == &queue->tasks[0])
568                         break;
569                 head--;
570         }
571         spin_unlock_bh(&queue->lock);
572 }
573 EXPORT_SYMBOL_GPL(rpc_wake_up_softconn_status);
574
575 static void __rpc_queue_timer_fn(unsigned long ptr)
576 {
577         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
578         struct rpc_task *task, *n;
579         unsigned long expires, now, timeo;
580
581         spin_lock(&queue->lock);
582         expires = now = jiffies;
583         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
584                 timeo = task->u.tk_wait.expires;
585                 if (time_after_eq(now, timeo)) {
586                         dprintk("RPC: %5u timeout\n", task->tk_pid);
587                         task->tk_status = -ETIMEDOUT;
588                         rpc_wake_up_task_queue_locked(queue, task);
589                         continue;
590                 }
591                 if (expires == now || time_after(expires, timeo))
592                         expires = timeo;
593         }
594         if (!list_empty(&queue->timer_list.list))
595                 rpc_set_queue_timer(queue, expires);
596         spin_unlock(&queue->lock);
597 }
598
599 static void __rpc_atrun(struct rpc_task *task)
600 {
601         task->tk_status = 0;
602 }
603
604 /*
605  * Run a task at a later time
606  */
607 void rpc_delay(struct rpc_task *task, unsigned long delay)
608 {
609         task->tk_timeout = delay;
610         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
611 }
612 EXPORT_SYMBOL_GPL(rpc_delay);
613
614 /*
615  * Helper to call task->tk_ops->rpc_call_prepare
616  */
617 void rpc_prepare_task(struct rpc_task *task)
618 {
619         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
620 }
621
622 static void
623 rpc_init_task_statistics(struct rpc_task *task)
624 {
625         /* Initialize retry counters */
626         task->tk_garb_retry = 2;
627         task->tk_cred_retry = 2;
628         task->tk_rebind_retry = 2;
629
630         /* starting timestamp */
631         task->tk_start = ktime_get();
632 }
633
634 static void
635 rpc_reset_task_statistics(struct rpc_task *task)
636 {
637         task->tk_timeouts = 0;
638         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
639
640         rpc_init_task_statistics(task);
641 }
642
643 /*
644  * Helper that calls task->tk_ops->rpc_call_done if it exists
645  */
646 void rpc_exit_task(struct rpc_task *task)
647 {
648         task->tk_action = NULL;
649         if (task->tk_ops->rpc_call_done != NULL) {
650                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
651                 if (task->tk_action != NULL) {
652                         WARN_ON(RPC_ASSASSINATED(task));
653                         /* Always release the RPC slot and buffer memory */
654                         xprt_release(task);
655                         rpc_reset_task_statistics(task);
656                 }
657         }
658 }
659
660 void rpc_exit(struct rpc_task *task, int status)
661 {
662         task->tk_status = status;
663         task->tk_action = rpc_exit_task;
664         if (RPC_IS_QUEUED(task))
665                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
666 }
667 EXPORT_SYMBOL_GPL(rpc_exit);
668
669 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
670 {
671         if (ops->rpc_release != NULL)
672                 ops->rpc_release(calldata);
673 }
674
675 /*
676  * This is the RPC `scheduler' (or rather, the finite state machine).
677  */
678 static void __rpc_execute(struct rpc_task *task)
679 {
680         struct rpc_wait_queue *queue;
681         int task_is_async = RPC_IS_ASYNC(task);
682         int status = 0;
683
684         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
685                         task->tk_pid, task->tk_flags);
686
687         BUG_ON(RPC_IS_QUEUED(task));
688
689         for (;;) {
690                 void (*do_action)(struct rpc_task *);
691
692                 /*
693                  * Execute any pending callback first.
694                  */
695                 do_action = task->tk_callback;
696                 task->tk_callback = NULL;
697                 if (do_action == NULL) {
698                         /*
699                          * Perform the next FSM step.
700                          * tk_action may be NULL if the task has been killed.
701                          * In particular, note that rpc_killall_tasks may
702                          * do this at any time, so beware when dereferencing.
703                          */
704                         do_action = task->tk_action;
705                         if (do_action == NULL)
706                                 break;
707                 }
708                 do_action(task);
709
710                 /*
711                  * Lockless check for whether task is sleeping or not.
712                  */
713                 if (!RPC_IS_QUEUED(task))
714                         continue;
715                 /*
716                  * The queue->lock protects against races with
717                  * rpc_make_runnable().
718                  *
719                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
720                  * rpc_task, rpc_make_runnable() can assign it to a
721                  * different workqueue. We therefore cannot assume that the
722                  * rpc_task pointer may still be dereferenced.
723                  */
724                 queue = task->tk_waitqueue;
725                 spin_lock_bh(&queue->lock);
726                 if (!RPC_IS_QUEUED(task)) {
727                         spin_unlock_bh(&queue->lock);
728                         continue;
729                 }
730                 rpc_clear_running(task);
731                 spin_unlock_bh(&queue->lock);
732                 if (task_is_async)
733                         return;
734
735                 /* sync task: sleep here */
736                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
737                 status = out_of_line_wait_on_bit(&task->tk_runstate,
738                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
739                                 TASK_KILLABLE);
740                 if (status == -ERESTARTSYS) {
741                         /*
742                          * When a sync task receives a signal, it exits with
743                          * -ERESTARTSYS. In order to catch any callbacks that
744                          * clean up after sleeping on some queue, we don't
745                          * break the loop here, but go around once more.
746                          */
747                         dprintk("RPC: %5u got signal\n", task->tk_pid);
748                         task->tk_flags |= RPC_TASK_KILLED;
749                         rpc_exit(task, -ERESTARTSYS);
750                 }
751                 rpc_set_running(task);
752                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
753         }
754
755         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
756                         task->tk_status);
757         /* Release all resources associated with the task */
758         rpc_release_task(task);
759 }
760
761 /*
762  * User-visible entry point to the scheduler.
763  *
764  * This may be called recursively if e.g. an async NFS task updates
765  * the attributes and finds that dirty pages must be flushed.
766  * NOTE: Upon exit of this function the task is guaranteed to be
767  *       released. In particular note that tk_release() will have
768  *       been called, so your task memory may have been freed.
769  */
770 void rpc_execute(struct rpc_task *task)
771 {
772         rpc_set_active(task);
773         rpc_make_runnable(task);
774         if (!RPC_IS_ASYNC(task))
775                 __rpc_execute(task);
776 }
777
778 static void rpc_async_schedule(struct work_struct *work)
779 {
780         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
781 }
782
783 /**
784  * rpc_malloc - allocate an RPC buffer
785  * @task: RPC task that will use this buffer
786  * @size: requested byte size
787  *
788  * To prevent rpciod from hanging, this allocator never sleeps,
789  * returning NULL if the request cannot be serviced immediately.
790  * The caller can arrange to sleep in a way that is safe for rpciod.
791  *
792  * Most requests are 'small' (under 2KiB) and can be serviced from a
793  * mempool, ensuring that NFS reads and writes can always proceed,
794  * and that there is good locality of reference for these buffers.
795  *
796  * In order to avoid memory starvation triggering more writebacks of
797  * NFS requests, we avoid using GFP_KERNEL.
798  */
799 void *rpc_malloc(struct rpc_task *task, size_t size)
800 {
801         struct rpc_buffer *buf;
802         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
803
804         size += sizeof(struct rpc_buffer);
805         if (size <= RPC_BUFFER_MAXSIZE)
806                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
807         else
808                 buf = kmalloc(size, gfp);
809
810         if (!buf)
811                 return NULL;
812
813         buf->len = size;
814         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
815                         task->tk_pid, size, buf);
816         return &buf->data;
817 }
818 EXPORT_SYMBOL_GPL(rpc_malloc);
819
820 /**
821  * rpc_free - free buffer allocated via rpc_malloc
822  * @buffer: buffer to free
823  *
824  */
825 void rpc_free(void *buffer)
826 {
827         size_t size;
828         struct rpc_buffer *buf;
829
830         if (!buffer)
831                 return;
832
833         buf = container_of(buffer, struct rpc_buffer, data);
834         size = buf->len;
835
836         dprintk("RPC:       freeing buffer of size %zu at %p\n",
837                         size, buf);
838
839         if (size <= RPC_BUFFER_MAXSIZE)
840                 mempool_free(buf, rpc_buffer_mempool);
841         else
842                 kfree(buf);
843 }
844 EXPORT_SYMBOL_GPL(rpc_free);
845
846 /*
847  * Creation and deletion of RPC task structures
848  */
849 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
850 {
851         memset(task, 0, sizeof(*task));
852         atomic_set(&task->tk_count, 1);
853         task->tk_flags  = task_setup_data->flags;
854         task->tk_ops = task_setup_data->callback_ops;
855         task->tk_calldata = task_setup_data->callback_data;
856         INIT_LIST_HEAD(&task->tk_task);
857
858         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
859         task->tk_owner = current->tgid;
860
861         /* Initialize workqueue for async tasks */
862         task->tk_workqueue = task_setup_data->workqueue;
863
864         if (task->tk_ops->rpc_call_prepare != NULL)
865                 task->tk_action = rpc_prepare_task;
866
867         rpc_init_task_statistics(task);
868
869         dprintk("RPC:       new task initialized, procpid %u\n",
870                                 task_pid_nr(current));
871 }
872
873 static struct rpc_task *
874 rpc_alloc_task(void)
875 {
876         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
877 }
878
879 /*
880  * Create a new task for the specified client.
881  */
882 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
883 {
884         struct rpc_task *task = setup_data->task;
885         unsigned short flags = 0;
886
887         if (task == NULL) {
888                 task = rpc_alloc_task();
889                 if (task == NULL) {
890                         rpc_release_calldata(setup_data->callback_ops,
891                                         setup_data->callback_data);
892                         return ERR_PTR(-ENOMEM);
893                 }
894                 flags = RPC_TASK_DYNAMIC;
895         }
896
897         rpc_init_task(task, setup_data);
898         task->tk_flags |= flags;
899         dprintk("RPC:       allocated task %p\n", task);
900         return task;
901 }
902
903 static void rpc_free_task(struct rpc_task *task)
904 {
905         const struct rpc_call_ops *tk_ops = task->tk_ops;
906         void *calldata = task->tk_calldata;
907
908         if (task->tk_flags & RPC_TASK_DYNAMIC) {
909                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
910                 mempool_free(task, rpc_task_mempool);
911         }
912         rpc_release_calldata(tk_ops, calldata);
913 }
914
915 static void rpc_async_release(struct work_struct *work)
916 {
917         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
918 }
919
920 static void rpc_release_resources_task(struct rpc_task *task)
921 {
922         if (task->tk_rqstp)
923                 xprt_release(task);
924         if (task->tk_msg.rpc_cred) {
925                 put_rpccred(task->tk_msg.rpc_cred);
926                 task->tk_msg.rpc_cred = NULL;
927         }
928         rpc_task_release_client(task);
929 }
930
931 static void rpc_final_put_task(struct rpc_task *task,
932                 struct workqueue_struct *q)
933 {
934         if (q != NULL) {
935                 INIT_WORK(&task->u.tk_work, rpc_async_release);
936                 queue_work(q, &task->u.tk_work);
937         } else
938                 rpc_free_task(task);
939 }
940
941 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
942 {
943         if (atomic_dec_and_test(&task->tk_count)) {
944                 rpc_release_resources_task(task);
945                 rpc_final_put_task(task, q);
946         }
947 }
948
949 void rpc_put_task(struct rpc_task *task)
950 {
951         rpc_do_put_task(task, NULL);
952 }
953 EXPORT_SYMBOL_GPL(rpc_put_task);
954
955 void rpc_put_task_async(struct rpc_task *task)
956 {
957         rpc_do_put_task(task, task->tk_workqueue);
958 }
959 EXPORT_SYMBOL_GPL(rpc_put_task_async);
960
961 static void rpc_release_task(struct rpc_task *task)
962 {
963         dprintk("RPC: %5u release task\n", task->tk_pid);
964
965         BUG_ON (RPC_IS_QUEUED(task));
966
967         rpc_release_resources_task(task);
968
969         /*
970          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
971          * so it should be safe to use task->tk_count as a test for whether
972          * or not any other processes still hold references to our rpc_task.
973          */
974         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
975                 /* Wake up anyone who may be waiting for task completion */
976                 if (!rpc_complete_task(task))
977                         return;
978         } else {
979                 if (!atomic_dec_and_test(&task->tk_count))
980                         return;
981         }
982         rpc_final_put_task(task, task->tk_workqueue);
983 }
984
985 int rpciod_up(void)
986 {
987         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
988 }
989
990 void rpciod_down(void)
991 {
992         module_put(THIS_MODULE);
993 }
994
995 /*
996  * Start up the rpciod workqueue.
997  */
998 static int rpciod_start(void)
999 {
1000         struct workqueue_struct *wq;
1001
1002         /*
1003          * Create the rpciod thread and wait for it to start.
1004          */
1005         dprintk("RPC:       creating workqueue rpciod\n");
1006         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1007         rpciod_workqueue = wq;
1008         return rpciod_workqueue != NULL;
1009 }
1010
1011 static void rpciod_stop(void)
1012 {
1013         struct workqueue_struct *wq = NULL;
1014
1015         if (rpciod_workqueue == NULL)
1016                 return;
1017         dprintk("RPC:       destroying workqueue rpciod\n");
1018
1019         wq = rpciod_workqueue;
1020         rpciod_workqueue = NULL;
1021         destroy_workqueue(wq);
1022 }
1023
1024 void
1025 rpc_destroy_mempool(void)
1026 {
1027         rpciod_stop();
1028         if (rpc_buffer_mempool)
1029                 mempool_destroy(rpc_buffer_mempool);
1030         if (rpc_task_mempool)
1031                 mempool_destroy(rpc_task_mempool);
1032         if (rpc_task_slabp)
1033                 kmem_cache_destroy(rpc_task_slabp);
1034         if (rpc_buffer_slabp)
1035                 kmem_cache_destroy(rpc_buffer_slabp);
1036         rpc_destroy_wait_queue(&delay_queue);
1037 }
1038
1039 int
1040 rpc_init_mempool(void)
1041 {
1042         /*
1043          * The following is not strictly a mempool initialisation,
1044          * but there is no harm in doing it here
1045          */
1046         rpc_init_wait_queue(&delay_queue, "delayq");
1047         if (!rpciod_start())
1048                 goto err_nomem;
1049
1050         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1051                                              sizeof(struct rpc_task),
1052                                              0, SLAB_HWCACHE_ALIGN,
1053                                              NULL);
1054         if (!rpc_task_slabp)
1055                 goto err_nomem;
1056         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1057                                              RPC_BUFFER_MAXSIZE,
1058                                              0, SLAB_HWCACHE_ALIGN,
1059                                              NULL);
1060         if (!rpc_buffer_slabp)
1061                 goto err_nomem;
1062         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1063                                                     rpc_task_slabp);
1064         if (!rpc_task_mempool)
1065                 goto err_nomem;
1066         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1067                                                       rpc_buffer_slabp);
1068         if (!rpc_buffer_mempool)
1069                 goto err_nomem;
1070         return 0;
1071 err_nomem:
1072         rpc_destroy_mempool();
1073         return -ENOMEM;
1074 }