MD: Add del_timer_sync to mddev_suspend (fix nasty panic)
[linux-flexiantxendom0-3.2.10.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394
395         del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         md_wakeup_thread(mddev->thread);
406         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 }
408 EXPORT_SYMBOL_GPL(mddev_resume);
409
410 int mddev_congested(struct mddev *mddev, int bits)
411 {
412         return mddev->suspended;
413 }
414 EXPORT_SYMBOL(mddev_congested);
415
416 /*
417  * Generic flush handling for md
418  */
419
420 static void md_end_flush(struct bio *bio, int err)
421 {
422         struct md_rdev *rdev = bio->bi_private;
423         struct mddev *mddev = rdev->mddev;
424
425         rdev_dec_pending(rdev, mddev);
426
427         if (atomic_dec_and_test(&mddev->flush_pending)) {
428                 /* The pre-request flush has finished */
429                 queue_work(md_wq, &mddev->flush_work);
430         }
431         bio_put(bio);
432 }
433
434 static void md_submit_flush_data(struct work_struct *ws);
435
436 static void submit_flushes(struct work_struct *ws)
437 {
438         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
439         struct md_rdev *rdev;
440
441         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442         atomic_set(&mddev->flush_pending, 1);
443         rcu_read_lock();
444         rdev_for_each_rcu(rdev, mddev)
445                 if (rdev->raid_disk >= 0 &&
446                     !test_bit(Faulty, &rdev->flags)) {
447                         /* Take two references, one is dropped
448                          * when request finishes, one after
449                          * we reclaim rcu_read_lock
450                          */
451                         struct bio *bi;
452                         atomic_inc(&rdev->nr_pending);
453                         atomic_inc(&rdev->nr_pending);
454                         rcu_read_unlock();
455                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
456                         bi->bi_end_io = md_end_flush;
457                         bi->bi_private = rdev;
458                         bi->bi_bdev = rdev->bdev;
459                         atomic_inc(&mddev->flush_pending);
460                         submit_bio(WRITE_FLUSH, bi);
461                         rcu_read_lock();
462                         rdev_dec_pending(rdev, mddev);
463                 }
464         rcu_read_unlock();
465         if (atomic_dec_and_test(&mddev->flush_pending))
466                 queue_work(md_wq, &mddev->flush_work);
467 }
468
469 static void md_submit_flush_data(struct work_struct *ws)
470 {
471         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
472         struct bio *bio = mddev->flush_bio;
473
474         if (bio->bi_size == 0)
475                 /* an empty barrier - all done */
476                 bio_endio(bio, 0);
477         else {
478                 bio->bi_rw &= ~REQ_FLUSH;
479                 mddev->pers->make_request(mddev, bio);
480         }
481
482         mddev->flush_bio = NULL;
483         wake_up(&mddev->sb_wait);
484 }
485
486 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 {
488         spin_lock_irq(&mddev->write_lock);
489         wait_event_lock_irq(mddev->sb_wait,
490                             !mddev->flush_bio,
491                             mddev->write_lock, /*nothing*/);
492         mddev->flush_bio = bio;
493         spin_unlock_irq(&mddev->write_lock);
494
495         INIT_WORK(&mddev->flush_work, submit_flushes);
496         queue_work(md_wq, &mddev->flush_work);
497 }
498 EXPORT_SYMBOL(md_flush_request);
499
500 /* Support for plugging.
501  * This mirrors the plugging support in request_queue, but does not
502  * require having a whole queue or request structures.
503  * We allocate an md_plug_cb for each md device and each thread it gets
504  * plugged on.  This links tot the private plug_handle structure in the
505  * personality data where we keep a count of the number of outstanding
506  * plugs so other code can see if a plug is active.
507  */
508 struct md_plug_cb {
509         struct blk_plug_cb cb;
510         struct mddev *mddev;
511 };
512
513 static void plugger_unplug(struct blk_plug_cb *cb)
514 {
515         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517                 md_wakeup_thread(mdcb->mddev->thread);
518         kfree(mdcb);
519 }
520
521 /* Check that an unplug wakeup will come shortly.
522  * If not, wakeup the md thread immediately
523  */
524 int mddev_check_plugged(struct mddev *mddev)
525 {
526         struct blk_plug *plug = current->plug;
527         struct md_plug_cb *mdcb;
528
529         if (!plug)
530                 return 0;
531
532         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533                 if (mdcb->cb.callback == plugger_unplug &&
534                     mdcb->mddev == mddev) {
535                         /* Already on the list, move to top */
536                         if (mdcb != list_first_entry(&plug->cb_list,
537                                                     struct md_plug_cb,
538                                                     cb.list))
539                                 list_move(&mdcb->cb.list, &plug->cb_list);
540                         return 1;
541                 }
542         }
543         /* Not currently on the callback list */
544         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545         if (!mdcb)
546                 return 0;
547
548         mdcb->mddev = mddev;
549         mdcb->cb.callback = plugger_unplug;
550         atomic_inc(&mddev->plug_cnt);
551         list_add(&mdcb->cb.list, &plug->cb_list);
552         return 1;
553 }
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555
556 static inline struct mddev *mddev_get(struct mddev *mddev)
557 {
558         atomic_inc(&mddev->active);
559         return mddev;
560 }
561
562 static void mddev_delayed_delete(struct work_struct *ws);
563
564 static void mddev_put(struct mddev *mddev)
565 {
566         struct bio_set *bs = NULL;
567
568         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569                 return;
570         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571             mddev->ctime == 0 && !mddev->hold_active) {
572                 /* Array is not configured at all, and not held active,
573                  * so destroy it */
574                 list_del_init(&mddev->all_mddevs);
575                 bs = mddev->bio_set;
576                 mddev->bio_set = NULL;
577                 if (mddev->gendisk) {
578                         /* We did a probe so need to clean up.  Call
579                          * queue_work inside the spinlock so that
580                          * flush_workqueue() after mddev_find will
581                          * succeed in waiting for the work to be done.
582                          */
583                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584                         queue_work(md_misc_wq, &mddev->del_work);
585                 } else
586                         kfree(mddev);
587         }
588         spin_unlock(&all_mddevs_lock);
589         if (bs)
590                 bioset_free(bs);
591 }
592
593 void mddev_init(struct mddev *mddev)
594 {
595         mutex_init(&mddev->open_mutex);
596         mutex_init(&mddev->reconfig_mutex);
597         mutex_init(&mddev->bitmap_info.mutex);
598         INIT_LIST_HEAD(&mddev->disks);
599         INIT_LIST_HEAD(&mddev->all_mddevs);
600         init_timer(&mddev->safemode_timer);
601         atomic_set(&mddev->active, 1);
602         atomic_set(&mddev->openers, 0);
603         atomic_set(&mddev->active_io, 0);
604         atomic_set(&mddev->plug_cnt, 0);
605         spin_lock_init(&mddev->write_lock);
606         atomic_set(&mddev->flush_pending, 0);
607         init_waitqueue_head(&mddev->sb_wait);
608         init_waitqueue_head(&mddev->recovery_wait);
609         mddev->reshape_position = MaxSector;
610         mddev->resync_min = 0;
611         mddev->resync_max = MaxSector;
612         mddev->level = LEVEL_NONE;
613 }
614 EXPORT_SYMBOL_GPL(mddev_init);
615
616 static struct mddev * mddev_find(dev_t unit)
617 {
618         struct mddev *mddev, *new = NULL;
619
620         if (unit && MAJOR(unit) != MD_MAJOR)
621                 unit &= ~((1<<MdpMinorShift)-1);
622
623  retry:
624         spin_lock(&all_mddevs_lock);
625
626         if (unit) {
627                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628                         if (mddev->unit == unit) {
629                                 mddev_get(mddev);
630                                 spin_unlock(&all_mddevs_lock);
631                                 kfree(new);
632                                 return mddev;
633                         }
634
635                 if (new) {
636                         list_add(&new->all_mddevs, &all_mddevs);
637                         spin_unlock(&all_mddevs_lock);
638                         new->hold_active = UNTIL_IOCTL;
639                         return new;
640                 }
641         } else if (new) {
642                 /* find an unused unit number */
643                 static int next_minor = 512;
644                 int start = next_minor;
645                 int is_free = 0;
646                 int dev = 0;
647                 while (!is_free) {
648                         dev = MKDEV(MD_MAJOR, next_minor);
649                         next_minor++;
650                         if (next_minor > MINORMASK)
651                                 next_minor = 0;
652                         if (next_minor == start) {
653                                 /* Oh dear, all in use. */
654                                 spin_unlock(&all_mddevs_lock);
655                                 kfree(new);
656                                 return NULL;
657                         }
658                                 
659                         is_free = 1;
660                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661                                 if (mddev->unit == dev) {
662                                         is_free = 0;
663                                         break;
664                                 }
665                 }
666                 new->unit = dev;
667                 new->md_minor = MINOR(dev);
668                 new->hold_active = UNTIL_STOP;
669                 list_add(&new->all_mddevs, &all_mddevs);
670                 spin_unlock(&all_mddevs_lock);
671                 return new;
672         }
673         spin_unlock(&all_mddevs_lock);
674
675         new = kzalloc(sizeof(*new), GFP_KERNEL);
676         if (!new)
677                 return NULL;
678
679         new->unit = unit;
680         if (MAJOR(unit) == MD_MAJOR)
681                 new->md_minor = MINOR(unit);
682         else
683                 new->md_minor = MINOR(unit) >> MdpMinorShift;
684
685         mddev_init(new);
686
687         goto retry;
688 }
689
690 static inline int mddev_lock(struct mddev * mddev)
691 {
692         return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 }
694
695 static inline int mddev_is_locked(struct mddev *mddev)
696 {
697         return mutex_is_locked(&mddev->reconfig_mutex);
698 }
699
700 static inline int mddev_trylock(struct mddev * mddev)
701 {
702         return mutex_trylock(&mddev->reconfig_mutex);
703 }
704
705 static struct attribute_group md_redundancy_group;
706
707 static void mddev_unlock(struct mddev * mddev)
708 {
709         if (mddev->to_remove) {
710                 /* These cannot be removed under reconfig_mutex as
711                  * an access to the files will try to take reconfig_mutex
712                  * while holding the file unremovable, which leads to
713                  * a deadlock.
714                  * So hold set sysfs_active while the remove in happeing,
715                  * and anything else which might set ->to_remove or my
716                  * otherwise change the sysfs namespace will fail with
717                  * -EBUSY if sysfs_active is still set.
718                  * We set sysfs_active under reconfig_mutex and elsewhere
719                  * test it under the same mutex to ensure its correct value
720                  * is seen.
721                  */
722                 struct attribute_group *to_remove = mddev->to_remove;
723                 mddev->to_remove = NULL;
724                 mddev->sysfs_active = 1;
725                 mutex_unlock(&mddev->reconfig_mutex);
726
727                 if (mddev->kobj.sd) {
728                         if (to_remove != &md_redundancy_group)
729                                 sysfs_remove_group(&mddev->kobj, to_remove);
730                         if (mddev->pers == NULL ||
731                             mddev->pers->sync_request == NULL) {
732                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733                                 if (mddev->sysfs_action)
734                                         sysfs_put(mddev->sysfs_action);
735                                 mddev->sysfs_action = NULL;
736                         }
737                 }
738                 mddev->sysfs_active = 0;
739         } else
740                 mutex_unlock(&mddev->reconfig_mutex);
741
742         /* As we've dropped the mutex we need a spinlock to
743          * make sure the thread doesn't disappear
744          */
745         spin_lock(&pers_lock);
746         md_wakeup_thread(mddev->thread);
747         spin_unlock(&pers_lock);
748 }
749
750 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
751 {
752         struct md_rdev *rdev;
753
754         rdev_for_each(rdev, mddev)
755                 if (rdev->desc_nr == nr)
756                         return rdev;
757
758         return NULL;
759 }
760
761 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
762 {
763         struct md_rdev *rdev;
764
765         rdev_for_each(rdev, mddev)
766                 if (rdev->bdev->bd_dev == dev)
767                         return rdev;
768
769         return NULL;
770 }
771
772 static struct md_personality *find_pers(int level, char *clevel)
773 {
774         struct md_personality *pers;
775         list_for_each_entry(pers, &pers_list, list) {
776                 if (level != LEVEL_NONE && pers->level == level)
777                         return pers;
778                 if (strcmp(pers->name, clevel)==0)
779                         return pers;
780         }
781         return NULL;
782 }
783
784 /* return the offset of the super block in 512byte sectors */
785 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
786 {
787         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
788         return MD_NEW_SIZE_SECTORS(num_sectors);
789 }
790
791 static int alloc_disk_sb(struct md_rdev * rdev)
792 {
793         if (rdev->sb_page)
794                 MD_BUG();
795
796         rdev->sb_page = alloc_page(GFP_KERNEL);
797         if (!rdev->sb_page) {
798                 printk(KERN_ALERT "md: out of memory.\n");
799                 return -ENOMEM;
800         }
801
802         return 0;
803 }
804
805 static void free_disk_sb(struct md_rdev * rdev)
806 {
807         if (rdev->sb_page) {
808                 put_page(rdev->sb_page);
809                 rdev->sb_loaded = 0;
810                 rdev->sb_page = NULL;
811                 rdev->sb_start = 0;
812                 rdev->sectors = 0;
813         }
814         if (rdev->bb_page) {
815                 put_page(rdev->bb_page);
816                 rdev->bb_page = NULL;
817         }
818 }
819
820
821 static void super_written(struct bio *bio, int error)
822 {
823         struct md_rdev *rdev = bio->bi_private;
824         struct mddev *mddev = rdev->mddev;
825
826         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
827                 printk("md: super_written gets error=%d, uptodate=%d\n",
828                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
829                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
830                 md_error(mddev, rdev);
831         }
832
833         if (atomic_dec_and_test(&mddev->pending_writes))
834                 wake_up(&mddev->sb_wait);
835         bio_put(bio);
836 }
837
838 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
839                    sector_t sector, int size, struct page *page)
840 {
841         /* write first size bytes of page to sector of rdev
842          * Increment mddev->pending_writes before returning
843          * and decrement it on completion, waking up sb_wait
844          * if zero is reached.
845          * If an error occurred, call md_error
846          */
847         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
848
849         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
850         bio->bi_sector = sector;
851         bio_add_page(bio, page, size, 0);
852         bio->bi_private = rdev;
853         bio->bi_end_io = super_written;
854
855         atomic_inc(&mddev->pending_writes);
856         submit_bio(WRITE_FLUSH_FUA, bio);
857 }
858
859 void md_super_wait(struct mddev *mddev)
860 {
861         /* wait for all superblock writes that were scheduled to complete */
862         DEFINE_WAIT(wq);
863         for(;;) {
864                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
865                 if (atomic_read(&mddev->pending_writes)==0)
866                         break;
867                 schedule();
868         }
869         finish_wait(&mddev->sb_wait, &wq);
870 }
871
872 static void bi_complete(struct bio *bio, int error)
873 {
874         complete((struct completion*)bio->bi_private);
875 }
876
877 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
878                  struct page *page, int rw, bool metadata_op)
879 {
880         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
881         struct completion event;
882         int ret;
883
884         rw |= REQ_SYNC;
885
886         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
887                 rdev->meta_bdev : rdev->bdev;
888         if (metadata_op)
889                 bio->bi_sector = sector + rdev->sb_start;
890         else
891                 bio->bi_sector = sector + rdev->data_offset;
892         bio_add_page(bio, page, size, 0);
893         init_completion(&event);
894         bio->bi_private = &event;
895         bio->bi_end_io = bi_complete;
896         submit_bio(rw, bio);
897         wait_for_completion(&event);
898
899         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
900         bio_put(bio);
901         return ret;
902 }
903 EXPORT_SYMBOL_GPL(sync_page_io);
904
905 static int read_disk_sb(struct md_rdev * rdev, int size)
906 {
907         char b[BDEVNAME_SIZE];
908         if (!rdev->sb_page) {
909                 MD_BUG();
910                 return -EINVAL;
911         }
912         if (rdev->sb_loaded)
913                 return 0;
914
915
916         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
917                 goto fail;
918         rdev->sb_loaded = 1;
919         return 0;
920
921 fail:
922         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
923                 bdevname(rdev->bdev,b));
924         return -EINVAL;
925 }
926
927 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
928 {
929         return  sb1->set_uuid0 == sb2->set_uuid0 &&
930                 sb1->set_uuid1 == sb2->set_uuid1 &&
931                 sb1->set_uuid2 == sb2->set_uuid2 &&
932                 sb1->set_uuid3 == sb2->set_uuid3;
933 }
934
935 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 {
937         int ret;
938         mdp_super_t *tmp1, *tmp2;
939
940         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
941         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
942
943         if (!tmp1 || !tmp2) {
944                 ret = 0;
945                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
946                 goto abort;
947         }
948
949         *tmp1 = *sb1;
950         *tmp2 = *sb2;
951
952         /*
953          * nr_disks is not constant
954          */
955         tmp1->nr_disks = 0;
956         tmp2->nr_disks = 0;
957
958         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
959 abort:
960         kfree(tmp1);
961         kfree(tmp2);
962         return ret;
963 }
964
965
966 static u32 md_csum_fold(u32 csum)
967 {
968         csum = (csum & 0xffff) + (csum >> 16);
969         return (csum & 0xffff) + (csum >> 16);
970 }
971
972 static unsigned int calc_sb_csum(mdp_super_t * sb)
973 {
974         u64 newcsum = 0;
975         u32 *sb32 = (u32*)sb;
976         int i;
977         unsigned int disk_csum, csum;
978
979         disk_csum = sb->sb_csum;
980         sb->sb_csum = 0;
981
982         for (i = 0; i < MD_SB_BYTES/4 ; i++)
983                 newcsum += sb32[i];
984         csum = (newcsum & 0xffffffff) + (newcsum>>32);
985
986
987 #ifdef CONFIG_ALPHA
988         /* This used to use csum_partial, which was wrong for several
989          * reasons including that different results are returned on
990          * different architectures.  It isn't critical that we get exactly
991          * the same return value as before (we always csum_fold before
992          * testing, and that removes any differences).  However as we
993          * know that csum_partial always returned a 16bit value on
994          * alphas, do a fold to maximise conformity to previous behaviour.
995          */
996         sb->sb_csum = md_csum_fold(disk_csum);
997 #else
998         sb->sb_csum = disk_csum;
999 #endif
1000         return csum;
1001 }
1002
1003
1004 /*
1005  * Handle superblock details.
1006  * We want to be able to handle multiple superblock formats
1007  * so we have a common interface to them all, and an array of
1008  * different handlers.
1009  * We rely on user-space to write the initial superblock, and support
1010  * reading and updating of superblocks.
1011  * Interface methods are:
1012  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1013  *      loads and validates a superblock on dev.
1014  *      if refdev != NULL, compare superblocks on both devices
1015  *    Return:
1016  *      0 - dev has a superblock that is compatible with refdev
1017  *      1 - dev has a superblock that is compatible and newer than refdev
1018  *          so dev should be used as the refdev in future
1019  *     -EINVAL superblock incompatible or invalid
1020  *     -othererror e.g. -EIO
1021  *
1022  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1023  *      Verify that dev is acceptable into mddev.
1024  *       The first time, mddev->raid_disks will be 0, and data from
1025  *       dev should be merged in.  Subsequent calls check that dev
1026  *       is new enough.  Return 0 or -EINVAL
1027  *
1028  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1029  *     Update the superblock for rdev with data in mddev
1030  *     This does not write to disc.
1031  *
1032  */
1033
1034 struct super_type  {
1035         char                *name;
1036         struct module       *owner;
1037         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1038                                           int minor_version);
1039         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1040         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1041         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1042                                                 sector_t num_sectors);
1043 };
1044
1045 /*
1046  * Check that the given mddev has no bitmap.
1047  *
1048  * This function is called from the run method of all personalities that do not
1049  * support bitmaps. It prints an error message and returns non-zero if mddev
1050  * has a bitmap. Otherwise, it returns 0.
1051  *
1052  */
1053 int md_check_no_bitmap(struct mddev *mddev)
1054 {
1055         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1056                 return 0;
1057         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1058                 mdname(mddev), mddev->pers->name);
1059         return 1;
1060 }
1061 EXPORT_SYMBOL(md_check_no_bitmap);
1062
1063 /*
1064  * load_super for 0.90.0 
1065  */
1066 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1067 {
1068         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1069         mdp_super_t *sb;
1070         int ret;
1071
1072         /*
1073          * Calculate the position of the superblock (512byte sectors),
1074          * it's at the end of the disk.
1075          *
1076          * It also happens to be a multiple of 4Kb.
1077          */
1078         rdev->sb_start = calc_dev_sboffset(rdev);
1079
1080         ret = read_disk_sb(rdev, MD_SB_BYTES);
1081         if (ret) return ret;
1082
1083         ret = -EINVAL;
1084
1085         bdevname(rdev->bdev, b);
1086         sb = page_address(rdev->sb_page);
1087
1088         if (sb->md_magic != MD_SB_MAGIC) {
1089                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1090                        b);
1091                 goto abort;
1092         }
1093
1094         if (sb->major_version != 0 ||
1095             sb->minor_version < 90 ||
1096             sb->minor_version > 91) {
1097                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1098                         sb->major_version, sb->minor_version,
1099                         b);
1100                 goto abort;
1101         }
1102
1103         if (sb->raid_disks <= 0)
1104                 goto abort;
1105
1106         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1107                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1108                         b);
1109                 goto abort;
1110         }
1111
1112         rdev->preferred_minor = sb->md_minor;
1113         rdev->data_offset = 0;
1114         rdev->sb_size = MD_SB_BYTES;
1115         rdev->badblocks.shift = -1;
1116
1117         if (sb->level == LEVEL_MULTIPATH)
1118                 rdev->desc_nr = -1;
1119         else
1120                 rdev->desc_nr = sb->this_disk.number;
1121
1122         if (!refdev) {
1123                 ret = 1;
1124         } else {
1125                 __u64 ev1, ev2;
1126                 mdp_super_t *refsb = page_address(refdev->sb_page);
1127                 if (!uuid_equal(refsb, sb)) {
1128                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1129                                 b, bdevname(refdev->bdev,b2));
1130                         goto abort;
1131                 }
1132                 if (!sb_equal(refsb, sb)) {
1133                         printk(KERN_WARNING "md: %s has same UUID"
1134                                " but different superblock to %s\n",
1135                                b, bdevname(refdev->bdev, b2));
1136                         goto abort;
1137                 }
1138                 ev1 = md_event(sb);
1139                 ev2 = md_event(refsb);
1140                 if (ev1 > ev2)
1141                         ret = 1;
1142                 else 
1143                         ret = 0;
1144         }
1145         rdev->sectors = rdev->sb_start;
1146         /* Limit to 4TB as metadata cannot record more than that */
1147         if (rdev->sectors >= (2ULL << 32))
1148                 rdev->sectors = (2ULL << 32) - 2;
1149
1150         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1151                 /* "this cannot possibly happen" ... */
1152                 ret = -EINVAL;
1153
1154  abort:
1155         return ret;
1156 }
1157
1158 /*
1159  * validate_super for 0.90.0
1160  */
1161 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1162 {
1163         mdp_disk_t *desc;
1164         mdp_super_t *sb = page_address(rdev->sb_page);
1165         __u64 ev1 = md_event(sb);
1166
1167         rdev->raid_disk = -1;
1168         clear_bit(Faulty, &rdev->flags);
1169         clear_bit(In_sync, &rdev->flags);
1170         clear_bit(WriteMostly, &rdev->flags);
1171
1172         if (mddev->raid_disks == 0) {
1173                 mddev->major_version = 0;
1174                 mddev->minor_version = sb->minor_version;
1175                 mddev->patch_version = sb->patch_version;
1176                 mddev->external = 0;
1177                 mddev->chunk_sectors = sb->chunk_size >> 9;
1178                 mddev->ctime = sb->ctime;
1179                 mddev->utime = sb->utime;
1180                 mddev->level = sb->level;
1181                 mddev->clevel[0] = 0;
1182                 mddev->layout = sb->layout;
1183                 mddev->raid_disks = sb->raid_disks;
1184                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1185                 mddev->events = ev1;
1186                 mddev->bitmap_info.offset = 0;
1187                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1188
1189                 if (mddev->minor_version >= 91) {
1190                         mddev->reshape_position = sb->reshape_position;
1191                         mddev->delta_disks = sb->delta_disks;
1192                         mddev->new_level = sb->new_level;
1193                         mddev->new_layout = sb->new_layout;
1194                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1195                 } else {
1196                         mddev->reshape_position = MaxSector;
1197                         mddev->delta_disks = 0;
1198                         mddev->new_level = mddev->level;
1199                         mddev->new_layout = mddev->layout;
1200                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1201                 }
1202
1203                 if (sb->state & (1<<MD_SB_CLEAN))
1204                         mddev->recovery_cp = MaxSector;
1205                 else {
1206                         if (sb->events_hi == sb->cp_events_hi && 
1207                                 sb->events_lo == sb->cp_events_lo) {
1208                                 mddev->recovery_cp = sb->recovery_cp;
1209                         } else
1210                                 mddev->recovery_cp = 0;
1211                 }
1212
1213                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1214                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1215                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1216                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1217
1218                 mddev->max_disks = MD_SB_DISKS;
1219
1220                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1221                     mddev->bitmap_info.file == NULL)
1222                         mddev->bitmap_info.offset =
1223                                 mddev->bitmap_info.default_offset;
1224
1225         } else if (mddev->pers == NULL) {
1226                 /* Insist on good event counter while assembling, except
1227                  * for spares (which don't need an event count) */
1228                 ++ev1;
1229                 if (sb->disks[rdev->desc_nr].state & (
1230                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1231                         if (ev1 < mddev->events) 
1232                                 return -EINVAL;
1233         } else if (mddev->bitmap) {
1234                 /* if adding to array with a bitmap, then we can accept an
1235                  * older device ... but not too old.
1236                  */
1237                 if (ev1 < mddev->bitmap->events_cleared)
1238                         return 0;
1239         } else {
1240                 if (ev1 < mddev->events)
1241                         /* just a hot-add of a new device, leave raid_disk at -1 */
1242                         return 0;
1243         }
1244
1245         if (mddev->level != LEVEL_MULTIPATH) {
1246                 desc = sb->disks + rdev->desc_nr;
1247
1248                 if (desc->state & (1<<MD_DISK_FAULTY))
1249                         set_bit(Faulty, &rdev->flags);
1250                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1251                             desc->raid_disk < mddev->raid_disks */) {
1252                         set_bit(In_sync, &rdev->flags);
1253                         rdev->raid_disk = desc->raid_disk;
1254                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1255                         /* active but not in sync implies recovery up to
1256                          * reshape position.  We don't know exactly where
1257                          * that is, so set to zero for now */
1258                         if (mddev->minor_version >= 91) {
1259                                 rdev->recovery_offset = 0;
1260                                 rdev->raid_disk = desc->raid_disk;
1261                         }
1262                 }
1263                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1264                         set_bit(WriteMostly, &rdev->flags);
1265         } else /* MULTIPATH are always insync */
1266                 set_bit(In_sync, &rdev->flags);
1267         return 0;
1268 }
1269
1270 /*
1271  * sync_super for 0.90.0
1272  */
1273 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1274 {
1275         mdp_super_t *sb;
1276         struct md_rdev *rdev2;
1277         int next_spare = mddev->raid_disks;
1278
1279
1280         /* make rdev->sb match mddev data..
1281          *
1282          * 1/ zero out disks
1283          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1284          * 3/ any empty disks < next_spare become removed
1285          *
1286          * disks[0] gets initialised to REMOVED because
1287          * we cannot be sure from other fields if it has
1288          * been initialised or not.
1289          */
1290         int i;
1291         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1292
1293         rdev->sb_size = MD_SB_BYTES;
1294
1295         sb = page_address(rdev->sb_page);
1296
1297         memset(sb, 0, sizeof(*sb));
1298
1299         sb->md_magic = MD_SB_MAGIC;
1300         sb->major_version = mddev->major_version;
1301         sb->patch_version = mddev->patch_version;
1302         sb->gvalid_words  = 0; /* ignored */
1303         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1304         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1305         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1306         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1307
1308         sb->ctime = mddev->ctime;
1309         sb->level = mddev->level;
1310         sb->size = mddev->dev_sectors / 2;
1311         sb->raid_disks = mddev->raid_disks;
1312         sb->md_minor = mddev->md_minor;
1313         sb->not_persistent = 0;
1314         sb->utime = mddev->utime;
1315         sb->state = 0;
1316         sb->events_hi = (mddev->events>>32);
1317         sb->events_lo = (u32)mddev->events;
1318
1319         if (mddev->reshape_position == MaxSector)
1320                 sb->minor_version = 90;
1321         else {
1322                 sb->minor_version = 91;
1323                 sb->reshape_position = mddev->reshape_position;
1324                 sb->new_level = mddev->new_level;
1325                 sb->delta_disks = mddev->delta_disks;
1326                 sb->new_layout = mddev->new_layout;
1327                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1328         }
1329         mddev->minor_version = sb->minor_version;
1330         if (mddev->in_sync)
1331         {
1332                 sb->recovery_cp = mddev->recovery_cp;
1333                 sb->cp_events_hi = (mddev->events>>32);
1334                 sb->cp_events_lo = (u32)mddev->events;
1335                 if (mddev->recovery_cp == MaxSector)
1336                         sb->state = (1<< MD_SB_CLEAN);
1337         } else
1338                 sb->recovery_cp = 0;
1339
1340         sb->layout = mddev->layout;
1341         sb->chunk_size = mddev->chunk_sectors << 9;
1342
1343         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1344                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1345
1346         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1347         rdev_for_each(rdev2, mddev) {
1348                 mdp_disk_t *d;
1349                 int desc_nr;
1350                 int is_active = test_bit(In_sync, &rdev2->flags);
1351
1352                 if (rdev2->raid_disk >= 0 &&
1353                     sb->minor_version >= 91)
1354                         /* we have nowhere to store the recovery_offset,
1355                          * but if it is not below the reshape_position,
1356                          * we can piggy-back on that.
1357                          */
1358                         is_active = 1;
1359                 if (rdev2->raid_disk < 0 ||
1360                     test_bit(Faulty, &rdev2->flags))
1361                         is_active = 0;
1362                 if (is_active)
1363                         desc_nr = rdev2->raid_disk;
1364                 else
1365                         desc_nr = next_spare++;
1366                 rdev2->desc_nr = desc_nr;
1367                 d = &sb->disks[rdev2->desc_nr];
1368                 nr_disks++;
1369                 d->number = rdev2->desc_nr;
1370                 d->major = MAJOR(rdev2->bdev->bd_dev);
1371                 d->minor = MINOR(rdev2->bdev->bd_dev);
1372                 if (is_active)
1373                         d->raid_disk = rdev2->raid_disk;
1374                 else
1375                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1376                 if (test_bit(Faulty, &rdev2->flags))
1377                         d->state = (1<<MD_DISK_FAULTY);
1378                 else if (is_active) {
1379                         d->state = (1<<MD_DISK_ACTIVE);
1380                         if (test_bit(In_sync, &rdev2->flags))
1381                                 d->state |= (1<<MD_DISK_SYNC);
1382                         active++;
1383                         working++;
1384                 } else {
1385                         d->state = 0;
1386                         spare++;
1387                         working++;
1388                 }
1389                 if (test_bit(WriteMostly, &rdev2->flags))
1390                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1391         }
1392         /* now set the "removed" and "faulty" bits on any missing devices */
1393         for (i=0 ; i < mddev->raid_disks ; i++) {
1394                 mdp_disk_t *d = &sb->disks[i];
1395                 if (d->state == 0 && d->number == 0) {
1396                         d->number = i;
1397                         d->raid_disk = i;
1398                         d->state = (1<<MD_DISK_REMOVED);
1399                         d->state |= (1<<MD_DISK_FAULTY);
1400                         failed++;
1401                 }
1402         }
1403         sb->nr_disks = nr_disks;
1404         sb->active_disks = active;
1405         sb->working_disks = working;
1406         sb->failed_disks = failed;
1407         sb->spare_disks = spare;
1408
1409         sb->this_disk = sb->disks[rdev->desc_nr];
1410         sb->sb_csum = calc_sb_csum(sb);
1411 }
1412
1413 /*
1414  * rdev_size_change for 0.90.0
1415  */
1416 static unsigned long long
1417 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1418 {
1419         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1420                 return 0; /* component must fit device */
1421         if (rdev->mddev->bitmap_info.offset)
1422                 return 0; /* can't move bitmap */
1423         rdev->sb_start = calc_dev_sboffset(rdev);
1424         if (!num_sectors || num_sectors > rdev->sb_start)
1425                 num_sectors = rdev->sb_start;
1426         /* Limit to 4TB as metadata cannot record more than that.
1427          * 4TB == 2^32 KB, or 2*2^32 sectors.
1428          */
1429         if (num_sectors >= (2ULL << 32))
1430                 num_sectors = (2ULL << 32) - 2;
1431         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1432                        rdev->sb_page);
1433         md_super_wait(rdev->mddev);
1434         return num_sectors;
1435 }
1436
1437
1438 /*
1439  * version 1 superblock
1440  */
1441
1442 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1443 {
1444         __le32 disk_csum;
1445         u32 csum;
1446         unsigned long long newcsum;
1447         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1448         __le32 *isuper = (__le32*)sb;
1449         int i;
1450
1451         disk_csum = sb->sb_csum;
1452         sb->sb_csum = 0;
1453         newcsum = 0;
1454         for (i=0; size>=4; size -= 4 )
1455                 newcsum += le32_to_cpu(*isuper++);
1456
1457         if (size == 2)
1458                 newcsum += le16_to_cpu(*(__le16*) isuper);
1459
1460         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1461         sb->sb_csum = disk_csum;
1462         return cpu_to_le32(csum);
1463 }
1464
1465 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1466                             int acknowledged);
1467 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1468 {
1469         struct mdp_superblock_1 *sb;
1470         int ret;
1471         sector_t sb_start;
1472         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1473         int bmask;
1474
1475         /*
1476          * Calculate the position of the superblock in 512byte sectors.
1477          * It is always aligned to a 4K boundary and
1478          * depeding on minor_version, it can be:
1479          * 0: At least 8K, but less than 12K, from end of device
1480          * 1: At start of device
1481          * 2: 4K from start of device.
1482          */
1483         switch(minor_version) {
1484         case 0:
1485                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1486                 sb_start -= 8*2;
1487                 sb_start &= ~(sector_t)(4*2-1);
1488                 break;
1489         case 1:
1490                 sb_start = 0;
1491                 break;
1492         case 2:
1493                 sb_start = 8;
1494                 break;
1495         default:
1496                 return -EINVAL;
1497         }
1498         rdev->sb_start = sb_start;
1499
1500         /* superblock is rarely larger than 1K, but it can be larger,
1501          * and it is safe to read 4k, so we do that
1502          */
1503         ret = read_disk_sb(rdev, 4096);
1504         if (ret) return ret;
1505
1506
1507         sb = page_address(rdev->sb_page);
1508
1509         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1510             sb->major_version != cpu_to_le32(1) ||
1511             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1512             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1513             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1514                 return -EINVAL;
1515
1516         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1517                 printk("md: invalid superblock checksum on %s\n",
1518                         bdevname(rdev->bdev,b));
1519                 return -EINVAL;
1520         }
1521         if (le64_to_cpu(sb->data_size) < 10) {
1522                 printk("md: data_size too small on %s\n",
1523                        bdevname(rdev->bdev,b));
1524                 return -EINVAL;
1525         }
1526
1527         rdev->preferred_minor = 0xffff;
1528         rdev->data_offset = le64_to_cpu(sb->data_offset);
1529         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1530
1531         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1532         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1533         if (rdev->sb_size & bmask)
1534                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1535
1536         if (minor_version
1537             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1538                 return -EINVAL;
1539
1540         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1541                 rdev->desc_nr = -1;
1542         else
1543                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1544
1545         if (!rdev->bb_page) {
1546                 rdev->bb_page = alloc_page(GFP_KERNEL);
1547                 if (!rdev->bb_page)
1548                         return -ENOMEM;
1549         }
1550         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1551             rdev->badblocks.count == 0) {
1552                 /* need to load the bad block list.
1553                  * Currently we limit it to one page.
1554                  */
1555                 s32 offset;
1556                 sector_t bb_sector;
1557                 u64 *bbp;
1558                 int i;
1559                 int sectors = le16_to_cpu(sb->bblog_size);
1560                 if (sectors > (PAGE_SIZE / 512))
1561                         return -EINVAL;
1562                 offset = le32_to_cpu(sb->bblog_offset);
1563                 if (offset == 0)
1564                         return -EINVAL;
1565                 bb_sector = (long long)offset;
1566                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1567                                   rdev->bb_page, READ, true))
1568                         return -EIO;
1569                 bbp = (u64 *)page_address(rdev->bb_page);
1570                 rdev->badblocks.shift = sb->bblog_shift;
1571                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1572                         u64 bb = le64_to_cpu(*bbp);
1573                         int count = bb & (0x3ff);
1574                         u64 sector = bb >> 10;
1575                         sector <<= sb->bblog_shift;
1576                         count <<= sb->bblog_shift;
1577                         if (bb + 1 == 0)
1578                                 break;
1579                         if (md_set_badblocks(&rdev->badblocks,
1580                                              sector, count, 1) == 0)
1581                                 return -EINVAL;
1582                 }
1583         } else if (sb->bblog_offset == 0)
1584                 rdev->badblocks.shift = -1;
1585
1586         if (!refdev) {
1587                 ret = 1;
1588         } else {
1589                 __u64 ev1, ev2;
1590                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591
1592                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1593                     sb->level != refsb->level ||
1594                     sb->layout != refsb->layout ||
1595                     sb->chunksize != refsb->chunksize) {
1596                         printk(KERN_WARNING "md: %s has strangely different"
1597                                 " superblock to %s\n",
1598                                 bdevname(rdev->bdev,b),
1599                                 bdevname(refdev->bdev,b2));
1600                         return -EINVAL;
1601                 }
1602                 ev1 = le64_to_cpu(sb->events);
1603                 ev2 = le64_to_cpu(refsb->events);
1604
1605                 if (ev1 > ev2)
1606                         ret = 1;
1607                 else
1608                         ret = 0;
1609         }
1610         if (minor_version)
1611                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1612                         le64_to_cpu(sb->data_offset);
1613         else
1614                 rdev->sectors = rdev->sb_start;
1615         if (rdev->sectors < le64_to_cpu(sb->data_size))
1616                 return -EINVAL;
1617         rdev->sectors = le64_to_cpu(sb->data_size);
1618         if (le64_to_cpu(sb->size) > rdev->sectors)
1619                 return -EINVAL;
1620         return ret;
1621 }
1622
1623 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1624 {
1625         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1626         __u64 ev1 = le64_to_cpu(sb->events);
1627
1628         rdev->raid_disk = -1;
1629         clear_bit(Faulty, &rdev->flags);
1630         clear_bit(In_sync, &rdev->flags);
1631         clear_bit(WriteMostly, &rdev->flags);
1632
1633         if (mddev->raid_disks == 0) {
1634                 mddev->major_version = 1;
1635                 mddev->patch_version = 0;
1636                 mddev->external = 0;
1637                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1638                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1639                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1640                 mddev->level = le32_to_cpu(sb->level);
1641                 mddev->clevel[0] = 0;
1642                 mddev->layout = le32_to_cpu(sb->layout);
1643                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1644                 mddev->dev_sectors = le64_to_cpu(sb->size);
1645                 mddev->events = ev1;
1646                 mddev->bitmap_info.offset = 0;
1647                 mddev->bitmap_info.default_offset = 1024 >> 9;
1648                 
1649                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1650                 memcpy(mddev->uuid, sb->set_uuid, 16);
1651
1652                 mddev->max_disks =  (4096-256)/2;
1653
1654                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1655                     mddev->bitmap_info.file == NULL )
1656                         mddev->bitmap_info.offset =
1657                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1658
1659                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1660                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1661                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1662                         mddev->new_level = le32_to_cpu(sb->new_level);
1663                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1664                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665                 } else {
1666                         mddev->reshape_position = MaxSector;
1667                         mddev->delta_disks = 0;
1668                         mddev->new_level = mddev->level;
1669                         mddev->new_layout = mddev->layout;
1670                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1671                 }
1672
1673         } else if (mddev->pers == NULL) {
1674                 /* Insist of good event counter while assembling, except for
1675                  * spares (which don't need an event count) */
1676                 ++ev1;
1677                 if (rdev->desc_nr >= 0 &&
1678                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1679                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1680                         if (ev1 < mddev->events)
1681                                 return -EINVAL;
1682         } else if (mddev->bitmap) {
1683                 /* If adding to array with a bitmap, then we can accept an
1684                  * older device, but not too old.
1685                  */
1686                 if (ev1 < mddev->bitmap->events_cleared)
1687                         return 0;
1688         } else {
1689                 if (ev1 < mddev->events)
1690                         /* just a hot-add of a new device, leave raid_disk at -1 */
1691                         return 0;
1692         }
1693         if (mddev->level != LEVEL_MULTIPATH) {
1694                 int role;
1695                 if (rdev->desc_nr < 0 ||
1696                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1697                         role = 0xffff;
1698                         rdev->desc_nr = -1;
1699                 } else
1700                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1701                 switch(role) {
1702                 case 0xffff: /* spare */
1703                         break;
1704                 case 0xfffe: /* faulty */
1705                         set_bit(Faulty, &rdev->flags);
1706                         break;
1707                 default:
1708                         if ((le32_to_cpu(sb->feature_map) &
1709                              MD_FEATURE_RECOVERY_OFFSET))
1710                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1711                         else
1712                                 set_bit(In_sync, &rdev->flags);
1713                         rdev->raid_disk = role;
1714                         break;
1715                 }
1716                 if (sb->devflags & WriteMostly1)
1717                         set_bit(WriteMostly, &rdev->flags);
1718                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1719                         set_bit(Replacement, &rdev->flags);
1720         } else /* MULTIPATH are always insync */
1721                 set_bit(In_sync, &rdev->flags);
1722
1723         return 0;
1724 }
1725
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728         struct mdp_superblock_1 *sb;
1729         struct md_rdev *rdev2;
1730         int max_dev, i;
1731         /* make rdev->sb match mddev and rdev data. */
1732
1733         sb = page_address(rdev->sb_page);
1734
1735         sb->feature_map = 0;
1736         sb->pad0 = 0;
1737         sb->recovery_offset = cpu_to_le64(0);
1738         memset(sb->pad1, 0, sizeof(sb->pad1));
1739         memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741         sb->utime = cpu_to_le64((__u64)mddev->utime);
1742         sb->events = cpu_to_le64(mddev->events);
1743         if (mddev->in_sync)
1744                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745         else
1746                 sb->resync_offset = cpu_to_le64(0);
1747
1748         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751         sb->size = cpu_to_le64(mddev->dev_sectors);
1752         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753         sb->level = cpu_to_le32(mddev->level);
1754         sb->layout = cpu_to_le32(mddev->layout);
1755
1756         if (test_bit(WriteMostly, &rdev->flags))
1757                 sb->devflags |= WriteMostly1;
1758         else
1759                 sb->devflags &= ~WriteMostly1;
1760
1761         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764         }
1765
1766         if (rdev->raid_disk >= 0 &&
1767             !test_bit(In_sync, &rdev->flags)) {
1768                 sb->feature_map |=
1769                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770                 sb->recovery_offset =
1771                         cpu_to_le64(rdev->recovery_offset);
1772         }
1773         if (test_bit(Replacement, &rdev->flags))
1774                 sb->feature_map |=
1775                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1776
1777         if (mddev->reshape_position != MaxSector) {
1778                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1779                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1780                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1781                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1782                 sb->new_level = cpu_to_le32(mddev->new_level);
1783                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784         }
1785
1786         if (rdev->badblocks.count == 0)
1787                 /* Nothing to do for bad blocks*/ ;
1788         else if (sb->bblog_offset == 0)
1789                 /* Cannot record bad blocks on this device */
1790                 md_error(mddev, rdev);
1791         else {
1792                 struct badblocks *bb = &rdev->badblocks;
1793                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794                 u64 *p = bb->page;
1795                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1796                 if (bb->changed) {
1797                         unsigned seq;
1798
1799 retry:
1800                         seq = read_seqbegin(&bb->lock);
1801
1802                         memset(bbp, 0xff, PAGE_SIZE);
1803
1804                         for (i = 0 ; i < bb->count ; i++) {
1805                                 u64 internal_bb = *p++;
1806                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1807                                                 | BB_LEN(internal_bb));
1808                                 *bbp++ = cpu_to_le64(store_bb);
1809                         }
1810                         bb->changed = 0;
1811                         if (read_seqretry(&bb->lock, seq))
1812                                 goto retry;
1813
1814                         bb->sector = (rdev->sb_start +
1815                                       (int)le32_to_cpu(sb->bblog_offset));
1816                         bb->size = le16_to_cpu(sb->bblog_size);
1817                 }
1818         }
1819
1820         max_dev = 0;
1821         rdev_for_each(rdev2, mddev)
1822                 if (rdev2->desc_nr+1 > max_dev)
1823                         max_dev = rdev2->desc_nr+1;
1824
1825         if (max_dev > le32_to_cpu(sb->max_dev)) {
1826                 int bmask;
1827                 sb->max_dev = cpu_to_le32(max_dev);
1828                 rdev->sb_size = max_dev * 2 + 256;
1829                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1830                 if (rdev->sb_size & bmask)
1831                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832         } else
1833                 max_dev = le32_to_cpu(sb->max_dev);
1834
1835         for (i=0; i<max_dev;i++)
1836                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837         
1838         rdev_for_each(rdev2, mddev) {
1839                 i = rdev2->desc_nr;
1840                 if (test_bit(Faulty, &rdev2->flags))
1841                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1842                 else if (test_bit(In_sync, &rdev2->flags))
1843                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844                 else if (rdev2->raid_disk >= 0)
1845                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846                 else
1847                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1848         }
1849
1850         sb->sb_csum = calc_sb_1_csum(sb);
1851 }
1852
1853 static unsigned long long
1854 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1855 {
1856         struct mdp_superblock_1 *sb;
1857         sector_t max_sectors;
1858         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1859                 return 0; /* component must fit device */
1860         if (rdev->sb_start < rdev->data_offset) {
1861                 /* minor versions 1 and 2; superblock before data */
1862                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1863                 max_sectors -= rdev->data_offset;
1864                 if (!num_sectors || num_sectors > max_sectors)
1865                         num_sectors = max_sectors;
1866         } else if (rdev->mddev->bitmap_info.offset) {
1867                 /* minor version 0 with bitmap we can't move */
1868                 return 0;
1869         } else {
1870                 /* minor version 0; superblock after data */
1871                 sector_t sb_start;
1872                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1873                 sb_start &= ~(sector_t)(4*2 - 1);
1874                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1875                 if (!num_sectors || num_sectors > max_sectors)
1876                         num_sectors = max_sectors;
1877                 rdev->sb_start = sb_start;
1878         }
1879         sb = page_address(rdev->sb_page);
1880         sb->data_size = cpu_to_le64(num_sectors);
1881         sb->super_offset = rdev->sb_start;
1882         sb->sb_csum = calc_sb_1_csum(sb);
1883         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884                        rdev->sb_page);
1885         md_super_wait(rdev->mddev);
1886         return num_sectors;
1887 }
1888
1889 static struct super_type super_types[] = {
1890         [0] = {
1891                 .name   = "0.90.0",
1892                 .owner  = THIS_MODULE,
1893                 .load_super         = super_90_load,
1894                 .validate_super     = super_90_validate,
1895                 .sync_super         = super_90_sync,
1896                 .rdev_size_change   = super_90_rdev_size_change,
1897         },
1898         [1] = {
1899                 .name   = "md-1",
1900                 .owner  = THIS_MODULE,
1901                 .load_super         = super_1_load,
1902                 .validate_super     = super_1_validate,
1903                 .sync_super         = super_1_sync,
1904                 .rdev_size_change   = super_1_rdev_size_change,
1905         },
1906 };
1907
1908 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1909 {
1910         if (mddev->sync_super) {
1911                 mddev->sync_super(mddev, rdev);
1912                 return;
1913         }
1914
1915         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1916
1917         super_types[mddev->major_version].sync_super(mddev, rdev);
1918 }
1919
1920 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1921 {
1922         struct md_rdev *rdev, *rdev2;
1923
1924         rcu_read_lock();
1925         rdev_for_each_rcu(rdev, mddev1)
1926                 rdev_for_each_rcu(rdev2, mddev2)
1927                         if (rdev->bdev->bd_contains ==
1928                             rdev2->bdev->bd_contains) {
1929                                 rcu_read_unlock();
1930                                 return 1;
1931                         }
1932         rcu_read_unlock();
1933         return 0;
1934 }
1935
1936 static LIST_HEAD(pending_raid_disks);
1937
1938 /*
1939  * Try to register data integrity profile for an mddev
1940  *
1941  * This is called when an array is started and after a disk has been kicked
1942  * from the array. It only succeeds if all working and active component devices
1943  * are integrity capable with matching profiles.
1944  */
1945 int md_integrity_register(struct mddev *mddev)
1946 {
1947         struct md_rdev *rdev, *reference = NULL;
1948
1949         if (list_empty(&mddev->disks))
1950                 return 0; /* nothing to do */
1951         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1952                 return 0; /* shouldn't register, or already is */
1953         rdev_for_each(rdev, mddev) {
1954                 /* skip spares and non-functional disks */
1955                 if (test_bit(Faulty, &rdev->flags))
1956                         continue;
1957                 if (rdev->raid_disk < 0)
1958                         continue;
1959                 if (!reference) {
1960                         /* Use the first rdev as the reference */
1961                         reference = rdev;
1962                         continue;
1963                 }
1964                 /* does this rdev's profile match the reference profile? */
1965                 if (blk_integrity_compare(reference->bdev->bd_disk,
1966                                 rdev->bdev->bd_disk) < 0)
1967                         return -EINVAL;
1968         }
1969         if (!reference || !bdev_get_integrity(reference->bdev))
1970                 return 0;
1971         /*
1972          * All component devices are integrity capable and have matching
1973          * profiles, register the common profile for the md device.
1974          */
1975         if (blk_integrity_register(mddev->gendisk,
1976                         bdev_get_integrity(reference->bdev)) != 0) {
1977                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1978                         mdname(mddev));
1979                 return -EINVAL;
1980         }
1981         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1982         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1983                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1984                        mdname(mddev));
1985                 return -EINVAL;
1986         }
1987         return 0;
1988 }
1989 EXPORT_SYMBOL(md_integrity_register);
1990
1991 /* Disable data integrity if non-capable/non-matching disk is being added */
1992 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1993 {
1994         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1995         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1996
1997         if (!bi_mddev) /* nothing to do */
1998                 return;
1999         if (rdev->raid_disk < 0) /* skip spares */
2000                 return;
2001         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2002                                              rdev->bdev->bd_disk) >= 0)
2003                 return;
2004         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2005         blk_integrity_unregister(mddev->gendisk);
2006 }
2007 EXPORT_SYMBOL(md_integrity_add_rdev);
2008
2009 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2010 {
2011         char b[BDEVNAME_SIZE];
2012         struct kobject *ko;
2013         char *s;
2014         int err;
2015
2016         if (rdev->mddev) {
2017                 MD_BUG();
2018                 return -EINVAL;
2019         }
2020
2021         /* prevent duplicates */
2022         if (find_rdev(mddev, rdev->bdev->bd_dev))
2023                 return -EEXIST;
2024
2025         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2026         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2027                         rdev->sectors < mddev->dev_sectors)) {
2028                 if (mddev->pers) {
2029                         /* Cannot change size, so fail
2030                          * If mddev->level <= 0, then we don't care
2031                          * about aligning sizes (e.g. linear)
2032                          */
2033                         if (mddev->level > 0)
2034                                 return -ENOSPC;
2035                 } else
2036                         mddev->dev_sectors = rdev->sectors;
2037         }
2038
2039         /* Verify rdev->desc_nr is unique.
2040          * If it is -1, assign a free number, else
2041          * check number is not in use
2042          */
2043         if (rdev->desc_nr < 0) {
2044                 int choice = 0;
2045                 if (mddev->pers) choice = mddev->raid_disks;
2046                 while (find_rdev_nr(mddev, choice))
2047                         choice++;
2048                 rdev->desc_nr = choice;
2049         } else {
2050                 if (find_rdev_nr(mddev, rdev->desc_nr))
2051                         return -EBUSY;
2052         }
2053         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2054                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2055                        mdname(mddev), mddev->max_disks);
2056                 return -EBUSY;
2057         }
2058         bdevname(rdev->bdev,b);
2059         while ( (s=strchr(b, '/')) != NULL)
2060                 *s = '!';
2061
2062         rdev->mddev = mddev;
2063         printk(KERN_INFO "md: bind<%s>\n", b);
2064
2065         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066                 goto fail;
2067
2068         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2069         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2070                 /* failure here is OK */;
2071         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2072
2073         list_add_rcu(&rdev->same_set, &mddev->disks);
2074         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2075
2076         /* May as well allow recovery to be retried once */
2077         mddev->recovery_disabled++;
2078
2079         return 0;
2080
2081  fail:
2082         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2083                b, mdname(mddev));
2084         return err;
2085 }
2086
2087 static void md_delayed_delete(struct work_struct *ws)
2088 {
2089         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2090         kobject_del(&rdev->kobj);
2091         kobject_put(&rdev->kobj);
2092 }
2093
2094 static void unbind_rdev_from_array(struct md_rdev * rdev)
2095 {
2096         char b[BDEVNAME_SIZE];
2097         if (!rdev->mddev) {
2098                 MD_BUG();
2099                 return;
2100         }
2101         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102         list_del_rcu(&rdev->same_set);
2103         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104         rdev->mddev = NULL;
2105         sysfs_remove_link(&rdev->kobj, "block");
2106         sysfs_put(rdev->sysfs_state);
2107         rdev->sysfs_state = NULL;
2108         kfree(rdev->badblocks.page);
2109         rdev->badblocks.count = 0;
2110         rdev->badblocks.page = NULL;
2111         /* We need to delay this, otherwise we can deadlock when
2112          * writing to 'remove' to "dev/state".  We also need
2113          * to delay it due to rcu usage.
2114          */
2115         synchronize_rcu();
2116         INIT_WORK(&rdev->del_work, md_delayed_delete);
2117         kobject_get(&rdev->kobj);
2118         queue_work(md_misc_wq, &rdev->del_work);
2119 }
2120
2121 /*
2122  * prevent the device from being mounted, repartitioned or
2123  * otherwise reused by a RAID array (or any other kernel
2124  * subsystem), by bd_claiming the device.
2125  */
2126 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2127 {
2128         int err = 0;
2129         struct block_device *bdev;
2130         char b[BDEVNAME_SIZE];
2131
2132         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2133                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2134         if (IS_ERR(bdev)) {
2135                 printk(KERN_ERR "md: could not open %s.\n",
2136                         __bdevname(dev, b));
2137                 return PTR_ERR(bdev);
2138         }
2139         rdev->bdev = bdev;
2140         return err;
2141 }
2142
2143 static void unlock_rdev(struct md_rdev *rdev)
2144 {
2145         struct block_device *bdev = rdev->bdev;
2146         rdev->bdev = NULL;
2147         if (!bdev)
2148                 MD_BUG();
2149         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 }
2151
2152 void md_autodetect_dev(dev_t dev);
2153
2154 static void export_rdev(struct md_rdev * rdev)
2155 {
2156         char b[BDEVNAME_SIZE];
2157         printk(KERN_INFO "md: export_rdev(%s)\n",
2158                 bdevname(rdev->bdev,b));
2159         if (rdev->mddev)
2160                 MD_BUG();
2161         free_disk_sb(rdev);
2162 #ifndef MODULE
2163         if (test_bit(AutoDetected, &rdev->flags))
2164                 md_autodetect_dev(rdev->bdev->bd_dev);
2165 #endif
2166         unlock_rdev(rdev);
2167         kobject_put(&rdev->kobj);
2168 }
2169
2170 static void kick_rdev_from_array(struct md_rdev * rdev)
2171 {
2172         unbind_rdev_from_array(rdev);
2173         export_rdev(rdev);
2174 }
2175
2176 static void export_array(struct mddev *mddev)
2177 {
2178         struct md_rdev *rdev, *tmp;
2179
2180         rdev_for_each_safe(rdev, tmp, mddev) {
2181                 if (!rdev->mddev) {
2182                         MD_BUG();
2183                         continue;
2184                 }
2185                 kick_rdev_from_array(rdev);
2186         }
2187         if (!list_empty(&mddev->disks))
2188                 MD_BUG();
2189         mddev->raid_disks = 0;
2190         mddev->major_version = 0;
2191 }
2192
2193 static void print_desc(mdp_disk_t *desc)
2194 {
2195         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196                 desc->major,desc->minor,desc->raid_disk,desc->state);
2197 }
2198
2199 static void print_sb_90(mdp_super_t *sb)
2200 {
2201         int i;
2202
2203         printk(KERN_INFO 
2204                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205                 sb->major_version, sb->minor_version, sb->patch_version,
2206                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207                 sb->ctime);
2208         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210                 sb->md_minor, sb->layout, sb->chunk_size);
2211         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2212                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214                 sb->failed_disks, sb->spare_disks,
2215                 sb->sb_csum, (unsigned long)sb->events_lo);
2216
2217         printk(KERN_INFO);
2218         for (i = 0; i < MD_SB_DISKS; i++) {
2219                 mdp_disk_t *desc;
2220
2221                 desc = sb->disks + i;
2222                 if (desc->number || desc->major || desc->minor ||
2223                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2224                         printk("     D %2d: ", i);
2225                         print_desc(desc);
2226                 }
2227         }
2228         printk(KERN_INFO "md:     THIS: ");
2229         print_desc(&sb->this_disk);
2230 }
2231
2232 static void print_sb_1(struct mdp_superblock_1 *sb)
2233 {
2234         __u8 *uuid;
2235
2236         uuid = sb->set_uuid;
2237         printk(KERN_INFO
2238                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239                "md:    Name: \"%s\" CT:%llu\n",
2240                 le32_to_cpu(sb->major_version),
2241                 le32_to_cpu(sb->feature_map),
2242                 uuid,
2243                 sb->set_name,
2244                 (unsigned long long)le64_to_cpu(sb->ctime)
2245                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246
2247         uuid = sb->device_uuid;
2248         printk(KERN_INFO
2249                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250                         " RO:%llu\n"
2251                "md:     Dev:%08x UUID: %pU\n"
2252                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253                "md:         (MaxDev:%u) \n",
2254                 le32_to_cpu(sb->level),
2255                 (unsigned long long)le64_to_cpu(sb->size),
2256                 le32_to_cpu(sb->raid_disks),
2257                 le32_to_cpu(sb->layout),
2258                 le32_to_cpu(sb->chunksize),
2259                 (unsigned long long)le64_to_cpu(sb->data_offset),
2260                 (unsigned long long)le64_to_cpu(sb->data_size),
2261                 (unsigned long long)le64_to_cpu(sb->super_offset),
2262                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263                 le32_to_cpu(sb->dev_number),
2264                 uuid,
2265                 sb->devflags,
2266                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267                 (unsigned long long)le64_to_cpu(sb->events),
2268                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269                 le32_to_cpu(sb->sb_csum),
2270                 le32_to_cpu(sb->max_dev)
2271                 );
2272 }
2273
2274 static void print_rdev(struct md_rdev *rdev, int major_version)
2275 {
2276         char b[BDEVNAME_SIZE];
2277         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280                 rdev->desc_nr);
2281         if (rdev->sb_loaded) {
2282                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283                 switch (major_version) {
2284                 case 0:
2285                         print_sb_90(page_address(rdev->sb_page));
2286                         break;
2287                 case 1:
2288                         print_sb_1(page_address(rdev->sb_page));
2289                         break;
2290                 }
2291         } else
2292                 printk(KERN_INFO "md: no rdev superblock!\n");
2293 }
2294
2295 static void md_print_devices(void)
2296 {
2297         struct list_head *tmp;
2298         struct md_rdev *rdev;
2299         struct mddev *mddev;
2300         char b[BDEVNAME_SIZE];
2301
2302         printk("\n");
2303         printk("md:     **********************************\n");
2304         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2305         printk("md:     **********************************\n");
2306         for_each_mddev(mddev, tmp) {
2307
2308                 if (mddev->bitmap)
2309                         bitmap_print_sb(mddev->bitmap);
2310                 else
2311                         printk("%s: ", mdname(mddev));
2312                 rdev_for_each(rdev, mddev)
2313                         printk("<%s>", bdevname(rdev->bdev,b));
2314                 printk("\n");
2315
2316                 rdev_for_each(rdev, mddev)
2317                         print_rdev(rdev, mddev->major_version);
2318         }
2319         printk("md:     **********************************\n");
2320         printk("\n");
2321 }
2322
2323
2324 static void sync_sbs(struct mddev * mddev, int nospares)
2325 {
2326         /* Update each superblock (in-memory image), but
2327          * if we are allowed to, skip spares which already
2328          * have the right event counter, or have one earlier
2329          * (which would mean they aren't being marked as dirty
2330          * with the rest of the array)
2331          */
2332         struct md_rdev *rdev;
2333         rdev_for_each(rdev, mddev) {
2334                 if (rdev->sb_events == mddev->events ||
2335                     (nospares &&
2336                      rdev->raid_disk < 0 &&
2337                      rdev->sb_events+1 == mddev->events)) {
2338                         /* Don't update this superblock */
2339                         rdev->sb_loaded = 2;
2340                 } else {
2341                         sync_super(mddev, rdev);
2342                         rdev->sb_loaded = 1;
2343                 }
2344         }
2345 }
2346
2347 static void md_update_sb(struct mddev * mddev, int force_change)
2348 {
2349         struct md_rdev *rdev;
2350         int sync_req;
2351         int nospares = 0;
2352         int any_badblocks_changed = 0;
2353
2354 repeat:
2355         /* First make sure individual recovery_offsets are correct */
2356         rdev_for_each(rdev, mddev) {
2357                 if (rdev->raid_disk >= 0 &&
2358                     mddev->delta_disks >= 0 &&
2359                     !test_bit(In_sync, &rdev->flags) &&
2360                     mddev->curr_resync_completed > rdev->recovery_offset)
2361                                 rdev->recovery_offset = mddev->curr_resync_completed;
2362
2363         }       
2364         if (!mddev->persistent) {
2365                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2366                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2367                 if (!mddev->external) {
2368                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2369                         rdev_for_each(rdev, mddev) {
2370                                 if (rdev->badblocks.changed) {
2371                                         rdev->badblocks.changed = 0;
2372                                         md_ack_all_badblocks(&rdev->badblocks);
2373                                         md_error(mddev, rdev);
2374                                 }
2375                                 clear_bit(Blocked, &rdev->flags);
2376                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2377                                 wake_up(&rdev->blocked_wait);
2378                         }
2379                 }
2380                 wake_up(&mddev->sb_wait);
2381                 return;
2382         }
2383
2384         spin_lock_irq(&mddev->write_lock);
2385
2386         mddev->utime = get_seconds();
2387
2388         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2389                 force_change = 1;
2390         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2391                 /* just a clean<-> dirty transition, possibly leave spares alone,
2392                  * though if events isn't the right even/odd, we will have to do
2393                  * spares after all
2394                  */
2395                 nospares = 1;
2396         if (force_change)
2397                 nospares = 0;
2398         if (mddev->degraded)
2399                 /* If the array is degraded, then skipping spares is both
2400                  * dangerous and fairly pointless.
2401                  * Dangerous because a device that was removed from the array
2402                  * might have a event_count that still looks up-to-date,
2403                  * so it can be re-added without a resync.
2404                  * Pointless because if there are any spares to skip,
2405                  * then a recovery will happen and soon that array won't
2406                  * be degraded any more and the spare can go back to sleep then.
2407                  */
2408                 nospares = 0;
2409
2410         sync_req = mddev->in_sync;
2411
2412         /* If this is just a dirty<->clean transition, and the array is clean
2413          * and 'events' is odd, we can roll back to the previous clean state */
2414         if (nospares
2415             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2416             && mddev->can_decrease_events
2417             && mddev->events != 1) {
2418                 mddev->events--;
2419                 mddev->can_decrease_events = 0;
2420         } else {
2421                 /* otherwise we have to go forward and ... */
2422                 mddev->events ++;
2423                 mddev->can_decrease_events = nospares;
2424         }
2425
2426         if (!mddev->events) {
2427                 /*
2428                  * oops, this 64-bit counter should never wrap.
2429                  * Either we are in around ~1 trillion A.C., assuming
2430                  * 1 reboot per second, or we have a bug:
2431                  */
2432                 MD_BUG();
2433                 mddev->events --;
2434         }
2435
2436         rdev_for_each(rdev, mddev) {
2437                 if (rdev->badblocks.changed)
2438                         any_badblocks_changed++;
2439                 if (test_bit(Faulty, &rdev->flags))
2440                         set_bit(FaultRecorded, &rdev->flags);
2441         }
2442
2443         sync_sbs(mddev, nospares);
2444         spin_unlock_irq(&mddev->write_lock);
2445
2446         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2447                  mdname(mddev), mddev->in_sync);
2448
2449         bitmap_update_sb(mddev->bitmap);
2450         rdev_for_each(rdev, mddev) {
2451                 char b[BDEVNAME_SIZE];
2452
2453                 if (rdev->sb_loaded != 1)
2454                         continue; /* no noise on spare devices */
2455
2456                 if (!test_bit(Faulty, &rdev->flags) &&
2457                     rdev->saved_raid_disk == -1) {
2458                         md_super_write(mddev,rdev,
2459                                        rdev->sb_start, rdev->sb_size,
2460                                        rdev->sb_page);
2461                         pr_debug("md: (write) %s's sb offset: %llu\n",
2462                                  bdevname(rdev->bdev, b),
2463                                  (unsigned long long)rdev->sb_start);
2464                         rdev->sb_events = mddev->events;
2465                         if (rdev->badblocks.size) {
2466                                 md_super_write(mddev, rdev,
2467                                                rdev->badblocks.sector,
2468                                                rdev->badblocks.size << 9,
2469                                                rdev->bb_page);
2470                                 rdev->badblocks.size = 0;
2471                         }
2472
2473                 } else if (test_bit(Faulty, &rdev->flags))
2474                         pr_debug("md: %s (skipping faulty)\n",
2475                                  bdevname(rdev->bdev, b));
2476                 else
2477                         pr_debug("(skipping incremental s/r ");
2478
2479                 if (mddev->level == LEVEL_MULTIPATH)
2480                         /* only need to write one superblock... */
2481                         break;
2482         }
2483         md_super_wait(mddev);
2484         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2485
2486         spin_lock_irq(&mddev->write_lock);
2487         if (mddev->in_sync != sync_req ||
2488             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2489                 /* have to write it out again */
2490                 spin_unlock_irq(&mddev->write_lock);
2491                 goto repeat;
2492         }
2493         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2494         spin_unlock_irq(&mddev->write_lock);
2495         wake_up(&mddev->sb_wait);
2496         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2497                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2498
2499         rdev_for_each(rdev, mddev) {
2500                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2501                         clear_bit(Blocked, &rdev->flags);
2502
2503                 if (any_badblocks_changed)
2504                         md_ack_all_badblocks(&rdev->badblocks);
2505                 clear_bit(BlockedBadBlocks, &rdev->flags);
2506                 wake_up(&rdev->blocked_wait);
2507         }
2508 }
2509
2510 /* words written to sysfs files may, or may not, be \n terminated.
2511  * We want to accept with case. For this we use cmd_match.
2512  */
2513 static int cmd_match(const char *cmd, const char *str)
2514 {
2515         /* See if cmd, written into a sysfs file, matches
2516          * str.  They must either be the same, or cmd can
2517          * have a trailing newline
2518          */
2519         while (*cmd && *str && *cmd == *str) {
2520                 cmd++;
2521                 str++;
2522         }
2523         if (*cmd == '\n')
2524                 cmd++;
2525         if (*str || *cmd)
2526                 return 0;
2527         return 1;
2528 }
2529
2530 struct rdev_sysfs_entry {
2531         struct attribute attr;
2532         ssize_t (*show)(struct md_rdev *, char *);
2533         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2534 };
2535
2536 static ssize_t
2537 state_show(struct md_rdev *rdev, char *page)
2538 {
2539         char *sep = "";
2540         size_t len = 0;
2541
2542         if (test_bit(Faulty, &rdev->flags) ||
2543             rdev->badblocks.unacked_exist) {
2544                 len+= sprintf(page+len, "%sfaulty",sep);
2545                 sep = ",";
2546         }
2547         if (test_bit(In_sync, &rdev->flags)) {
2548                 len += sprintf(page+len, "%sin_sync",sep);
2549                 sep = ",";
2550         }
2551         if (test_bit(WriteMostly, &rdev->flags)) {
2552                 len += sprintf(page+len, "%swrite_mostly",sep);
2553                 sep = ",";
2554         }
2555         if (test_bit(Blocked, &rdev->flags) ||
2556             (rdev->badblocks.unacked_exist
2557              && !test_bit(Faulty, &rdev->flags))) {
2558                 len += sprintf(page+len, "%sblocked", sep);
2559                 sep = ",";
2560         }
2561         if (!test_bit(Faulty, &rdev->flags) &&
2562             !test_bit(In_sync, &rdev->flags)) {
2563                 len += sprintf(page+len, "%sspare", sep);
2564                 sep = ",";
2565         }
2566         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2567                 len += sprintf(page+len, "%swrite_error", sep);
2568                 sep = ",";
2569         }
2570         if (test_bit(WantReplacement, &rdev->flags)) {
2571                 len += sprintf(page+len, "%swant_replacement", sep);
2572                 sep = ",";
2573         }
2574         if (test_bit(Replacement, &rdev->flags)) {
2575                 len += sprintf(page+len, "%sreplacement", sep);
2576                 sep = ",";
2577         }
2578
2579         return len+sprintf(page+len, "\n");
2580 }
2581
2582 static ssize_t
2583 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2584 {
2585         /* can write
2586          *  faulty  - simulates an error
2587          *  remove  - disconnects the device
2588          *  writemostly - sets write_mostly
2589          *  -writemostly - clears write_mostly
2590          *  blocked - sets the Blocked flags
2591          *  -blocked - clears the Blocked and possibly simulates an error
2592          *  insync - sets Insync providing device isn't active
2593          *  write_error - sets WriteErrorSeen
2594          *  -write_error - clears WriteErrorSeen
2595          */
2596         int err = -EINVAL;
2597         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2598                 md_error(rdev->mddev, rdev);
2599                 if (test_bit(Faulty, &rdev->flags))
2600                         err = 0;
2601                 else
2602                         err = -EBUSY;
2603         } else if (cmd_match(buf, "remove")) {
2604                 if (rdev->raid_disk >= 0)
2605                         err = -EBUSY;
2606                 else {
2607                         struct mddev *mddev = rdev->mddev;
2608                         kick_rdev_from_array(rdev);
2609                         if (mddev->pers)
2610                                 md_update_sb(mddev, 1);
2611                         md_new_event(mddev);
2612                         err = 0;
2613                 }
2614         } else if (cmd_match(buf, "writemostly")) {
2615                 set_bit(WriteMostly, &rdev->flags);
2616                 err = 0;
2617         } else if (cmd_match(buf, "-writemostly")) {
2618                 clear_bit(WriteMostly, &rdev->flags);
2619                 err = 0;
2620         } else if (cmd_match(buf, "blocked")) {
2621                 set_bit(Blocked, &rdev->flags);
2622                 err = 0;
2623         } else if (cmd_match(buf, "-blocked")) {
2624                 if (!test_bit(Faulty, &rdev->flags) &&
2625                     rdev->badblocks.unacked_exist) {
2626                         /* metadata handler doesn't understand badblocks,
2627                          * so we need to fail the device
2628                          */
2629                         md_error(rdev->mddev, rdev);
2630                 }
2631                 clear_bit(Blocked, &rdev->flags);
2632                 clear_bit(BlockedBadBlocks, &rdev->flags);
2633                 wake_up(&rdev->blocked_wait);
2634                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635                 md_wakeup_thread(rdev->mddev->thread);
2636
2637                 err = 0;
2638         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2639                 set_bit(In_sync, &rdev->flags);
2640                 err = 0;
2641         } else if (cmd_match(buf, "write_error")) {
2642                 set_bit(WriteErrorSeen, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "-write_error")) {
2645                 clear_bit(WriteErrorSeen, &rdev->flags);
2646                 err = 0;
2647         } else if (cmd_match(buf, "want_replacement")) {
2648                 /* Any non-spare device that is not a replacement can
2649                  * become want_replacement at any time, but we then need to
2650                  * check if recovery is needed.
2651                  */
2652                 if (rdev->raid_disk >= 0 &&
2653                     !test_bit(Replacement, &rdev->flags))
2654                         set_bit(WantReplacement, &rdev->flags);
2655                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656                 md_wakeup_thread(rdev->mddev->thread);
2657                 err = 0;
2658         } else if (cmd_match(buf, "-want_replacement")) {
2659                 /* Clearing 'want_replacement' is always allowed.
2660                  * Once replacements starts it is too late though.
2661                  */
2662                 err = 0;
2663                 clear_bit(WantReplacement, &rdev->flags);
2664         } else if (cmd_match(buf, "replacement")) {
2665                 /* Can only set a device as a replacement when array has not
2666                  * yet been started.  Once running, replacement is automatic
2667                  * from spares, or by assigning 'slot'.
2668                  */
2669                 if (rdev->mddev->pers)
2670                         err = -EBUSY;
2671                 else {
2672                         set_bit(Replacement, &rdev->flags);
2673                         err = 0;
2674                 }
2675         } else if (cmd_match(buf, "-replacement")) {
2676                 /* Similarly, can only clear Replacement before start */
2677                 if (rdev->mddev->pers)
2678                         err = -EBUSY;
2679                 else {
2680                         clear_bit(Replacement, &rdev->flags);
2681                         err = 0;
2682                 }
2683         }
2684         if (!err)
2685                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2686         return err ? err : len;
2687 }
2688 static struct rdev_sysfs_entry rdev_state =
2689 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2690
2691 static ssize_t
2692 errors_show(struct md_rdev *rdev, char *page)
2693 {
2694         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2695 }
2696
2697 static ssize_t
2698 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2699 {
2700         char *e;
2701         unsigned long n = simple_strtoul(buf, &e, 10);
2702         if (*buf && (*e == 0 || *e == '\n')) {
2703                 atomic_set(&rdev->corrected_errors, n);
2704                 return len;
2705         }
2706         return -EINVAL;
2707 }
2708 static struct rdev_sysfs_entry rdev_errors =
2709 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2710
2711 static ssize_t
2712 slot_show(struct md_rdev *rdev, char *page)
2713 {
2714         if (rdev->raid_disk < 0)
2715                 return sprintf(page, "none\n");
2716         else
2717                 return sprintf(page, "%d\n", rdev->raid_disk);
2718 }
2719
2720 static ssize_t
2721 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2722 {
2723         char *e;
2724         int err;
2725         int slot = simple_strtoul(buf, &e, 10);
2726         if (strncmp(buf, "none", 4)==0)
2727                 slot = -1;
2728         else if (e==buf || (*e && *e!= '\n'))
2729                 return -EINVAL;
2730         if (rdev->mddev->pers && slot == -1) {
2731                 /* Setting 'slot' on an active array requires also
2732                  * updating the 'rd%d' link, and communicating
2733                  * with the personality with ->hot_*_disk.
2734                  * For now we only support removing
2735                  * failed/spare devices.  This normally happens automatically,
2736                  * but not when the metadata is externally managed.
2737                  */
2738                 if (rdev->raid_disk == -1)
2739                         return -EEXIST;
2740                 /* personality does all needed checks */
2741                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2742                         return -EINVAL;
2743                 err = rdev->mddev->pers->
2744                         hot_remove_disk(rdev->mddev, rdev);
2745                 if (err)
2746                         return err;
2747                 sysfs_unlink_rdev(rdev->mddev, rdev);
2748                 rdev->raid_disk = -1;
2749                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2750                 md_wakeup_thread(rdev->mddev->thread);
2751         } else if (rdev->mddev->pers) {
2752                 /* Activating a spare .. or possibly reactivating
2753                  * if we ever get bitmaps working here.
2754                  */
2755
2756                 if (rdev->raid_disk != -1)
2757                         return -EBUSY;
2758
2759                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2760                         return -EBUSY;
2761
2762                 if (rdev->mddev->pers->hot_add_disk == NULL)
2763                         return -EINVAL;
2764
2765                 if (slot >= rdev->mddev->raid_disks &&
2766                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2767                         return -ENOSPC;
2768
2769                 rdev->raid_disk = slot;
2770                 if (test_bit(In_sync, &rdev->flags))
2771                         rdev->saved_raid_disk = slot;
2772                 else
2773                         rdev->saved_raid_disk = -1;
2774                 clear_bit(In_sync, &rdev->flags);
2775                 err = rdev->mddev->pers->
2776                         hot_add_disk(rdev->mddev, rdev);
2777                 if (err) {
2778                         rdev->raid_disk = -1;
2779                         return err;
2780                 } else
2781                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2782                 if (sysfs_link_rdev(rdev->mddev, rdev))
2783                         /* failure here is OK */;
2784                 /* don't wakeup anyone, leave that to userspace. */
2785         } else {
2786                 if (slot >= rdev->mddev->raid_disks &&
2787                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788                         return -ENOSPC;
2789                 rdev->raid_disk = slot;
2790                 /* assume it is working */
2791                 clear_bit(Faulty, &rdev->flags);
2792                 clear_bit(WriteMostly, &rdev->flags);
2793                 set_bit(In_sync, &rdev->flags);
2794                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2795         }
2796         return len;
2797 }
2798
2799
2800 static struct rdev_sysfs_entry rdev_slot =
2801 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2802
2803 static ssize_t
2804 offset_show(struct md_rdev *rdev, char *page)
2805 {
2806         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2807 }
2808
2809 static ssize_t
2810 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 {
2812         char *e;
2813         unsigned long long offset = simple_strtoull(buf, &e, 10);
2814         if (e==buf || (*e && *e != '\n'))
2815                 return -EINVAL;
2816         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2817                 return -EBUSY;
2818         if (rdev->sectors && rdev->mddev->external)
2819                 /* Must set offset before size, so overlap checks
2820                  * can be sane */
2821                 return -EBUSY;
2822         rdev->data_offset = offset;
2823         return len;
2824 }
2825
2826 static struct rdev_sysfs_entry rdev_offset =
2827 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2828
2829 static ssize_t
2830 rdev_size_show(struct md_rdev *rdev, char *page)
2831 {
2832         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2833 }
2834
2835 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2836 {
2837         /* check if two start/length pairs overlap */
2838         if (s1+l1 <= s2)
2839                 return 0;
2840         if (s2+l2 <= s1)
2841                 return 0;
2842         return 1;
2843 }
2844
2845 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2846 {
2847         unsigned long long blocks;
2848         sector_t new;
2849
2850         if (strict_strtoull(buf, 10, &blocks) < 0)
2851                 return -EINVAL;
2852
2853         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2854                 return -EINVAL; /* sector conversion overflow */
2855
2856         new = blocks * 2;
2857         if (new != blocks * 2)
2858                 return -EINVAL; /* unsigned long long to sector_t overflow */
2859
2860         *sectors = new;
2861         return 0;
2862 }
2863
2864 static ssize_t
2865 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2866 {
2867         struct mddev *my_mddev = rdev->mddev;
2868         sector_t oldsectors = rdev->sectors;
2869         sector_t sectors;
2870
2871         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2872                 return -EINVAL;
2873         if (my_mddev->pers && rdev->raid_disk >= 0) {
2874                 if (my_mddev->persistent) {
2875                         sectors = super_types[my_mddev->major_version].
2876                                 rdev_size_change(rdev, sectors);
2877                         if (!sectors)
2878                                 return -EBUSY;
2879                 } else if (!sectors)
2880                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2881                                 rdev->data_offset;
2882         }
2883         if (sectors < my_mddev->dev_sectors)
2884                 return -EINVAL; /* component must fit device */
2885
2886         rdev->sectors = sectors;
2887         if (sectors > oldsectors && my_mddev->external) {
2888                 /* need to check that all other rdevs with the same ->bdev
2889                  * do not overlap.  We need to unlock the mddev to avoid
2890                  * a deadlock.  We have already changed rdev->sectors, and if
2891                  * we have to change it back, we will have the lock again.
2892                  */
2893                 struct mddev *mddev;
2894                 int overlap = 0;
2895                 struct list_head *tmp;
2896
2897                 mddev_unlock(my_mddev);
2898                 for_each_mddev(mddev, tmp) {
2899                         struct md_rdev *rdev2;
2900
2901                         mddev_lock(mddev);
2902                         rdev_for_each(rdev2, mddev)
2903                                 if (rdev->bdev == rdev2->bdev &&
2904                                     rdev != rdev2 &&
2905                                     overlaps(rdev->data_offset, rdev->sectors,
2906                                              rdev2->data_offset,
2907                                              rdev2->sectors)) {
2908                                         overlap = 1;
2909                                         break;
2910                                 }
2911                         mddev_unlock(mddev);
2912                         if (overlap) {
2913                                 mddev_put(mddev);
2914                                 break;
2915                         }
2916                 }
2917                 mddev_lock(my_mddev);
2918                 if (overlap) {
2919                         /* Someone else could have slipped in a size
2920                          * change here, but doing so is just silly.
2921                          * We put oldsectors back because we *know* it is
2922                          * safe, and trust userspace not to race with
2923                          * itself
2924                          */
2925                         rdev->sectors = oldsectors;
2926                         return -EBUSY;
2927                 }
2928         }
2929         return len;
2930 }
2931
2932 static struct rdev_sysfs_entry rdev_size =
2933 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2934
2935
2936 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2937 {
2938         unsigned long long recovery_start = rdev->recovery_offset;
2939
2940         if (test_bit(In_sync, &rdev->flags) ||
2941             recovery_start == MaxSector)
2942                 return sprintf(page, "none\n");
2943
2944         return sprintf(page, "%llu\n", recovery_start);
2945 }
2946
2947 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2948 {
2949         unsigned long long recovery_start;
2950
2951         if (cmd_match(buf, "none"))
2952                 recovery_start = MaxSector;
2953         else if (strict_strtoull(buf, 10, &recovery_start))
2954                 return -EINVAL;
2955
2956         if (rdev->mddev->pers &&
2957             rdev->raid_disk >= 0)
2958                 return -EBUSY;
2959
2960         rdev->recovery_offset = recovery_start;
2961         if (recovery_start == MaxSector)
2962                 set_bit(In_sync, &rdev->flags);
2963         else
2964                 clear_bit(In_sync, &rdev->flags);
2965         return len;
2966 }
2967
2968 static struct rdev_sysfs_entry rdev_recovery_start =
2969 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2970
2971
2972 static ssize_t
2973 badblocks_show(struct badblocks *bb, char *page, int unack);
2974 static ssize_t
2975 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2976
2977 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2978 {
2979         return badblocks_show(&rdev->badblocks, page, 0);
2980 }
2981 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2982 {
2983         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2984         /* Maybe that ack was all we needed */
2985         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2986                 wake_up(&rdev->blocked_wait);
2987         return rv;
2988 }
2989 static struct rdev_sysfs_entry rdev_bad_blocks =
2990 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2991
2992
2993 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2994 {
2995         return badblocks_show(&rdev->badblocks, page, 1);
2996 }
2997 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2998 {
2999         return badblocks_store(&rdev->badblocks, page, len, 1);
3000 }
3001 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3002 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3003
3004 static struct attribute *rdev_default_attrs[] = {
3005         &rdev_state.attr,
3006         &rdev_errors.attr,
3007         &rdev_slot.attr,
3008         &rdev_offset.attr,
3009         &rdev_size.attr,
3010         &rdev_recovery_start.attr,
3011         &rdev_bad_blocks.attr,
3012         &rdev_unack_bad_blocks.attr,
3013         NULL,
3014 };
3015 static ssize_t
3016 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3017 {
3018         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3019         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3020         struct mddev *mddev = rdev->mddev;
3021         ssize_t rv;
3022
3023         if (!entry->show)
3024                 return -EIO;
3025
3026         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3027         if (!rv) {
3028                 if (rdev->mddev == NULL)
3029                         rv = -EBUSY;
3030                 else
3031                         rv = entry->show(rdev, page);
3032                 mddev_unlock(mddev);
3033         }
3034         return rv;
3035 }
3036
3037 static ssize_t
3038 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3039               const char *page, size_t length)
3040 {
3041         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3042         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3043         ssize_t rv;
3044         struct mddev *mddev = rdev->mddev;
3045
3046         if (!entry->store)
3047                 return -EIO;
3048         if (!capable(CAP_SYS_ADMIN))
3049                 return -EACCES;
3050         rv = mddev ? mddev_lock(mddev): -EBUSY;
3051         if (!rv) {
3052                 if (rdev->mddev == NULL)
3053                         rv = -EBUSY;
3054                 else
3055                         rv = entry->store(rdev, page, length);
3056                 mddev_unlock(mddev);
3057         }
3058         return rv;
3059 }
3060
3061 static void rdev_free(struct kobject *ko)
3062 {
3063         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3064         kfree(rdev);
3065 }
3066 static const struct sysfs_ops rdev_sysfs_ops = {
3067         .show           = rdev_attr_show,
3068         .store          = rdev_attr_store,
3069 };
3070 static struct kobj_type rdev_ktype = {
3071         .release        = rdev_free,
3072         .sysfs_ops      = &rdev_sysfs_ops,
3073         .default_attrs  = rdev_default_attrs,
3074 };
3075
3076 int md_rdev_init(struct md_rdev *rdev)
3077 {
3078         rdev->desc_nr = -1;
3079         rdev->saved_raid_disk = -1;
3080         rdev->raid_disk = -1;
3081         rdev->flags = 0;
3082         rdev->data_offset = 0;
3083         rdev->sb_events = 0;
3084         rdev->last_read_error.tv_sec  = 0;
3085         rdev->last_read_error.tv_nsec = 0;
3086         rdev->sb_loaded = 0;
3087         rdev->bb_page = NULL;
3088         atomic_set(&rdev->nr_pending, 0);
3089         atomic_set(&rdev->read_errors, 0);
3090         atomic_set(&rdev->corrected_errors, 0);
3091
3092         INIT_LIST_HEAD(&rdev->same_set);
3093         init_waitqueue_head(&rdev->blocked_wait);
3094
3095         /* Add space to store bad block list.
3096          * This reserves the space even on arrays where it cannot
3097          * be used - I wonder if that matters
3098          */
3099         rdev->badblocks.count = 0;
3100         rdev->badblocks.shift = 0;
3101         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3102         seqlock_init(&rdev->badblocks.lock);
3103         if (rdev->badblocks.page == NULL)
3104                 return -ENOMEM;
3105
3106         return 0;
3107 }
3108 EXPORT_SYMBOL_GPL(md_rdev_init);
3109 /*
3110  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3111  *
3112  * mark the device faulty if:
3113  *
3114  *   - the device is nonexistent (zero size)
3115  *   - the device has no valid superblock
3116  *
3117  * a faulty rdev _never_ has rdev->sb set.
3118  */
3119 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3120 {
3121         char b[BDEVNAME_SIZE];
3122         int err;
3123         struct md_rdev *rdev;
3124         sector_t size;
3125
3126         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3127         if (!rdev) {
3128                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3129                 return ERR_PTR(-ENOMEM);
3130         }
3131
3132         err = md_rdev_init(rdev);
3133         if (err)
3134                 goto abort_free;
3135         err = alloc_disk_sb(rdev);
3136         if (err)
3137                 goto abort_free;
3138
3139         err = lock_rdev(rdev, newdev, super_format == -2);
3140         if (err)
3141                 goto abort_free;
3142
3143         kobject_init(&rdev->kobj, &rdev_ktype);
3144
3145         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3146         if (!size) {
3147                 printk(KERN_WARNING 
3148                         "md: %s has zero or unknown size, marking faulty!\n",
3149                         bdevname(rdev->bdev,b));
3150                 err = -EINVAL;
3151                 goto abort_free;
3152         }
3153
3154         if (super_format >= 0) {
3155                 err = super_types[super_format].
3156                         load_super(rdev, NULL, super_minor);
3157                 if (err == -EINVAL) {
3158                         printk(KERN_WARNING
3159                                 "md: %s does not have a valid v%d.%d "
3160                                "superblock, not importing!\n",
3161                                 bdevname(rdev->bdev,b),
3162                                super_format, super_minor);
3163                         goto abort_free;
3164                 }
3165                 if (err < 0) {
3166                         printk(KERN_WARNING 
3167                                 "md: could not read %s's sb, not importing!\n",
3168                                 bdevname(rdev->bdev,b));
3169                         goto abort_free;
3170                 }
3171         }
3172         if (super_format == -1)
3173                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3174                 rdev->badblocks.shift = -1;
3175
3176         return rdev;
3177
3178 abort_free:
3179         if (rdev->bdev)
3180                 unlock_rdev(rdev);
3181         free_disk_sb(rdev);
3182         kfree(rdev->badblocks.page);
3183         kfree(rdev);
3184         return ERR_PTR(err);
3185 }
3186
3187 /*
3188  * Check a full RAID array for plausibility
3189  */
3190
3191
3192 static void analyze_sbs(struct mddev * mddev)
3193 {
3194         int i;
3195         struct md_rdev *rdev, *freshest, *tmp;
3196         char b[BDEVNAME_SIZE];
3197
3198         freshest = NULL;
3199         rdev_for_each_safe(rdev, tmp, mddev)
3200                 switch (super_types[mddev->major_version].
3201                         load_super(rdev, freshest, mddev->minor_version)) {
3202                 case 1:
3203                         freshest = rdev;
3204                         break;
3205                 case 0:
3206                         break;
3207                 default:
3208                         printk( KERN_ERR \
3209                                 "md: fatal superblock inconsistency in %s"
3210                                 " -- removing from array\n", 
3211                                 bdevname(rdev->bdev,b));
3212                         kick_rdev_from_array(rdev);
3213                 }
3214
3215
3216         super_types[mddev->major_version].
3217                 validate_super(mddev, freshest);
3218
3219         i = 0;
3220         rdev_for_each_safe(rdev, tmp, mddev) {
3221                 if (mddev->max_disks &&
3222                     (rdev->desc_nr >= mddev->max_disks ||
3223                      i > mddev->max_disks)) {
3224                         printk(KERN_WARNING
3225                                "md: %s: %s: only %d devices permitted\n",
3226                                mdname(mddev), bdevname(rdev->bdev, b),
3227                                mddev->max_disks);
3228                         kick_rdev_from_array(rdev);
3229                         continue;
3230                 }
3231                 if (rdev != freshest)
3232                         if (super_types[mddev->major_version].
3233                             validate_super(mddev, rdev)) {
3234                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3235                                         " from array!\n",
3236                                         bdevname(rdev->bdev,b));
3237                                 kick_rdev_from_array(rdev);
3238                                 continue;
3239                         }
3240                 if (mddev->level == LEVEL_MULTIPATH) {
3241                         rdev->desc_nr = i++;
3242                         rdev->raid_disk = rdev->desc_nr;
3243                         set_bit(In_sync, &rdev->flags);
3244                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3245                         rdev->raid_disk = -1;
3246                         clear_bit(In_sync, &rdev->flags);
3247                 }
3248         }
3249 }
3250
3251 /* Read a fixed-point number.
3252  * Numbers in sysfs attributes should be in "standard" units where
3253  * possible, so time should be in seconds.
3254  * However we internally use a a much smaller unit such as 
3255  * milliseconds or jiffies.
3256  * This function takes a decimal number with a possible fractional
3257  * component, and produces an integer which is the result of
3258  * multiplying that number by 10^'scale'.
3259  * all without any floating-point arithmetic.
3260  */
3261 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3262 {
3263         unsigned long result = 0;
3264         long decimals = -1;
3265         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3266                 if (*cp == '.')
3267                         decimals = 0;
3268                 else if (decimals < scale) {
3269                         unsigned int value;
3270                         value = *cp - '0';
3271                         result = result * 10 + value;
3272                         if (decimals >= 0)
3273                                 decimals++;
3274                 }
3275                 cp++;
3276         }
3277         if (*cp == '\n')
3278                 cp++;
3279         if (*cp)
3280                 return -EINVAL;
3281         if (decimals < 0)
3282                 decimals = 0;
3283         while (decimals < scale) {
3284                 result *= 10;
3285                 decimals ++;
3286         }
3287         *res = result;
3288         return 0;
3289 }
3290
3291
3292 static void md_safemode_timeout(unsigned long data);
3293
3294 static ssize_t
3295 safe_delay_show(struct mddev *mddev, char *page)
3296 {
3297         int msec = (mddev->safemode_delay*1000)/HZ;
3298         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3299 }
3300 static ssize_t
3301 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3302 {
3303         unsigned long msec;
3304
3305         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3306                 return -EINVAL;
3307         if (msec == 0)
3308                 mddev->safemode_delay = 0;
3309         else {
3310                 unsigned long old_delay = mddev->safemode_delay;
3311                 mddev->safemode_delay = (msec*HZ)/1000;
3312                 if (mddev->safemode_delay == 0)
3313                         mddev->safemode_delay = 1;
3314                 if (mddev->safemode_delay < old_delay)
3315                         md_safemode_timeout((unsigned long)mddev);
3316         }
3317         return len;
3318 }
3319 static struct md_sysfs_entry md_safe_delay =
3320 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3321
3322 static ssize_t
3323 level_show(struct mddev *mddev, char *page)
3324 {
3325         struct md_personality *p = mddev->pers;
3326         if (p)
3327                 return sprintf(page, "%s\n", p->name);
3328         else if (mddev->clevel[0])
3329                 return sprintf(page, "%s\n", mddev->clevel);
3330         else if (mddev->level != LEVEL_NONE)
3331                 return sprintf(page, "%d\n", mddev->level);
3332         else
3333                 return 0;
3334 }
3335
3336 static ssize_t
3337 level_store(struct mddev *mddev, const char *buf, size_t len)
3338 {
3339         char clevel[16];
3340         ssize_t rv = len;
3341         struct md_personality *pers;
3342         long level;
3343         void *priv;
3344         struct md_rdev *rdev;
3345
3346         if (mddev->pers == NULL) {
3347                 if (len == 0)
3348                         return 0;
3349                 if (len >= sizeof(mddev->clevel))
3350                         return -ENOSPC;
3351                 strncpy(mddev->clevel, buf, len);
3352                 if (mddev->clevel[len-1] == '\n')
3353                         len--;
3354                 mddev->clevel[len] = 0;
3355                 mddev->level = LEVEL_NONE;
3356                 return rv;
3357         }
3358
3359         /* request to change the personality.  Need to ensure:
3360          *  - array is not engaged in resync/recovery/reshape
3361          *  - old personality can be suspended
3362          *  - new personality will access other array.
3363          */
3364
3365         if (mddev->sync_thread ||
3366             mddev->reshape_position != MaxSector ||
3367             mddev->sysfs_active)
3368                 return -EBUSY;
3369
3370         if (!mddev->pers->quiesce) {
3371                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3372                        mdname(mddev), mddev->pers->name);
3373                 return -EINVAL;
3374         }
3375
3376         /* Now find the new personality */
3377         if (len == 0 || len >= sizeof(clevel))
3378                 return -EINVAL;
3379         strncpy(clevel, buf, len);
3380         if (clevel[len-1] == '\n')
3381                 len--;
3382         clevel[len] = 0;
3383         if (strict_strtol(clevel, 10, &level))
3384                 level = LEVEL_NONE;
3385
3386         if (request_module("md-%s", clevel) != 0)
3387                 request_module("md-level-%s", clevel);
3388         spin_lock(&pers_lock);
3389         pers = find_pers(level, clevel);
3390         if (!pers || !try_module_get(pers->owner)) {
3391                 spin_unlock(&pers_lock);
3392                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3393                 return -EINVAL;
3394         }
3395         spin_unlock(&pers_lock);
3396
3397         if (pers == mddev->pers) {
3398                 /* Nothing to do! */
3399                 module_put(pers->owner);
3400                 return rv;
3401         }
3402         if (!pers->takeover) {
3403                 module_put(pers->owner);
3404                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3405                        mdname(mddev), clevel);
3406                 return -EINVAL;
3407         }
3408
3409         rdev_for_each(rdev, mddev)
3410                 rdev->new_raid_disk = rdev->raid_disk;
3411
3412         /* ->takeover must set new_* and/or delta_disks
3413          * if it succeeds, and may set them when it fails.
3414          */
3415         priv = pers->takeover(mddev);
3416         if (IS_ERR(priv)) {
3417                 mddev->new_level = mddev->level;
3418                 mddev->new_layout = mddev->layout;
3419                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3420                 mddev->raid_disks -= mddev->delta_disks;
3421                 mddev->delta_disks = 0;
3422                 module_put(pers->owner);
3423                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3424                        mdname(mddev), clevel);
3425                 return PTR_ERR(priv);
3426         }
3427
3428         /* Looks like we have a winner */
3429         mddev_suspend(mddev);
3430         mddev->pers->stop(mddev);
3431         
3432         if (mddev->pers->sync_request == NULL &&
3433             pers->sync_request != NULL) {
3434                 /* need to add the md_redundancy_group */
3435                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3436                         printk(KERN_WARNING
3437                                "md: cannot register extra attributes for %s\n",
3438                                mdname(mddev));
3439                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3440         }               
3441         if (mddev->pers->sync_request != NULL &&
3442             pers->sync_request == NULL) {
3443                 /* need to remove the md_redundancy_group */
3444                 if (mddev->to_remove == NULL)
3445                         mddev->to_remove = &md_redundancy_group;
3446         }
3447
3448         if (mddev->pers->sync_request == NULL &&
3449             mddev->external) {
3450                 /* We are converting from a no-redundancy array
3451                  * to a redundancy array and metadata is managed
3452                  * externally so we need to be sure that writes
3453                  * won't block due to a need to transition
3454                  *      clean->dirty
3455                  * until external management is started.
3456                  */
3457                 mddev->in_sync = 0;
3458                 mddev->safemode_delay = 0;
3459                 mddev->safemode = 0;
3460         }
3461
3462         rdev_for_each(rdev, mddev) {
3463                 if (rdev->raid_disk < 0)
3464                         continue;
3465                 if (rdev->new_raid_disk >= mddev->raid_disks)
3466                         rdev->new_raid_disk = -1;
3467                 if (rdev->new_raid_disk == rdev->raid_disk)
3468                         continue;
3469                 sysfs_unlink_rdev(mddev, rdev);
3470         }
3471         rdev_for_each(rdev, mddev) {
3472                 if (rdev->raid_disk < 0)
3473                         continue;
3474                 if (rdev->new_raid_disk == rdev->raid_disk)
3475                         continue;
3476                 rdev->raid_disk = rdev->new_raid_disk;
3477                 if (rdev->raid_disk < 0)
3478                         clear_bit(In_sync, &rdev->flags);
3479                 else {
3480                         if (sysfs_link_rdev(mddev, rdev))
3481                                 printk(KERN_WARNING "md: cannot register rd%d"
3482                                        " for %s after level change\n",
3483                                        rdev->raid_disk, mdname(mddev));
3484                 }
3485         }
3486
3487         module_put(mddev->pers->owner);
3488         mddev->pers = pers;
3489         mddev->private = priv;
3490         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3491         mddev->level = mddev->new_level;
3492         mddev->layout = mddev->new_layout;
3493         mddev->chunk_sectors = mddev->new_chunk_sectors;
3494         mddev->delta_disks = 0;
3495         mddev->degraded = 0;
3496         if (mddev->pers->sync_request == NULL) {
3497                 /* this is now an array without redundancy, so
3498                  * it must always be in_sync
3499                  */
3500                 mddev->in_sync = 1;
3501                 del_timer_sync(&mddev->safemode_timer);
3502         }
3503         pers->run(mddev);
3504         mddev_resume(mddev);
3505         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3506         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3507         md_wakeup_thread(mddev->thread);
3508         sysfs_notify(&mddev->kobj, NULL, "level");
3509         md_new_event(mddev);
3510         return rv;
3511 }
3512
3513 static struct md_sysfs_entry md_level =
3514 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3515
3516
3517 static ssize_t
3518 layout_show(struct mddev *mddev, char *page)
3519 {
3520         /* just a number, not meaningful for all levels */
3521         if (mddev->reshape_position != MaxSector &&
3522             mddev->layout != mddev->new_layout)
3523                 return sprintf(page, "%d (%d)\n",
3524                                mddev->new_layout, mddev->layout);
3525         return sprintf(page, "%d\n", mddev->layout);
3526 }
3527
3528 static ssize_t
3529 layout_store(struct mddev *mddev, const char *buf, size_t len)
3530 {
3531         char *e;
3532         unsigned long n = simple_strtoul(buf, &e, 10);
3533
3534         if (!*buf || (*e && *e != '\n'))
3535                 return -EINVAL;
3536
3537         if (mddev->pers) {
3538                 int err;
3539                 if (mddev->pers->check_reshape == NULL)
3540                         return -EBUSY;
3541                 mddev->new_layout = n;
3542                 err = mddev->pers->check_reshape(mddev);
3543                 if (err) {
3544                         mddev->new_layout = mddev->layout;
3545                         return err;
3546                 }
3547         } else {
3548                 mddev->new_layout = n;
3549                 if (mddev->reshape_position == MaxSector)
3550                         mddev->layout = n;
3551         }
3552         return len;
3553 }
3554 static struct md_sysfs_entry md_layout =
3555 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3556
3557
3558 static ssize_t
3559 raid_disks_show(struct mddev *mddev, char *page)
3560 {
3561         if (mddev->raid_disks == 0)
3562                 return 0;
3563         if (mddev->reshape_position != MaxSector &&
3564             mddev->delta_disks != 0)
3565                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3566                                mddev->raid_disks - mddev->delta_disks);
3567         return sprintf(page, "%d\n", mddev->raid_disks);
3568 }
3569
3570 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3571
3572 static ssize_t
3573 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575         char *e;
3576         int rv = 0;
3577         unsigned long n = simple_strtoul(buf, &e, 10);
3578
3579         if (!*buf || (*e && *e != '\n'))
3580                 return -EINVAL;
3581
3582         if (mddev->pers)
3583                 rv = update_raid_disks(mddev, n);
3584         else if (mddev->reshape_position != MaxSector) {
3585                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3586                 mddev->delta_disks = n - olddisks;
3587                 mddev->raid_disks = n;
3588         } else
3589                 mddev->raid_disks = n;
3590         return rv ? rv : len;
3591 }
3592 static struct md_sysfs_entry md_raid_disks =
3593 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3594
3595 static ssize_t
3596 chunk_size_show(struct mddev *mddev, char *page)
3597 {
3598         if (mddev->reshape_position != MaxSector &&
3599             mddev->chunk_sectors != mddev->new_chunk_sectors)
3600                 return sprintf(page, "%d (%d)\n",
3601                                mddev->new_chunk_sectors << 9,
3602                                mddev->chunk_sectors << 9);
3603         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3604 }
3605
3606 static ssize_t
3607 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3608 {
3609         char *e;
3610         unsigned long n = simple_strtoul(buf, &e, 10);
3611
3612         if (!*buf || (*e && *e != '\n'))
3613                 return -EINVAL;
3614
3615         if (mddev->pers) {
3616                 int err;
3617                 if (mddev->pers->check_reshape == NULL)
3618                         return -EBUSY;
3619                 mddev->new_chunk_sectors = n >> 9;
3620                 err = mddev->pers->check_reshape(mddev);
3621                 if (err) {
3622                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3623                         return err;
3624                 }
3625         } else {
3626                 mddev->new_chunk_sectors = n >> 9;
3627                 if (mddev->reshape_position == MaxSector)
3628                         mddev->chunk_sectors = n >> 9;
3629         }
3630         return len;
3631 }
3632 static struct md_sysfs_entry md_chunk_size =
3633 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3634
3635 static ssize_t
3636 resync_start_show(struct mddev *mddev, char *page)
3637 {
3638         if (mddev->recovery_cp == MaxSector)
3639                 return sprintf(page, "none\n");
3640         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3641 }
3642
3643 static ssize_t
3644 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3645 {
3646         char *e;
3647         unsigned long long n = simple_strtoull(buf, &e, 10);
3648
3649         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3650                 return -EBUSY;
3651         if (cmd_match(buf, "none"))
3652                 n = MaxSector;
3653         else if (!*buf || (*e && *e != '\n'))
3654                 return -EINVAL;
3655
3656         mddev->recovery_cp = n;
3657         return len;
3658 }
3659 static struct md_sysfs_entry md_resync_start =
3660 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3661
3662 /*
3663  * The array state can be:
3664  *
3665  * clear
3666  *     No devices, no size, no level
3667  *     Equivalent to STOP_ARRAY ioctl
3668  * inactive
3669  *     May have some settings, but array is not active
3670  *        all IO results in error
3671  *     When written, doesn't tear down array, but just stops it
3672  * suspended (not supported yet)
3673  *     All IO requests will block. The array can be reconfigured.
3674  *     Writing this, if accepted, will block until array is quiescent
3675  * readonly
3676  *     no resync can happen.  no superblocks get written.
3677  *     write requests fail
3678  * read-auto
3679  *     like readonly, but behaves like 'clean' on a write request.
3680  *
3681  * clean - no pending writes, but otherwise active.
3682  *     When written to inactive array, starts without resync
3683  *     If a write request arrives then
3684  *       if metadata is known, mark 'dirty' and switch to 'active'.
3685  *       if not known, block and switch to write-pending
3686  *     If written to an active array that has pending writes, then fails.
3687  * active
3688  *     fully active: IO and resync can be happening.
3689  *     When written to inactive array, starts with resync
3690  *
3691  * write-pending
3692  *     clean, but writes are blocked waiting for 'active' to be written.
3693  *
3694  * active-idle
3695  *     like active, but no writes have been seen for a while (100msec).
3696  *
3697  */
3698 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3699                    write_pending, active_idle, bad_word};
3700 static char *array_states[] = {
3701         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3702         "write-pending", "active-idle", NULL };
3703
3704 static int match_word(const char *word, char **list)
3705 {
3706         int n;
3707         for (n=0; list[n]; n++)
3708                 if (cmd_match(word, list[n]))
3709                         break;
3710         return n;
3711 }
3712
3713 static ssize_t
3714 array_state_show(struct mddev *mddev, char *page)
3715 {
3716         enum array_state st = inactive;
3717
3718         if (mddev->pers)
3719                 switch(mddev->ro) {
3720                 case 1:
3721                         st = readonly;
3722                         break;
3723                 case 2:
3724                         st = read_auto;
3725                         break;
3726                 case 0:
3727                         if (mddev->in_sync)
3728                                 st = clean;
3729                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3730                                 st = write_pending;
3731                         else if (mddev->safemode)
3732                                 st = active_idle;
3733                         else
3734                                 st = active;
3735                 }
3736         else {
3737                 if (list_empty(&mddev->disks) &&
3738                     mddev->raid_disks == 0 &&
3739                     mddev->dev_sectors == 0)
3740                         st = clear;
3741                 else
3742                         st = inactive;
3743         }
3744         return sprintf(page, "%s\n", array_states[st]);
3745 }
3746
3747 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3748 static int md_set_readonly(struct mddev * mddev, int is_open);
3749 static int do_md_run(struct mddev * mddev);
3750 static int restart_array(struct mddev *mddev);
3751
3752 static ssize_t
3753 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3754 {
3755         int err = -EINVAL;
3756         enum array_state st = match_word(buf, array_states);
3757         switch(st) {
3758         case bad_word:
3759                 break;
3760         case clear:
3761                 /* stopping an active array */
3762                 if (atomic_read(&mddev->openers) > 0)
3763                         return -EBUSY;
3764                 err = do_md_stop(mddev, 0, 0);
3765                 break;
3766         case inactive:
3767                 /* stopping an active array */
3768                 if (mddev->pers) {
3769                         if (atomic_read(&mddev->openers) > 0)
3770                                 return -EBUSY;
3771                         err = do_md_stop(mddev, 2, 0);
3772                 } else
3773                         err = 0; /* already inactive */
3774                 break;
3775         case suspended:
3776                 break; /* not supported yet */
3777         case readonly:
3778                 if (mddev->pers)
3779                         err = md_set_readonly(mddev, 0);
3780                 else {
3781                         mddev->ro = 1;
3782                         set_disk_ro(mddev->gendisk, 1);
3783                         err = do_md_run(mddev);
3784                 }
3785                 break;
3786         case read_auto:
3787                 if (mddev->pers) {
3788                         if (mddev->ro == 0)
3789                                 err = md_set_readonly(mddev, 0);
3790                         else if (mddev->ro == 1)
3791                                 err = restart_array(mddev);
3792                         if (err == 0) {
3793                                 mddev->ro = 2;
3794                                 set_disk_ro(mddev->gendisk, 0);
3795                         }
3796                 } else {
3797                         mddev->ro = 2;
3798                         err = do_md_run(mddev);
3799                 }
3800                 break;
3801         case clean:
3802                 if (mddev->pers) {
3803                         restart_array(mddev);
3804                         spin_lock_irq(&mddev->write_lock);
3805                         if (atomic_read(&mddev->writes_pending) == 0) {
3806                                 if (mddev->in_sync == 0) {
3807                                         mddev->in_sync = 1;
3808                                         if (mddev->safemode == 1)
3809                                                 mddev->safemode = 0;
3810                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3811                                 }
3812                                 err = 0;
3813                         } else
3814                                 err = -EBUSY;
3815                         spin_unlock_irq(&mddev->write_lock);
3816                 } else
3817                         err = -EINVAL;
3818                 break;
3819         case active:
3820                 if (mddev->pers) {
3821                         restart_array(mddev);
3822                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3823                         wake_up(&mddev->sb_wait);
3824                         err = 0;
3825                 } else {
3826                         mddev->ro = 0;
3827                         set_disk_ro(mddev->gendisk, 0);
3828                         err = do_md_run(mddev);
3829                 }
3830                 break;
3831         case write_pending:
3832         case active_idle:
3833                 /* these cannot be set */
3834                 break;
3835         }
3836         if (err)
3837                 return err;
3838         else {
3839                 if (mddev->hold_active == UNTIL_IOCTL)
3840                         mddev->hold_active = 0;
3841                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3842                 return len;
3843         }
3844 }
3845 static struct md_sysfs_entry md_array_state =
3846 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3847
3848 static ssize_t
3849 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3850         return sprintf(page, "%d\n",
3851                        atomic_read(&mddev->max_corr_read_errors));
3852 }
3853
3854 static ssize_t
3855 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3856 {
3857         char *e;
3858         unsigned long n = simple_strtoul(buf, &e, 10);
3859
3860         if (*buf && (*e == 0 || *e == '\n')) {
3861                 atomic_set(&mddev->max_corr_read_errors, n);
3862                 return len;
3863         }
3864         return -EINVAL;
3865 }
3866
3867 static struct md_sysfs_entry max_corr_read_errors =
3868 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3869         max_corrected_read_errors_store);
3870
3871 static ssize_t
3872 null_show(struct mddev *mddev, char *page)
3873 {
3874         return -EINVAL;
3875 }
3876
3877 static ssize_t
3878 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3879 {
3880         /* buf must be %d:%d\n? giving major and minor numbers */
3881         /* The new device is added to the array.
3882          * If the array has a persistent superblock, we read the
3883          * superblock to initialise info and check validity.
3884          * Otherwise, only checking done is that in bind_rdev_to_array,
3885          * which mainly checks size.
3886          */
3887         char *e;
3888         int major = simple_strtoul(buf, &e, 10);
3889         int minor;
3890         dev_t dev;
3891         struct md_rdev *rdev;
3892         int err;
3893
3894         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3895                 return -EINVAL;
3896         minor = simple_strtoul(e+1, &e, 10);
3897         if (*e && *e != '\n')
3898                 return -EINVAL;
3899         dev = MKDEV(major, minor);
3900         if (major != MAJOR(dev) ||
3901             minor != MINOR(dev))
3902                 return -EOVERFLOW;
3903
3904
3905         if (mddev->persistent) {
3906                 rdev = md_import_device(dev, mddev->major_version,
3907                                         mddev->minor_version);
3908                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3909                         struct md_rdev *rdev0
3910                                 = list_entry(mddev->disks.next,
3911                                              struct md_rdev, same_set);
3912                         err = super_types[mddev->major_version]
3913                                 .load_super(rdev, rdev0, mddev->minor_version);
3914                         if (err < 0)
3915                                 goto out;
3916                 }
3917         } else if (mddev->external)
3918                 rdev = md_import_device(dev, -2, -1);
3919         else
3920                 rdev = md_import_device(dev, -1, -1);
3921
3922         if (IS_ERR(rdev))
3923                 return PTR_ERR(rdev);
3924         err = bind_rdev_to_array(rdev, mddev);
3925  out:
3926         if (err)
3927                 export_rdev(rdev);
3928         return err ? err : len;
3929 }
3930
3931 static struct md_sysfs_entry md_new_device =
3932 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3933
3934 static ssize_t
3935 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3936 {
3937         char *end;
3938         unsigned long chunk, end_chunk;
3939
3940         if (!mddev->bitmap)
3941                 goto out;
3942         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3943         while (*buf) {
3944                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3945                 if (buf == end) break;
3946                 if (*end == '-') { /* range */
3947                         buf = end + 1;
3948                         end_chunk = simple_strtoul(buf, &end, 0);
3949                         if (buf == end) break;
3950                 }
3951                 if (*end && !isspace(*end)) break;
3952                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3953                 buf = skip_spaces(end);
3954         }
3955         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3956 out:
3957         return len;
3958 }
3959
3960 static struct md_sysfs_entry md_bitmap =
3961 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3962
3963 static ssize_t
3964 size_show(struct mddev *mddev, char *page)
3965 {
3966         return sprintf(page, "%llu\n",
3967                 (unsigned long long)mddev->dev_sectors / 2);
3968 }
3969
3970 static int update_size(struct mddev *mddev, sector_t num_sectors);
3971
3972 static ssize_t
3973 size_store(struct mddev *mddev, const char *buf, size_t len)
3974 {
3975         /* If array is inactive, we can reduce the component size, but
3976          * not increase it (except from 0).
3977          * If array is active, we can try an on-line resize
3978          */
3979         sector_t sectors;
3980         int err = strict_blocks_to_sectors(buf, &sectors);
3981
3982         if (err < 0)
3983                 return err;
3984         if (mddev->pers) {
3985                 err = update_size(mddev, sectors);
3986                 md_update_sb(mddev, 1);
3987         } else {
3988                 if (mddev->dev_sectors == 0 ||
3989                     mddev->dev_sectors > sectors)
3990                         mddev->dev_sectors = sectors;
3991                 else
3992                         err = -ENOSPC;
3993         }
3994         return err ? err : len;
3995 }
3996
3997 static struct md_sysfs_entry md_size =
3998 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3999
4000
4001 /* Metdata version.
4002  * This is one of
4003  *   'none' for arrays with no metadata (good luck...)
4004  *   'external' for arrays with externally managed metadata,
4005  * or N.M for internally known formats
4006  */
4007 static ssize_t
4008 metadata_show(struct mddev *mddev, char *page)
4009 {
4010         if (mddev->persistent)
4011                 return sprintf(page, "%d.%d\n",
4012                                mddev->major_version, mddev->minor_version);
4013         else if (mddev->external)
4014                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4015         else
4016                 return sprintf(page, "none\n");
4017 }
4018
4019 static ssize_t
4020 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4021 {
4022         int major, minor;
4023         char *e;
4024         /* Changing the details of 'external' metadata is
4025          * always permitted.  Otherwise there must be
4026          * no devices attached to the array.
4027          */
4028         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4029                 ;
4030         else if (!list_empty(&mddev->disks))
4031                 return -EBUSY;
4032
4033         if (cmd_match(buf, "none")) {
4034                 mddev->persistent = 0;
4035                 mddev->external = 0;
4036                 mddev->major_version = 0;
4037                 mddev->minor_version = 90;
4038                 return len;
4039         }
4040         if (strncmp(buf, "external:", 9) == 0) {
4041                 size_t namelen = len-9;
4042                 if (namelen >= sizeof(mddev->metadata_type))
4043                         namelen = sizeof(mddev->metadata_type)-1;
4044                 strncpy(mddev->metadata_type, buf+9, namelen);
4045                 mddev->metadata_type[namelen] = 0;
4046                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4047                         mddev->metadata_type[--namelen] = 0;
4048                 mddev->persistent = 0;
4049                 mddev->external = 1;
4050                 mddev->major_version = 0;
4051                 mddev->minor_version = 90;
4052                 return len;
4053         }
4054         major = simple_strtoul(buf, &e, 10);
4055         if (e==buf || *e != '.')
4056                 return -EINVAL;
4057         buf = e+1;
4058         minor = simple_strtoul(buf, &e, 10);
4059         if (e==buf || (*e && *e != '\n') )
4060                 return -EINVAL;
4061         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4062                 return -ENOENT;
4063         mddev->major_version = major;
4064         mddev->minor_version = minor;
4065         mddev->persistent = 1;
4066         mddev->external = 0;
4067         return len;
4068 }
4069
4070 static struct md_sysfs_entry md_metadata =
4071 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4072
4073 static ssize_t
4074 action_show(struct mddev *mddev, char *page)
4075 {
4076         char *type = "idle";
4077         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4078                 type = "frozen";
4079         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4080             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4081                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4082                         type = "reshape";
4083                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4084                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4085                                 type = "resync";
4086                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4087                                 type = "check";
4088                         else
4089                                 type = "repair";
4090                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4091                         type = "recover";
4092         }
4093         return sprintf(page, "%s\n", type);
4094 }
4095
4096 static void reap_sync_thread(struct mddev *mddev);
4097
4098 static ssize_t
4099 action_store(struct mddev *mddev, const char *page, size_t len)
4100 {
4101         if (!mddev->pers || !mddev->pers->sync_request)
4102                 return -EINVAL;
4103
4104         if (cmd_match(page, "frozen"))
4105                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106         else
4107                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4108
4109         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4110                 if (mddev->sync_thread) {
4111                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4112                         reap_sync_thread(mddev);
4113                 }
4114         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4115                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4116                 return -EBUSY;
4117         else if (cmd_match(page, "resync"))
4118                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119         else if (cmd_match(page, "recover")) {
4120                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4121                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4122         } else if (cmd_match(page, "reshape")) {
4123                 int err;
4124                 if (mddev->pers->start_reshape == NULL)
4125                         return -EINVAL;
4126                 err = mddev->pers->start_reshape(mddev);
4127                 if (err)
4128                         return err;
4129                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4130         } else {
4131                 if (cmd_match(page, "check"))
4132                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133                 else if (!cmd_match(page, "repair"))
4134                         return -EINVAL;
4135                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4136                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4137         }
4138         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4139         md_wakeup_thread(mddev->thread);
4140         sysfs_notify_dirent_safe(mddev->sysfs_action);
4141         return len;
4142 }
4143
4144 static ssize_t
4145 mismatch_cnt_show(struct mddev *mddev, char *page)
4146 {
4147         return sprintf(page, "%llu\n",
4148                        (unsigned long long) mddev->resync_mismatches);
4149 }
4150
4151 static struct md_sysfs_entry md_scan_mode =
4152 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4153
4154
4155 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4156
4157 static ssize_t
4158 sync_min_show(struct mddev *mddev, char *page)
4159 {
4160         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4161                        mddev->sync_speed_min ? "local": "system");
4162 }
4163
4164 static ssize_t
4165 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4166 {
4167         int min;
4168         char *e;
4169         if (strncmp(buf, "system", 6)==0) {
4170                 mddev->sync_speed_min = 0;
4171                 return len;
4172         }
4173         min = simple_strtoul(buf, &e, 10);
4174         if (buf == e || (*e && *e != '\n') || min <= 0)
4175                 return -EINVAL;
4176         mddev->sync_speed_min = min;
4177         return len;
4178 }
4179
4180 static struct md_sysfs_entry md_sync_min =
4181 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4182
4183 static ssize_t
4184 sync_max_show(struct mddev *mddev, char *page)
4185 {
4186         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4187                        mddev->sync_speed_max ? "local": "system");
4188 }
4189
4190 static ssize_t
4191 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4192 {
4193         int max;
4194         char *e;
4195         if (strncmp(buf, "system", 6)==0) {
4196                 mddev->sync_speed_max = 0;
4197                 return len;
4198         }
4199         max = simple_strtoul(buf, &e, 10);
4200         if (buf == e || (*e && *e != '\n') || max <= 0)
4201                 return -EINVAL;
4202         mddev->sync_speed_max = max;
4203         return len;
4204 }
4205
4206 static struct md_sysfs_entry md_sync_max =
4207 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4208
4209 static ssize_t
4210 degraded_show(struct mddev *mddev, char *page)
4211 {
4212         return sprintf(page, "%d\n", mddev->degraded);
4213 }
4214 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4215
4216 static ssize_t
4217 sync_force_parallel_show(struct mddev *mddev, char *page)
4218 {
4219         return sprintf(page, "%d\n", mddev->parallel_resync);
4220 }
4221
4222 static ssize_t
4223 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4224 {
4225         long n;
4226
4227         if (strict_strtol(buf, 10, &n))
4228                 return -EINVAL;
4229
4230         if (n != 0 && n != 1)
4231                 return -EINVAL;
4232
4233         mddev->parallel_resync = n;
4234
4235         if (mddev->sync_thread)
4236                 wake_up(&resync_wait);
4237
4238         return len;
4239 }
4240
4241 /* force parallel resync, even with shared block devices */
4242 static struct md_sysfs_entry md_sync_force_parallel =
4243 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4244        sync_force_parallel_show, sync_force_parallel_store);
4245
4246 static ssize_t
4247 sync_speed_show(struct mddev *mddev, char *page)
4248 {
4249         unsigned long resync, dt, db;
4250         if (mddev->curr_resync == 0)
4251                 return sprintf(page, "none\n");
4252         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4253         dt = (jiffies - mddev->resync_mark) / HZ;
4254         if (!dt) dt++;
4255         db = resync - mddev->resync_mark_cnt;
4256         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4257 }
4258
4259 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4260
4261 static ssize_t
4262 sync_completed_show(struct mddev *mddev, char *page)
4263 {
4264         unsigned long long max_sectors, resync;
4265
4266         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4267                 return sprintf(page, "none\n");
4268
4269         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4270                 max_sectors = mddev->resync_max_sectors;
4271         else
4272                 max_sectors = mddev->dev_sectors;
4273
4274         resync = mddev->curr_resync_completed;
4275         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4276 }
4277
4278 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4279
4280 static ssize_t
4281 min_sync_show(struct mddev *mddev, char *page)
4282 {
4283         return sprintf(page, "%llu\n",
4284                        (unsigned long long)mddev->resync_min);
4285 }
4286 static ssize_t
4287 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4288 {
4289         unsigned long long min;
4290         if (strict_strtoull(buf, 10, &min))
4291                 return -EINVAL;
4292         if (min > mddev->resync_max)
4293                 return -EINVAL;
4294         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4295                 return -EBUSY;
4296
4297         /* Must be a multiple of chunk_size */
4298         if (mddev->chunk_sectors) {
4299                 sector_t temp = min;
4300                 if (sector_div(temp, mddev->chunk_sectors))
4301                         return -EINVAL;
4302         }
4303         mddev->resync_min = min;
4304
4305         return len;
4306 }
4307
4308 static struct md_sysfs_entry md_min_sync =
4309 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4310
4311 static ssize_t
4312 max_sync_show(struct mddev *mddev, char *page)
4313 {
4314         if (mddev->resync_max == MaxSector)
4315                 return sprintf(page, "max\n");
4316         else
4317                 return sprintf(page, "%llu\n",
4318                                (unsigned long long)mddev->resync_max);
4319 }
4320 static ssize_t
4321 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323         if (strncmp(buf, "max", 3) == 0)
4324                 mddev->resync_max = MaxSector;
4325         else {
4326                 unsigned long long max;
4327                 if (strict_strtoull(buf, 10, &max))
4328                         return -EINVAL;
4329                 if (max < mddev->resync_min)
4330                         return -EINVAL;
4331                 if (max < mddev->resync_max &&
4332                     mddev->ro == 0 &&
4333                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334                         return -EBUSY;
4335
4336                 /* Must be a multiple of chunk_size */
4337                 if (mddev->chunk_sectors) {
4338                         sector_t temp = max;
4339                         if (sector_div(temp, mddev->chunk_sectors))
4340                                 return -EINVAL;
4341                 }
4342                 mddev->resync_max = max;
4343         }
4344         wake_up(&mddev->recovery_wait);
4345         return len;
4346 }
4347
4348 static struct md_sysfs_entry md_max_sync =
4349 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4350
4351 static ssize_t
4352 suspend_lo_show(struct mddev *mddev, char *page)
4353 {
4354         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4355 }
4356
4357 static ssize_t
4358 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4359 {
4360         char *e;
4361         unsigned long long new = simple_strtoull(buf, &e, 10);
4362         unsigned long long old = mddev->suspend_lo;
4363
4364         if (mddev->pers == NULL || 
4365             mddev->pers->quiesce == NULL)
4366                 return -EINVAL;
4367         if (buf == e || (*e && *e != '\n'))
4368                 return -EINVAL;
4369
4370         mddev->suspend_lo = new;
4371         if (new >= old)
4372                 /* Shrinking suspended region */
4373                 mddev->pers->quiesce(mddev, 2);
4374         else {
4375                 /* Expanding suspended region - need to wait */
4376                 mddev->pers->quiesce(mddev, 1);
4377                 mddev->pers->quiesce(mddev, 0);
4378         }
4379         return len;
4380 }
4381 static struct md_sysfs_entry md_suspend_lo =
4382 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4383
4384
4385 static ssize_t
4386 suspend_hi_show(struct mddev *mddev, char *page)
4387 {
4388         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4389 }
4390
4391 static ssize_t
4392 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4393 {
4394         char *e;
4395         unsigned long long new = simple_strtoull(buf, &e, 10);
4396         unsigned long long old = mddev->suspend_hi;
4397
4398         if (mddev->pers == NULL ||
4399             mddev->pers->quiesce == NULL)
4400                 return -EINVAL;
4401         if (buf == e || (*e && *e != '\n'))
4402                 return -EINVAL;
4403
4404         mddev->suspend_hi = new;
4405         if (new <= old)
4406                 /* Shrinking suspended region */
4407                 mddev->pers->quiesce(mddev, 2);
4408         else {
4409                 /* Expanding suspended region - need to wait */
4410                 mddev->pers->quiesce(mddev, 1);
4411                 mddev->pers->quiesce(mddev, 0);
4412         }
4413         return len;
4414 }
4415 static struct md_sysfs_entry md_suspend_hi =
4416 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4417
4418 static ssize_t
4419 reshape_position_show(struct mddev *mddev, char *page)
4420 {
4421         if (mddev->reshape_position != MaxSector)
4422                 return sprintf(page, "%llu\n",
4423                                (unsigned long long)mddev->reshape_position);
4424         strcpy(page, "none\n");
4425         return 5;
4426 }
4427
4428 static ssize_t
4429 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4430 {
4431         char *e;
4432         unsigned long long new = simple_strtoull(buf, &e, 10);
4433         if (mddev->pers)
4434                 return -EBUSY;
4435         if (buf == e || (*e && *e != '\n'))
4436                 return -EINVAL;
4437         mddev->reshape_position = new;
4438         mddev->delta_disks = 0;
4439         mddev->new_level = mddev->level;
4440         mddev->new_layout = mddev->layout;
4441         mddev->new_chunk_sectors = mddev->chunk_sectors;
4442         return len;
4443 }
4444
4445 static struct md_sysfs_entry md_reshape_position =
4446 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4447        reshape_position_store);
4448
4449 static ssize_t
4450 array_size_show(struct mddev *mddev, char *page)
4451 {
4452         if (mddev->external_size)
4453                 return sprintf(page, "%llu\n",
4454                                (unsigned long long)mddev->array_sectors/2);
4455         else
4456                 return sprintf(page, "default\n");
4457 }
4458
4459 static ssize_t
4460 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4461 {
4462         sector_t sectors;
4463
4464         if (strncmp(buf, "default", 7) == 0) {
4465                 if (mddev->pers)
4466                         sectors = mddev->pers->size(mddev, 0, 0);
4467                 else
4468                         sectors = mddev->array_sectors;
4469
4470                 mddev->external_size = 0;
4471         } else {
4472                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4473                         return -EINVAL;
4474                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4475                         return -E2BIG;
4476
4477                 mddev->external_size = 1;
4478         }
4479
4480         mddev->array_sectors = sectors;
4481         if (mddev->pers) {
4482                 set_capacity(mddev->gendisk, mddev->array_sectors);
4483                 revalidate_disk(mddev->gendisk);
4484         }
4485         return len;
4486 }
4487
4488 static struct md_sysfs_entry md_array_size =
4489 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4490        array_size_store);
4491
4492 static struct attribute *md_default_attrs[] = {
4493         &md_level.attr,
4494         &md_layout.attr,
4495         &md_raid_disks.attr,
4496         &md_chunk_size.attr,
4497         &md_size.attr,
4498         &md_resync_start.attr,
4499         &md_metadata.attr,
4500         &md_new_device.attr,
4501         &md_safe_delay.attr,
4502         &md_array_state.attr,
4503         &md_reshape_position.attr,
4504         &md_array_size.attr,
4505         &max_corr_read_errors.attr,
4506         NULL,
4507 };
4508
4509 static struct attribute *md_redundancy_attrs[] = {
4510         &md_scan_mode.attr,
4511         &md_mismatches.attr,
4512         &md_sync_min.attr,
4513         &md_sync_max.attr,
4514         &md_sync_speed.attr,
4515         &md_sync_force_parallel.attr,
4516         &md_sync_completed.attr,
4517         &md_min_sync.attr,
4518         &md_max_sync.attr,
4519         &md_suspend_lo.attr,
4520         &md_suspend_hi.attr,
4521         &md_bitmap.attr,
4522         &md_degraded.attr,
4523         NULL,
4524 };
4525 static struct attribute_group md_redundancy_group = {
4526         .name = NULL,
4527         .attrs = md_redundancy_attrs,
4528 };
4529
4530
4531 static ssize_t
4532 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4533 {
4534         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4535         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4536         ssize_t rv;
4537
4538         if (!entry->show)
4539                 return -EIO;
4540         spin_lock(&all_mddevs_lock);
4541         if (list_empty(&mddev->all_mddevs)) {
4542                 spin_unlock(&all_mddevs_lock);
4543                 return -EBUSY;
4544         }
4545         mddev_get(mddev);
4546         spin_unlock(&all_mddevs_lock);
4547
4548         rv = mddev_lock(mddev);
4549         if (!rv) {
4550                 rv = entry->show(mddev, page);
4551                 mddev_unlock(mddev);
4552         }
4553         mddev_put(mddev);
4554         return rv;
4555 }
4556
4557 static ssize_t
4558 md_attr_store(struct kobject *kobj, struct attribute *attr,
4559               const char *page, size_t length)
4560 {
4561         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4562         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4563         ssize_t rv;
4564
4565         if (!entry->store)
4566                 return -EIO;
4567         if (!capable(CAP_SYS_ADMIN))
4568                 return -EACCES;
4569         spin_lock(&all_mddevs_lock);
4570         if (list_empty(&mddev->all_mddevs)) {
4571                 spin_unlock(&all_mddevs_lock);
4572                 return -EBUSY;
4573         }
4574         mddev_get(mddev);
4575         spin_unlock(&all_mddevs_lock);
4576         rv = mddev_lock(mddev);
4577         if (!rv) {
4578                 rv = entry->store(mddev, page, length);
4579                 mddev_unlock(mddev);
4580         }
4581         mddev_put(mddev);
4582         return rv;
4583 }
4584
4585 static void md_free(struct kobject *ko)
4586 {
4587         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4588
4589         if (mddev->sysfs_state)
4590                 sysfs_put(mddev->sysfs_state);
4591
4592         if (mddev->gendisk) {
4593                 del_gendisk(mddev->gendisk);
4594                 put_disk(mddev->gendisk);
4595         }
4596         if (mddev->queue)
4597                 blk_cleanup_queue(mddev->queue);
4598
4599         kfree(mddev);
4600 }
4601
4602 static const struct sysfs_ops md_sysfs_ops = {
4603         .show   = md_attr_show,
4604         .store  = md_attr_store,
4605 };
4606 static struct kobj_type md_ktype = {
4607         .release        = md_free,
4608         .sysfs_ops      = &md_sysfs_ops,
4609         .default_attrs  = md_default_attrs,
4610 };
4611
4612 int mdp_major = 0;
4613
4614 static void mddev_delayed_delete(struct work_struct *ws)
4615 {
4616         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4617
4618         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4619         kobject_del(&mddev->kobj);
4620         kobject_put(&mddev->kobj);
4621 }
4622
4623 static int md_alloc(dev_t dev, char *name)
4624 {
4625         static DEFINE_MUTEX(disks_mutex);
4626         struct mddev *mddev = mddev_find(dev);
4627         struct gendisk *disk;
4628         int partitioned;
4629         int shift;
4630         int unit;
4631         int error;
4632
4633         if (!mddev)
4634                 return -ENODEV;
4635
4636         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4637         shift = partitioned ? MdpMinorShift : 0;
4638         unit = MINOR(mddev->unit) >> shift;
4639
4640         /* wait for any previous instance of this device to be
4641          * completely removed (mddev_delayed_delete).
4642          */
4643         flush_workqueue(md_misc_wq);
4644
4645         mutex_lock(&disks_mutex);
4646         error = -EEXIST;
4647         if (mddev->gendisk)
4648                 goto abort;
4649
4650         if (name) {
4651                 /* Need to ensure that 'name' is not a duplicate.
4652                  */
4653                 struct mddev *mddev2;
4654                 spin_lock(&all_mddevs_lock);
4655
4656                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4657                         if (mddev2->gendisk &&
4658                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4659                                 spin_unlock(&all_mddevs_lock);
4660                                 goto abort;
4661                         }
4662                 spin_unlock(&all_mddevs_lock);
4663         }
4664
4665         error = -ENOMEM;
4666         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4667         if (!mddev->queue)
4668                 goto abort;
4669         mddev->queue->queuedata = mddev;
4670
4671         blk_queue_make_request(mddev->queue, md_make_request);
4672         blk_set_stacking_limits(&mddev->queue->limits);
4673
4674         disk = alloc_disk(1 << shift);
4675         if (!disk) {
4676                 blk_cleanup_queue(mddev->queue);
4677                 mddev->queue = NULL;
4678                 goto abort;
4679         }
4680         disk->major = MAJOR(mddev->unit);
4681         disk->first_minor = unit << shift;
4682         if (name)
4683                 strcpy(disk->disk_name, name);
4684         else if (partitioned)
4685                 sprintf(disk->disk_name, "md_d%d", unit);
4686         else
4687                 sprintf(disk->disk_name, "md%d", unit);
4688         disk->fops = &md_fops;
4689         disk->private_data = mddev;
4690         disk->queue = mddev->queue;
4691         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4692         /* Allow extended partitions.  This makes the
4693          * 'mdp' device redundant, but we can't really
4694          * remove it now.
4695          */
4696         disk->flags |= GENHD_FL_EXT_DEVT;
4697         mddev->gendisk = disk;
4698         /* As soon as we call add_disk(), another thread could get
4699          * through to md_open, so make sure it doesn't get too far
4700          */
4701         mutex_lock(&mddev->open_mutex);
4702         add_disk(disk);
4703
4704         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4705                                      &disk_to_dev(disk)->kobj, "%s", "md");
4706         if (error) {
4707                 /* This isn't possible, but as kobject_init_and_add is marked
4708                  * __must_check, we must do something with the result
4709                  */
4710                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4711                        disk->disk_name);
4712                 error = 0;
4713         }
4714         if (mddev->kobj.sd &&
4715             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4716                 printk(KERN_DEBUG "pointless warning\n");
4717         mutex_unlock(&mddev->open_mutex);
4718  abort:
4719         mutex_unlock(&disks_mutex);
4720         if (!error && mddev->kobj.sd) {
4721                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4722                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4723         }
4724         mddev_put(mddev);
4725         return error;
4726 }
4727
4728 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4729 {
4730         md_alloc(dev, NULL);
4731         return NULL;
4732 }
4733
4734 static int add_named_array(const char *val, struct kernel_param *kp)
4735 {
4736         /* val must be "md_*" where * is not all digits.
4737          * We allocate an array with a large free minor number, and
4738          * set the name to val.  val must not already be an active name.
4739          */
4740         int len = strlen(val);
4741         char buf[DISK_NAME_LEN];
4742
4743         while (len && val[len-1] == '\n')
4744                 len--;
4745         if (len >= DISK_NAME_LEN)
4746                 return -E2BIG;
4747         strlcpy(buf, val, len+1);
4748         if (strncmp(buf, "md_", 3) != 0)
4749                 return -EINVAL;
4750         return md_alloc(0, buf);
4751 }
4752
4753 static void md_safemode_timeout(unsigned long data)
4754 {
4755         struct mddev *mddev = (struct mddev *) data;
4756
4757         if (!atomic_read(&mddev->writes_pending)) {
4758                 mddev->safemode = 1;
4759                 if (mddev->external)
4760                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4761         }
4762         md_wakeup_thread(mddev->thread);
4763 }
4764
4765 static int start_dirty_degraded;
4766
4767 int md_run(struct mddev *mddev)
4768 {
4769         int err;
4770         struct md_rdev *rdev;
4771         struct md_personality *pers;
4772
4773         if (list_empty(&mddev->disks))
4774                 /* cannot run an array with no devices.. */
4775                 return -EINVAL;
4776
4777         if (mddev->pers)
4778                 return -EBUSY;
4779         /* Cannot run until previous stop completes properly */
4780         if (mddev->sysfs_active)
4781                 return -EBUSY;
4782
4783         /*
4784          * Analyze all RAID superblock(s)
4785          */
4786         if (!mddev->raid_disks) {
4787                 if (!mddev->persistent)
4788                         return -EINVAL;
4789                 analyze_sbs(mddev);
4790         }
4791
4792         if (mddev->level != LEVEL_NONE)
4793                 request_module("md-level-%d", mddev->level);
4794         else if (mddev->clevel[0])
4795                 request_module("md-%s", mddev->clevel);
4796
4797         /*
4798          * Drop all container device buffers, from now on
4799          * the only valid external interface is through the md
4800          * device.
4801          */
4802         rdev_for_each(rdev, mddev) {
4803                 if (test_bit(Faulty, &rdev->flags))
4804                         continue;
4805                 sync_blockdev(rdev->bdev);
4806                 invalidate_bdev(rdev->bdev);
4807
4808                 /* perform some consistency tests on the device.
4809                  * We don't want the data to overlap the metadata,
4810                  * Internal Bitmap issues have been handled elsewhere.
4811                  */
4812                 if (rdev->meta_bdev) {
4813                         /* Nothing to check */;
4814                 } else if (rdev->data_offset < rdev->sb_start) {
4815                         if (mddev->dev_sectors &&
4816                             rdev->data_offset + mddev->dev_sectors
4817                             > rdev->sb_start) {
4818                                 printk("md: %s: data overlaps metadata\n",
4819                                        mdname(mddev));
4820                                 return -EINVAL;
4821                         }
4822                 } else {
4823                         if (rdev->sb_start + rdev->sb_size/512
4824                             > rdev->data_offset) {
4825                                 printk("md: %s: metadata overlaps data\n",
4826                                        mdname(mddev));
4827                                 return -EINVAL;
4828                         }
4829                 }
4830                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4831         }
4832
4833         if (mddev->bio_set == NULL)
4834                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4835                                                sizeof(struct mddev *));
4836
4837         spin_lock(&pers_lock);
4838         pers = find_pers(mddev->level, mddev->clevel);
4839         if (!pers || !try_module_get(pers->owner)) {
4840                 spin_unlock(&pers_lock);
4841                 if (mddev->level != LEVEL_NONE)
4842                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4843                                mddev->level);
4844                 else
4845                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4846                                mddev->clevel);
4847                 return -EINVAL;
4848         }
4849         mddev->pers = pers;
4850         spin_unlock(&pers_lock);
4851         if (mddev->level != pers->level) {
4852                 mddev->level = pers->level;
4853                 mddev->new_level = pers->level;
4854         }
4855         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4856
4857         if (mddev->reshape_position != MaxSector &&
4858             pers->start_reshape == NULL) {
4859                 /* This personality cannot handle reshaping... */
4860                 mddev->pers = NULL;
4861                 module_put(pers->owner);
4862                 return -EINVAL;
4863         }
4864
4865         if (pers->sync_request) {
4866                 /* Warn if this is a potentially silly
4867                  * configuration.
4868                  */
4869                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4870                 struct md_rdev *rdev2;
4871                 int warned = 0;
4872
4873                 rdev_for_each(rdev, mddev)
4874                         rdev_for_each(rdev2, mddev) {
4875                                 if (rdev < rdev2 &&
4876                                     rdev->bdev->bd_contains ==
4877                                     rdev2->bdev->bd_contains) {
4878                                         printk(KERN_WARNING
4879                                                "%s: WARNING: %s appears to be"
4880                                                " on the same physical disk as"
4881                                                " %s.\n",
4882                                                mdname(mddev),
4883                                                bdevname(rdev->bdev,b),
4884                                                bdevname(rdev2->bdev,b2));
4885                                         warned = 1;
4886                                 }
4887                         }
4888
4889                 if (warned)
4890                         printk(KERN_WARNING
4891                                "True protection against single-disk"
4892                                " failure might be compromised.\n");
4893         }
4894
4895         mddev->recovery = 0;
4896         /* may be over-ridden by personality */
4897         mddev->resync_max_sectors = mddev->dev_sectors;
4898
4899         mddev->ok_start_degraded = start_dirty_degraded;
4900
4901         if (start_readonly && mddev->ro == 0)
4902                 mddev->ro = 2; /* read-only, but switch on first write */
4903
4904         err = mddev->pers->run(mddev);
4905         if (err)
4906                 printk(KERN_ERR "md: pers->run() failed ...\n");
4907         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4908                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4909                           " but 'external_size' not in effect?\n", __func__);
4910                 printk(KERN_ERR
4911                        "md: invalid array_size %llu > default size %llu\n",
4912                        (unsigned long long)mddev->array_sectors / 2,
4913                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4914                 err = -EINVAL;
4915                 mddev->pers->stop(mddev);
4916         }
4917         if (err == 0 && mddev->pers->sync_request) {
4918                 err = bitmap_create(mddev);
4919                 if (err) {
4920                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4921                                mdname(mddev), err);
4922                         mddev->pers->stop(mddev);
4923                 }
4924         }
4925         if (err) {
4926                 module_put(mddev->pers->owner);
4927                 mddev->pers = NULL;
4928                 bitmap_destroy(mddev);
4929                 return err;
4930         }
4931         if (mddev->pers->sync_request) {
4932                 if (mddev->kobj.sd &&
4933                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4934                         printk(KERN_WARNING
4935                                "md: cannot register extra attributes for %s\n",
4936                                mdname(mddev));
4937                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4938         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4939                 mddev->ro = 0;
4940
4941         atomic_set(&mddev->writes_pending,0);
4942         atomic_set(&mddev->max_corr_read_errors,
4943                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4944         mddev->safemode = 0;
4945         mddev->safemode_timer.function = md_safemode_timeout;
4946         mddev->safemode_timer.data = (unsigned long) mddev;
4947         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4948         mddev->in_sync = 1;
4949         smp_wmb();
4950         mddev->ready = 1;
4951         rdev_for_each(rdev, mddev)
4952                 if (rdev->raid_disk >= 0)
4953                         if (sysfs_link_rdev(mddev, rdev))
4954                                 /* failure here is OK */;
4955         
4956         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4957         
4958         if (mddev->flags)
4959                 md_update_sb(mddev, 0);
4960
4961         md_new_event(mddev);
4962         sysfs_notify_dirent_safe(mddev->sysfs_state);
4963         sysfs_notify_dirent_safe(mddev->sysfs_action);
4964         sysfs_notify(&mddev->kobj, NULL, "degraded");
4965         return 0;
4966 }
4967 EXPORT_SYMBOL_GPL(md_run);
4968
4969 static int do_md_run(struct mddev *mddev)
4970 {
4971         int err;
4972
4973         err = md_run(mddev);
4974         if (err)
4975                 goto out;
4976         err = bitmap_load(mddev);
4977         if (err) {
4978                 bitmap_destroy(mddev);
4979                 goto out;
4980         }
4981
4982         md_wakeup_thread(mddev->thread);
4983         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4984
4985         set_capacity(mddev->gendisk, mddev->array_sectors);
4986         revalidate_disk(mddev->gendisk);
4987         mddev->changed = 1;
4988         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4989 out:
4990         return err;
4991 }
4992
4993 static int restart_array(struct mddev *mddev)
4994 {
4995         struct gendisk *disk = mddev->gendisk;
4996
4997         /* Complain if it has no devices */
4998         if (list_empty(&mddev->disks))
4999                 return -ENXIO;
5000         if (!mddev->pers)
5001                 return -EINVAL;
5002         if (!mddev->ro)
5003                 return -EBUSY;
5004         mddev->safemode = 0;
5005         mddev->ro = 0;
5006         set_disk_ro(disk, 0);
5007         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5008                 mdname(mddev));
5009         /* Kick recovery or resync if necessary */
5010         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5011         md_wakeup_thread(mddev->thread);
5012         md_wakeup_thread(mddev->sync_thread);
5013         sysfs_notify_dirent_safe(mddev->sysfs_state);
5014         return 0;
5015 }
5016
5017 /* similar to deny_write_access, but accounts for our holding a reference
5018  * to the file ourselves */
5019 static int deny_bitmap_write_access(struct file * file)
5020 {
5021         struct inode *inode = file->f_mapping->host;
5022
5023         spin_lock(&inode->i_lock);
5024         if (atomic_read(&inode->i_writecount) > 1) {
5025                 spin_unlock(&inode->i_lock);
5026                 return -ETXTBSY;
5027         }
5028         atomic_set(&inode->i_writecount, -1);
5029         spin_unlock(&inode->i_lock);
5030
5031         return 0;
5032 }
5033
5034 void restore_bitmap_write_access(struct file *file)
5035 {
5036         struct inode *inode = file->f_mapping->host;
5037
5038         spin_lock(&inode->i_lock);
5039         atomic_set(&inode->i_writecount, 1);
5040         spin_unlock(&inode->i_lock);
5041 }
5042
5043 static void md_clean(struct mddev *mddev)
5044 {
5045         mddev->array_sectors = 0;
5046         mddev->external_size = 0;
5047         mddev->dev_sectors = 0;
5048         mddev->raid_disks = 0;
5049         mddev->recovery_cp = 0;
5050         mddev->resync_min = 0;
5051         mddev->resync_max = MaxSector;
5052         mddev->reshape_position = MaxSector;
5053         mddev->external = 0;
5054         mddev->persistent = 0;
5055         mddev->level = LEVEL_NONE;
5056         mddev->clevel[0] = 0;
5057         mddev->flags = 0;
5058         mddev->ro = 0;
5059         mddev->metadata_type[0] = 0;
5060         mddev->chunk_sectors = 0;
5061         mddev->ctime = mddev->utime = 0;
5062         mddev->layout = 0;
5063         mddev->max_disks = 0;
5064         mddev->events = 0;
5065         mddev->can_decrease_events = 0;
5066         mddev->delta_disks = 0;
5067         mddev->new_level = LEVEL_NONE;
5068         mddev->new_layout = 0;
5069         mddev->new_chunk_sectors = 0;
5070         mddev->curr_resync = 0;
5071         mddev->resync_mismatches = 0;
5072         mddev->suspend_lo = mddev->suspend_hi = 0;
5073         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5074         mddev->recovery = 0;
5075         mddev->in_sync = 0;
5076         mddev->changed = 0;
5077         mddev->degraded = 0;
5078         mddev->safemode = 0;
5079         mddev->merge_check_needed = 0;
5080         mddev->bitmap_info.offset = 0;
5081         mddev->bitmap_info.default_offset = 0;
5082         mddev->bitmap_info.chunksize = 0;
5083         mddev->bitmap_info.daemon_sleep = 0;
5084         mddev->bitmap_info.max_write_behind = 0;
5085 }
5086
5087 static void __md_stop_writes(struct mddev *mddev)
5088 {
5089         if (mddev->sync_thread) {
5090                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5091                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5092                 reap_sync_thread(mddev);
5093         }
5094
5095         del_timer_sync(&mddev->safemode_timer);
5096
5097         bitmap_flush(mddev);
5098         md_super_wait(mddev);
5099
5100         if (!mddev->in_sync || mddev->flags) {
5101                 /* mark array as shutdown cleanly */
5102                 mddev->in_sync = 1;
5103                 md_update_sb(mddev, 1);
5104         }
5105 }
5106
5107 void md_stop_writes(struct mddev *mddev)
5108 {
5109         mddev_lock(mddev);
5110         __md_stop_writes(mddev);
5111         mddev_unlock(mddev);
5112 }
5113 EXPORT_SYMBOL_GPL(md_stop_writes);
5114
5115 void md_stop(struct mddev *mddev)
5116 {
5117         mddev->ready = 0;
5118         mddev->pers->stop(mddev);
5119         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5120                 mddev->to_remove = &md_redundancy_group;
5121         module_put(mddev->pers->owner);
5122         mddev->pers = NULL;
5123         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 }
5125 EXPORT_SYMBOL_GPL(md_stop);
5126
5127 static int md_set_readonly(struct mddev *mddev, int is_open)
5128 {
5129         int err = 0;
5130         mutex_lock(&mddev->open_mutex);
5131         if (atomic_read(&mddev->openers) > is_open) {
5132                 printk("md: %s still in use.\n",mdname(mddev));
5133                 err = -EBUSY;
5134                 goto out;
5135         }
5136         if (mddev->pers) {
5137                 __md_stop_writes(mddev);
5138
5139                 err  = -ENXIO;
5140                 if (mddev->ro==1)
5141                         goto out;
5142                 mddev->ro = 1;
5143                 set_disk_ro(mddev->gendisk, 1);
5144                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5145                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5146                 err = 0;        
5147         }
5148 out:
5149         mutex_unlock(&mddev->open_mutex);
5150         return err;
5151 }
5152
5153 /* mode:
5154  *   0 - completely stop and dis-assemble array
5155  *   2 - stop but do not disassemble array
5156  */
5157 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5158 {
5159         struct gendisk *disk = mddev->gendisk;
5160         struct md_rdev *rdev;
5161
5162         mutex_lock(&mddev->open_mutex);
5163         if (atomic_read(&mddev->openers) > is_open ||
5164             mddev->sysfs_active) {
5165                 printk("md: %s still in use.\n",mdname(mddev));
5166                 mutex_unlock(&mddev->open_mutex);
5167                 return -EBUSY;
5168         }
5169
5170         if (mddev->pers) {
5171                 if (mddev->ro)
5172                         set_disk_ro(disk, 0);
5173
5174                 __md_stop_writes(mddev);
5175                 md_stop(mddev);
5176                 mddev->queue->merge_bvec_fn = NULL;
5177                 mddev->queue->backing_dev_info.congested_fn = NULL;
5178
5179                 /* tell userspace to handle 'inactive' */
5180                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5181
5182                 rdev_for_each(rdev, mddev)
5183                         if (rdev->raid_disk >= 0)
5184                                 sysfs_unlink_rdev(mddev, rdev);
5185
5186                 set_capacity(disk, 0);
5187                 mutex_unlock(&mddev->open_mutex);
5188                 mddev->changed = 1;
5189                 revalidate_disk(disk);
5190
5191                 if (mddev->ro)
5192                         mddev->ro = 0;
5193         } else
5194                 mutex_unlock(&mddev->open_mutex);
5195         /*
5196          * Free resources if final stop
5197          */
5198         if (mode == 0) {
5199                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5200
5201                 bitmap_destroy(mddev);
5202                 if (mddev->bitmap_info.file) {
5203                         restore_bitmap_write_access(mddev->bitmap_info.file);
5204                         fput(mddev->bitmap_info.file);
5205                         mddev->bitmap_info.file = NULL;
5206                 }
5207                 mddev->bitmap_info.offset = 0;
5208
5209                 export_array(mddev);
5210
5211                 md_clean(mddev);
5212                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5213                 if (mddev->hold_active == UNTIL_STOP)
5214                         mddev->hold_active = 0;
5215         }
5216         blk_integrity_unregister(disk);
5217         md_new_event(mddev);
5218         sysfs_notify_dirent_safe(mddev->sysfs_state);
5219         return 0;
5220 }
5221
5222 #ifndef MODULE
5223 static void autorun_array(struct mddev *mddev)
5224 {
5225         struct md_rdev *rdev;
5226         int err;
5227
5228         if (list_empty(&mddev->disks))
5229                 return;
5230
5231         printk(KERN_INFO "md: running: ");
5232
5233         rdev_for_each(rdev, mddev) {
5234                 char b[BDEVNAME_SIZE];
5235                 printk("<%s>", bdevname(rdev->bdev,b));
5236         }
5237         printk("\n");
5238
5239         err = do_md_run(mddev);
5240         if (err) {
5241                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5242                 do_md_stop(mddev, 0, 0);
5243         }
5244 }
5245
5246 /*
5247  * lets try to run arrays based on all disks that have arrived
5248  * until now. (those are in pending_raid_disks)
5249  *
5250  * the method: pick the first pending disk, collect all disks with
5251  * the same UUID, remove all from the pending list and put them into
5252  * the 'same_array' list. Then order this list based on superblock
5253  * update time (freshest comes first), kick out 'old' disks and
5254  * compare superblocks. If everything's fine then run it.
5255  *
5256  * If "unit" is allocated, then bump its reference count
5257  */
5258 static void autorun_devices(int part)
5259 {
5260         struct md_rdev *rdev0, *rdev, *tmp;
5261         struct mddev *mddev;
5262         char b[BDEVNAME_SIZE];
5263
5264         printk(KERN_INFO "md: autorun ...\n");
5265         while (!list_empty(&pending_raid_disks)) {
5266                 int unit;
5267                 dev_t dev;
5268                 LIST_HEAD(candidates);
5269                 rdev0 = list_entry(pending_raid_disks.next,
5270                                          struct md_rdev, same_set);
5271
5272                 printk(KERN_INFO "md: considering %s ...\n",
5273                         bdevname(rdev0->bdev,b));
5274                 INIT_LIST_HEAD(&candidates);
5275                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5276                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5277                                 printk(KERN_INFO "md:  adding %s ...\n",
5278                                         bdevname(rdev->bdev,b));
5279                                 list_move(&rdev->same_set, &candidates);
5280                         }
5281                 /*
5282                  * now we have a set of devices, with all of them having
5283                  * mostly sane superblocks. It's time to allocate the
5284                  * mddev.
5285                  */
5286                 if (part) {
5287                         dev = MKDEV(mdp_major,
5288                                     rdev0->preferred_minor << MdpMinorShift);
5289                         unit = MINOR(dev) >> MdpMinorShift;
5290                 } else {
5291                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5292                         unit = MINOR(dev);
5293                 }
5294                 if (rdev0->preferred_minor != unit) {
5295                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5296                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5297                         break;
5298                 }
5299
5300                 md_probe(dev, NULL, NULL);
5301                 mddev = mddev_find(dev);
5302                 if (!mddev || !mddev->gendisk) {
5303                         if (mddev)
5304                                 mddev_put(mddev);
5305                         printk(KERN_ERR
5306                                 "md: cannot allocate memory for md drive.\n");
5307                         break;
5308                 }
5309                 if (mddev_lock(mddev)) 
5310                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5311                                mdname(mddev));
5312                 else if (mddev->raid_disks || mddev->major_version
5313                          || !list_empty(&mddev->disks)) {
5314                         printk(KERN_WARNING 
5315                                 "md: %s already running, cannot run %s\n",
5316                                 mdname(mddev), bdevname(rdev0->bdev,b));
5317                         mddev_unlock(mddev);
5318                 } else {
5319                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5320                         mddev->persistent = 1;
5321                         rdev_for_each_list(rdev, tmp, &candidates) {
5322                                 list_del_init(&rdev->same_set);
5323                                 if (bind_rdev_to_array(rdev, mddev))
5324                                         export_rdev(rdev);
5325                         }
5326                         autorun_array(mddev);
5327                         mddev_unlock(mddev);
5328                 }
5329                 /* on success, candidates will be empty, on error
5330                  * it won't...
5331                  */
5332                 rdev_for_each_list(rdev, tmp, &candidates) {
5333                         list_del_init(&rdev->same_set);
5334                         export_rdev(rdev);
5335                 }
5336                 mddev_put(mddev);
5337         }
5338         printk(KERN_INFO "md: ... autorun DONE.\n");
5339 }
5340 #endif /* !MODULE */
5341
5342 static int get_version(void __user * arg)
5343 {
5344         mdu_version_t ver;
5345
5346         ver.major = MD_MAJOR_VERSION;
5347         ver.minor = MD_MINOR_VERSION;
5348         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5349
5350         if (copy_to_user(arg, &ver, sizeof(ver)))
5351                 return -EFAULT;
5352
5353         return 0;
5354 }
5355
5356 static int get_array_info(struct mddev * mddev, void __user * arg)
5357 {
5358         mdu_array_info_t info;
5359         int nr,working,insync,failed,spare;
5360         struct md_rdev *rdev;
5361
5362         nr=working=insync=failed=spare=0;
5363         rdev_for_each(rdev, mddev) {
5364                 nr++;
5365                 if (test_bit(Faulty, &rdev->flags))
5366                         failed++;
5367                 else {
5368                         working++;
5369                         if (test_bit(In_sync, &rdev->flags))
5370                                 insync++;       
5371                         else
5372                                 spare++;
5373                 }
5374         }
5375
5376         info.major_version = mddev->major_version;
5377         info.minor_version = mddev->minor_version;
5378         info.patch_version = MD_PATCHLEVEL_VERSION;
5379         info.ctime         = mddev->ctime;
5380         info.level         = mddev->level;
5381         info.size          = mddev->dev_sectors / 2;
5382         if (info.size != mddev->dev_sectors / 2) /* overflow */
5383                 info.size = -1;
5384         info.nr_disks      = nr;
5385         info.raid_disks    = mddev->raid_disks;
5386         info.md_minor      = mddev->md_minor;
5387         info.not_persistent= !mddev->persistent;
5388
5389         info.utime         = mddev->utime;
5390         info.state         = 0;
5391         if (mddev->in_sync)
5392                 info.state = (1<<MD_SB_CLEAN);
5393         if (mddev->bitmap && mddev->bitmap_info.offset)
5394                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5395         info.active_disks  = insync;
5396         info.working_disks = working;
5397         info.failed_disks  = failed;
5398         info.spare_disks   = spare;
5399
5400         info.layout        = mddev->layout;
5401         info.chunk_size    = mddev->chunk_sectors << 9;
5402
5403         if (copy_to_user(arg, &info, sizeof(info)))
5404                 return -EFAULT;
5405
5406         return 0;
5407 }
5408
5409 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5410 {
5411         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5412         char *ptr, *buf = NULL;
5413         int err = -ENOMEM;
5414
5415         if (md_allow_write(mddev))
5416                 file = kmalloc(sizeof(*file), GFP_NOIO);
5417         else
5418                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5419
5420         if (!file)
5421                 goto out;
5422
5423         /* bitmap disabled, zero the first byte and copy out */
5424         if (!mddev->bitmap || !mddev->bitmap->file) {
5425                 file->pathname[0] = '\0';
5426                 goto copy_out;
5427         }
5428
5429         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5430         if (!buf)
5431                 goto out;
5432
5433         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5434         if (IS_ERR(ptr))
5435                 goto out;
5436
5437         strcpy(file->pathname, ptr);
5438
5439 copy_out:
5440         err = 0;
5441         if (copy_to_user(arg, file, sizeof(*file)))
5442                 err = -EFAULT;
5443 out:
5444         kfree(buf);
5445         kfree(file);
5446         return err;
5447 }
5448
5449 static int get_disk_info(struct mddev * mddev, void __user * arg)
5450 {
5451         mdu_disk_info_t info;
5452         struct md_rdev *rdev;
5453
5454         if (copy_from_user(&info, arg, sizeof(info)))
5455                 return -EFAULT;
5456
5457         rdev = find_rdev_nr(mddev, info.number);
5458         if (rdev) {
5459                 info.major = MAJOR(rdev->bdev->bd_dev);
5460                 info.minor = MINOR(rdev->bdev->bd_dev);
5461                 info.raid_disk = rdev->raid_disk;
5462                 info.state = 0;
5463                 if (test_bit(Faulty, &rdev->flags))
5464                         info.state |= (1<<MD_DISK_FAULTY);
5465                 else if (test_bit(In_sync, &rdev->flags)) {
5466                         info.state |= (1<<MD_DISK_ACTIVE);
5467                         info.state |= (1<<MD_DISK_SYNC);
5468                 }
5469                 if (test_bit(WriteMostly, &rdev->flags))
5470                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5471         } else {
5472                 info.major = info.minor = 0;
5473                 info.raid_disk = -1;
5474                 info.state = (1<<MD_DISK_REMOVED);
5475         }
5476
5477         if (copy_to_user(arg, &info, sizeof(info)))
5478                 return -EFAULT;
5479
5480         return 0;
5481 }
5482
5483 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5484 {
5485         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5486         struct md_rdev *rdev;
5487         dev_t dev = MKDEV(info->major,info->minor);
5488
5489         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5490                 return -EOVERFLOW;
5491
5492         if (!mddev->raid_disks) {
5493                 int err;
5494                 /* expecting a device which has a superblock */
5495                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5496                 if (IS_ERR(rdev)) {
5497                         printk(KERN_WARNING 
5498                                 "md: md_import_device returned %ld\n",
5499                                 PTR_ERR(rdev));
5500                         return PTR_ERR(rdev);
5501                 }
5502                 if (!list_empty(&mddev->disks)) {
5503                         struct md_rdev *rdev0
5504                                 = list_entry(mddev->disks.next,
5505                                              struct md_rdev, same_set);
5506                         err = super_types[mddev->major_version]
5507                                 .load_super(rdev, rdev0, mddev->minor_version);
5508                         if (err < 0) {
5509                                 printk(KERN_WARNING 
5510                                         "md: %s has different UUID to %s\n",
5511                                         bdevname(rdev->bdev,b), 
5512                                         bdevname(rdev0->bdev,b2));
5513                                 export_rdev(rdev);
5514                                 return -EINVAL;
5515                         }
5516                 }
5517                 err = bind_rdev_to_array(rdev, mddev);
5518                 if (err)
5519                         export_rdev(rdev);
5520                 return err;
5521         }
5522
5523         /*
5524          * add_new_disk can be used once the array is assembled
5525          * to add "hot spares".  They must already have a superblock
5526          * written
5527          */
5528         if (mddev->pers) {
5529                 int err;
5530                 if (!mddev->pers->hot_add_disk) {
5531                         printk(KERN_WARNING 
5532                                 "%s: personality does not support diskops!\n",
5533                                mdname(mddev));
5534                         return -EINVAL;
5535                 }
5536                 if (mddev->persistent)
5537                         rdev = md_import_device(dev, mddev->major_version,
5538                                                 mddev->minor_version);
5539                 else
5540                         rdev = md_import_device(dev, -1, -1);
5541                 if (IS_ERR(rdev)) {
5542                         printk(KERN_WARNING 
5543                                 "md: md_import_device returned %ld\n",
5544                                 PTR_ERR(rdev));
5545                         return PTR_ERR(rdev);
5546                 }
5547                 /* set saved_raid_disk if appropriate */
5548                 if (!mddev->persistent) {
5549                         if (info->state & (1<<MD_DISK_SYNC)  &&
5550                             info->raid_disk < mddev->raid_disks) {
5551                                 rdev->raid_disk = info->raid_disk;
5552                                 set_bit(In_sync, &rdev->flags);
5553                         } else
5554                                 rdev->raid_disk = -1;
5555                 } else
5556                         super_types[mddev->major_version].
5557                                 validate_super(mddev, rdev);
5558                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5559                     (!test_bit(In_sync, &rdev->flags) ||
5560                      rdev->raid_disk != info->raid_disk)) {
5561                         /* This was a hot-add request, but events doesn't
5562                          * match, so reject it.
5563                          */
5564                         export_rdev(rdev);
5565                         return -EINVAL;
5566                 }
5567
5568                 if (test_bit(In_sync, &rdev->flags))
5569                         rdev->saved_raid_disk = rdev->raid_disk;
5570                 else
5571                         rdev->saved_raid_disk = -1;
5572
5573                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5574                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5575                         set_bit(WriteMostly, &rdev->flags);
5576                 else
5577                         clear_bit(WriteMostly, &rdev->flags);
5578
5579                 rdev->raid_disk = -1;
5580                 err = bind_rdev_to_array(rdev, mddev);
5581                 if (!err && !mddev->pers->hot_remove_disk) {
5582                         /* If there is hot_add_disk but no hot_remove_disk
5583                          * then added disks for geometry changes,
5584                          * and should be added immediately.
5585                          */
5586                         super_types[mddev->major_version].
5587                                 validate_super(mddev, rdev);
5588                         err = mddev->pers->hot_add_disk(mddev, rdev);
5589                         if (err)
5590                                 unbind_rdev_from_array(rdev);
5591                 }
5592                 if (err)
5593                         export_rdev(rdev);
5594                 else
5595                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5596
5597                 md_update_sb(mddev, 1);
5598                 if (mddev->degraded)
5599                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5600                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5601                 if (!err)
5602                         md_new_event(mddev);
5603                 md_wakeup_thread(mddev->thread);
5604                 return err;
5605         }
5606
5607         /* otherwise, add_new_disk is only allowed
5608          * for major_version==0 superblocks
5609          */
5610         if (mddev->major_version != 0) {
5611                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5612                        mdname(mddev));
5613                 return -EINVAL;
5614         }
5615
5616         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5617                 int err;
5618                 rdev = md_import_device(dev, -1, 0);
5619                 if (IS_ERR(rdev)) {
5620                         printk(KERN_WARNING 
5621                                 "md: error, md_import_device() returned %ld\n",
5622                                 PTR_ERR(rdev));
5623                         return PTR_ERR(rdev);
5624                 }
5625                 rdev->desc_nr = info->number;
5626                 if (info->raid_disk < mddev->raid_disks)
5627                         rdev->raid_disk = info->raid_disk;
5628                 else
5629                         rdev->raid_disk = -1;
5630
5631                 if (rdev->raid_disk < mddev->raid_disks)
5632                         if (info->state & (1<<MD_DISK_SYNC))
5633                                 set_bit(In_sync, &rdev->flags);
5634
5635                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5636                         set_bit(WriteMostly, &rdev->flags);
5637
5638                 if (!mddev->persistent) {
5639                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5640                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5641                 } else
5642                         rdev->sb_start = calc_dev_sboffset(rdev);
5643                 rdev->sectors = rdev->sb_start;
5644
5645                 err = bind_rdev_to_array(rdev, mddev);
5646                 if (err) {
5647                         export_rdev(rdev);
5648                         return err;
5649                 }
5650         }
5651
5652         return 0;
5653 }
5654
5655 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5656 {
5657         char b[BDEVNAME_SIZE];
5658         struct md_rdev *rdev;
5659
5660         rdev = find_rdev(mddev, dev);
5661         if (!rdev)
5662                 return -ENXIO;
5663
5664         if (rdev->raid_disk >= 0)
5665                 goto busy;
5666
5667         kick_rdev_from_array(rdev);
5668         md_update_sb(mddev, 1);
5669         md_new_event(mddev);
5670
5671         return 0;
5672 busy:
5673         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5674                 bdevname(rdev->bdev,b), mdname(mddev));
5675         return -EBUSY;
5676 }
5677
5678 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5679 {
5680         char b[BDEVNAME_SIZE];
5681         int err;
5682         struct md_rdev *rdev;
5683
5684         if (!mddev->pers)
5685                 return -ENODEV;
5686
5687         if (mddev->major_version != 0) {
5688                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5689                         " version-0 superblocks.\n",
5690                         mdname(mddev));
5691                 return -EINVAL;
5692         }
5693         if (!mddev->pers->hot_add_disk) {
5694                 printk(KERN_WARNING 
5695                         "%s: personality does not support diskops!\n",
5696                         mdname(mddev));
5697                 return -EINVAL;
5698         }
5699
5700         rdev = md_import_device(dev, -1, 0);
5701         if (IS_ERR(rdev)) {
5702                 printk(KERN_WARNING 
5703                         "md: error, md_import_device() returned %ld\n",
5704                         PTR_ERR(rdev));
5705                 return -EINVAL;
5706         }
5707
5708         if (mddev->persistent)
5709                 rdev->sb_start = calc_dev_sboffset(rdev);
5710         else
5711                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5712
5713         rdev->sectors = rdev->sb_start;
5714
5715         if (test_bit(Faulty, &rdev->flags)) {
5716                 printk(KERN_WARNING 
5717                         "md: can not hot-add faulty %s disk to %s!\n",
5718                         bdevname(rdev->bdev,b), mdname(mddev));
5719                 err = -EINVAL;
5720                 goto abort_export;
5721         }
5722         clear_bit(In_sync, &rdev->flags);
5723         rdev->desc_nr = -1;
5724         rdev->saved_raid_disk = -1;
5725         err = bind_rdev_to_array(rdev, mddev);
5726         if (err)
5727                 goto abort_export;
5728
5729         /*
5730          * The rest should better be atomic, we can have disk failures
5731          * noticed in interrupt contexts ...
5732          */
5733
5734         rdev->raid_disk = -1;
5735
5736         md_update_sb(mddev, 1);
5737
5738         /*
5739          * Kick recovery, maybe this spare has to be added to the
5740          * array immediately.
5741          */
5742         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5743         md_wakeup_thread(mddev->thread);
5744         md_new_event(mddev);
5745         return 0;
5746
5747 abort_export:
5748         export_rdev(rdev);
5749         return err;
5750 }
5751
5752 static int set_bitmap_file(struct mddev *mddev, int fd)
5753 {
5754         int err;
5755
5756         if (mddev->pers) {
5757                 if (!mddev->pers->quiesce)
5758                         return -EBUSY;
5759                 if (mddev->recovery || mddev->sync_thread)
5760                         return -EBUSY;
5761                 /* we should be able to change the bitmap.. */
5762         }
5763
5764
5765         if (fd >= 0) {
5766                 if (mddev->bitmap)
5767                         return -EEXIST; /* cannot add when bitmap is present */
5768                 mddev->bitmap_info.file = fget(fd);
5769
5770                 if (mddev->bitmap_info.file == NULL) {
5771                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5772                                mdname(mddev));
5773                         return -EBADF;
5774                 }
5775
5776                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5777                 if (err) {
5778                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5779                                mdname(mddev));
5780                         fput(mddev->bitmap_info.file);
5781                         mddev->bitmap_info.file = NULL;
5782                         return err;
5783                 }
5784                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5785         } else if (mddev->bitmap == NULL)
5786                 return -ENOENT; /* cannot remove what isn't there */
5787         err = 0;
5788         if (mddev->pers) {
5789                 mddev->pers->quiesce(mddev, 1);
5790                 if (fd >= 0) {
5791                         err = bitmap_create(mddev);
5792                         if (!err)
5793                                 err = bitmap_load(mddev);
5794                 }
5795                 if (fd < 0 || err) {
5796                         bitmap_destroy(mddev);
5797                         fd = -1; /* make sure to put the file */
5798                 }
5799                 mddev->pers->quiesce(mddev, 0);
5800         }
5801         if (fd < 0) {
5802                 if (mddev->bitmap_info.file) {
5803                         restore_bitmap_write_access(mddev->bitmap_info.file);
5804                         fput(mddev->bitmap_info.file);
5805                 }
5806                 mddev->bitmap_info.file = NULL;
5807         }
5808
5809         return err;
5810 }
5811
5812 /*
5813  * set_array_info is used two different ways
5814  * The original usage is when creating a new array.
5815  * In this usage, raid_disks is > 0 and it together with
5816  *  level, size, not_persistent,layout,chunksize determine the
5817  *  shape of the array.
5818  *  This will always create an array with a type-0.90.0 superblock.
5819  * The newer usage is when assembling an array.
5820  *  In this case raid_disks will be 0, and the major_version field is
5821  *  use to determine which style super-blocks are to be found on the devices.
5822  *  The minor and patch _version numbers are also kept incase the
5823  *  super_block handler wishes to interpret them.
5824  */
5825 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5826 {
5827
5828         if (info->raid_disks == 0) {
5829                 /* just setting version number for superblock loading */
5830                 if (info->major_version < 0 ||
5831                     info->major_version >= ARRAY_SIZE(super_types) ||
5832                     super_types[info->major_version].name == NULL) {
5833                         /* maybe try to auto-load a module? */
5834                         printk(KERN_INFO 
5835                                 "md: superblock version %d not known\n",
5836                                 info->major_version);
5837                         return -EINVAL;
5838                 }
5839                 mddev->major_version = info->major_version;
5840                 mddev->minor_version = info->minor_version;
5841                 mddev->patch_version = info->patch_version;
5842                 mddev->persistent = !info->not_persistent;
5843                 /* ensure mddev_put doesn't delete this now that there
5844                  * is some minimal configuration.
5845                  */
5846                 mddev->ctime         = get_seconds();
5847                 return 0;
5848         }
5849         mddev->major_version = MD_MAJOR_VERSION;
5850         mddev->minor_version = MD_MINOR_VERSION;
5851         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5852         mddev->ctime         = get_seconds();
5853
5854         mddev->level         = info->level;
5855         mddev->clevel[0]     = 0;
5856         mddev->dev_sectors   = 2 * (sector_t)info->size;
5857         mddev->raid_disks    = info->raid_disks;
5858         /* don't set md_minor, it is determined by which /dev/md* was
5859          * openned
5860          */
5861         if (info->state & (1<<MD_SB_CLEAN))
5862                 mddev->recovery_cp = MaxSector;
5863         else
5864                 mddev->recovery_cp = 0;
5865         mddev->persistent    = ! info->not_persistent;
5866         mddev->external      = 0;
5867
5868         mddev->layout        = info->layout;
5869         mddev->chunk_sectors = info->chunk_size >> 9;
5870
5871         mddev->max_disks     = MD_SB_DISKS;
5872
5873         if (mddev->persistent)
5874                 mddev->flags         = 0;
5875         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5876
5877         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5878         mddev->bitmap_info.offset = 0;
5879
5880         mddev->reshape_position = MaxSector;
5881
5882         /*
5883          * Generate a 128 bit UUID
5884          */
5885         get_random_bytes(mddev->uuid, 16);
5886
5887         mddev->new_level = mddev->level;
5888         mddev->new_chunk_sectors = mddev->chunk_sectors;
5889         mddev->new_layout = mddev->layout;
5890         mddev->delta_disks = 0;
5891
5892         return 0;
5893 }
5894
5895 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5896 {
5897         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5898
5899         if (mddev->external_size)
5900                 return;
5901
5902         mddev->array_sectors = array_sectors;
5903 }
5904 EXPORT_SYMBOL(md_set_array_sectors);
5905
5906 static int update_size(struct mddev *mddev, sector_t num_sectors)
5907 {
5908         struct md_rdev *rdev;
5909         int rv;
5910         int fit = (num_sectors == 0);
5911
5912         if (mddev->pers->resize == NULL)
5913                 return -EINVAL;
5914         /* The "num_sectors" is the number of sectors of each device that
5915          * is used.  This can only make sense for arrays with redundancy.
5916          * linear and raid0 always use whatever space is available. We can only
5917          * consider changing this number if no resync or reconstruction is
5918          * happening, and if the new size is acceptable. It must fit before the
5919          * sb_start or, if that is <data_offset, it must fit before the size
5920          * of each device.  If num_sectors is zero, we find the largest size
5921          * that fits.
5922          */
5923         if (mddev->sync_thread)
5924                 return -EBUSY;
5925         if (mddev->bitmap)
5926                 /* Sorry, cannot grow a bitmap yet, just remove it,
5927                  * grow, and re-add.
5928                  */
5929                 return -EBUSY;
5930         rdev_for_each(rdev, mddev) {
5931                 sector_t avail = rdev->sectors;
5932
5933                 if (fit && (num_sectors == 0 || num_sectors > avail))
5934                         num_sectors = avail;
5935                 if (avail < num_sectors)
5936                         return -ENOSPC;
5937         }
5938         rv = mddev->pers->resize(mddev, num_sectors);
5939         if (!rv)
5940                 revalidate_disk(mddev->gendisk);
5941         return rv;
5942 }
5943
5944 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5945 {
5946         int rv;
5947         /* change the number of raid disks */
5948         if (mddev->pers->check_reshape == NULL)
5949                 return -EINVAL;
5950         if (raid_disks <= 0 ||
5951             (mddev->max_disks && raid_disks >= mddev->max_disks))
5952                 return -EINVAL;
5953         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5954                 return -EBUSY;
5955         mddev->delta_disks = raid_disks - mddev->raid_disks;
5956
5957         rv = mddev->pers->check_reshape(mddev);
5958         if (rv < 0)
5959                 mddev->delta_disks = 0;
5960         return rv;
5961 }
5962
5963
5964 /*
5965  * update_array_info is used to change the configuration of an
5966  * on-line array.
5967  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5968  * fields in the info are checked against the array.
5969  * Any differences that cannot be handled will cause an error.
5970  * Normally, only one change can be managed at a time.
5971  */
5972 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5973 {
5974         int rv = 0;
5975         int cnt = 0;
5976         int state = 0;
5977
5978         /* calculate expected state,ignoring low bits */
5979         if (mddev->bitmap && mddev->bitmap_info.offset)
5980                 state |= (1 << MD_SB_BITMAP_PRESENT);
5981
5982         if (mddev->major_version != info->major_version ||
5983             mddev->minor_version != info->minor_version ||
5984 /*          mddev->patch_version != info->patch_version || */
5985             mddev->ctime         != info->ctime         ||
5986             mddev->level         != info->level         ||
5987 /*          mddev->layout        != info->layout        || */
5988             !mddev->persistent   != info->not_persistent||
5989             mddev->chunk_sectors != info->chunk_size >> 9 ||
5990             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5991             ((state^info->state) & 0xfffffe00)
5992                 )
5993                 return -EINVAL;
5994         /* Check there is only one change */
5995         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5996                 cnt++;
5997         if (mddev->raid_disks != info->raid_disks)
5998                 cnt++;
5999         if (mddev->layout != info->layout)
6000                 cnt++;
6001         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6002                 cnt++;
6003         if (cnt == 0)
6004                 return 0;
6005         if (cnt > 1)
6006                 return -EINVAL;
6007
6008         if (mddev->layout != info->layout) {
6009                 /* Change layout
6010                  * we don't need to do anything at the md level, the
6011                  * personality will take care of it all.
6012                  */
6013                 if (mddev->pers->check_reshape == NULL)
6014                         return -EINVAL;
6015                 else {
6016                         mddev->new_layout = info->layout;
6017                         rv = mddev->pers->check_reshape(mddev);
6018                         if (rv)
6019                                 mddev->new_layout = mddev->layout;
6020                         return rv;
6021                 }
6022         }
6023         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6024                 rv = update_size(mddev, (sector_t)info->size * 2);
6025
6026         if (mddev->raid_disks    != info->raid_disks)
6027                 rv = update_raid_disks(mddev, info->raid_disks);
6028
6029         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6030                 if (mddev->pers->quiesce == NULL)
6031                         return -EINVAL;
6032                 if (mddev->recovery || mddev->sync_thread)
6033                         return -EBUSY;
6034                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6035                         /* add the bitmap */
6036                         if (mddev->bitmap)
6037                                 return -EEXIST;
6038                         if (mddev->bitmap_info.default_offset == 0)
6039                                 return -EINVAL;
6040                         mddev->bitmap_info.offset =
6041                                 mddev->bitmap_info.default_offset;
6042                         mddev->pers->quiesce(mddev, 1);
6043                         rv = bitmap_create(mddev);
6044                         if (!rv)
6045                                 rv = bitmap_load(mddev);
6046                         if (rv)
6047                                 bitmap_destroy(mddev);
6048                         mddev->pers->quiesce(mddev, 0);
6049                 } else {
6050                         /* remove the bitmap */
6051                         if (!mddev->bitmap)
6052                                 return -ENOENT;
6053                         if (mddev->bitmap->file)
6054                                 return -EINVAL;
6055                         mddev->pers->quiesce(mddev, 1);
6056                         bitmap_destroy(mddev);
6057                         mddev->pers->quiesce(mddev, 0);
6058                         mddev->bitmap_info.offset = 0;
6059                 }
6060         }
6061         md_update_sb(mddev, 1);
6062         return rv;
6063 }
6064
6065 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6066 {
6067         struct md_rdev *rdev;
6068
6069         if (mddev->pers == NULL)
6070                 return -ENODEV;
6071
6072         rdev = find_rdev(mddev, dev);
6073         if (!rdev)
6074                 return -ENODEV;
6075
6076         md_error(mddev, rdev);
6077         if (!test_bit(Faulty, &rdev->flags))
6078                 return -EBUSY;
6079         return 0;
6080 }
6081
6082 /*
6083  * We have a problem here : there is no easy way to give a CHS
6084  * virtual geometry. We currently pretend that we have a 2 heads
6085  * 4 sectors (with a BIG number of cylinders...). This drives
6086  * dosfs just mad... ;-)
6087  */
6088 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6089 {
6090         struct mddev *mddev = bdev->bd_disk->private_data;
6091
6092         geo->heads = 2;
6093         geo->sectors = 4;
6094         geo->cylinders = mddev->array_sectors / 8;
6095         return 0;
6096 }
6097
6098 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6099                         unsigned int cmd, unsigned long arg)
6100 {
6101         int err = 0;
6102         void __user *argp = (void __user *)arg;
6103         struct mddev *mddev = NULL;
6104         int ro;
6105
6106         switch (cmd) {
6107         case RAID_VERSION:
6108         case GET_ARRAY_INFO:
6109         case GET_DISK_INFO:
6110                 break;
6111         default:
6112                 if (!capable(CAP_SYS_ADMIN))
6113                         return -EACCES;
6114         }
6115
6116         /*
6117          * Commands dealing with the RAID driver but not any
6118          * particular array:
6119          */
6120         switch (cmd)
6121         {
6122                 case RAID_VERSION:
6123                         err = get_version(argp);
6124                         goto done;
6125
6126                 case PRINT_RAID_DEBUG:
6127                         err = 0;
6128                         md_print_devices();
6129                         goto done;
6130
6131 #ifndef MODULE
6132                 case RAID_AUTORUN:
6133                         err = 0;
6134                         autostart_arrays(arg);
6135                         goto done;
6136 #endif
6137                 default:;
6138         }
6139
6140         /*
6141          * Commands creating/starting a new array:
6142          */
6143
6144         mddev = bdev->bd_disk->private_data;
6145
6146         if (!mddev) {
6147                 BUG();
6148                 goto abort;
6149         }
6150
6151         err = mddev_lock(mddev);
6152         if (err) {
6153                 printk(KERN_INFO 
6154                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6155                         err, cmd);
6156                 goto abort;
6157         }
6158
6159         switch (cmd)
6160         {
6161                 case SET_ARRAY_INFO:
6162                         {
6163                                 mdu_array_info_t info;
6164                                 if (!arg)
6165                                         memset(&info, 0, sizeof(info));
6166                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6167                                         err = -EFAULT;
6168                                         goto abort_unlock;
6169                                 }
6170                                 if (mddev->pers) {
6171                                         err = update_array_info(mddev, &info);
6172                                         if (err) {
6173                                                 printk(KERN_WARNING "md: couldn't update"
6174                                                        " array info. %d\n", err);
6175                                                 goto abort_unlock;
6176                                         }
6177                                         goto done_unlock;
6178                                 }
6179                                 if (!list_empty(&mddev->disks)) {
6180                                         printk(KERN_WARNING
6181                                                "md: array %s already has disks!\n",
6182                                                mdname(mddev));
6183                                         err = -EBUSY;
6184                                         goto abort_unlock;
6185                                 }
6186                                 if (mddev->raid_disks) {
6187                                         printk(KERN_WARNING
6188                                                "md: array %s already initialised!\n",
6189                                                mdname(mddev));
6190                                         err = -EBUSY;
6191                                         goto abort_unlock;
6192                                 }
6193                                 err = set_array_info(mddev, &info);
6194                                 if (err) {
6195                                         printk(KERN_WARNING "md: couldn't set"
6196                                                " array info. %d\n", err);
6197                                         goto abort_unlock;
6198                                 }
6199                         }
6200                         goto done_unlock;
6201
6202                 default:;
6203         }
6204
6205         /*
6206          * Commands querying/configuring an existing array:
6207          */
6208         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6209          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6210         if ((!mddev->raid_disks && !mddev->external)
6211             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6212             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6213             && cmd != GET_BITMAP_FILE) {
6214                 err = -ENODEV;
6215                 goto abort_unlock;
6216         }
6217
6218         /*
6219          * Commands even a read-only array can execute:
6220          */
6221         switch (cmd)
6222         {
6223                 case GET_ARRAY_INFO:
6224                         err = get_array_info(mddev, argp);
6225                         goto done_unlock;
6226
6227                 case GET_BITMAP_FILE:
6228                         err = get_bitmap_file(mddev, argp);
6229                         goto done_unlock;
6230
6231                 case GET_DISK_INFO:
6232                         err = get_disk_info(mddev, argp);
6233                         goto done_unlock;
6234
6235                 case RESTART_ARRAY_RW:
6236                         err = restart_array(mddev);
6237                         goto done_unlock;
6238
6239                 case STOP_ARRAY:
6240                         err = do_md_stop(mddev, 0, 1);
6241                         goto done_unlock;
6242
6243                 case STOP_ARRAY_RO:
6244                         err = md_set_readonly(mddev, 1);
6245                         goto done_unlock;
6246
6247                 case BLKROSET:
6248                         if (get_user(ro, (int __user *)(arg))) {
6249                                 err = -EFAULT;
6250                                 goto done_unlock;
6251                         }
6252                         err = -EINVAL;
6253
6254                         /* if the bdev is going readonly the value of mddev->ro
6255                          * does not matter, no writes are coming
6256                          */
6257                         if (ro)
6258                                 goto done_unlock;
6259
6260                         /* are we are already prepared for writes? */
6261                         if (mddev->ro != 1)
6262                                 goto done_unlock;
6263
6264                         /* transitioning to readauto need only happen for
6265                          * arrays that call md_write_start
6266                          */
6267                         if (mddev->pers) {
6268                                 err = restart_array(mddev);
6269                                 if (err == 0) {
6270                                         mddev->ro = 2;
6271                                         set_disk_ro(mddev->gendisk, 0);
6272                                 }
6273                         }
6274                         goto done_unlock;
6275         }
6276
6277         /*
6278          * The remaining ioctls are changing the state of the
6279          * superblock, so we do not allow them on read-only arrays.
6280          * However non-MD ioctls (e.g. get-size) will still come through
6281          * here and hit the 'default' below, so only disallow
6282          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6283          */
6284         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6285                 if (mddev->ro == 2) {
6286                         mddev->ro = 0;
6287                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6288                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6289                         md_wakeup_thread(mddev->thread);
6290                 } else {
6291                         err = -EROFS;
6292                         goto abort_unlock;
6293                 }
6294         }
6295
6296         switch (cmd)
6297         {
6298                 case ADD_NEW_DISK:
6299                 {
6300                         mdu_disk_info_t info;
6301                         if (copy_from_user(&info, argp, sizeof(info)))
6302                                 err = -EFAULT;
6303                         else
6304                                 err = add_new_disk(mddev, &info);
6305                         goto done_unlock;
6306                 }
6307
6308                 case HOT_REMOVE_DISK:
6309                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6310                         goto done_unlock;
6311
6312                 case HOT_ADD_DISK:
6313                         err = hot_add_disk(mddev, new_decode_dev(arg));
6314                         goto done_unlock;
6315
6316                 case SET_DISK_FAULTY:
6317                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6318                         goto done_unlock;
6319
6320                 case RUN_ARRAY:
6321                         err = do_md_run(mddev);
6322                         goto done_unlock;
6323
6324                 case SET_BITMAP_FILE:
6325                         err = set_bitmap_file(mddev, (int)arg);
6326                         goto done_unlock;
6327
6328                 default:
6329                         err = -EINVAL;
6330                         goto abort_unlock;
6331         }
6332
6333 done_unlock:
6334 abort_unlock:
6335         if (mddev->hold_active == UNTIL_IOCTL &&
6336             err != -EINVAL)
6337                 mddev->hold_active = 0;
6338         mddev_unlock(mddev);
6339
6340         return err;
6341 done:
6342         if (err)
6343                 MD_BUG();
6344 abort:
6345         return err;
6346 }
6347 #ifdef CONFIG_COMPAT
6348 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6349                     unsigned int cmd, unsigned long arg)
6350 {
6351         switch (cmd) {
6352         case HOT_REMOVE_DISK:
6353         case HOT_ADD_DISK:
6354         case SET_DISK_FAULTY:
6355         case SET_BITMAP_FILE:
6356                 /* These take in integer arg, do not convert */
6357                 break;
6358         default:
6359                 arg = (unsigned long)compat_ptr(arg);
6360                 break;
6361         }
6362
6363         return md_ioctl(bdev, mode, cmd, arg);
6364 }
6365 #endif /* CONFIG_COMPAT */
6366
6367 static int md_open(struct block_device *bdev, fmode_t mode)
6368 {
6369         /*
6370          * Succeed if we can lock the mddev, which confirms that
6371          * it isn't being stopped right now.
6372          */
6373         struct mddev *mddev = mddev_find(bdev->bd_dev);
6374         int err;
6375
6376         if (mddev->gendisk != bdev->bd_disk) {
6377                 /* we are racing with mddev_put which is discarding this
6378                  * bd_disk.
6379                  */
6380                 mddev_put(mddev);
6381                 /* Wait until bdev->bd_disk is definitely gone */
6382                 flush_workqueue(md_misc_wq);
6383                 /* Then retry the open from the top */
6384                 return -ERESTARTSYS;
6385         }
6386         BUG_ON(mddev != bdev->bd_disk->private_data);
6387
6388         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6389                 goto out;
6390
6391         err = 0;
6392         atomic_inc(&mddev->openers);
6393         mutex_unlock(&mddev->open_mutex);
6394
6395         check_disk_change(bdev);
6396  out:
6397         return err;
6398 }
6399
6400 static int md_release(struct gendisk *disk, fmode_t mode)
6401 {
6402         struct mddev *mddev = disk->private_data;
6403
6404         BUG_ON(!mddev);
6405         atomic_dec(&mddev->openers);
6406         mddev_put(mddev);
6407
6408         return 0;
6409 }
6410
6411 static int md_media_changed(struct gendisk *disk)
6412 {
6413         struct mddev *mddev = disk->private_data;
6414
6415         return mddev->changed;
6416 }
6417
6418 static int md_revalidate(struct gendisk *disk)
6419 {
6420         struct mddev *mddev = disk->private_data;
6421
6422         mddev->changed = 0;
6423         return 0;
6424 }
6425 static const struct block_device_operations md_fops =
6426 {
6427         .owner          = THIS_MODULE,
6428         .open           = md_open,
6429         .release        = md_release,
6430         .ioctl          = md_ioctl,
6431 #ifdef CONFIG_COMPAT
6432         .compat_ioctl   = md_compat_ioctl,
6433 #endif
6434         .getgeo         = md_getgeo,
6435         .media_changed  = md_media_changed,
6436         .revalidate_disk= md_revalidate,
6437 };
6438
6439 static int md_thread(void * arg)
6440 {
6441         struct md_thread *thread = arg;
6442
6443         /*
6444          * md_thread is a 'system-thread', it's priority should be very
6445          * high. We avoid resource deadlocks individually in each
6446          * raid personality. (RAID5 does preallocation) We also use RR and
6447          * the very same RT priority as kswapd, thus we will never get
6448          * into a priority inversion deadlock.
6449          *
6450          * we definitely have to have equal or higher priority than
6451          * bdflush, otherwise bdflush will deadlock if there are too
6452          * many dirty RAID5 blocks.
6453          */
6454
6455         allow_signal(SIGKILL);
6456         while (!kthread_should_stop()) {
6457
6458                 /* We need to wait INTERRUPTIBLE so that
6459                  * we don't add to the load-average.
6460                  * That means we need to be sure no signals are
6461                  * pending
6462                  */
6463                 if (signal_pending(current))
6464                         flush_signals(current);
6465
6466                 wait_event_interruptible_timeout
6467                         (thread->wqueue,
6468                          test_bit(THREAD_WAKEUP, &thread->flags)
6469                          || kthread_should_stop(),
6470                          thread->timeout);
6471
6472                 clear_bit(THREAD_WAKEUP, &thread->flags);
6473                 if (!kthread_should_stop())
6474                         thread->run(thread->mddev);
6475         }
6476
6477         return 0;
6478 }
6479
6480 void md_wakeup_thread(struct md_thread *thread)
6481 {
6482         if (thread) {
6483                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6484                 set_bit(THREAD_WAKEUP, &thread->flags);
6485                 wake_up(&thread->wqueue);
6486         }
6487 }
6488
6489 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6490                                  const char *name)
6491 {
6492         struct md_thread *thread;
6493
6494         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6495         if (!thread)
6496                 return NULL;
6497
6498         init_waitqueue_head(&thread->wqueue);
6499
6500         thread->run = run;
6501         thread->mddev = mddev;
6502         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6503         thread->tsk = kthread_run(md_thread, thread,
6504                                   "%s_%s",
6505                                   mdname(thread->mddev),
6506                                   name ?: mddev->pers->name);
6507         if (IS_ERR(thread->tsk)) {
6508                 kfree(thread);
6509                 return NULL;
6510         }
6511         return thread;
6512 }
6513
6514 void md_unregister_thread(struct md_thread **threadp)
6515 {
6516         struct md_thread *thread = *threadp;
6517         if (!thread)
6518                 return;
6519         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6520         /* Locking ensures that mddev_unlock does not wake_up a
6521          * non-existent thread
6522          */
6523         spin_lock(&pers_lock);
6524         *threadp = NULL;
6525         spin_unlock(&pers_lock);
6526
6527         kthread_stop(thread->tsk);
6528         kfree(thread);
6529 }
6530
6531 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6532 {
6533         if (!mddev) {
6534                 MD_BUG();
6535                 return;
6536         }
6537
6538         if (!rdev || test_bit(Faulty, &rdev->flags))
6539                 return;
6540
6541         if (!mddev->pers || !mddev->pers->error_handler)
6542                 return;
6543         mddev->pers->error_handler(mddev,rdev);
6544         if (mddev->degraded)
6545                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6546         sysfs_notify_dirent_safe(rdev->sysfs_state);
6547         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6548         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6549         md_wakeup_thread(mddev->thread);
6550         if (mddev->event_work.func)
6551                 queue_work(md_misc_wq, &mddev->event_work);
6552         md_new_event_inintr(mddev);
6553 }
6554
6555 /* seq_file implementation /proc/mdstat */
6556
6557 static void status_unused(struct seq_file *seq)
6558 {
6559         int i = 0;
6560         struct md_rdev *rdev;
6561
6562         seq_printf(seq, "unused devices: ");
6563
6564         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6565                 char b[BDEVNAME_SIZE];
6566                 i++;
6567                 seq_printf(seq, "%s ",
6568                               bdevname(rdev->bdev,b));
6569         }
6570         if (!i)
6571                 seq_printf(seq, "<none>");
6572
6573         seq_printf(seq, "\n");
6574 }
6575
6576
6577 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6578 {
6579         sector_t max_sectors, resync, res;
6580         unsigned long dt, db;
6581         sector_t rt;
6582         int scale;
6583         unsigned int per_milli;
6584
6585         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6586
6587         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6588                 max_sectors = mddev->resync_max_sectors;
6589         else
6590                 max_sectors = mddev->dev_sectors;
6591
6592         /*
6593          * Should not happen.
6594          */
6595         if (!max_sectors) {
6596                 MD_BUG();
6597                 return;
6598         }
6599         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6600          * in a sector_t, and (max_sectors>>scale) will fit in a
6601          * u32, as those are the requirements for sector_div.
6602          * Thus 'scale' must be at least 10
6603          */
6604         scale = 10;
6605         if (sizeof(sector_t) > sizeof(unsigned long)) {
6606                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6607                         scale++;
6608         }
6609         res = (resync>>scale)*1000;
6610         sector_div(res, (u32)((max_sectors>>scale)+1));
6611
6612         per_milli = res;
6613         {
6614                 int i, x = per_milli/50, y = 20-x;
6615                 seq_printf(seq, "[");
6616                 for (i = 0; i < x; i++)
6617                         seq_printf(seq, "=");
6618                 seq_printf(seq, ">");
6619                 for (i = 0; i < y; i++)
6620                         seq_printf(seq, ".");
6621                 seq_printf(seq, "] ");
6622         }
6623         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6624                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6625                     "reshape" :
6626                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6627                      "check" :
6628                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6629                       "resync" : "recovery"))),
6630                    per_milli/10, per_milli % 10,
6631                    (unsigned long long) resync/2,
6632                    (unsigned long long) max_sectors/2);
6633
6634         /*
6635          * dt: time from mark until now
6636          * db: blocks written from mark until now
6637          * rt: remaining time
6638          *
6639          * rt is a sector_t, so could be 32bit or 64bit.
6640          * So we divide before multiply in case it is 32bit and close
6641          * to the limit.
6642          * We scale the divisor (db) by 32 to avoid losing precision
6643          * near the end of resync when the number of remaining sectors
6644          * is close to 'db'.
6645          * We then divide rt by 32 after multiplying by db to compensate.
6646          * The '+1' avoids division by zero if db is very small.
6647          */
6648         dt = ((jiffies - mddev->resync_mark) / HZ);
6649         if (!dt) dt++;
6650         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6651                 - mddev->resync_mark_cnt;
6652
6653         rt = max_sectors - resync;    /* number of remaining sectors */
6654         sector_div(rt, db/32+1);
6655         rt *= dt;
6656         rt >>= 5;
6657
6658         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6659                    ((unsigned long)rt % 60)/6);
6660
6661         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6662 }
6663
6664 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6665 {
6666         struct list_head *tmp;
6667         loff_t l = *pos;
6668         struct mddev *mddev;
6669
6670         if (l >= 0x10000)
6671                 return NULL;
6672         if (!l--)
6673                 /* header */
6674                 return (void*)1;
6675
6676         spin_lock(&all_mddevs_lock);
6677         list_for_each(tmp,&all_mddevs)
6678                 if (!l--) {
6679                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6680                         mddev_get(mddev);
6681                         spin_unlock(&all_mddevs_lock);
6682                         return mddev;
6683                 }
6684         spin_unlock(&all_mddevs_lock);
6685         if (!l--)
6686                 return (void*)2;/* tail */
6687         return NULL;
6688 }
6689
6690 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6691 {
6692         struct list_head *tmp;
6693         struct mddev *next_mddev, *mddev = v;
6694         
6695         ++*pos;
6696         if (v == (void*)2)
6697                 return NULL;
6698
6699         spin_lock(&all_mddevs_lock);
6700         if (v == (void*)1)
6701                 tmp = all_mddevs.next;
6702         else
6703                 tmp = mddev->all_mddevs.next;
6704         if (tmp != &all_mddevs)
6705                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6706         else {
6707                 next_mddev = (void*)2;
6708                 *pos = 0x10000;
6709         }               
6710         spin_unlock(&all_mddevs_lock);
6711
6712         if (v != (void*)1)
6713                 mddev_put(mddev);
6714         return next_mddev;
6715
6716 }
6717
6718 static void md_seq_stop(struct seq_file *seq, void *v)
6719 {
6720         struct mddev *mddev = v;
6721
6722         if (mddev && v != (void*)1 && v != (void*)2)
6723                 mddev_put(mddev);
6724 }
6725
6726 static int md_seq_show(struct seq_file *seq, void *v)
6727 {
6728         struct mddev *mddev = v;
6729         sector_t sectors;
6730         struct md_rdev *rdev;
6731
6732         if (v == (void*)1) {
6733                 struct md_personality *pers;
6734                 seq_printf(seq, "Personalities : ");
6735                 spin_lock(&pers_lock);
6736                 list_for_each_entry(pers, &pers_list, list)
6737                         seq_printf(seq, "[%s] ", pers->name);
6738
6739                 spin_unlock(&pers_lock);
6740                 seq_printf(seq, "\n");
6741                 seq->poll_event = atomic_read(&md_event_count);
6742                 return 0;
6743         }
6744         if (v == (void*)2) {
6745                 status_unused(seq);
6746                 return 0;
6747         }
6748
6749         if (mddev_lock(mddev) < 0)
6750                 return -EINTR;
6751
6752         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6753                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6754                                                 mddev->pers ? "" : "in");
6755                 if (mddev->pers) {
6756                         if (mddev->ro==1)
6757                                 seq_printf(seq, " (read-only)");
6758                         if (mddev->ro==2)
6759                                 seq_printf(seq, " (auto-read-only)");
6760                         seq_printf(seq, " %s", mddev->pers->name);
6761                 }
6762
6763                 sectors = 0;
6764                 rdev_for_each(rdev, mddev) {
6765                         char b[BDEVNAME_SIZE];
6766                         seq_printf(seq, " %s[%d]",
6767                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6768                         if (test_bit(WriteMostly, &rdev->flags))
6769                                 seq_printf(seq, "(W)");
6770                         if (test_bit(Faulty, &rdev->flags)) {
6771                                 seq_printf(seq, "(F)");
6772                                 continue;
6773                         }
6774                         if (rdev->raid_disk < 0)
6775                                 seq_printf(seq, "(S)"); /* spare */
6776                         if (test_bit(Replacement, &rdev->flags))
6777                                 seq_printf(seq, "(R)");
6778                         sectors += rdev->sectors;
6779                 }
6780
6781                 if (!list_empty(&mddev->disks)) {
6782                         if (mddev->pers)
6783                                 seq_printf(seq, "\n      %llu blocks",
6784                                            (unsigned long long)
6785                                            mddev->array_sectors / 2);
6786                         else
6787                                 seq_printf(seq, "\n      %llu blocks",
6788                                            (unsigned long long)sectors / 2);
6789                 }
6790                 if (mddev->persistent) {
6791                         if (mddev->major_version != 0 ||
6792                             mddev->minor_version != 90) {
6793                                 seq_printf(seq," super %d.%d",
6794                                            mddev->major_version,
6795                                            mddev->minor_version);
6796                         }
6797                 } else if (mddev->external)
6798                         seq_printf(seq, " super external:%s",
6799                                    mddev->metadata_type);
6800                 else
6801                         seq_printf(seq, " super non-persistent");
6802
6803                 if (mddev->pers) {
6804                         mddev->pers->status(seq, mddev);
6805                         seq_printf(seq, "\n      ");
6806                         if (mddev->pers->sync_request) {
6807                                 if (mddev->curr_resync > 2) {
6808                                         status_resync(seq, mddev);
6809                                         seq_printf(seq, "\n      ");
6810                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6811                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6812                                 else if (mddev->recovery_cp < MaxSector)
6813                                         seq_printf(seq, "\tresync=PENDING\n      ");
6814                         }
6815                 } else
6816                         seq_printf(seq, "\n       ");
6817
6818                 bitmap_status(seq, mddev->bitmap);
6819
6820                 seq_printf(seq, "\n");
6821         }
6822         mddev_unlock(mddev);
6823         
6824         return 0;
6825 }
6826
6827 static const struct seq_operations md_seq_ops = {
6828         .start  = md_seq_start,
6829         .next   = md_seq_next,
6830         .stop   = md_seq_stop,
6831         .show   = md_seq_show,
6832 };
6833
6834 static int md_seq_open(struct inode *inode, struct file *file)
6835 {
6836         struct seq_file *seq;
6837         int error;
6838
6839         error = seq_open(file, &md_seq_ops);
6840         if (error)
6841                 return error;
6842
6843         seq = file->private_data;
6844         seq->poll_event = atomic_read(&md_event_count);
6845         return error;
6846 }
6847
6848 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6849 {
6850         struct seq_file *seq = filp->private_data;
6851         int mask;
6852
6853         poll_wait(filp, &md_event_waiters, wait);
6854
6855         /* always allow read */
6856         mask = POLLIN | POLLRDNORM;
6857
6858         if (seq->poll_event != atomic_read(&md_event_count))
6859                 mask |= POLLERR | POLLPRI;
6860         return mask;
6861 }
6862
6863 static const struct file_operations md_seq_fops = {
6864         .owner          = THIS_MODULE,
6865         .open           = md_seq_open,
6866         .read           = seq_read,
6867         .llseek         = seq_lseek,
6868         .release        = seq_release_private,
6869         .poll           = mdstat_poll,
6870 };
6871
6872 int register_md_personality(struct md_personality *p)
6873 {
6874         spin_lock(&pers_lock);
6875         list_add_tail(&p->list, &pers_list);
6876         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6877         spin_unlock(&pers_lock);
6878         return 0;
6879 }
6880
6881 int unregister_md_personality(struct md_personality *p)
6882 {
6883         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6884         spin_lock(&pers_lock);
6885         list_del_init(&p->list);
6886         spin_unlock(&pers_lock);
6887         return 0;
6888 }
6889
6890 static int is_mddev_idle(struct mddev *mddev, int init)
6891 {
6892         struct md_rdev * rdev;
6893         int idle;
6894         int curr_events;
6895
6896         idle = 1;
6897         rcu_read_lock();
6898         rdev_for_each_rcu(rdev, mddev) {
6899                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6900                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6901                               (int)part_stat_read(&disk->part0, sectors[1]) -
6902                               atomic_read(&disk->sync_io);
6903                 /* sync IO will cause sync_io to increase before the disk_stats
6904                  * as sync_io is counted when a request starts, and
6905                  * disk_stats is counted when it completes.
6906                  * So resync activity will cause curr_events to be smaller than
6907                  * when there was no such activity.
6908                  * non-sync IO will cause disk_stat to increase without
6909                  * increasing sync_io so curr_events will (eventually)
6910                  * be larger than it was before.  Once it becomes
6911                  * substantially larger, the test below will cause
6912                  * the array to appear non-idle, and resync will slow
6913                  * down.
6914                  * If there is a lot of outstanding resync activity when
6915                  * we set last_event to curr_events, then all that activity
6916                  * completing might cause the array to appear non-idle
6917                  * and resync will be slowed down even though there might
6918                  * not have been non-resync activity.  This will only
6919                  * happen once though.  'last_events' will soon reflect
6920                  * the state where there is little or no outstanding
6921                  * resync requests, and further resync activity will
6922                  * always make curr_events less than last_events.
6923                  *
6924                  */
6925                 if (init || curr_events - rdev->last_events > 64) {
6926                         rdev->last_events = curr_events;
6927                         idle = 0;
6928                 }
6929         }
6930         rcu_read_unlock();
6931         return idle;
6932 }
6933
6934 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6935 {
6936         /* another "blocks" (512byte) blocks have been synced */
6937         atomic_sub(blocks, &mddev->recovery_active);
6938         wake_up(&mddev->recovery_wait);
6939         if (!ok) {
6940                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6941                 md_wakeup_thread(mddev->thread);
6942                 // stop recovery, signal do_sync ....
6943         }
6944 }
6945
6946
6947 /* md_write_start(mddev, bi)
6948  * If we need to update some array metadata (e.g. 'active' flag
6949  * in superblock) before writing, schedule a superblock update
6950  * and wait for it to complete.
6951  */
6952 void md_write_start(struct mddev *mddev, struct bio *bi)
6953 {
6954         int did_change = 0;
6955         if (bio_data_dir(bi) != WRITE)
6956                 return;
6957
6958         BUG_ON(mddev->ro == 1);
6959         if (mddev->ro == 2) {
6960                 /* need to switch to read/write */
6961                 mddev->ro = 0;
6962                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6963                 md_wakeup_thread(mddev->thread);
6964                 md_wakeup_thread(mddev->sync_thread);
6965                 did_change = 1;
6966         }
6967         atomic_inc(&mddev->writes_pending);
6968         if (mddev->safemode == 1)
6969                 mddev->safemode = 0;
6970         if (mddev->in_sync) {
6971                 spin_lock_irq(&mddev->write_lock);
6972                 if (mddev->in_sync) {
6973                         mddev->in_sync = 0;
6974                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6975                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6976                         md_wakeup_thread(mddev->thread);
6977                         did_change = 1;
6978                 }
6979                 spin_unlock_irq(&mddev->write_lock);
6980         }
6981         if (did_change)
6982                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6983         wait_event(mddev->sb_wait,
6984                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6985 }
6986
6987 void md_write_end(struct mddev *mddev)
6988 {
6989         if (atomic_dec_and_test(&mddev->writes_pending)) {
6990                 if (mddev->safemode == 2)
6991                         md_wakeup_thread(mddev->thread);
6992                 else if (mddev->safemode_delay)
6993                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6994         }
6995 }
6996
6997 /* md_allow_write(mddev)
6998  * Calling this ensures that the array is marked 'active' so that writes
6999  * may proceed without blocking.  It is important to call this before
7000  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7001  * Must be called with mddev_lock held.
7002  *
7003  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7004  * is dropped, so return -EAGAIN after notifying userspace.
7005  */
7006 int md_allow_write(struct mddev *mddev)
7007 {
7008         if (!mddev->pers)
7009                 return 0;
7010         if (mddev->ro)
7011                 return 0;
7012         if (!mddev->pers->sync_request)
7013                 return 0;
7014
7015         spin_lock_irq(&mddev->write_lock);
7016         if (mddev->in_sync) {
7017                 mddev->in_sync = 0;
7018                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7019                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7020                 if (mddev->safemode_delay &&
7021                     mddev->safemode == 0)
7022                         mddev->safemode = 1;
7023                 spin_unlock_irq(&mddev->write_lock);
7024                 md_update_sb(mddev, 0);
7025                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7026         } else
7027                 spin_unlock_irq(&mddev->write_lock);
7028
7029         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7030                 return -EAGAIN;
7031         else
7032                 return 0;
7033 }
7034 EXPORT_SYMBOL_GPL(md_allow_write);
7035
7036 #define SYNC_MARKS      10
7037 #define SYNC_MARK_STEP  (3*HZ)
7038 void md_do_sync(struct mddev *mddev)
7039 {
7040         struct mddev *mddev2;
7041         unsigned int currspeed = 0,
7042                  window;
7043         sector_t max_sectors,j, io_sectors;
7044         unsigned long mark[SYNC_MARKS];
7045         sector_t mark_cnt[SYNC_MARKS];
7046         int last_mark,m;
7047         struct list_head *tmp;
7048         sector_t last_check;
7049         int skipped = 0;
7050         struct md_rdev *rdev;
7051         char *desc;
7052
7053         /* just incase thread restarts... */
7054         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7055                 return;
7056         if (mddev->ro) /* never try to sync a read-only array */
7057                 return;
7058
7059         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7060                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7061                         desc = "data-check";
7062                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7063                         desc = "requested-resync";
7064                 else
7065                         desc = "resync";
7066         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7067                 desc = "reshape";
7068         else
7069                 desc = "recovery";
7070
7071         /* we overload curr_resync somewhat here.
7072          * 0 == not engaged in resync at all
7073          * 2 == checking that there is no conflict with another sync
7074          * 1 == like 2, but have yielded to allow conflicting resync to
7075          *              commense
7076          * other == active in resync - this many blocks
7077          *
7078          * Before starting a resync we must have set curr_resync to
7079          * 2, and then checked that every "conflicting" array has curr_resync
7080          * less than ours.  When we find one that is the same or higher
7081          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7082          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7083          * This will mean we have to start checking from the beginning again.
7084          *
7085          */
7086
7087         do {
7088                 mddev->curr_resync = 2;
7089
7090         try_again:
7091                 if (kthread_should_stop())
7092                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7093
7094                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7095                         goto skip;
7096                 for_each_mddev(mddev2, tmp) {
7097                         if (mddev2 == mddev)
7098                                 continue;
7099                         if (!mddev->parallel_resync
7100                         &&  mddev2->curr_resync
7101                         &&  match_mddev_units(mddev, mddev2)) {
7102                                 DEFINE_WAIT(wq);
7103                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7104                                         /* arbitrarily yield */
7105                                         mddev->curr_resync = 1;
7106                                         wake_up(&resync_wait);
7107                                 }
7108                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7109                                         /* no need to wait here, we can wait the next
7110                                          * time 'round when curr_resync == 2
7111                                          */
7112                                         continue;
7113                                 /* We need to wait 'interruptible' so as not to
7114                                  * contribute to the load average, and not to
7115                                  * be caught by 'softlockup'
7116                                  */
7117                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7118                                 if (!kthread_should_stop() &&
7119                                     mddev2->curr_resync >= mddev->curr_resync) {
7120                                         printk(KERN_INFO "md: delaying %s of %s"
7121                                                " until %s has finished (they"
7122                                                " share one or more physical units)\n",
7123                                                desc, mdname(mddev), mdname(mddev2));
7124                                         mddev_put(mddev2);
7125                                         if (signal_pending(current))
7126                                                 flush_signals(current);
7127                                         schedule();
7128                                         finish_wait(&resync_wait, &wq);
7129                                         goto try_again;
7130                                 }
7131                                 finish_wait(&resync_wait, &wq);
7132                         }
7133                 }
7134         } while (mddev->curr_resync < 2);
7135
7136         j = 0;
7137         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7138                 /* resync follows the size requested by the personality,
7139                  * which defaults to physical size, but can be virtual size
7140                  */
7141                 max_sectors = mddev->resync_max_sectors;
7142                 mddev->resync_mismatches = 0;
7143                 /* we don't use the checkpoint if there's a bitmap */
7144                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7145                         j = mddev->resync_min;
7146                 else if (!mddev->bitmap)
7147                         j = mddev->recovery_cp;
7148
7149         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7150                 max_sectors = mddev->dev_sectors;
7151         else {
7152                 /* recovery follows the physical size of devices */
7153                 max_sectors = mddev->dev_sectors;
7154                 j = MaxSector;
7155                 rcu_read_lock();
7156                 rdev_for_each_rcu(rdev, mddev)
7157                         if (rdev->raid_disk >= 0 &&
7158                             !test_bit(Faulty, &rdev->flags) &&
7159                             !test_bit(In_sync, &rdev->flags) &&
7160                             rdev->recovery_offset < j)
7161                                 j = rdev->recovery_offset;
7162                 rcu_read_unlock();
7163         }
7164
7165         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7166         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7167                 " %d KB/sec/disk.\n", speed_min(mddev));
7168         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7169                "(but not more than %d KB/sec) for %s.\n",
7170                speed_max(mddev), desc);
7171
7172         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7173
7174         io_sectors = 0;
7175         for (m = 0; m < SYNC_MARKS; m++) {
7176                 mark[m] = jiffies;
7177                 mark_cnt[m] = io_sectors;
7178         }
7179         last_mark = 0;
7180         mddev->resync_mark = mark[last_mark];
7181         mddev->resync_mark_cnt = mark_cnt[last_mark];
7182
7183         /*
7184          * Tune reconstruction:
7185          */
7186         window = 32*(PAGE_SIZE/512);
7187         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7188                 window/2, (unsigned long long)max_sectors/2);
7189
7190         atomic_set(&mddev->recovery_active, 0);
7191         last_check = 0;
7192
7193         if (j>2) {
7194                 printk(KERN_INFO 
7195                        "md: resuming %s of %s from checkpoint.\n",
7196                        desc, mdname(mddev));
7197                 mddev->curr_resync = j;
7198         }
7199         mddev->curr_resync_completed = j;
7200
7201         while (j < max_sectors) {
7202                 sector_t sectors;
7203
7204                 skipped = 0;
7205
7206                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7207                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7208                       (mddev->curr_resync - mddev->curr_resync_completed)
7209                       > (max_sectors >> 4)) ||
7210                      (j - mddev->curr_resync_completed)*2
7211                      >= mddev->resync_max - mddev->curr_resync_completed
7212                             )) {
7213                         /* time to update curr_resync_completed */
7214                         wait_event(mddev->recovery_wait,
7215                                    atomic_read(&mddev->recovery_active) == 0);
7216                         mddev->curr_resync_completed = j;
7217                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7218                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7219                 }
7220
7221                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7222                         /* As this condition is controlled by user-space,
7223                          * we can block indefinitely, so use '_interruptible'
7224                          * to avoid triggering warnings.
7225                          */
7226                         flush_signals(current); /* just in case */
7227                         wait_event_interruptible(mddev->recovery_wait,
7228                                                  mddev->resync_max > j
7229                                                  || kthread_should_stop());
7230                 }
7231
7232                 if (kthread_should_stop())
7233                         goto interrupted;
7234
7235                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7236                                                   currspeed < speed_min(mddev));
7237                 if (sectors == 0) {
7238                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7239                         goto out;
7240                 }
7241
7242                 if (!skipped) { /* actual IO requested */
7243                         io_sectors += sectors;
7244                         atomic_add(sectors, &mddev->recovery_active);
7245                 }
7246
7247                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7248                         break;
7249
7250                 j += sectors;
7251                 if (j>1) mddev->curr_resync = j;
7252                 mddev->curr_mark_cnt = io_sectors;
7253                 if (last_check == 0)
7254                         /* this is the earliest that rebuild will be
7255                          * visible in /proc/mdstat
7256                          */
7257                         md_new_event(mddev);
7258
7259                 if (last_check + window > io_sectors || j == max_sectors)
7260                         continue;
7261
7262                 last_check = io_sectors;
7263         repeat:
7264                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7265                         /* step marks */
7266                         int next = (last_mark+1) % SYNC_MARKS;
7267
7268                         mddev->resync_mark = mark[next];
7269                         mddev->resync_mark_cnt = mark_cnt[next];
7270                         mark[next] = jiffies;
7271                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7272                         last_mark = next;
7273                 }
7274
7275
7276                 if (kthread_should_stop())
7277                         goto interrupted;
7278
7279
7280                 /*
7281                  * this loop exits only if either when we are slower than
7282                  * the 'hard' speed limit, or the system was IO-idle for
7283                  * a jiffy.
7284                  * the system might be non-idle CPU-wise, but we only care
7285                  * about not overloading the IO subsystem. (things like an
7286                  * e2fsck being done on the RAID array should execute fast)
7287                  */
7288                 cond_resched();
7289
7290                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7291                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7292
7293                 if (currspeed > speed_min(mddev)) {
7294                         if ((currspeed > speed_max(mddev)) ||
7295                                         !is_mddev_idle(mddev, 0)) {
7296                                 msleep(500);
7297                                 goto repeat;
7298                         }
7299                 }
7300         }
7301         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7302         /*
7303          * this also signals 'finished resyncing' to md_stop
7304          */
7305  out:
7306         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7307
7308         /* tell personality that we are finished */
7309         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7310
7311         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7312             mddev->curr_resync > 2) {
7313                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7314                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7315                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7316                                         printk(KERN_INFO
7317                                                "md: checkpointing %s of %s.\n",
7318                                                desc, mdname(mddev));
7319                                         mddev->recovery_cp =
7320                                                 mddev->curr_resync_completed;
7321                                 }
7322                         } else
7323                                 mddev->recovery_cp = MaxSector;
7324                 } else {
7325                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7326                                 mddev->curr_resync = MaxSector;
7327                         rcu_read_lock();
7328                         rdev_for_each_rcu(rdev, mddev)
7329                                 if (rdev->raid_disk >= 0 &&
7330                                     mddev->delta_disks >= 0 &&
7331                                     !test_bit(Faulty, &rdev->flags) &&
7332                                     !test_bit(In_sync, &rdev->flags) &&
7333                                     rdev->recovery_offset < mddev->curr_resync)
7334                                         rdev->recovery_offset = mddev->curr_resync;
7335                         rcu_read_unlock();
7336                 }
7337         }
7338  skip:
7339         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7340
7341         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7342                 /* We completed so min/max setting can be forgotten if used. */
7343                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7344                         mddev->resync_min = 0;
7345                 mddev->resync_max = MaxSector;
7346         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7347                 mddev->resync_min = mddev->curr_resync_completed;
7348         mddev->curr_resync = 0;
7349         wake_up(&resync_wait);
7350         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7351         md_wakeup_thread(mddev->thread);
7352         return;
7353
7354  interrupted:
7355         /*
7356          * got a signal, exit.
7357          */
7358         printk(KERN_INFO
7359                "md: md_do_sync() got signal ... exiting\n");
7360         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7361         goto out;
7362
7363 }
7364 EXPORT_SYMBOL_GPL(md_do_sync);
7365
7366 static int remove_and_add_spares(struct mddev *mddev)
7367 {
7368         struct md_rdev *rdev;
7369         int spares = 0;
7370         int removed = 0;
7371
7372         mddev->curr_resync_completed = 0;
7373
7374         rdev_for_each(rdev, mddev)
7375                 if (rdev->raid_disk >= 0 &&
7376                     !test_bit(Blocked, &rdev->flags) &&
7377                     (test_bit(Faulty, &rdev->flags) ||
7378                      ! test_bit(In_sync, &rdev->flags)) &&
7379                     atomic_read(&rdev->nr_pending)==0) {
7380                         if (mddev->pers->hot_remove_disk(
7381                                     mddev, rdev) == 0) {
7382                                 sysfs_unlink_rdev(mddev, rdev);
7383                                 rdev->raid_disk = -1;
7384                                 removed++;
7385                         }
7386                 }
7387         if (removed)
7388                 sysfs_notify(&mddev->kobj, NULL,
7389                              "degraded");
7390
7391
7392         rdev_for_each(rdev, mddev) {
7393                 if (rdev->raid_disk >= 0 &&
7394                     !test_bit(In_sync, &rdev->flags) &&
7395                     !test_bit(Faulty, &rdev->flags))
7396                         spares++;
7397                 if (rdev->raid_disk < 0
7398                     && !test_bit(Faulty, &rdev->flags)) {
7399                         rdev->recovery_offset = 0;
7400                         if (mddev->pers->
7401                             hot_add_disk(mddev, rdev) == 0) {
7402                                 if (sysfs_link_rdev(mddev, rdev))
7403                                         /* failure here is OK */;
7404                                 spares++;
7405                                 md_new_event(mddev);
7406                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7407                         }
7408                 }
7409         }
7410         return spares;
7411 }
7412
7413 static void reap_sync_thread(struct mddev *mddev)
7414 {
7415         struct md_rdev *rdev;
7416
7417         /* resync has finished, collect result */
7418         md_unregister_thread(&mddev->sync_thread);
7419         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7420             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7421                 /* success...*/
7422                 /* activate any spares */
7423                 if (mddev->pers->spare_active(mddev))
7424                         sysfs_notify(&mddev->kobj, NULL,
7425                                      "degraded");
7426         }
7427         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7428             mddev->pers->finish_reshape)
7429                 mddev->pers->finish_reshape(mddev);
7430
7431         /* If array is no-longer degraded, then any saved_raid_disk
7432          * information must be scrapped.  Also if any device is now
7433          * In_sync we must scrape the saved_raid_disk for that device
7434          * do the superblock for an incrementally recovered device
7435          * written out.
7436          */
7437         rdev_for_each(rdev, mddev)
7438                 if (!mddev->degraded ||
7439                     test_bit(In_sync, &rdev->flags))
7440                         rdev->saved_raid_disk = -1;
7441
7442         md_update_sb(mddev, 1);
7443         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7444         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7445         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7446         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7447         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7448         /* flag recovery needed just to double check */
7449         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7450         sysfs_notify_dirent_safe(mddev->sysfs_action);
7451         md_new_event(mddev);
7452         if (mddev->event_work.func)
7453                 queue_work(md_misc_wq, &mddev->event_work);
7454 }
7455
7456 /*
7457  * This routine is regularly called by all per-raid-array threads to
7458  * deal with generic issues like resync and super-block update.
7459  * Raid personalities that don't have a thread (linear/raid0) do not
7460  * need this as they never do any recovery or update the superblock.
7461  *
7462  * It does not do any resync itself, but rather "forks" off other threads
7463  * to do that as needed.
7464  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7465  * "->recovery" and create a thread at ->sync_thread.
7466  * When the thread finishes it sets MD_RECOVERY_DONE
7467  * and wakeups up this thread which will reap the thread and finish up.
7468  * This thread also removes any faulty devices (with nr_pending == 0).
7469  *
7470  * The overall approach is:
7471  *  1/ if the superblock needs updating, update it.
7472  *  2/ If a recovery thread is running, don't do anything else.
7473  *  3/ If recovery has finished, clean up, possibly marking spares active.
7474  *  4/ If there are any faulty devices, remove them.
7475  *  5/ If array is degraded, try to add spares devices
7476  *  6/ If array has spares or is not in-sync, start a resync thread.
7477  */
7478 void md_check_recovery(struct mddev *mddev)
7479 {
7480         if (mddev->suspended)
7481                 return;
7482
7483         if (mddev->bitmap)
7484                 bitmap_daemon_work(mddev);
7485
7486         if (signal_pending(current)) {
7487                 if (mddev->pers->sync_request && !mddev->external) {
7488                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7489                                mdname(mddev));
7490                         mddev->safemode = 2;
7491                 }
7492                 flush_signals(current);
7493         }
7494
7495         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7496                 return;
7497         if ( ! (
7498                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7499                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7500                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7501                 (mddev->external == 0 && mddev->safemode == 1) ||
7502                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7503                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7504                 ))
7505                 return;
7506
7507         if (mddev_trylock(mddev)) {
7508                 int spares = 0;
7509
7510                 if (mddev->ro) {
7511                         /* Only thing we do on a ro array is remove
7512                          * failed devices.
7513                          */
7514                         struct md_rdev *rdev;
7515                         rdev_for_each(rdev, mddev)
7516                                 if (rdev->raid_disk >= 0 &&
7517                                     !test_bit(Blocked, &rdev->flags) &&
7518                                     test_bit(Faulty, &rdev->flags) &&
7519                                     atomic_read(&rdev->nr_pending)==0) {
7520                                         if (mddev->pers->hot_remove_disk(
7521                                                     mddev, rdev) == 0) {
7522                                                 sysfs_unlink_rdev(mddev, rdev);
7523                                                 rdev->raid_disk = -1;
7524                                         }
7525                                 }
7526                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7527                         goto unlock;
7528                 }
7529
7530                 if (!mddev->external) {
7531                         int did_change = 0;
7532                         spin_lock_irq(&mddev->write_lock);
7533                         if (mddev->safemode &&
7534                             !atomic_read(&mddev->writes_pending) &&
7535                             !mddev->in_sync &&
7536                             mddev->recovery_cp == MaxSector) {
7537                                 mddev->in_sync = 1;
7538                                 did_change = 1;
7539                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7540                         }
7541                         if (mddev->safemode == 1)
7542                                 mddev->safemode = 0;
7543                         spin_unlock_irq(&mddev->write_lock);
7544                         if (did_change)
7545                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7546                 }
7547
7548                 if (mddev->flags)
7549                         md_update_sb(mddev, 0);
7550
7551                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7552                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7553                         /* resync/recovery still happening */
7554                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7555                         goto unlock;
7556                 }
7557                 if (mddev->sync_thread) {
7558                         reap_sync_thread(mddev);
7559                         goto unlock;
7560                 }
7561                 /* Set RUNNING before clearing NEEDED to avoid
7562                  * any transients in the value of "sync_action".
7563                  */
7564                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7565                 /* Clear some bits that don't mean anything, but
7566                  * might be left set
7567                  */
7568                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7569                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7570
7571                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7572                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7573                         goto unlock;
7574                 /* no recovery is running.
7575                  * remove any failed drives, then
7576                  * add spares if possible.
7577                  * Spare are also removed and re-added, to allow
7578                  * the personality to fail the re-add.
7579                  */
7580
7581                 if (mddev->reshape_position != MaxSector) {
7582                         if (mddev->pers->check_reshape == NULL ||
7583                             mddev->pers->check_reshape(mddev) != 0)
7584                                 /* Cannot proceed */
7585                                 goto unlock;
7586                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7587                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7588                 } else if ((spares = remove_and_add_spares(mddev))) {
7589                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7590                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7591                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7592                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7593                 } else if (mddev->recovery_cp < MaxSector) {
7594                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7595                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7596                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7597                         /* nothing to be done ... */
7598                         goto unlock;
7599
7600                 if (mddev->pers->sync_request) {
7601                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7602                                 /* We are adding a device or devices to an array
7603                                  * which has the bitmap stored on all devices.
7604                                  * So make sure all bitmap pages get written
7605                                  */
7606                                 bitmap_write_all(mddev->bitmap);
7607                         }
7608                         mddev->sync_thread = md_register_thread(md_do_sync,
7609                                                                 mddev,
7610                                                                 "resync");
7611                         if (!mddev->sync_thread) {
7612                                 printk(KERN_ERR "%s: could not start resync"
7613                                         " thread...\n", 
7614                                         mdname(mddev));
7615                                 /* leave the spares where they are, it shouldn't hurt */
7616                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7617                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7618                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7619                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7620                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7621                         } else
7622                                 md_wakeup_thread(mddev->sync_thread);
7623                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7624                         md_new_event(mddev);
7625                 }
7626         unlock:
7627                 if (!mddev->sync_thread) {
7628                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7629                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7630                                                &mddev->recovery))
7631                                 if (mddev->sysfs_action)
7632                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7633                 }
7634                 mddev_unlock(mddev);
7635         }
7636 }
7637
7638 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7639 {
7640         sysfs_notify_dirent_safe(rdev->sysfs_state);
7641         wait_event_timeout(rdev->blocked_wait,
7642                            !test_bit(Blocked, &rdev->flags) &&
7643                            !test_bit(BlockedBadBlocks, &rdev->flags),
7644                            msecs_to_jiffies(5000));
7645         rdev_dec_pending(rdev, mddev);
7646 }
7647 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7648
7649
7650 /* Bad block management.
7651  * We can record which blocks on each device are 'bad' and so just
7652  * fail those blocks, or that stripe, rather than the whole device.
7653  * Entries in the bad-block table are 64bits wide.  This comprises:
7654  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7655  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7656  *  A 'shift' can be set so that larger blocks are tracked and
7657  *  consequently larger devices can be covered.
7658  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7659  *
7660  * Locking of the bad-block table uses a seqlock so md_is_badblock
7661  * might need to retry if it is very unlucky.
7662  * We will sometimes want to check for bad blocks in a bi_end_io function,
7663  * so we use the write_seqlock_irq variant.
7664  *
7665  * When looking for a bad block we specify a range and want to
7666  * know if any block in the range is bad.  So we binary-search
7667  * to the last range that starts at-or-before the given endpoint,
7668  * (or "before the sector after the target range")
7669  * then see if it ends after the given start.
7670  * We return
7671  *  0 if there are no known bad blocks in the range
7672  *  1 if there are known bad block which are all acknowledged
7673  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7674  * plus the start/length of the first bad section we overlap.
7675  */
7676 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7677                    sector_t *first_bad, int *bad_sectors)
7678 {
7679         int hi;
7680         int lo = 0;
7681         u64 *p = bb->page;
7682         int rv = 0;
7683         sector_t target = s + sectors;
7684         unsigned seq;
7685
7686         if (bb->shift > 0) {
7687                 /* round the start down, and the end up */
7688                 s >>= bb->shift;
7689                 target += (1<<bb->shift) - 1;
7690                 target >>= bb->shift;
7691                 sectors = target - s;
7692         }
7693         /* 'target' is now the first block after the bad range */
7694
7695 retry:
7696         seq = read_seqbegin(&bb->lock);
7697
7698         hi = bb->count;
7699
7700         /* Binary search between lo and hi for 'target'
7701          * i.e. for the last range that starts before 'target'
7702          */
7703         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7704          * are known not to be the last range before target.
7705          * VARIANT: hi-lo is the number of possible
7706          * ranges, and decreases until it reaches 1
7707          */
7708         while (hi - lo > 1) {
7709                 int mid = (lo + hi) / 2;
7710                 sector_t a = BB_OFFSET(p[mid]);
7711                 if (a < target)
7712                         /* This could still be the one, earlier ranges
7713                          * could not. */
7714                         lo = mid;
7715                 else
7716                         /* This and later ranges are definitely out. */
7717                         hi = mid;
7718         }
7719         /* 'lo' might be the last that started before target, but 'hi' isn't */
7720         if (hi > lo) {
7721                 /* need to check all range that end after 's' to see if
7722                  * any are unacknowledged.
7723                  */
7724                 while (lo >= 0 &&
7725                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7726                         if (BB_OFFSET(p[lo]) < target) {
7727                                 /* starts before the end, and finishes after
7728                                  * the start, so they must overlap
7729                                  */
7730                                 if (rv != -1 && BB_ACK(p[lo]))
7731                                         rv = 1;
7732                                 else
7733                                         rv = -1;
7734                                 *first_bad = BB_OFFSET(p[lo]);
7735                                 *bad_sectors = BB_LEN(p[lo]);
7736                         }
7737                         lo--;
7738                 }
7739         }
7740
7741         if (read_seqretry(&bb->lock, seq))
7742                 goto retry;
7743
7744         return rv;
7745 }
7746 EXPORT_SYMBOL_GPL(md_is_badblock);
7747
7748 /*
7749  * Add a range of bad blocks to the table.
7750  * This might extend the table, or might contract it
7751  * if two adjacent ranges can be merged.
7752  * We binary-search to find the 'insertion' point, then
7753  * decide how best to handle it.
7754  */
7755 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7756                             int acknowledged)
7757 {
7758         u64 *p;
7759         int lo, hi;
7760         int rv = 1;
7761
7762         if (bb->shift < 0)
7763                 /* badblocks are disabled */
7764                 return 0;
7765
7766         if (bb->shift) {
7767                 /* round the start down, and the end up */
7768                 sector_t next = s + sectors;
7769                 s >>= bb->shift;
7770                 next += (1<<bb->shift) - 1;
7771                 next >>= bb->shift;
7772                 sectors = next - s;
7773         }
7774
7775         write_seqlock_irq(&bb->lock);
7776
7777         p = bb->page;
7778         lo = 0;
7779         hi = bb->count;
7780         /* Find the last range that starts at-or-before 's' */
7781         while (hi - lo > 1) {
7782                 int mid = (lo + hi) / 2;
7783                 sector_t a = BB_OFFSET(p[mid]);
7784                 if (a <= s)
7785                         lo = mid;
7786                 else
7787                         hi = mid;
7788         }
7789         if (hi > lo && BB_OFFSET(p[lo]) > s)
7790                 hi = lo;
7791
7792         if (hi > lo) {
7793                 /* we found a range that might merge with the start
7794                  * of our new range
7795                  */
7796                 sector_t a = BB_OFFSET(p[lo]);
7797                 sector_t e = a + BB_LEN(p[lo]);
7798                 int ack = BB_ACK(p[lo]);
7799                 if (e >= s) {
7800                         /* Yes, we can merge with a previous range */
7801                         if (s == a && s + sectors >= e)
7802                                 /* new range covers old */
7803                                 ack = acknowledged;
7804                         else
7805                                 ack = ack && acknowledged;
7806
7807                         if (e < s + sectors)
7808                                 e = s + sectors;
7809                         if (e - a <= BB_MAX_LEN) {
7810                                 p[lo] = BB_MAKE(a, e-a, ack);
7811                                 s = e;
7812                         } else {
7813                                 /* does not all fit in one range,
7814                                  * make p[lo] maximal
7815                                  */
7816                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7817                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7818                                 s = a + BB_MAX_LEN;
7819                         }
7820                         sectors = e - s;
7821                 }
7822         }
7823         if (sectors && hi < bb->count) {
7824                 /* 'hi' points to the first range that starts after 's'.
7825                  * Maybe we can merge with the start of that range */
7826                 sector_t a = BB_OFFSET(p[hi]);
7827                 sector_t e = a + BB_LEN(p[hi]);
7828                 int ack = BB_ACK(p[hi]);
7829                 if (a <= s + sectors) {
7830                         /* merging is possible */
7831                         if (e <= s + sectors) {
7832                                 /* full overlap */
7833                                 e = s + sectors;
7834                                 ack = acknowledged;
7835                         } else
7836                                 ack = ack && acknowledged;
7837
7838                         a = s;
7839                         if (e - a <= BB_MAX_LEN) {
7840                                 p[hi] = BB_MAKE(a, e-a, ack);
7841                                 s = e;
7842                         } else {
7843                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7844                                 s = a + BB_MAX_LEN;
7845                         }
7846                         sectors = e - s;
7847                         lo = hi;
7848                         hi++;
7849                 }
7850         }
7851         if (sectors == 0 && hi < bb->count) {
7852                 /* we might be able to combine lo and hi */
7853                 /* Note: 's' is at the end of 'lo' */
7854                 sector_t a = BB_OFFSET(p[hi]);
7855                 int lolen = BB_LEN(p[lo]);
7856                 int hilen = BB_LEN(p[hi]);
7857                 int newlen = lolen + hilen - (s - a);
7858                 if (s >= a && newlen < BB_MAX_LEN) {
7859                         /* yes, we can combine them */
7860                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7861                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7862                         memmove(p + hi, p + hi + 1,
7863                                 (bb->count - hi - 1) * 8);
7864                         bb->count--;
7865                 }
7866         }
7867         while (sectors) {
7868                 /* didn't merge (it all).
7869                  * Need to add a range just before 'hi' */
7870                 if (bb->count >= MD_MAX_BADBLOCKS) {
7871                         /* No room for more */
7872                         rv = 0;
7873                         break;
7874                 } else {
7875                         int this_sectors = sectors;
7876                         memmove(p + hi + 1, p + hi,
7877                                 (bb->count - hi) * 8);
7878                         bb->count++;
7879
7880                         if (this_sectors > BB_MAX_LEN)
7881                                 this_sectors = BB_MAX_LEN;
7882                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7883                         sectors -= this_sectors;
7884                         s += this_sectors;
7885                 }
7886         }
7887
7888         bb->changed = 1;
7889         if (!acknowledged)
7890                 bb->unacked_exist = 1;
7891         write_sequnlock_irq(&bb->lock);
7892
7893         return rv;
7894 }
7895
7896 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7897                        int acknowledged)
7898 {
7899         int rv = md_set_badblocks(&rdev->badblocks,
7900                                   s + rdev->data_offset, sectors, acknowledged);
7901         if (rv) {
7902                 /* Make sure they get written out promptly */
7903                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7904                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7905                 md_wakeup_thread(rdev->mddev->thread);
7906         }
7907         return rv;
7908 }
7909 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7910
7911 /*
7912  * Remove a range of bad blocks from the table.
7913  * This may involve extending the table if we spilt a region,
7914  * but it must not fail.  So if the table becomes full, we just
7915  * drop the remove request.
7916  */
7917 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7918 {
7919         u64 *p;
7920         int lo, hi;
7921         sector_t target = s + sectors;
7922         int rv = 0;
7923
7924         if (bb->shift > 0) {
7925                 /* When clearing we round the start up and the end down.
7926                  * This should not matter as the shift should align with
7927                  * the block size and no rounding should ever be needed.
7928                  * However it is better the think a block is bad when it
7929                  * isn't than to think a block is not bad when it is.
7930                  */
7931                 s += (1<<bb->shift) - 1;
7932                 s >>= bb->shift;
7933                 target >>= bb->shift;
7934                 sectors = target - s;
7935         }
7936
7937         write_seqlock_irq(&bb->lock);
7938
7939         p = bb->page;
7940         lo = 0;
7941         hi = bb->count;
7942         /* Find the last range that starts before 'target' */
7943         while (hi - lo > 1) {
7944                 int mid = (lo + hi) / 2;
7945                 sector_t a = BB_OFFSET(p[mid]);
7946                 if (a < target)
7947                         lo = mid;
7948                 else
7949                         hi = mid;
7950         }
7951         if (hi > lo) {
7952                 /* p[lo] is the last range that could overlap the
7953                  * current range.  Earlier ranges could also overlap,
7954                  * but only this one can overlap the end of the range.
7955                  */
7956                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7957                         /* Partial overlap, leave the tail of this range */
7958                         int ack = BB_ACK(p[lo]);
7959                         sector_t a = BB_OFFSET(p[lo]);
7960                         sector_t end = a + BB_LEN(p[lo]);
7961
7962                         if (a < s) {
7963                                 /* we need to split this range */
7964                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7965                                         rv = 0;
7966                                         goto out;
7967                                 }
7968                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7969                                 bb->count++;
7970                                 p[lo] = BB_MAKE(a, s-a, ack);
7971                                 lo++;
7972                         }
7973                         p[lo] = BB_MAKE(target, end - target, ack);
7974                         /* there is no longer an overlap */
7975                         hi = lo;
7976                         lo--;
7977                 }
7978                 while (lo >= 0 &&
7979                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7980                         /* This range does overlap */
7981                         if (BB_OFFSET(p[lo]) < s) {
7982                                 /* Keep the early parts of this range. */
7983                                 int ack = BB_ACK(p[lo]);
7984                                 sector_t start = BB_OFFSET(p[lo]);
7985                                 p[lo] = BB_MAKE(start, s - start, ack);
7986                                 /* now low doesn't overlap, so.. */
7987                                 break;
7988                         }
7989                         lo--;
7990                 }
7991                 /* 'lo' is strictly before, 'hi' is strictly after,
7992                  * anything between needs to be discarded
7993                  */
7994                 if (hi - lo > 1) {
7995                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7996                         bb->count -= (hi - lo - 1);
7997                 }
7998         }
7999
8000         bb->changed = 1;
8001 out:
8002         write_sequnlock_irq(&bb->lock);
8003         return rv;
8004 }
8005
8006 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8007 {
8008         return md_clear_badblocks(&rdev->badblocks,
8009                                   s + rdev->data_offset,
8010                                   sectors);
8011 }
8012 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8013
8014 /*
8015  * Acknowledge all bad blocks in a list.
8016  * This only succeeds if ->changed is clear.  It is used by
8017  * in-kernel metadata updates
8018  */
8019 void md_ack_all_badblocks(struct badblocks *bb)
8020 {
8021         if (bb->page == NULL || bb->changed)
8022                 /* no point even trying */
8023                 return;
8024         write_seqlock_irq(&bb->lock);
8025
8026         if (bb->changed == 0 && bb->unacked_exist) {
8027                 u64 *p = bb->page;
8028                 int i;
8029                 for (i = 0; i < bb->count ; i++) {
8030                         if (!BB_ACK(p[i])) {
8031                                 sector_t start = BB_OFFSET(p[i]);
8032                                 int len = BB_LEN(p[i]);
8033                                 p[i] = BB_MAKE(start, len, 1);
8034                         }
8035                 }
8036                 bb->unacked_exist = 0;
8037         }
8038         write_sequnlock_irq(&bb->lock);
8039 }
8040 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8041
8042 /* sysfs access to bad-blocks list.
8043  * We present two files.
8044  * 'bad-blocks' lists sector numbers and lengths of ranges that
8045  *    are recorded as bad.  The list is truncated to fit within
8046  *    the one-page limit of sysfs.
8047  *    Writing "sector length" to this file adds an acknowledged
8048  *    bad block list.
8049  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8050  *    been acknowledged.  Writing to this file adds bad blocks
8051  *    without acknowledging them.  This is largely for testing.
8052  */
8053
8054 static ssize_t
8055 badblocks_show(struct badblocks *bb, char *page, int unack)
8056 {
8057         size_t len;
8058         int i;
8059         u64 *p = bb->page;
8060         unsigned seq;
8061
8062         if (bb->shift < 0)
8063                 return 0;
8064
8065 retry:
8066         seq = read_seqbegin(&bb->lock);
8067
8068         len = 0;
8069         i = 0;
8070
8071         while (len < PAGE_SIZE && i < bb->count) {
8072                 sector_t s = BB_OFFSET(p[i]);
8073                 unsigned int length = BB_LEN(p[i]);
8074                 int ack = BB_ACK(p[i]);
8075                 i++;
8076
8077                 if (unack && ack)
8078                         continue;
8079
8080                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8081                                 (unsigned long long)s << bb->shift,
8082                                 length << bb->shift);
8083         }
8084         if (unack && len == 0)
8085                 bb->unacked_exist = 0;
8086
8087         if (read_seqretry(&bb->lock, seq))
8088                 goto retry;
8089
8090         return len;
8091 }
8092
8093 #define DO_DEBUG 1
8094
8095 static ssize_t
8096 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8097 {
8098         unsigned long long sector;
8099         int length;
8100         char newline;
8101 #ifdef DO_DEBUG
8102         /* Allow clearing via sysfs *only* for testing/debugging.
8103          * Normally only a successful write may clear a badblock
8104          */
8105         int clear = 0;
8106         if (page[0] == '-') {
8107                 clear = 1;
8108                 page++;
8109         }
8110 #endif /* DO_DEBUG */
8111
8112         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8113         case 3:
8114                 if (newline != '\n')
8115                         return -EINVAL;
8116         case 2:
8117                 if (length <= 0)
8118                         return -EINVAL;
8119                 break;
8120         default:
8121                 return -EINVAL;
8122         }
8123
8124 #ifdef DO_DEBUG
8125         if (clear) {
8126                 md_clear_badblocks(bb, sector, length);
8127                 return len;
8128         }
8129 #endif /* DO_DEBUG */
8130         if (md_set_badblocks(bb, sector, length, !unack))
8131                 return len;
8132         else
8133                 return -ENOSPC;
8134 }
8135
8136 static int md_notify_reboot(struct notifier_block *this,
8137                             unsigned long code, void *x)
8138 {
8139         struct list_head *tmp;
8140         struct mddev *mddev;
8141         int need_delay = 0;
8142
8143         for_each_mddev(mddev, tmp) {
8144                 if (mddev_trylock(mddev)) {
8145                         if (mddev->pers)
8146                                 __md_stop_writes(mddev);
8147                         mddev->safemode = 2;
8148                         mddev_unlock(mddev);
8149                 }
8150                 need_delay = 1;
8151         }
8152         /*
8153          * certain more exotic SCSI devices are known to be
8154          * volatile wrt too early system reboots. While the
8155          * right place to handle this issue is the given
8156          * driver, we do want to have a safe RAID driver ...
8157          */
8158         if (need_delay)
8159                 mdelay(1000*1);
8160
8161         return NOTIFY_DONE;
8162 }
8163
8164 static struct notifier_block md_notifier = {
8165         .notifier_call  = md_notify_reboot,
8166         .next           = NULL,
8167         .priority       = INT_MAX, /* before any real devices */
8168 };
8169
8170 static void md_geninit(void)
8171 {
8172         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8173
8174         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8175 }
8176
8177 static int __init md_init(void)
8178 {
8179         int ret = -ENOMEM;
8180
8181         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8182         if (!md_wq)
8183                 goto err_wq;
8184
8185         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8186         if (!md_misc_wq)
8187                 goto err_misc_wq;
8188
8189         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8190                 goto err_md;
8191
8192         if ((ret = register_blkdev(0, "mdp")) < 0)
8193                 goto err_mdp;
8194         mdp_major = ret;
8195
8196         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8197                             md_probe, NULL, NULL);
8198         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8199                             md_probe, NULL, NULL);
8200
8201         register_reboot_notifier(&md_notifier);
8202         raid_table_header = register_sysctl_table(raid_root_table);
8203
8204         md_geninit();
8205         return 0;
8206
8207 err_mdp:
8208         unregister_blkdev(MD_MAJOR, "md");
8209 err_md:
8210         destroy_workqueue(md_misc_wq);
8211 err_misc_wq:
8212         destroy_workqueue(md_wq);
8213 err_wq:
8214         return ret;
8215 }
8216
8217 #ifndef MODULE
8218
8219 /*
8220  * Searches all registered partitions for autorun RAID arrays
8221  * at boot time.
8222  */
8223
8224 static LIST_HEAD(all_detected_devices);
8225 struct detected_devices_node {
8226         struct list_head list;
8227         dev_t dev;
8228 };
8229
8230 void md_autodetect_dev(dev_t dev)
8231 {
8232         struct detected_devices_node *node_detected_dev;
8233
8234         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8235         if (node_detected_dev) {
8236                 node_detected_dev->dev = dev;
8237                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8238         } else {
8239                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8240                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8241         }
8242 }
8243
8244
8245 static void autostart_arrays(int part)
8246 {
8247         struct md_rdev *rdev;
8248         struct detected_devices_node *node_detected_dev;
8249         dev_t dev;
8250         int i_scanned, i_passed;
8251
8252         i_scanned = 0;
8253         i_passed = 0;
8254
8255         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8256
8257         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8258                 i_scanned++;
8259                 node_detected_dev = list_entry(all_detected_devices.next,
8260                                         struct detected_devices_node, list);
8261                 list_del(&node_detected_dev->list);
8262                 dev = node_detected_dev->dev;
8263                 kfree(node_detected_dev);
8264                 rdev = md_import_device(dev,0, 90);
8265                 if (IS_ERR(rdev))
8266                         continue;
8267
8268                 if (test_bit(Faulty, &rdev->flags)) {
8269                         MD_BUG();
8270                         continue;
8271                 }
8272                 set_bit(AutoDetected, &rdev->flags);
8273                 list_add(&rdev->same_set, &pending_raid_disks);
8274                 i_passed++;
8275         }
8276
8277         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8278                                                 i_scanned, i_passed);
8279
8280         autorun_devices(part);
8281 }
8282
8283 #endif /* !MODULE */
8284
8285 static __exit void md_exit(void)
8286 {
8287         struct mddev *mddev;
8288         struct list_head *tmp;
8289
8290         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8291         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8292
8293         unregister_blkdev(MD_MAJOR,"md");
8294         unregister_blkdev(mdp_major, "mdp");
8295         unregister_reboot_notifier(&md_notifier);
8296         unregister_sysctl_table(raid_table_header);
8297         remove_proc_entry("mdstat", NULL);
8298         for_each_mddev(mddev, tmp) {
8299                 export_array(mddev);
8300                 mddev->hold_active = 0;
8301         }
8302         destroy_workqueue(md_misc_wq);
8303         destroy_workqueue(md_wq);
8304 }
8305
8306 subsys_initcall(md_init);
8307 module_exit(md_exit)
8308
8309 static int get_ro(char *buffer, struct kernel_param *kp)
8310 {
8311         return sprintf(buffer, "%d", start_readonly);
8312 }
8313 static int set_ro(const char *val, struct kernel_param *kp)
8314 {
8315         char *e;
8316         int num = simple_strtoul(val, &e, 10);
8317         if (*val && (*e == '\0' || *e == '\n')) {
8318                 start_readonly = num;
8319                 return 0;
8320         }
8321         return -EINVAL;
8322 }
8323
8324 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8325 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8326
8327 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8328
8329 EXPORT_SYMBOL(register_md_personality);
8330 EXPORT_SYMBOL(unregister_md_personality);
8331 EXPORT_SYMBOL(md_error);
8332 EXPORT_SYMBOL(md_done_sync);
8333 EXPORT_SYMBOL(md_write_start);
8334 EXPORT_SYMBOL(md_write_end);
8335 EXPORT_SYMBOL(md_register_thread);
8336 EXPORT_SYMBOL(md_unregister_thread);
8337 EXPORT_SYMBOL(md_wakeup_thread);
8338 EXPORT_SYMBOL(md_check_recovery);
8339 MODULE_LICENSE("GPL");
8340 MODULE_DESCRIPTION("MD RAID framework");
8341 MODULE_ALIAS("md");
8342 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);