KVM: use this_cpu_xxx replace percpu_xxx funcs
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 {
160         int i;
161         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
162                 vcpu->arch.apf.gfns[i] = ~0;
163 }
164
165 static void kvm_on_user_return(struct user_return_notifier *urn)
166 {
167         unsigned slot;
168         struct kvm_shared_msrs *locals
169                 = container_of(urn, struct kvm_shared_msrs, urn);
170         struct kvm_shared_msr_values *values;
171
172         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
173                 values = &locals->values[slot];
174                 if (values->host != values->curr) {
175                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
176                         values->curr = values->host;
177                 }
178         }
179         locals->registered = false;
180         user_return_notifier_unregister(urn);
181 }
182
183 static void shared_msr_update(unsigned slot, u32 msr)
184 {
185         struct kvm_shared_msrs *smsr;
186         u64 value;
187
188         smsr = &__get_cpu_var(shared_msrs);
189         /* only read, and nobody should modify it at this time,
190          * so don't need lock */
191         if (slot >= shared_msrs_global.nr) {
192                 printk(KERN_ERR "kvm: invalid MSR slot!");
193                 return;
194         }
195         rdmsrl_safe(msr, &value);
196         smsr->values[slot].host = value;
197         smsr->values[slot].curr = value;
198 }
199
200 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 {
202         if (slot >= shared_msrs_global.nr)
203                 shared_msrs_global.nr = slot + 1;
204         shared_msrs_global.msrs[slot] = msr;
205         /* we need ensured the shared_msr_global have been updated */
206         smp_wmb();
207 }
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209
210 static void kvm_shared_msr_cpu_online(void)
211 {
212         unsigned i;
213
214         for (i = 0; i < shared_msrs_global.nr; ++i)
215                 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 }
217
218 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (((value ^ smsr->values[slot].curr) & mask) == 0)
223                 return;
224         smsr->values[slot].curr = value;
225         wrmsrl(shared_msrs_global.msrs[slot], value);
226         if (!smsr->registered) {
227                 smsr->urn.on_user_return = kvm_on_user_return;
228                 user_return_notifier_register(&smsr->urn);
229                 smsr->registered = true;
230         }
231 }
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233
234 static void drop_user_return_notifiers(void *ignore)
235 {
236         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237
238         if (smsr->registered)
239                 kvm_on_user_return(&smsr->urn);
240 }
241
242 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 {
244         if (irqchip_in_kernel(vcpu->kvm))
245                 return vcpu->arch.apic_base;
246         else
247                 return vcpu->arch.apic_base;
248 }
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250
251 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 {
253         /* TODO: reserve bits check */
254         if (irqchip_in_kernel(vcpu->kvm))
255                 kvm_lapic_set_base(vcpu, data);
256         else
257                 vcpu->arch.apic_base = data;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260
261 #define EXCPT_BENIGN            0
262 #define EXCPT_CONTRIBUTORY      1
263 #define EXCPT_PF                2
264
265 static int exception_class(int vector)
266 {
267         switch (vector) {
268         case PF_VECTOR:
269                 return EXCPT_PF;
270         case DE_VECTOR:
271         case TS_VECTOR:
272         case NP_VECTOR:
273         case SS_VECTOR:
274         case GP_VECTOR:
275                 return EXCPT_CONTRIBUTORY;
276         default:
277                 break;
278         }
279         return EXCPT_BENIGN;
280 }
281
282 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
283                 unsigned nr, bool has_error, u32 error_code,
284                 bool reinject)
285 {
286         u32 prev_nr;
287         int class1, class2;
288
289         kvm_make_request(KVM_REQ_EVENT, vcpu);
290
291         if (!vcpu->arch.exception.pending) {
292         queue:
293                 vcpu->arch.exception.pending = true;
294                 vcpu->arch.exception.has_error_code = has_error;
295                 vcpu->arch.exception.nr = nr;
296                 vcpu->arch.exception.error_code = error_code;
297                 vcpu->arch.exception.reinject = reinject;
298                 return;
299         }
300
301         /* to check exception */
302         prev_nr = vcpu->arch.exception.nr;
303         if (prev_nr == DF_VECTOR) {
304                 /* triple fault -> shutdown */
305                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
306                 return;
307         }
308         class1 = exception_class(prev_nr);
309         class2 = exception_class(nr);
310         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
311                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
312                 /* generate double fault per SDM Table 5-5 */
313                 vcpu->arch.exception.pending = true;
314                 vcpu->arch.exception.has_error_code = true;
315                 vcpu->arch.exception.nr = DF_VECTOR;
316                 vcpu->arch.exception.error_code = 0;
317         } else
318                 /* replace previous exception with a new one in a hope
319                    that instruction re-execution will regenerate lost
320                    exception */
321                 goto queue;
322 }
323
324 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, false);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329
330 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332         kvm_multiple_exception(vcpu, nr, false, 0, true);
333 }
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335
336 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 {
338         if (err)
339                 kvm_inject_gp(vcpu, 0);
340         else
341                 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344
345 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 {
347         ++vcpu->stat.pf_guest;
348         vcpu->arch.cr2 = fault->address;
349         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 }
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357         else
358                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363         atomic_inc(&vcpu->arch.nmi_queued);
364         kvm_make_request(KVM_REQ_NMI, vcpu);
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370         kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376         kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387                 return true;
388         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389         return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399                             gfn_t ngfn, void *data, int offset, int len,
400                             u32 access)
401 {
402         gfn_t real_gfn;
403         gpa_t ngpa;
404
405         ngpa     = gfn_to_gpa(ngfn);
406         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407         if (real_gfn == UNMAPPED_GVA)
408                 return -EFAULT;
409
410         real_gfn = gpa_to_gfn(real_gfn);
411
412         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417                                void *data, int offset, int len, u32 access)
418 {
419         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420                                        data, offset, len, access);
421 }
422
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430         int i;
431         int ret;
432         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435                                       offset * sizeof(u64), sizeof(pdpte),
436                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
437         if (ret < 0) {
438                 ret = 0;
439                 goto out;
440         }
441         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442                 if (is_present_gpte(pdpte[i]) &&
443                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444                         ret = 0;
445                         goto out;
446                 }
447         }
448         ret = 1;
449
450         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_avail);
453         __set_bit(VCPU_EXREG_PDPTR,
454                   (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464         bool changed = true;
465         int offset;
466         gfn_t gfn;
467         int r;
468
469         if (is_long_mode(vcpu) || !is_pae(vcpu))
470                 return false;
471
472         if (!test_bit(VCPU_EXREG_PDPTR,
473                       (unsigned long *)&vcpu->arch.regs_avail))
474                 return true;
475
476         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
480         if (r < 0)
481                 goto out;
482         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485         return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490         unsigned long old_cr0 = kvm_read_cr0(vcpu);
491         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492                                     X86_CR0_CD | X86_CR0_NW;
493
494         cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497         if (cr0 & 0xffffffff00000000UL)
498                 return 1;
499 #endif
500
501         cr0 &= ~CR0_RESERVED_BITS;
502
503         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504                 return 1;
505
506         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507                 return 1;
508
509         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511                 if ((vcpu->arch.efer & EFER_LME)) {
512                         int cs_db, cs_l;
513
514                         if (!is_pae(vcpu))
515                                 return 1;
516                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517                         if (cs_l)
518                                 return 1;
519                 } else
520 #endif
521                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522                                                  kvm_read_cr3(vcpu)))
523                         return 1;
524         }
525
526         kvm_x86_ops->set_cr0(vcpu, cr0);
527
528         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
529                 kvm_clear_async_pf_completion_queue(vcpu);
530                 kvm_async_pf_hash_reset(vcpu);
531         }
532
533         if ((cr0 ^ old_cr0) & update_bits)
534                 kvm_mmu_reset_context(vcpu);
535         return 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538
539 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 {
541         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 }
543 EXPORT_SYMBOL_GPL(kvm_lmsw);
544
545 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 {
547         u64 xcr0;
548
549         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
550         if (index != XCR_XFEATURE_ENABLED_MASK)
551                 return 1;
552         xcr0 = xcr;
553         if (kvm_x86_ops->get_cpl(vcpu) != 0)
554                 return 1;
555         if (!(xcr0 & XSTATE_FP))
556                 return 1;
557         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
558                 return 1;
559         if (xcr0 & ~host_xcr0)
560                 return 1;
561         vcpu->arch.xcr0 = xcr0;
562         vcpu->guest_xcr0_loaded = 0;
563         return 0;
564 }
565
566 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 {
568         if (__kvm_set_xcr(vcpu, index, xcr)) {
569                 kvm_inject_gp(vcpu, 0);
570                 return 1;
571         }
572         return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575
576 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
577 {
578         unsigned long old_cr4 = kvm_read_cr4(vcpu);
579         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
580                                    X86_CR4_PAE | X86_CR4_SMEP;
581         if (cr4 & CR4_RESERVED_BITS)
582                 return 1;
583
584         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
585                 return 1;
586
587         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
588                 return 1;
589
590         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
591                 return 1;
592
593         if (is_long_mode(vcpu)) {
594                 if (!(cr4 & X86_CR4_PAE))
595                         return 1;
596         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597                    && ((cr4 ^ old_cr4) & pdptr_bits)
598                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
599                                    kvm_read_cr3(vcpu)))
600                 return 1;
601
602         if (kvm_x86_ops->set_cr4(vcpu, cr4))
603                 return 1;
604
605         if ((cr4 ^ old_cr4) & pdptr_bits)
606                 kvm_mmu_reset_context(vcpu);
607
608         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
609                 kvm_update_cpuid(vcpu);
610
611         return 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_set_cr4);
614
615 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
616 {
617         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
618                 kvm_mmu_sync_roots(vcpu);
619                 kvm_mmu_flush_tlb(vcpu);
620                 return 0;
621         }
622
623         if (is_long_mode(vcpu)) {
624                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
625                         return 1;
626         } else {
627                 if (is_pae(vcpu)) {
628                         if (cr3 & CR3_PAE_RESERVED_BITS)
629                                 return 1;
630                         if (is_paging(vcpu) &&
631                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
632                                 return 1;
633                 }
634                 /*
635                  * We don't check reserved bits in nonpae mode, because
636                  * this isn't enforced, and VMware depends on this.
637                  */
638         }
639
640         /*
641          * Does the new cr3 value map to physical memory? (Note, we
642          * catch an invalid cr3 even in real-mode, because it would
643          * cause trouble later on when we turn on paging anyway.)
644          *
645          * A real CPU would silently accept an invalid cr3 and would
646          * attempt to use it - with largely undefined (and often hard
647          * to debug) behavior on the guest side.
648          */
649         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
650                 return 1;
651         vcpu->arch.cr3 = cr3;
652         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
653         vcpu->arch.mmu.new_cr3(vcpu);
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657
658 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660         if (cr8 & CR8_RESERVED_BITS)
661                 return 1;
662         if (irqchip_in_kernel(vcpu->kvm))
663                 kvm_lapic_set_tpr(vcpu, cr8);
664         else
665                 vcpu->arch.cr8 = cr8;
666         return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr8);
669
670 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
671 {
672         if (irqchip_in_kernel(vcpu->kvm))
673                 return kvm_lapic_get_cr8(vcpu);
674         else
675                 return vcpu->arch.cr8;
676 }
677 EXPORT_SYMBOL_GPL(kvm_get_cr8);
678
679 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
680 {
681         switch (dr) {
682         case 0 ... 3:
683                 vcpu->arch.db[dr] = val;
684                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
685                         vcpu->arch.eff_db[dr] = val;
686                 break;
687         case 4:
688                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
689                         return 1; /* #UD */
690                 /* fall through */
691         case 6:
692                 if (val & 0xffffffff00000000ULL)
693                         return -1; /* #GP */
694                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
695                 break;
696         case 5:
697                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698                         return 1; /* #UD */
699                 /* fall through */
700         default: /* 7 */
701                 if (val & 0xffffffff00000000ULL)
702                         return -1; /* #GP */
703                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
704                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
705                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
706                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
707                 }
708                 break;
709         }
710
711         return 0;
712 }
713
714 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 {
716         int res;
717
718         res = __kvm_set_dr(vcpu, dr, val);
719         if (res > 0)
720                 kvm_queue_exception(vcpu, UD_VECTOR);
721         else if (res < 0)
722                 kvm_inject_gp(vcpu, 0);
723
724         return res;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_dr);
727
728 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
729 {
730         switch (dr) {
731         case 0 ... 3:
732                 *val = vcpu->arch.db[dr];
733                 break;
734         case 4:
735                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
736                         return 1;
737                 /* fall through */
738         case 6:
739                 *val = vcpu->arch.dr6;
740                 break;
741         case 5:
742                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
743                         return 1;
744                 /* fall through */
745         default: /* 7 */
746                 *val = vcpu->arch.dr7;
747                 break;
748         }
749
750         return 0;
751 }
752
753 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755         if (_kvm_get_dr(vcpu, dr, val)) {
756                 kvm_queue_exception(vcpu, UD_VECTOR);
757                 return 1;
758         }
759         return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_get_dr);
762
763 /*
764  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
765  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
766  *
767  * This list is modified at module load time to reflect the
768  * capabilities of the host cpu. This capabilities test skips MSRs that are
769  * kvm-specific. Those are put in the beginning of the list.
770  */
771
772 #define KVM_SAVE_MSRS_BEGIN     9
773 static u32 msrs_to_save[] = {
774         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
775         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
776         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
777         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
778         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
779         MSR_STAR,
780 #ifdef CONFIG_X86_64
781         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
782 #endif
783         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
784 };
785
786 static unsigned num_msrs_to_save;
787
788 static u32 emulated_msrs[] = {
789         MSR_IA32_TSCDEADLINE,
790         MSR_IA32_MISC_ENABLE,
791         MSR_IA32_MCG_STATUS,
792         MSR_IA32_MCG_CTL,
793 };
794
795 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
796 {
797         u64 old_efer = vcpu->arch.efer;
798
799         if (efer & efer_reserved_bits)
800                 return 1;
801
802         if (is_paging(vcpu)
803             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
804                 return 1;
805
806         if (efer & EFER_FFXSR) {
807                 struct kvm_cpuid_entry2 *feat;
808
809                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
810                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
811                         return 1;
812         }
813
814         if (efer & EFER_SVME) {
815                 struct kvm_cpuid_entry2 *feat;
816
817                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
818                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
819                         return 1;
820         }
821
822         efer &= ~EFER_LMA;
823         efer |= vcpu->arch.efer & EFER_LMA;
824
825         kvm_x86_ops->set_efer(vcpu, efer);
826
827         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
828
829         /* Update reserved bits */
830         if ((efer ^ old_efer) & EFER_NX)
831                 kvm_mmu_reset_context(vcpu);
832
833         return 0;
834 }
835
836 void kvm_enable_efer_bits(u64 mask)
837 {
838        efer_reserved_bits &= ~mask;
839 }
840 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
841
842
843 /*
844  * Writes msr value into into the appropriate "register".
845  * Returns 0 on success, non-0 otherwise.
846  * Assumes vcpu_load() was already called.
847  */
848 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
849 {
850         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
851 }
852
853 /*
854  * Adapt set_msr() to msr_io()'s calling convention
855  */
856 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
857 {
858         return kvm_set_msr(vcpu, index, *data);
859 }
860
861 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
862 {
863         int version;
864         int r;
865         struct pvclock_wall_clock wc;
866         struct timespec boot;
867
868         if (!wall_clock)
869                 return;
870
871         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
872         if (r)
873                 return;
874
875         if (version & 1)
876                 ++version;  /* first time write, random junk */
877
878         ++version;
879
880         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
881
882         /*
883          * The guest calculates current wall clock time by adding
884          * system time (updated by kvm_guest_time_update below) to the
885          * wall clock specified here.  guest system time equals host
886          * system time for us, thus we must fill in host boot time here.
887          */
888         getboottime(&boot);
889
890         wc.sec = boot.tv_sec;
891         wc.nsec = boot.tv_nsec;
892         wc.version = version;
893
894         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
895
896         version++;
897         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898 }
899
900 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
901 {
902         uint32_t quotient, remainder;
903
904         /* Don't try to replace with do_div(), this one calculates
905          * "(dividend << 32) / divisor" */
906         __asm__ ( "divl %4"
907                   : "=a" (quotient), "=d" (remainder)
908                   : "0" (0), "1" (dividend), "r" (divisor) );
909         return quotient;
910 }
911
912 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
913                                s8 *pshift, u32 *pmultiplier)
914 {
915         uint64_t scaled64;
916         int32_t  shift = 0;
917         uint64_t tps64;
918         uint32_t tps32;
919
920         tps64 = base_khz * 1000LL;
921         scaled64 = scaled_khz * 1000LL;
922         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
923                 tps64 >>= 1;
924                 shift--;
925         }
926
927         tps32 = (uint32_t)tps64;
928         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
929                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
930                         scaled64 >>= 1;
931                 else
932                         tps32 <<= 1;
933                 shift++;
934         }
935
936         *pshift = shift;
937         *pmultiplier = div_frac(scaled64, tps32);
938
939         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
940                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
941 }
942
943 static inline u64 get_kernel_ns(void)
944 {
945         struct timespec ts;
946
947         WARN_ON(preemptible());
948         ktime_get_ts(&ts);
949         monotonic_to_bootbased(&ts);
950         return timespec_to_ns(&ts);
951 }
952
953 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
954 unsigned long max_tsc_khz;
955
956 static inline int kvm_tsc_changes_freq(void)
957 {
958         int cpu = get_cpu();
959         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
960                   cpufreq_quick_get(cpu) != 0;
961         put_cpu();
962         return ret;
963 }
964
965 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
966 {
967         if (vcpu->arch.virtual_tsc_khz)
968                 return vcpu->arch.virtual_tsc_khz;
969         else
970                 return __this_cpu_read(cpu_tsc_khz);
971 }
972
973 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
974 {
975         u64 ret;
976
977         WARN_ON(preemptible());
978         if (kvm_tsc_changes_freq())
979                 printk_once(KERN_WARNING
980                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
981         ret = nsec * vcpu_tsc_khz(vcpu);
982         do_div(ret, USEC_PER_SEC);
983         return ret;
984 }
985
986 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
987 {
988         /* Compute a scale to convert nanoseconds in TSC cycles */
989         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
990                            &vcpu->arch.tsc_catchup_shift,
991                            &vcpu->arch.tsc_catchup_mult);
992 }
993
994 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
995 {
996         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
997                                       vcpu->arch.tsc_catchup_mult,
998                                       vcpu->arch.tsc_catchup_shift);
999         tsc += vcpu->arch.last_tsc_write;
1000         return tsc;
1001 }
1002
1003 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1004 {
1005         struct kvm *kvm = vcpu->kvm;
1006         u64 offset, ns, elapsed;
1007         unsigned long flags;
1008         s64 sdiff;
1009
1010         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1011         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1012         ns = get_kernel_ns();
1013         elapsed = ns - kvm->arch.last_tsc_nsec;
1014         sdiff = data - kvm->arch.last_tsc_write;
1015         if (sdiff < 0)
1016                 sdiff = -sdiff;
1017
1018         /*
1019          * Special case: close write to TSC within 5 seconds of
1020          * another CPU is interpreted as an attempt to synchronize
1021          * The 5 seconds is to accommodate host load / swapping as
1022          * well as any reset of TSC during the boot process.
1023          *
1024          * In that case, for a reliable TSC, we can match TSC offsets,
1025          * or make a best guest using elapsed value.
1026          */
1027         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1028             elapsed < 5ULL * NSEC_PER_SEC) {
1029                 if (!check_tsc_unstable()) {
1030                         offset = kvm->arch.last_tsc_offset;
1031                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1032                 } else {
1033                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1034                         offset += delta;
1035                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1036                 }
1037                 ns = kvm->arch.last_tsc_nsec;
1038         }
1039         kvm->arch.last_tsc_nsec = ns;
1040         kvm->arch.last_tsc_write = data;
1041         kvm->arch.last_tsc_offset = offset;
1042         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1043         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1044
1045         /* Reset of TSC must disable overshoot protection below */
1046         vcpu->arch.hv_clock.tsc_timestamp = 0;
1047         vcpu->arch.last_tsc_write = data;
1048         vcpu->arch.last_tsc_nsec = ns;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1051
1052 static int kvm_guest_time_update(struct kvm_vcpu *v)
1053 {
1054         unsigned long flags;
1055         struct kvm_vcpu_arch *vcpu = &v->arch;
1056         void *shared_kaddr;
1057         unsigned long this_tsc_khz;
1058         s64 kernel_ns, max_kernel_ns;
1059         u64 tsc_timestamp;
1060
1061         /* Keep irq disabled to prevent changes to the clock */
1062         local_irq_save(flags);
1063         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1064         kernel_ns = get_kernel_ns();
1065         this_tsc_khz = vcpu_tsc_khz(v);
1066         if (unlikely(this_tsc_khz == 0)) {
1067                 local_irq_restore(flags);
1068                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1069                 return 1;
1070         }
1071
1072         /*
1073          * We may have to catch up the TSC to match elapsed wall clock
1074          * time for two reasons, even if kvmclock is used.
1075          *   1) CPU could have been running below the maximum TSC rate
1076          *   2) Broken TSC compensation resets the base at each VCPU
1077          *      entry to avoid unknown leaps of TSC even when running
1078          *      again on the same CPU.  This may cause apparent elapsed
1079          *      time to disappear, and the guest to stand still or run
1080          *      very slowly.
1081          */
1082         if (vcpu->tsc_catchup) {
1083                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1084                 if (tsc > tsc_timestamp) {
1085                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1086                         tsc_timestamp = tsc;
1087                 }
1088         }
1089
1090         local_irq_restore(flags);
1091
1092         if (!vcpu->time_page)
1093                 return 0;
1094
1095         /*
1096          * Time as measured by the TSC may go backwards when resetting the base
1097          * tsc_timestamp.  The reason for this is that the TSC resolution is
1098          * higher than the resolution of the other clock scales.  Thus, many
1099          * possible measurments of the TSC correspond to one measurement of any
1100          * other clock, and so a spread of values is possible.  This is not a
1101          * problem for the computation of the nanosecond clock; with TSC rates
1102          * around 1GHZ, there can only be a few cycles which correspond to one
1103          * nanosecond value, and any path through this code will inevitably
1104          * take longer than that.  However, with the kernel_ns value itself,
1105          * the precision may be much lower, down to HZ granularity.  If the
1106          * first sampling of TSC against kernel_ns ends in the low part of the
1107          * range, and the second in the high end of the range, we can get:
1108          *
1109          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1110          *
1111          * As the sampling errors potentially range in the thousands of cycles,
1112          * it is possible such a time value has already been observed by the
1113          * guest.  To protect against this, we must compute the system time as
1114          * observed by the guest and ensure the new system time is greater.
1115          */
1116         max_kernel_ns = 0;
1117         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1118                 max_kernel_ns = vcpu->last_guest_tsc -
1119                                 vcpu->hv_clock.tsc_timestamp;
1120                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1121                                     vcpu->hv_clock.tsc_to_system_mul,
1122                                     vcpu->hv_clock.tsc_shift);
1123                 max_kernel_ns += vcpu->last_kernel_ns;
1124         }
1125
1126         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1127                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1128                                    &vcpu->hv_clock.tsc_shift,
1129                                    &vcpu->hv_clock.tsc_to_system_mul);
1130                 vcpu->hw_tsc_khz = this_tsc_khz;
1131         }
1132
1133         if (max_kernel_ns > kernel_ns)
1134                 kernel_ns = max_kernel_ns;
1135
1136         /* With all the info we got, fill in the values */
1137         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1138         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1139         vcpu->last_kernel_ns = kernel_ns;
1140         vcpu->last_guest_tsc = tsc_timestamp;
1141         vcpu->hv_clock.flags = 0;
1142
1143         /*
1144          * The interface expects us to write an even number signaling that the
1145          * update is finished. Since the guest won't see the intermediate
1146          * state, we just increase by 2 at the end.
1147          */
1148         vcpu->hv_clock.version += 2;
1149
1150         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1151
1152         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1153                sizeof(vcpu->hv_clock));
1154
1155         kunmap_atomic(shared_kaddr, KM_USER0);
1156
1157         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1158         return 0;
1159 }
1160
1161 static bool msr_mtrr_valid(unsigned msr)
1162 {
1163         switch (msr) {
1164         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1165         case MSR_MTRRfix64K_00000:
1166         case MSR_MTRRfix16K_80000:
1167         case MSR_MTRRfix16K_A0000:
1168         case MSR_MTRRfix4K_C0000:
1169         case MSR_MTRRfix4K_C8000:
1170         case MSR_MTRRfix4K_D0000:
1171         case MSR_MTRRfix4K_D8000:
1172         case MSR_MTRRfix4K_E0000:
1173         case MSR_MTRRfix4K_E8000:
1174         case MSR_MTRRfix4K_F0000:
1175         case MSR_MTRRfix4K_F8000:
1176         case MSR_MTRRdefType:
1177         case MSR_IA32_CR_PAT:
1178                 return true;
1179         case 0x2f8:
1180                 return true;
1181         }
1182         return false;
1183 }
1184
1185 static bool valid_pat_type(unsigned t)
1186 {
1187         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1188 }
1189
1190 static bool valid_mtrr_type(unsigned t)
1191 {
1192         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1193 }
1194
1195 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1196 {
1197         int i;
1198
1199         if (!msr_mtrr_valid(msr))
1200                 return false;
1201
1202         if (msr == MSR_IA32_CR_PAT) {
1203                 for (i = 0; i < 8; i++)
1204                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1205                                 return false;
1206                 return true;
1207         } else if (msr == MSR_MTRRdefType) {
1208                 if (data & ~0xcff)
1209                         return false;
1210                 return valid_mtrr_type(data & 0xff);
1211         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1212                 for (i = 0; i < 8 ; i++)
1213                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1214                                 return false;
1215                 return true;
1216         }
1217
1218         /* variable MTRRs */
1219         return valid_mtrr_type(data & 0xff);
1220 }
1221
1222 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1223 {
1224         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1225
1226         if (!mtrr_valid(vcpu, msr, data))
1227                 return 1;
1228
1229         if (msr == MSR_MTRRdefType) {
1230                 vcpu->arch.mtrr_state.def_type = data;
1231                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1232         } else if (msr == MSR_MTRRfix64K_00000)
1233                 p[0] = data;
1234         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1235                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1236         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1237                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1238         else if (msr == MSR_IA32_CR_PAT)
1239                 vcpu->arch.pat = data;
1240         else {  /* Variable MTRRs */
1241                 int idx, is_mtrr_mask;
1242                 u64 *pt;
1243
1244                 idx = (msr - 0x200) / 2;
1245                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1246                 if (!is_mtrr_mask)
1247                         pt =
1248                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1249                 else
1250                         pt =
1251                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1252                 *pt = data;
1253         }
1254
1255         kvm_mmu_reset_context(vcpu);
1256         return 0;
1257 }
1258
1259 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1260 {
1261         u64 mcg_cap = vcpu->arch.mcg_cap;
1262         unsigned bank_num = mcg_cap & 0xff;
1263
1264         switch (msr) {
1265         case MSR_IA32_MCG_STATUS:
1266                 vcpu->arch.mcg_status = data;
1267                 break;
1268         case MSR_IA32_MCG_CTL:
1269                 if (!(mcg_cap & MCG_CTL_P))
1270                         return 1;
1271                 if (data != 0 && data != ~(u64)0)
1272                         return -1;
1273                 vcpu->arch.mcg_ctl = data;
1274                 break;
1275         default:
1276                 if (msr >= MSR_IA32_MC0_CTL &&
1277                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1278                         u32 offset = msr - MSR_IA32_MC0_CTL;
1279                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1280                          * some Linux kernels though clear bit 10 in bank 4 to
1281                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1282                          * this to avoid an uncatched #GP in the guest
1283                          */
1284                         if ((offset & 0x3) == 0 &&
1285                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1286                                 return -1;
1287                         vcpu->arch.mce_banks[offset] = data;
1288                         break;
1289                 }
1290                 return 1;
1291         }
1292         return 0;
1293 }
1294
1295 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1296 {
1297         struct kvm *kvm = vcpu->kvm;
1298         int lm = is_long_mode(vcpu);
1299         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1300                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1301         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1302                 : kvm->arch.xen_hvm_config.blob_size_32;
1303         u32 page_num = data & ~PAGE_MASK;
1304         u64 page_addr = data & PAGE_MASK;
1305         u8 *page;
1306         int r;
1307
1308         r = -E2BIG;
1309         if (page_num >= blob_size)
1310                 goto out;
1311         r = -ENOMEM;
1312         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1313         if (!page)
1314                 goto out;
1315         r = -EFAULT;
1316         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1317                 goto out_free;
1318         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1319                 goto out_free;
1320         r = 0;
1321 out_free:
1322         kfree(page);
1323 out:
1324         return r;
1325 }
1326
1327 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1328 {
1329         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1330 }
1331
1332 static bool kvm_hv_msr_partition_wide(u32 msr)
1333 {
1334         bool r = false;
1335         switch (msr) {
1336         case HV_X64_MSR_GUEST_OS_ID:
1337         case HV_X64_MSR_HYPERCALL:
1338                 r = true;
1339                 break;
1340         }
1341
1342         return r;
1343 }
1344
1345 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1346 {
1347         struct kvm *kvm = vcpu->kvm;
1348
1349         switch (msr) {
1350         case HV_X64_MSR_GUEST_OS_ID:
1351                 kvm->arch.hv_guest_os_id = data;
1352                 /* setting guest os id to zero disables hypercall page */
1353                 if (!kvm->arch.hv_guest_os_id)
1354                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1355                 break;
1356         case HV_X64_MSR_HYPERCALL: {
1357                 u64 gfn;
1358                 unsigned long addr;
1359                 u8 instructions[4];
1360
1361                 /* if guest os id is not set hypercall should remain disabled */
1362                 if (!kvm->arch.hv_guest_os_id)
1363                         break;
1364                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1365                         kvm->arch.hv_hypercall = data;
1366                         break;
1367                 }
1368                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1369                 addr = gfn_to_hva(kvm, gfn);
1370                 if (kvm_is_error_hva(addr))
1371                         return 1;
1372                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1373                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1374                 if (__copy_to_user((void __user *)addr, instructions, 4))
1375                         return 1;
1376                 kvm->arch.hv_hypercall = data;
1377                 break;
1378         }
1379         default:
1380                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1381                           "data 0x%llx\n", msr, data);
1382                 return 1;
1383         }
1384         return 0;
1385 }
1386
1387 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1388 {
1389         switch (msr) {
1390         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1391                 unsigned long addr;
1392
1393                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1394                         vcpu->arch.hv_vapic = data;
1395                         break;
1396                 }
1397                 addr = gfn_to_hva(vcpu->kvm, data >>
1398                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1399                 if (kvm_is_error_hva(addr))
1400                         return 1;
1401                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1402                         return 1;
1403                 vcpu->arch.hv_vapic = data;
1404                 break;
1405         }
1406         case HV_X64_MSR_EOI:
1407                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1408         case HV_X64_MSR_ICR:
1409                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1410         case HV_X64_MSR_TPR:
1411                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1412         default:
1413                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1414                           "data 0x%llx\n", msr, data);
1415                 return 1;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1422 {
1423         gpa_t gpa = data & ~0x3f;
1424
1425         /* Bits 2:5 are resrved, Should be zero */
1426         if (data & 0x3c)
1427                 return 1;
1428
1429         vcpu->arch.apf.msr_val = data;
1430
1431         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1432                 kvm_clear_async_pf_completion_queue(vcpu);
1433                 kvm_async_pf_hash_reset(vcpu);
1434                 return 0;
1435         }
1436
1437         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1438                 return 1;
1439
1440         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1441         kvm_async_pf_wakeup_all(vcpu);
1442         return 0;
1443 }
1444
1445 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1446 {
1447         if (vcpu->arch.time_page) {
1448                 kvm_release_page_dirty(vcpu->arch.time_page);
1449                 vcpu->arch.time_page = NULL;
1450         }
1451 }
1452
1453 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1454 {
1455         u64 delta;
1456
1457         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1458                 return;
1459
1460         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1461         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1462         vcpu->arch.st.accum_steal = delta;
1463 }
1464
1465 static void record_steal_time(struct kvm_vcpu *vcpu)
1466 {
1467         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1468                 return;
1469
1470         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1471                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1472                 return;
1473
1474         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1475         vcpu->arch.st.steal.version += 2;
1476         vcpu->arch.st.accum_steal = 0;
1477
1478         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1479                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1480 }
1481
1482 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1483 {
1484         switch (msr) {
1485         case MSR_EFER:
1486                 return set_efer(vcpu, data);
1487         case MSR_K7_HWCR:
1488                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1489                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1490                 if (data != 0) {
1491                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1492                                 data);
1493                         return 1;
1494                 }
1495                 break;
1496         case MSR_FAM10H_MMIO_CONF_BASE:
1497                 if (data != 0) {
1498                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1499                                 "0x%llx\n", data);
1500                         return 1;
1501                 }
1502                 break;
1503         case MSR_AMD64_NB_CFG:
1504                 break;
1505         case MSR_IA32_DEBUGCTLMSR:
1506                 if (!data) {
1507                         /* We support the non-activated case already */
1508                         break;
1509                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1510                         /* Values other than LBR and BTF are vendor-specific,
1511                            thus reserved and should throw a #GP */
1512                         return 1;
1513                 }
1514                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1515                         __func__, data);
1516                 break;
1517         case MSR_IA32_UCODE_REV:
1518         case MSR_IA32_UCODE_WRITE:
1519         case MSR_VM_HSAVE_PA:
1520         case MSR_AMD64_PATCH_LOADER:
1521                 break;
1522         case 0x200 ... 0x2ff:
1523                 return set_msr_mtrr(vcpu, msr, data);
1524         case MSR_IA32_APICBASE:
1525                 kvm_set_apic_base(vcpu, data);
1526                 break;
1527         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1528                 return kvm_x2apic_msr_write(vcpu, msr, data);
1529         case MSR_IA32_TSCDEADLINE:
1530                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1531                 break;
1532         case MSR_IA32_MISC_ENABLE:
1533                 vcpu->arch.ia32_misc_enable_msr = data;
1534                 break;
1535         case MSR_KVM_WALL_CLOCK_NEW:
1536         case MSR_KVM_WALL_CLOCK:
1537                 vcpu->kvm->arch.wall_clock = data;
1538                 kvm_write_wall_clock(vcpu->kvm, data);
1539                 break;
1540         case MSR_KVM_SYSTEM_TIME_NEW:
1541         case MSR_KVM_SYSTEM_TIME: {
1542                 kvmclock_reset(vcpu);
1543
1544                 vcpu->arch.time = data;
1545                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1546
1547                 /* we verify if the enable bit is set... */
1548                 if (!(data & 1))
1549                         break;
1550
1551                 /* ...but clean it before doing the actual write */
1552                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1553
1554                 vcpu->arch.time_page =
1555                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1556
1557                 if (is_error_page(vcpu->arch.time_page)) {
1558                         kvm_release_page_clean(vcpu->arch.time_page);
1559                         vcpu->arch.time_page = NULL;
1560                 }
1561                 break;
1562         }
1563         case MSR_KVM_ASYNC_PF_EN:
1564                 if (kvm_pv_enable_async_pf(vcpu, data))
1565                         return 1;
1566                 break;
1567         case MSR_KVM_STEAL_TIME:
1568
1569                 if (unlikely(!sched_info_on()))
1570                         return 1;
1571
1572                 if (data & KVM_STEAL_RESERVED_MASK)
1573                         return 1;
1574
1575                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1576                                                         data & KVM_STEAL_VALID_BITS))
1577                         return 1;
1578
1579                 vcpu->arch.st.msr_val = data;
1580
1581                 if (!(data & KVM_MSR_ENABLED))
1582                         break;
1583
1584                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1585
1586                 preempt_disable();
1587                 accumulate_steal_time(vcpu);
1588                 preempt_enable();
1589
1590                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1591
1592                 break;
1593
1594         case MSR_IA32_MCG_CTL:
1595         case MSR_IA32_MCG_STATUS:
1596         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1597                 return set_msr_mce(vcpu, msr, data);
1598
1599         /* Performance counters are not protected by a CPUID bit,
1600          * so we should check all of them in the generic path for the sake of
1601          * cross vendor migration.
1602          * Writing a zero into the event select MSRs disables them,
1603          * which we perfectly emulate ;-). Any other value should be at least
1604          * reported, some guests depend on them.
1605          */
1606         case MSR_P6_EVNTSEL0:
1607         case MSR_P6_EVNTSEL1:
1608         case MSR_K7_EVNTSEL0:
1609         case MSR_K7_EVNTSEL1:
1610         case MSR_K7_EVNTSEL2:
1611         case MSR_K7_EVNTSEL3:
1612                 if (data != 0)
1613                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1614                                 "0x%x data 0x%llx\n", msr, data);
1615                 break;
1616         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1617          * so we ignore writes to make it happy.
1618          */
1619         case MSR_P6_PERFCTR0:
1620         case MSR_P6_PERFCTR1:
1621         case MSR_K7_PERFCTR0:
1622         case MSR_K7_PERFCTR1:
1623         case MSR_K7_PERFCTR2:
1624         case MSR_K7_PERFCTR3:
1625                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1626                         "0x%x data 0x%llx\n", msr, data);
1627                 break;
1628         case MSR_K7_CLK_CTL:
1629                 /*
1630                  * Ignore all writes to this no longer documented MSR.
1631                  * Writes are only relevant for old K7 processors,
1632                  * all pre-dating SVM, but a recommended workaround from
1633                  * AMD for these chips. It is possible to speicify the
1634                  * affected processor models on the command line, hence
1635                  * the need to ignore the workaround.
1636                  */
1637                 break;
1638         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1639                 if (kvm_hv_msr_partition_wide(msr)) {
1640                         int r;
1641                         mutex_lock(&vcpu->kvm->lock);
1642                         r = set_msr_hyperv_pw(vcpu, msr, data);
1643                         mutex_unlock(&vcpu->kvm->lock);
1644                         return r;
1645                 } else
1646                         return set_msr_hyperv(vcpu, msr, data);
1647                 break;
1648         case MSR_IA32_BBL_CR_CTL3:
1649                 /* Drop writes to this legacy MSR -- see rdmsr
1650                  * counterpart for further detail.
1651                  */
1652                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1653                 break;
1654         default:
1655                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1656                         return xen_hvm_config(vcpu, data);
1657                 if (!ignore_msrs) {
1658                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1659                                 msr, data);
1660                         return 1;
1661                 } else {
1662                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1663                                 msr, data);
1664                         break;
1665                 }
1666         }
1667         return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1670
1671
1672 /*
1673  * Reads an msr value (of 'msr_index') into 'pdata'.
1674  * Returns 0 on success, non-0 otherwise.
1675  * Assumes vcpu_load() was already called.
1676  */
1677 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1678 {
1679         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1680 }
1681
1682 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1683 {
1684         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1685
1686         if (!msr_mtrr_valid(msr))
1687                 return 1;
1688
1689         if (msr == MSR_MTRRdefType)
1690                 *pdata = vcpu->arch.mtrr_state.def_type +
1691                          (vcpu->arch.mtrr_state.enabled << 10);
1692         else if (msr == MSR_MTRRfix64K_00000)
1693                 *pdata = p[0];
1694         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1695                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1696         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1697                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1698         else if (msr == MSR_IA32_CR_PAT)
1699                 *pdata = vcpu->arch.pat;
1700         else {  /* Variable MTRRs */
1701                 int idx, is_mtrr_mask;
1702                 u64 *pt;
1703
1704                 idx = (msr - 0x200) / 2;
1705                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1706                 if (!is_mtrr_mask)
1707                         pt =
1708                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1709                 else
1710                         pt =
1711                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1712                 *pdata = *pt;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1719 {
1720         u64 data;
1721         u64 mcg_cap = vcpu->arch.mcg_cap;
1722         unsigned bank_num = mcg_cap & 0xff;
1723
1724         switch (msr) {
1725         case MSR_IA32_P5_MC_ADDR:
1726         case MSR_IA32_P5_MC_TYPE:
1727                 data = 0;
1728                 break;
1729         case MSR_IA32_MCG_CAP:
1730                 data = vcpu->arch.mcg_cap;
1731                 break;
1732         case MSR_IA32_MCG_CTL:
1733                 if (!(mcg_cap & MCG_CTL_P))
1734                         return 1;
1735                 data = vcpu->arch.mcg_ctl;
1736                 break;
1737         case MSR_IA32_MCG_STATUS:
1738                 data = vcpu->arch.mcg_status;
1739                 break;
1740         default:
1741                 if (msr >= MSR_IA32_MC0_CTL &&
1742                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1743                         u32 offset = msr - MSR_IA32_MC0_CTL;
1744                         data = vcpu->arch.mce_banks[offset];
1745                         break;
1746                 }
1747                 return 1;
1748         }
1749         *pdata = data;
1750         return 0;
1751 }
1752
1753 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1754 {
1755         u64 data = 0;
1756         struct kvm *kvm = vcpu->kvm;
1757
1758         switch (msr) {
1759         case HV_X64_MSR_GUEST_OS_ID:
1760                 data = kvm->arch.hv_guest_os_id;
1761                 break;
1762         case HV_X64_MSR_HYPERCALL:
1763                 data = kvm->arch.hv_hypercall;
1764                 break;
1765         default:
1766                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1767                 return 1;
1768         }
1769
1770         *pdata = data;
1771         return 0;
1772 }
1773
1774 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1775 {
1776         u64 data = 0;
1777
1778         switch (msr) {
1779         case HV_X64_MSR_VP_INDEX: {
1780                 int r;
1781                 struct kvm_vcpu *v;
1782                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1783                         if (v == vcpu)
1784                                 data = r;
1785                 break;
1786         }
1787         case HV_X64_MSR_EOI:
1788                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1789         case HV_X64_MSR_ICR:
1790                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1791         case HV_X64_MSR_TPR:
1792                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1793         case HV_X64_MSR_APIC_ASSIST_PAGE:
1794                 data = vcpu->arch.hv_vapic;
1795                 break;
1796         default:
1797                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1798                 return 1;
1799         }
1800         *pdata = data;
1801         return 0;
1802 }
1803
1804 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1805 {
1806         u64 data;
1807
1808         switch (msr) {
1809         case MSR_IA32_PLATFORM_ID:
1810         case MSR_IA32_EBL_CR_POWERON:
1811         case MSR_IA32_DEBUGCTLMSR:
1812         case MSR_IA32_LASTBRANCHFROMIP:
1813         case MSR_IA32_LASTBRANCHTOIP:
1814         case MSR_IA32_LASTINTFROMIP:
1815         case MSR_IA32_LASTINTTOIP:
1816         case MSR_K8_SYSCFG:
1817         case MSR_K7_HWCR:
1818         case MSR_VM_HSAVE_PA:
1819         case MSR_P6_PERFCTR0:
1820         case MSR_P6_PERFCTR1:
1821         case MSR_P6_EVNTSEL0:
1822         case MSR_P6_EVNTSEL1:
1823         case MSR_K7_EVNTSEL0:
1824         case MSR_K7_PERFCTR0:
1825         case MSR_K8_INT_PENDING_MSG:
1826         case MSR_AMD64_NB_CFG:
1827         case MSR_FAM10H_MMIO_CONF_BASE:
1828                 data = 0;
1829                 break;
1830         case MSR_IA32_UCODE_REV:
1831                 data = 0x100000000ULL;
1832                 break;
1833         case MSR_MTRRcap:
1834                 data = 0x500 | KVM_NR_VAR_MTRR;
1835                 break;
1836         case 0x200 ... 0x2ff:
1837                 return get_msr_mtrr(vcpu, msr, pdata);
1838         case 0xcd: /* fsb frequency */
1839                 data = 3;
1840                 break;
1841                 /*
1842                  * MSR_EBC_FREQUENCY_ID
1843                  * Conservative value valid for even the basic CPU models.
1844                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1845                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1846                  * and 266MHz for model 3, or 4. Set Core Clock
1847                  * Frequency to System Bus Frequency Ratio to 1 (bits
1848                  * 31:24) even though these are only valid for CPU
1849                  * models > 2, however guests may end up dividing or
1850                  * multiplying by zero otherwise.
1851                  */
1852         case MSR_EBC_FREQUENCY_ID:
1853                 data = 1 << 24;
1854                 break;
1855         case MSR_IA32_APICBASE:
1856                 data = kvm_get_apic_base(vcpu);
1857                 break;
1858         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1859                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1860                 break;
1861         case MSR_IA32_TSCDEADLINE:
1862                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1863                 break;
1864         case MSR_IA32_MISC_ENABLE:
1865                 data = vcpu->arch.ia32_misc_enable_msr;
1866                 break;
1867         case MSR_IA32_PERF_STATUS:
1868                 /* TSC increment by tick */
1869                 data = 1000ULL;
1870                 /* CPU multiplier */
1871                 data |= (((uint64_t)4ULL) << 40);
1872                 break;
1873         case MSR_EFER:
1874                 data = vcpu->arch.efer;
1875                 break;
1876         case MSR_KVM_WALL_CLOCK:
1877         case MSR_KVM_WALL_CLOCK_NEW:
1878                 data = vcpu->kvm->arch.wall_clock;
1879                 break;
1880         case MSR_KVM_SYSTEM_TIME:
1881         case MSR_KVM_SYSTEM_TIME_NEW:
1882                 data = vcpu->arch.time;
1883                 break;
1884         case MSR_KVM_ASYNC_PF_EN:
1885                 data = vcpu->arch.apf.msr_val;
1886                 break;
1887         case MSR_KVM_STEAL_TIME:
1888                 data = vcpu->arch.st.msr_val;
1889                 break;
1890         case MSR_IA32_P5_MC_ADDR:
1891         case MSR_IA32_P5_MC_TYPE:
1892         case MSR_IA32_MCG_CAP:
1893         case MSR_IA32_MCG_CTL:
1894         case MSR_IA32_MCG_STATUS:
1895         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1896                 return get_msr_mce(vcpu, msr, pdata);
1897         case MSR_K7_CLK_CTL:
1898                 /*
1899                  * Provide expected ramp-up count for K7. All other
1900                  * are set to zero, indicating minimum divisors for
1901                  * every field.
1902                  *
1903                  * This prevents guest kernels on AMD host with CPU
1904                  * type 6, model 8 and higher from exploding due to
1905                  * the rdmsr failing.
1906                  */
1907                 data = 0x20000000;
1908                 break;
1909         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1910                 if (kvm_hv_msr_partition_wide(msr)) {
1911                         int r;
1912                         mutex_lock(&vcpu->kvm->lock);
1913                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1914                         mutex_unlock(&vcpu->kvm->lock);
1915                         return r;
1916                 } else
1917                         return get_msr_hyperv(vcpu, msr, pdata);
1918                 break;
1919         case MSR_IA32_BBL_CR_CTL3:
1920                 /* This legacy MSR exists but isn't fully documented in current
1921                  * silicon.  It is however accessed by winxp in very narrow
1922                  * scenarios where it sets bit #19, itself documented as
1923                  * a "reserved" bit.  Best effort attempt to source coherent
1924                  * read data here should the balance of the register be
1925                  * interpreted by the guest:
1926                  *
1927                  * L2 cache control register 3: 64GB range, 256KB size,
1928                  * enabled, latency 0x1, configured
1929                  */
1930                 data = 0xbe702111;
1931                 break;
1932         default:
1933                 if (!ignore_msrs) {
1934                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1935                         return 1;
1936                 } else {
1937                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1938                         data = 0;
1939                 }
1940                 break;
1941         }
1942         *pdata = data;
1943         return 0;
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1946
1947 /*
1948  * Read or write a bunch of msrs. All parameters are kernel addresses.
1949  *
1950  * @return number of msrs set successfully.
1951  */
1952 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1953                     struct kvm_msr_entry *entries,
1954                     int (*do_msr)(struct kvm_vcpu *vcpu,
1955                                   unsigned index, u64 *data))
1956 {
1957         int i, idx;
1958
1959         idx = srcu_read_lock(&vcpu->kvm->srcu);
1960         for (i = 0; i < msrs->nmsrs; ++i)
1961                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1962                         break;
1963         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1964
1965         return i;
1966 }
1967
1968 /*
1969  * Read or write a bunch of msrs. Parameters are user addresses.
1970  *
1971  * @return number of msrs set successfully.
1972  */
1973 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1974                   int (*do_msr)(struct kvm_vcpu *vcpu,
1975                                 unsigned index, u64 *data),
1976                   int writeback)
1977 {
1978         struct kvm_msrs msrs;
1979         struct kvm_msr_entry *entries;
1980         int r, n;
1981         unsigned size;
1982
1983         r = -EFAULT;
1984         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1985                 goto out;
1986
1987         r = -E2BIG;
1988         if (msrs.nmsrs >= MAX_IO_MSRS)
1989                 goto out;
1990
1991         r = -ENOMEM;
1992         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1993         entries = kmalloc(size, GFP_KERNEL);
1994         if (!entries)
1995                 goto out;
1996
1997         r = -EFAULT;
1998         if (copy_from_user(entries, user_msrs->entries, size))
1999                 goto out_free;
2000
2001         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2002         if (r < 0)
2003                 goto out_free;
2004
2005         r = -EFAULT;
2006         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2007                 goto out_free;
2008
2009         r = n;
2010
2011 out_free:
2012         kfree(entries);
2013 out:
2014         return r;
2015 }
2016
2017 int kvm_dev_ioctl_check_extension(long ext)
2018 {
2019         int r;
2020
2021         switch (ext) {
2022         case KVM_CAP_IRQCHIP:
2023         case KVM_CAP_HLT:
2024         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2025         case KVM_CAP_SET_TSS_ADDR:
2026         case KVM_CAP_EXT_CPUID:
2027         case KVM_CAP_CLOCKSOURCE:
2028         case KVM_CAP_PIT:
2029         case KVM_CAP_NOP_IO_DELAY:
2030         case KVM_CAP_MP_STATE:
2031         case KVM_CAP_SYNC_MMU:
2032         case KVM_CAP_USER_NMI:
2033         case KVM_CAP_REINJECT_CONTROL:
2034         case KVM_CAP_IRQ_INJECT_STATUS:
2035         case KVM_CAP_ASSIGN_DEV_IRQ:
2036         case KVM_CAP_IRQFD:
2037         case KVM_CAP_IOEVENTFD:
2038         case KVM_CAP_PIT2:
2039         case KVM_CAP_PIT_STATE2:
2040         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2041         case KVM_CAP_XEN_HVM:
2042         case KVM_CAP_ADJUST_CLOCK:
2043         case KVM_CAP_VCPU_EVENTS:
2044         case KVM_CAP_HYPERV:
2045         case KVM_CAP_HYPERV_VAPIC:
2046         case KVM_CAP_HYPERV_SPIN:
2047         case KVM_CAP_PCI_SEGMENT:
2048         case KVM_CAP_DEBUGREGS:
2049         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2050         case KVM_CAP_XSAVE:
2051         case KVM_CAP_ASYNC_PF:
2052         case KVM_CAP_GET_TSC_KHZ:
2053                 r = 1;
2054                 break;
2055         case KVM_CAP_COALESCED_MMIO:
2056                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2057                 break;
2058         case KVM_CAP_VAPIC:
2059                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2060                 break;
2061         case KVM_CAP_NR_VCPUS:
2062                 r = KVM_SOFT_MAX_VCPUS;
2063                 break;
2064         case KVM_CAP_MAX_VCPUS:
2065                 r = KVM_MAX_VCPUS;
2066                 break;
2067         case KVM_CAP_NR_MEMSLOTS:
2068                 r = KVM_MEMORY_SLOTS;
2069                 break;
2070         case KVM_CAP_PV_MMU:    /* obsolete */
2071                 r = 0;
2072                 break;
2073         case KVM_CAP_IOMMU:
2074                 r = iommu_present(&pci_bus_type);
2075                 break;
2076         case KVM_CAP_MCE:
2077                 r = KVM_MAX_MCE_BANKS;
2078                 break;
2079         case KVM_CAP_XCRS:
2080                 r = cpu_has_xsave;
2081                 break;
2082         case KVM_CAP_TSC_CONTROL:
2083                 r = kvm_has_tsc_control;
2084                 break;
2085         case KVM_CAP_TSC_DEADLINE_TIMER:
2086                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2087                 break;
2088         default:
2089                 r = 0;
2090                 break;
2091         }
2092         return r;
2093
2094 }
2095
2096 long kvm_arch_dev_ioctl(struct file *filp,
2097                         unsigned int ioctl, unsigned long arg)
2098 {
2099         void __user *argp = (void __user *)arg;
2100         long r;
2101
2102         switch (ioctl) {
2103         case KVM_GET_MSR_INDEX_LIST: {
2104                 struct kvm_msr_list __user *user_msr_list = argp;
2105                 struct kvm_msr_list msr_list;
2106                 unsigned n;
2107
2108                 r = -EFAULT;
2109                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2110                         goto out;
2111                 n = msr_list.nmsrs;
2112                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2113                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2114                         goto out;
2115                 r = -E2BIG;
2116                 if (n < msr_list.nmsrs)
2117                         goto out;
2118                 r = -EFAULT;
2119                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2120                                  num_msrs_to_save * sizeof(u32)))
2121                         goto out;
2122                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2123                                  &emulated_msrs,
2124                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2125                         goto out;
2126                 r = 0;
2127                 break;
2128         }
2129         case KVM_GET_SUPPORTED_CPUID: {
2130                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2131                 struct kvm_cpuid2 cpuid;
2132
2133                 r = -EFAULT;
2134                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2135                         goto out;
2136                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2137                                                       cpuid_arg->entries);
2138                 if (r)
2139                         goto out;
2140
2141                 r = -EFAULT;
2142                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2143                         goto out;
2144                 r = 0;
2145                 break;
2146         }
2147         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2148                 u64 mce_cap;
2149
2150                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2151                 r = -EFAULT;
2152                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2153                         goto out;
2154                 r = 0;
2155                 break;
2156         }
2157         default:
2158                 r = -EINVAL;
2159         }
2160 out:
2161         return r;
2162 }
2163
2164 static void wbinvd_ipi(void *garbage)
2165 {
2166         wbinvd();
2167 }
2168
2169 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2170 {
2171         return vcpu->kvm->arch.iommu_domain &&
2172                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2173 }
2174
2175 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2176 {
2177         /* Address WBINVD may be executed by guest */
2178         if (need_emulate_wbinvd(vcpu)) {
2179                 if (kvm_x86_ops->has_wbinvd_exit())
2180                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2181                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2182                         smp_call_function_single(vcpu->cpu,
2183                                         wbinvd_ipi, NULL, 1);
2184         }
2185
2186         kvm_x86_ops->vcpu_load(vcpu, cpu);
2187         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2188                 /* Make sure TSC doesn't go backwards */
2189                 s64 tsc_delta;
2190                 u64 tsc;
2191
2192                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2193                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2194                              tsc - vcpu->arch.last_guest_tsc;
2195
2196                 if (tsc_delta < 0)
2197                         mark_tsc_unstable("KVM discovered backwards TSC");
2198                 if (check_tsc_unstable()) {
2199                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2200                         vcpu->arch.tsc_catchup = 1;
2201                 }
2202                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2203                 if (vcpu->cpu != cpu)
2204                         kvm_migrate_timers(vcpu);
2205                 vcpu->cpu = cpu;
2206         }
2207
2208         accumulate_steal_time(vcpu);
2209         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2210 }
2211
2212 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2213 {
2214         kvm_x86_ops->vcpu_put(vcpu);
2215         kvm_put_guest_fpu(vcpu);
2216         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2217 }
2218
2219 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2220                                     struct kvm_lapic_state *s)
2221 {
2222         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2223
2224         return 0;
2225 }
2226
2227 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2228                                     struct kvm_lapic_state *s)
2229 {
2230         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2231         kvm_apic_post_state_restore(vcpu);
2232         update_cr8_intercept(vcpu);
2233
2234         return 0;
2235 }
2236
2237 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2238                                     struct kvm_interrupt *irq)
2239 {
2240         if (irq->irq < 0 || irq->irq >= 256)
2241                 return -EINVAL;
2242         if (irqchip_in_kernel(vcpu->kvm))
2243                 return -ENXIO;
2244
2245         kvm_queue_interrupt(vcpu, irq->irq, false);
2246         kvm_make_request(KVM_REQ_EVENT, vcpu);
2247
2248         return 0;
2249 }
2250
2251 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2252 {
2253         kvm_inject_nmi(vcpu);
2254
2255         return 0;
2256 }
2257
2258 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2259                                            struct kvm_tpr_access_ctl *tac)
2260 {
2261         if (tac->flags)
2262                 return -EINVAL;
2263         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2264         return 0;
2265 }
2266
2267 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2268                                         u64 mcg_cap)
2269 {
2270         int r;
2271         unsigned bank_num = mcg_cap & 0xff, bank;
2272
2273         r = -EINVAL;
2274         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2275                 goto out;
2276         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2277                 goto out;
2278         r = 0;
2279         vcpu->arch.mcg_cap = mcg_cap;
2280         /* Init IA32_MCG_CTL to all 1s */
2281         if (mcg_cap & MCG_CTL_P)
2282                 vcpu->arch.mcg_ctl = ~(u64)0;
2283         /* Init IA32_MCi_CTL to all 1s */
2284         for (bank = 0; bank < bank_num; bank++)
2285                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2286 out:
2287         return r;
2288 }
2289
2290 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2291                                       struct kvm_x86_mce *mce)
2292 {
2293         u64 mcg_cap = vcpu->arch.mcg_cap;
2294         unsigned bank_num = mcg_cap & 0xff;
2295         u64 *banks = vcpu->arch.mce_banks;
2296
2297         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2298                 return -EINVAL;
2299         /*
2300          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2301          * reporting is disabled
2302          */
2303         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2304             vcpu->arch.mcg_ctl != ~(u64)0)
2305                 return 0;
2306         banks += 4 * mce->bank;
2307         /*
2308          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2309          * reporting is disabled for the bank
2310          */
2311         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2312                 return 0;
2313         if (mce->status & MCI_STATUS_UC) {
2314                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2315                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2316                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2317                         return 0;
2318                 }
2319                 if (banks[1] & MCI_STATUS_VAL)
2320                         mce->status |= MCI_STATUS_OVER;
2321                 banks[2] = mce->addr;
2322                 banks[3] = mce->misc;
2323                 vcpu->arch.mcg_status = mce->mcg_status;
2324                 banks[1] = mce->status;
2325                 kvm_queue_exception(vcpu, MC_VECTOR);
2326         } else if (!(banks[1] & MCI_STATUS_VAL)
2327                    || !(banks[1] & MCI_STATUS_UC)) {
2328                 if (banks[1] & MCI_STATUS_VAL)
2329                         mce->status |= MCI_STATUS_OVER;
2330                 banks[2] = mce->addr;
2331                 banks[3] = mce->misc;
2332                 banks[1] = mce->status;
2333         } else
2334                 banks[1] |= MCI_STATUS_OVER;
2335         return 0;
2336 }
2337
2338 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2339                                                struct kvm_vcpu_events *events)
2340 {
2341         process_nmi(vcpu);
2342         events->exception.injected =
2343                 vcpu->arch.exception.pending &&
2344                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2345         events->exception.nr = vcpu->arch.exception.nr;
2346         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2347         events->exception.pad = 0;
2348         events->exception.error_code = vcpu->arch.exception.error_code;
2349
2350         events->interrupt.injected =
2351                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2352         events->interrupt.nr = vcpu->arch.interrupt.nr;
2353         events->interrupt.soft = 0;
2354         events->interrupt.shadow =
2355                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2356                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2357
2358         events->nmi.injected = vcpu->arch.nmi_injected;
2359         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2360         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2361         events->nmi.pad = 0;
2362
2363         events->sipi_vector = vcpu->arch.sipi_vector;
2364
2365         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2366                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2367                          | KVM_VCPUEVENT_VALID_SHADOW);
2368         memset(&events->reserved, 0, sizeof(events->reserved));
2369 }
2370
2371 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2372                                               struct kvm_vcpu_events *events)
2373 {
2374         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2375                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2376                               | KVM_VCPUEVENT_VALID_SHADOW))
2377                 return -EINVAL;
2378
2379         process_nmi(vcpu);
2380         vcpu->arch.exception.pending = events->exception.injected;
2381         vcpu->arch.exception.nr = events->exception.nr;
2382         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2383         vcpu->arch.exception.error_code = events->exception.error_code;
2384
2385         vcpu->arch.interrupt.pending = events->interrupt.injected;
2386         vcpu->arch.interrupt.nr = events->interrupt.nr;
2387         vcpu->arch.interrupt.soft = events->interrupt.soft;
2388         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2389                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2390                                                   events->interrupt.shadow);
2391
2392         vcpu->arch.nmi_injected = events->nmi.injected;
2393         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2394                 vcpu->arch.nmi_pending = events->nmi.pending;
2395         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2396
2397         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2398                 vcpu->arch.sipi_vector = events->sipi_vector;
2399
2400         kvm_make_request(KVM_REQ_EVENT, vcpu);
2401
2402         return 0;
2403 }
2404
2405 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2406                                              struct kvm_debugregs *dbgregs)
2407 {
2408         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2409         dbgregs->dr6 = vcpu->arch.dr6;
2410         dbgregs->dr7 = vcpu->arch.dr7;
2411         dbgregs->flags = 0;
2412         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2413 }
2414
2415 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2416                                             struct kvm_debugregs *dbgregs)
2417 {
2418         if (dbgregs->flags)
2419                 return -EINVAL;
2420
2421         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2422         vcpu->arch.dr6 = dbgregs->dr6;
2423         vcpu->arch.dr7 = dbgregs->dr7;
2424
2425         return 0;
2426 }
2427
2428 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2429                                          struct kvm_xsave *guest_xsave)
2430 {
2431         if (cpu_has_xsave)
2432                 memcpy(guest_xsave->region,
2433                         &vcpu->arch.guest_fpu.state->xsave,
2434                         xstate_size);
2435         else {
2436                 memcpy(guest_xsave->region,
2437                         &vcpu->arch.guest_fpu.state->fxsave,
2438                         sizeof(struct i387_fxsave_struct));
2439                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2440                         XSTATE_FPSSE;
2441         }
2442 }
2443
2444 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2445                                         struct kvm_xsave *guest_xsave)
2446 {
2447         u64 xstate_bv =
2448                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2449
2450         if (cpu_has_xsave)
2451                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2452                         guest_xsave->region, xstate_size);
2453         else {
2454                 if (xstate_bv & ~XSTATE_FPSSE)
2455                         return -EINVAL;
2456                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2457                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2458         }
2459         return 0;
2460 }
2461
2462 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2463                                         struct kvm_xcrs *guest_xcrs)
2464 {
2465         if (!cpu_has_xsave) {
2466                 guest_xcrs->nr_xcrs = 0;
2467                 return;
2468         }
2469
2470         guest_xcrs->nr_xcrs = 1;
2471         guest_xcrs->flags = 0;
2472         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2473         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2474 }
2475
2476 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2477                                        struct kvm_xcrs *guest_xcrs)
2478 {
2479         int i, r = 0;
2480
2481         if (!cpu_has_xsave)
2482                 return -EINVAL;
2483
2484         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2485                 return -EINVAL;
2486
2487         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2488                 /* Only support XCR0 currently */
2489                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2490                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2491                                 guest_xcrs->xcrs[0].value);
2492                         break;
2493                 }
2494         if (r)
2495                 r = -EINVAL;
2496         return r;
2497 }
2498
2499 long kvm_arch_vcpu_ioctl(struct file *filp,
2500                          unsigned int ioctl, unsigned long arg)
2501 {
2502         struct kvm_vcpu *vcpu = filp->private_data;
2503         void __user *argp = (void __user *)arg;
2504         int r;
2505         union {
2506                 struct kvm_lapic_state *lapic;
2507                 struct kvm_xsave *xsave;
2508                 struct kvm_xcrs *xcrs;
2509                 void *buffer;
2510         } u;
2511
2512         u.buffer = NULL;
2513         switch (ioctl) {
2514         case KVM_GET_LAPIC: {
2515                 r = -EINVAL;
2516                 if (!vcpu->arch.apic)
2517                         goto out;
2518                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2519
2520                 r = -ENOMEM;
2521                 if (!u.lapic)
2522                         goto out;
2523                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2524                 if (r)
2525                         goto out;
2526                 r = -EFAULT;
2527                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2528                         goto out;
2529                 r = 0;
2530                 break;
2531         }
2532         case KVM_SET_LAPIC: {
2533                 r = -EINVAL;
2534                 if (!vcpu->arch.apic)
2535                         goto out;
2536                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2537                 r = -ENOMEM;
2538                 if (!u.lapic)
2539                         goto out;
2540                 r = -EFAULT;
2541                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2542                         goto out;
2543                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2544                 if (r)
2545                         goto out;
2546                 r = 0;
2547                 break;
2548         }
2549         case KVM_INTERRUPT: {
2550                 struct kvm_interrupt irq;
2551
2552                 r = -EFAULT;
2553                 if (copy_from_user(&irq, argp, sizeof irq))
2554                         goto out;
2555                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2556                 if (r)
2557                         goto out;
2558                 r = 0;
2559                 break;
2560         }
2561         case KVM_NMI: {
2562                 r = kvm_vcpu_ioctl_nmi(vcpu);
2563                 if (r)
2564                         goto out;
2565                 r = 0;
2566                 break;
2567         }
2568         case KVM_SET_CPUID: {
2569                 struct kvm_cpuid __user *cpuid_arg = argp;
2570                 struct kvm_cpuid cpuid;
2571
2572                 r = -EFAULT;
2573                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2574                         goto out;
2575                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2576                 if (r)
2577                         goto out;
2578                 break;
2579         }
2580         case KVM_SET_CPUID2: {
2581                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2582                 struct kvm_cpuid2 cpuid;
2583
2584                 r = -EFAULT;
2585                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2586                         goto out;
2587                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2588                                               cpuid_arg->entries);
2589                 if (r)
2590                         goto out;
2591                 break;
2592         }
2593         case KVM_GET_CPUID2: {
2594                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2595                 struct kvm_cpuid2 cpuid;
2596
2597                 r = -EFAULT;
2598                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2599                         goto out;
2600                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2601                                               cpuid_arg->entries);
2602                 if (r)
2603                         goto out;
2604                 r = -EFAULT;
2605                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2606                         goto out;
2607                 r = 0;
2608                 break;
2609         }
2610         case KVM_GET_MSRS:
2611                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2612                 break;
2613         case KVM_SET_MSRS:
2614                 r = msr_io(vcpu, argp, do_set_msr, 0);
2615                 break;
2616         case KVM_TPR_ACCESS_REPORTING: {
2617                 struct kvm_tpr_access_ctl tac;
2618
2619                 r = -EFAULT;
2620                 if (copy_from_user(&tac, argp, sizeof tac))
2621                         goto out;
2622                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2623                 if (r)
2624                         goto out;
2625                 r = -EFAULT;
2626                 if (copy_to_user(argp, &tac, sizeof tac))
2627                         goto out;
2628                 r = 0;
2629                 break;
2630         };
2631         case KVM_SET_VAPIC_ADDR: {
2632                 struct kvm_vapic_addr va;
2633
2634                 r = -EINVAL;
2635                 if (!irqchip_in_kernel(vcpu->kvm))
2636                         goto out;
2637                 r = -EFAULT;
2638                 if (copy_from_user(&va, argp, sizeof va))
2639                         goto out;
2640                 r = 0;
2641                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2642                 break;
2643         }
2644         case KVM_X86_SETUP_MCE: {
2645                 u64 mcg_cap;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2649                         goto out;
2650                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2651                 break;
2652         }
2653         case KVM_X86_SET_MCE: {
2654                 struct kvm_x86_mce mce;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&mce, argp, sizeof mce))
2658                         goto out;
2659                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2660                 break;
2661         }
2662         case KVM_GET_VCPU_EVENTS: {
2663                 struct kvm_vcpu_events events;
2664
2665                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2666
2667                 r = -EFAULT;
2668                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2669                         break;
2670                 r = 0;
2671                 break;
2672         }
2673         case KVM_SET_VCPU_EVENTS: {
2674                 struct kvm_vcpu_events events;
2675
2676                 r = -EFAULT;
2677                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2678                         break;
2679
2680                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2681                 break;
2682         }
2683         case KVM_GET_DEBUGREGS: {
2684                 struct kvm_debugregs dbgregs;
2685
2686                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2687
2688                 r = -EFAULT;
2689                 if (copy_to_user(argp, &dbgregs,
2690                                  sizeof(struct kvm_debugregs)))
2691                         break;
2692                 r = 0;
2693                 break;
2694         }
2695         case KVM_SET_DEBUGREGS: {
2696                 struct kvm_debugregs dbgregs;
2697
2698                 r = -EFAULT;
2699                 if (copy_from_user(&dbgregs, argp,
2700                                    sizeof(struct kvm_debugregs)))
2701                         break;
2702
2703                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2704                 break;
2705         }
2706         case KVM_GET_XSAVE: {
2707                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2708                 r = -ENOMEM;
2709                 if (!u.xsave)
2710                         break;
2711
2712                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2713
2714                 r = -EFAULT;
2715                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2716                         break;
2717                 r = 0;
2718                 break;
2719         }
2720         case KVM_SET_XSAVE: {
2721                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2722                 r = -ENOMEM;
2723                 if (!u.xsave)
2724                         break;
2725
2726                 r = -EFAULT;
2727                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2728                         break;
2729
2730                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2731                 break;
2732         }
2733         case KVM_GET_XCRS: {
2734                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2735                 r = -ENOMEM;
2736                 if (!u.xcrs)
2737                         break;
2738
2739                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2740
2741                 r = -EFAULT;
2742                 if (copy_to_user(argp, u.xcrs,
2743                                  sizeof(struct kvm_xcrs)))
2744                         break;
2745                 r = 0;
2746                 break;
2747         }
2748         case KVM_SET_XCRS: {
2749                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2750                 r = -ENOMEM;
2751                 if (!u.xcrs)
2752                         break;
2753
2754                 r = -EFAULT;
2755                 if (copy_from_user(u.xcrs, argp,
2756                                    sizeof(struct kvm_xcrs)))
2757                         break;
2758
2759                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2760                 break;
2761         }
2762         case KVM_SET_TSC_KHZ: {
2763                 u32 user_tsc_khz;
2764
2765                 r = -EINVAL;
2766                 if (!kvm_has_tsc_control)
2767                         break;
2768
2769                 user_tsc_khz = (u32)arg;
2770
2771                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2772                         goto out;
2773
2774                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2775
2776                 r = 0;
2777                 goto out;
2778         }
2779         case KVM_GET_TSC_KHZ: {
2780                 r = -EIO;
2781                 if (check_tsc_unstable())
2782                         goto out;
2783
2784                 r = vcpu_tsc_khz(vcpu);
2785
2786                 goto out;
2787         }
2788         default:
2789                 r = -EINVAL;
2790         }
2791 out:
2792         kfree(u.buffer);
2793         return r;
2794 }
2795
2796 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2797 {
2798         int ret;
2799
2800         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2801                 return -1;
2802         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2803         return ret;
2804 }
2805
2806 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2807                                               u64 ident_addr)
2808 {
2809         kvm->arch.ept_identity_map_addr = ident_addr;
2810         return 0;
2811 }
2812
2813 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2814                                           u32 kvm_nr_mmu_pages)
2815 {
2816         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2817                 return -EINVAL;
2818
2819         mutex_lock(&kvm->slots_lock);
2820         spin_lock(&kvm->mmu_lock);
2821
2822         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2823         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2824
2825         spin_unlock(&kvm->mmu_lock);
2826         mutex_unlock(&kvm->slots_lock);
2827         return 0;
2828 }
2829
2830 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2831 {
2832         return kvm->arch.n_max_mmu_pages;
2833 }
2834
2835 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2836 {
2837         int r;
2838
2839         r = 0;
2840         switch (chip->chip_id) {
2841         case KVM_IRQCHIP_PIC_MASTER:
2842                 memcpy(&chip->chip.pic,
2843                         &pic_irqchip(kvm)->pics[0],
2844                         sizeof(struct kvm_pic_state));
2845                 break;
2846         case KVM_IRQCHIP_PIC_SLAVE:
2847                 memcpy(&chip->chip.pic,
2848                         &pic_irqchip(kvm)->pics[1],
2849                         sizeof(struct kvm_pic_state));
2850                 break;
2851         case KVM_IRQCHIP_IOAPIC:
2852                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2853                 break;
2854         default:
2855                 r = -EINVAL;
2856                 break;
2857         }
2858         return r;
2859 }
2860
2861 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2862 {
2863         int r;
2864
2865         r = 0;
2866         switch (chip->chip_id) {
2867         case KVM_IRQCHIP_PIC_MASTER:
2868                 spin_lock(&pic_irqchip(kvm)->lock);
2869                 memcpy(&pic_irqchip(kvm)->pics[0],
2870                         &chip->chip.pic,
2871                         sizeof(struct kvm_pic_state));
2872                 spin_unlock(&pic_irqchip(kvm)->lock);
2873                 break;
2874         case KVM_IRQCHIP_PIC_SLAVE:
2875                 spin_lock(&pic_irqchip(kvm)->lock);
2876                 memcpy(&pic_irqchip(kvm)->pics[1],
2877                         &chip->chip.pic,
2878                         sizeof(struct kvm_pic_state));
2879                 spin_unlock(&pic_irqchip(kvm)->lock);
2880                 break;
2881         case KVM_IRQCHIP_IOAPIC:
2882                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2883                 break;
2884         default:
2885                 r = -EINVAL;
2886                 break;
2887         }
2888         kvm_pic_update_irq(pic_irqchip(kvm));
2889         return r;
2890 }
2891
2892 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2893 {
2894         int r = 0;
2895
2896         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2897         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2898         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2899         return r;
2900 }
2901
2902 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2903 {
2904         int r = 0;
2905
2906         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2907         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2908         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2909         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2910         return r;
2911 }
2912
2913 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2914 {
2915         int r = 0;
2916
2917         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2918         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2919                 sizeof(ps->channels));
2920         ps->flags = kvm->arch.vpit->pit_state.flags;
2921         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2922         memset(&ps->reserved, 0, sizeof(ps->reserved));
2923         return r;
2924 }
2925
2926 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2927 {
2928         int r = 0, start = 0;
2929         u32 prev_legacy, cur_legacy;
2930         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2931         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2932         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2933         if (!prev_legacy && cur_legacy)
2934                 start = 1;
2935         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2936                sizeof(kvm->arch.vpit->pit_state.channels));
2937         kvm->arch.vpit->pit_state.flags = ps->flags;
2938         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2939         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2940         return r;
2941 }
2942
2943 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2944                                  struct kvm_reinject_control *control)
2945 {
2946         if (!kvm->arch.vpit)
2947                 return -ENXIO;
2948         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2949         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2950         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2951         return 0;
2952 }
2953
2954 /**
2955  * write_protect_slot - write protect a slot for dirty logging
2956  * @kvm: the kvm instance
2957  * @memslot: the slot we protect
2958  * @dirty_bitmap: the bitmap indicating which pages are dirty
2959  * @nr_dirty_pages: the number of dirty pages
2960  *
2961  * We have two ways to find all sptes to protect:
2962  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2963  *    checks ones that have a spte mapping a page in the slot.
2964  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2965  *
2966  * Generally speaking, if there are not so many dirty pages compared to the
2967  * number of shadow pages, we should use the latter.
2968  *
2969  * Note that letting others write into a page marked dirty in the old bitmap
2970  * by using the remaining tlb entry is not a problem.  That page will become
2971  * write protected again when we flush the tlb and then be reported dirty to
2972  * the user space by copying the old bitmap.
2973  */
2974 static void write_protect_slot(struct kvm *kvm,
2975                                struct kvm_memory_slot *memslot,
2976                                unsigned long *dirty_bitmap,
2977                                unsigned long nr_dirty_pages)
2978 {
2979         /* Not many dirty pages compared to # of shadow pages. */
2980         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
2981                 unsigned long gfn_offset;
2982
2983                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
2984                         unsigned long gfn = memslot->base_gfn + gfn_offset;
2985
2986                         spin_lock(&kvm->mmu_lock);
2987                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
2988                         spin_unlock(&kvm->mmu_lock);
2989                 }
2990                 kvm_flush_remote_tlbs(kvm);
2991         } else {
2992                 spin_lock(&kvm->mmu_lock);
2993                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
2994                 spin_unlock(&kvm->mmu_lock);
2995         }
2996 }
2997
2998 /*
2999  * Get (and clear) the dirty memory log for a memory slot.
3000  */
3001 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3002                                       struct kvm_dirty_log *log)
3003 {
3004         int r;
3005         struct kvm_memory_slot *memslot;
3006         unsigned long n, nr_dirty_pages;
3007
3008         mutex_lock(&kvm->slots_lock);
3009
3010         r = -EINVAL;
3011         if (log->slot >= KVM_MEMORY_SLOTS)
3012                 goto out;
3013
3014         memslot = id_to_memslot(kvm->memslots, log->slot);
3015         r = -ENOENT;
3016         if (!memslot->dirty_bitmap)
3017                 goto out;
3018
3019         n = kvm_dirty_bitmap_bytes(memslot);
3020         nr_dirty_pages = memslot->nr_dirty_pages;
3021
3022         /* If nothing is dirty, don't bother messing with page tables. */
3023         if (nr_dirty_pages) {
3024                 struct kvm_memslots *slots, *old_slots;
3025                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3026
3027                 dirty_bitmap = memslot->dirty_bitmap;
3028                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3029                 if (dirty_bitmap == dirty_bitmap_head)
3030                         dirty_bitmap_head += n / sizeof(long);
3031                 memset(dirty_bitmap_head, 0, n);
3032
3033                 r = -ENOMEM;
3034                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3035                 if (!slots)
3036                         goto out;
3037                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3038                 memslot = id_to_memslot(slots, log->slot);
3039                 memslot->nr_dirty_pages = 0;
3040                 memslot->dirty_bitmap = dirty_bitmap_head;
3041                 update_memslots(slots, NULL);
3042
3043                 old_slots = kvm->memslots;
3044                 rcu_assign_pointer(kvm->memslots, slots);
3045                 synchronize_srcu_expedited(&kvm->srcu);
3046                 kfree(old_slots);
3047
3048                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3049
3050                 r = -EFAULT;
3051                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3052                         goto out;
3053         } else {
3054                 r = -EFAULT;
3055                 if (clear_user(log->dirty_bitmap, n))
3056                         goto out;
3057         }
3058
3059         r = 0;
3060 out:
3061         mutex_unlock(&kvm->slots_lock);
3062         return r;
3063 }
3064
3065 long kvm_arch_vm_ioctl(struct file *filp,
3066                        unsigned int ioctl, unsigned long arg)
3067 {
3068         struct kvm *kvm = filp->private_data;
3069         void __user *argp = (void __user *)arg;
3070         int r = -ENOTTY;
3071         /*
3072          * This union makes it completely explicit to gcc-3.x
3073          * that these two variables' stack usage should be
3074          * combined, not added together.
3075          */
3076         union {
3077                 struct kvm_pit_state ps;
3078                 struct kvm_pit_state2 ps2;
3079                 struct kvm_pit_config pit_config;
3080         } u;
3081
3082         switch (ioctl) {
3083         case KVM_SET_TSS_ADDR:
3084                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3085                 if (r < 0)
3086                         goto out;
3087                 break;
3088         case KVM_SET_IDENTITY_MAP_ADDR: {
3089                 u64 ident_addr;
3090
3091                 r = -EFAULT;
3092                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3093                         goto out;
3094                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3095                 if (r < 0)
3096                         goto out;
3097                 break;
3098         }
3099         case KVM_SET_NR_MMU_PAGES:
3100                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3101                 if (r)
3102                         goto out;
3103                 break;
3104         case KVM_GET_NR_MMU_PAGES:
3105                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3106                 break;
3107         case KVM_CREATE_IRQCHIP: {
3108                 struct kvm_pic *vpic;
3109
3110                 mutex_lock(&kvm->lock);
3111                 r = -EEXIST;
3112                 if (kvm->arch.vpic)
3113                         goto create_irqchip_unlock;
3114                 r = -ENOMEM;
3115                 vpic = kvm_create_pic(kvm);
3116                 if (vpic) {
3117                         r = kvm_ioapic_init(kvm);
3118                         if (r) {
3119                                 mutex_lock(&kvm->slots_lock);
3120                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3121                                                           &vpic->dev_master);
3122                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3123                                                           &vpic->dev_slave);
3124                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3125                                                           &vpic->dev_eclr);
3126                                 mutex_unlock(&kvm->slots_lock);
3127                                 kfree(vpic);
3128                                 goto create_irqchip_unlock;
3129                         }
3130                 } else
3131                         goto create_irqchip_unlock;
3132                 smp_wmb();
3133                 kvm->arch.vpic = vpic;
3134                 smp_wmb();
3135                 r = kvm_setup_default_irq_routing(kvm);
3136                 if (r) {
3137                         mutex_lock(&kvm->slots_lock);
3138                         mutex_lock(&kvm->irq_lock);
3139                         kvm_ioapic_destroy(kvm);
3140                         kvm_destroy_pic(kvm);
3141                         mutex_unlock(&kvm->irq_lock);
3142                         mutex_unlock(&kvm->slots_lock);
3143                 }
3144         create_irqchip_unlock:
3145                 mutex_unlock(&kvm->lock);
3146                 break;
3147         }
3148         case KVM_CREATE_PIT:
3149                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3150                 goto create_pit;
3151         case KVM_CREATE_PIT2:
3152                 r = -EFAULT;
3153                 if (copy_from_user(&u.pit_config, argp,
3154                                    sizeof(struct kvm_pit_config)))
3155                         goto out;
3156         create_pit:
3157                 mutex_lock(&kvm->slots_lock);
3158                 r = -EEXIST;
3159                 if (kvm->arch.vpit)
3160                         goto create_pit_unlock;
3161                 r = -ENOMEM;
3162                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3163                 if (kvm->arch.vpit)
3164                         r = 0;
3165         create_pit_unlock:
3166                 mutex_unlock(&kvm->slots_lock);
3167                 break;
3168         case KVM_IRQ_LINE_STATUS:
3169         case KVM_IRQ_LINE: {
3170                 struct kvm_irq_level irq_event;
3171
3172                 r = -EFAULT;
3173                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3174                         goto out;
3175                 r = -ENXIO;
3176                 if (irqchip_in_kernel(kvm)) {
3177                         __s32 status;
3178                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3179                                         irq_event.irq, irq_event.level);
3180                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3181                                 r = -EFAULT;
3182                                 irq_event.status = status;
3183                                 if (copy_to_user(argp, &irq_event,
3184                                                         sizeof irq_event))
3185                                         goto out;
3186                         }
3187                         r = 0;
3188                 }
3189                 break;
3190         }
3191         case KVM_GET_IRQCHIP: {
3192                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3193                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3194
3195                 r = -ENOMEM;
3196                 if (!chip)
3197                         goto out;
3198                 r = -EFAULT;
3199                 if (copy_from_user(chip, argp, sizeof *chip))
3200                         goto get_irqchip_out;
3201                 r = -ENXIO;
3202                 if (!irqchip_in_kernel(kvm))
3203                         goto get_irqchip_out;
3204                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3205                 if (r)
3206                         goto get_irqchip_out;
3207                 r = -EFAULT;
3208                 if (copy_to_user(argp, chip, sizeof *chip))
3209                         goto get_irqchip_out;
3210                 r = 0;
3211         get_irqchip_out:
3212                 kfree(chip);
3213                 if (r)
3214                         goto out;
3215                 break;
3216         }
3217         case KVM_SET_IRQCHIP: {
3218                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3219                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3220
3221                 r = -ENOMEM;
3222                 if (!chip)
3223                         goto out;
3224                 r = -EFAULT;
3225                 if (copy_from_user(chip, argp, sizeof *chip))
3226                         goto set_irqchip_out;
3227                 r = -ENXIO;
3228                 if (!irqchip_in_kernel(kvm))
3229                         goto set_irqchip_out;
3230                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3231                 if (r)
3232                         goto set_irqchip_out;
3233                 r = 0;
3234         set_irqchip_out:
3235                 kfree(chip);
3236                 if (r)
3237                         goto out;
3238                 break;
3239         }
3240         case KVM_GET_PIT: {
3241                 r = -EFAULT;
3242                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3243                         goto out;
3244                 r = -ENXIO;
3245                 if (!kvm->arch.vpit)
3246                         goto out;
3247                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3248                 if (r)
3249                         goto out;
3250                 r = -EFAULT;
3251                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3252                         goto out;
3253                 r = 0;
3254                 break;
3255         }
3256         case KVM_SET_PIT: {
3257                 r = -EFAULT;
3258                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3259                         goto out;
3260                 r = -ENXIO;
3261                 if (!kvm->arch.vpit)
3262                         goto out;
3263                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3264                 if (r)
3265                         goto out;
3266                 r = 0;
3267                 break;
3268         }
3269         case KVM_GET_PIT2: {
3270                 r = -ENXIO;
3271                 if (!kvm->arch.vpit)
3272                         goto out;
3273                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3274                 if (r)
3275                         goto out;
3276                 r = -EFAULT;
3277                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3278                         goto out;
3279                 r = 0;
3280                 break;
3281         }
3282         case KVM_SET_PIT2: {
3283                 r = -EFAULT;
3284                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3285                         goto out;
3286                 r = -ENXIO;
3287                 if (!kvm->arch.vpit)
3288                         goto out;
3289                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3290                 if (r)
3291                         goto out;
3292                 r = 0;
3293                 break;
3294         }
3295         case KVM_REINJECT_CONTROL: {
3296                 struct kvm_reinject_control control;
3297                 r =  -EFAULT;
3298                 if (copy_from_user(&control, argp, sizeof(control)))
3299                         goto out;
3300                 r = kvm_vm_ioctl_reinject(kvm, &control);
3301                 if (r)
3302                         goto out;
3303                 r = 0;
3304                 break;
3305         }
3306         case KVM_XEN_HVM_CONFIG: {
3307                 r = -EFAULT;
3308                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3309                                    sizeof(struct kvm_xen_hvm_config)))
3310                         goto out;
3311                 r = -EINVAL;
3312                 if (kvm->arch.xen_hvm_config.flags)
3313                         goto out;
3314                 r = 0;
3315                 break;
3316         }
3317         case KVM_SET_CLOCK: {
3318                 struct kvm_clock_data user_ns;
3319                 u64 now_ns;
3320                 s64 delta;
3321
3322                 r = -EFAULT;
3323                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3324                         goto out;
3325
3326                 r = -EINVAL;
3327                 if (user_ns.flags)
3328                         goto out;
3329
3330                 r = 0;
3331                 local_irq_disable();
3332                 now_ns = get_kernel_ns();
3333                 delta = user_ns.clock - now_ns;
3334                 local_irq_enable();
3335                 kvm->arch.kvmclock_offset = delta;
3336                 break;
3337         }
3338         case KVM_GET_CLOCK: {
3339                 struct kvm_clock_data user_ns;
3340                 u64 now_ns;
3341
3342                 local_irq_disable();
3343                 now_ns = get_kernel_ns();
3344                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3345                 local_irq_enable();
3346                 user_ns.flags = 0;
3347                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3348
3349                 r = -EFAULT;
3350                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3351                         goto out;
3352                 r = 0;
3353                 break;
3354         }
3355
3356         default:
3357                 ;
3358         }
3359 out:
3360         return r;
3361 }
3362
3363 static void kvm_init_msr_list(void)
3364 {
3365         u32 dummy[2];
3366         unsigned i, j;
3367
3368         /* skip the first msrs in the list. KVM-specific */
3369         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3370                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3371                         continue;
3372                 if (j < i)
3373                         msrs_to_save[j] = msrs_to_save[i];
3374                 j++;
3375         }
3376         num_msrs_to_save = j;
3377 }
3378
3379 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3380                            const void *v)
3381 {
3382         int handled = 0;
3383         int n;
3384
3385         do {
3386                 n = min(len, 8);
3387                 if (!(vcpu->arch.apic &&
3388                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3389                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3390                         break;
3391                 handled += n;
3392                 addr += n;
3393                 len -= n;
3394                 v += n;
3395         } while (len);
3396
3397         return handled;
3398 }
3399
3400 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3401 {
3402         int handled = 0;
3403         int n;
3404
3405         do {
3406                 n = min(len, 8);
3407                 if (!(vcpu->arch.apic &&
3408                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3409                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3410                         break;
3411                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3412                 handled += n;
3413                 addr += n;
3414                 len -= n;
3415                 v += n;
3416         } while (len);
3417
3418         return handled;
3419 }
3420
3421 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3422                         struct kvm_segment *var, int seg)
3423 {
3424         kvm_x86_ops->set_segment(vcpu, var, seg);
3425 }
3426
3427 void kvm_get_segment(struct kvm_vcpu *vcpu,
3428                      struct kvm_segment *var, int seg)
3429 {
3430         kvm_x86_ops->get_segment(vcpu, var, seg);
3431 }
3432
3433 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3434 {
3435         gpa_t t_gpa;
3436         struct x86_exception exception;
3437
3438         BUG_ON(!mmu_is_nested(vcpu));
3439
3440         /* NPT walks are always user-walks */
3441         access |= PFERR_USER_MASK;
3442         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3443
3444         return t_gpa;
3445 }
3446
3447 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3448                               struct x86_exception *exception)
3449 {
3450         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3451         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3452 }
3453
3454  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3455                                 struct x86_exception *exception)
3456 {
3457         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3458         access |= PFERR_FETCH_MASK;
3459         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3460 }
3461
3462 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3463                                struct x86_exception *exception)
3464 {
3465         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3466         access |= PFERR_WRITE_MASK;
3467         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3468 }
3469
3470 /* uses this to access any guest's mapped memory without checking CPL */
3471 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3472                                 struct x86_exception *exception)
3473 {
3474         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3475 }
3476
3477 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3478                                       struct kvm_vcpu *vcpu, u32 access,
3479                                       struct x86_exception *exception)
3480 {
3481         void *data = val;
3482         int r = X86EMUL_CONTINUE;
3483
3484         while (bytes) {
3485                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3486                                                             exception);
3487                 unsigned offset = addr & (PAGE_SIZE-1);
3488                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3489                 int ret;
3490
3491                 if (gpa == UNMAPPED_GVA)
3492                         return X86EMUL_PROPAGATE_FAULT;
3493                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3494                 if (ret < 0) {
3495                         r = X86EMUL_IO_NEEDED;
3496                         goto out;
3497                 }
3498
3499                 bytes -= toread;
3500                 data += toread;
3501                 addr += toread;
3502         }
3503 out:
3504         return r;
3505 }
3506
3507 /* used for instruction fetching */
3508 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3509                                 gva_t addr, void *val, unsigned int bytes,
3510                                 struct x86_exception *exception)
3511 {
3512         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3513         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3514
3515         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3516                                           access | PFERR_FETCH_MASK,
3517                                           exception);
3518 }
3519
3520 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3521                                gva_t addr, void *val, unsigned int bytes,
3522                                struct x86_exception *exception)
3523 {
3524         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3525         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3526
3527         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3528                                           exception);
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3531
3532 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3533                                       gva_t addr, void *val, unsigned int bytes,
3534                                       struct x86_exception *exception)
3535 {
3536         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3537         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3538 }
3539
3540 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3541                                        gva_t addr, void *val,
3542                                        unsigned int bytes,
3543                                        struct x86_exception *exception)
3544 {
3545         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3546         void *data = val;
3547         int r = X86EMUL_CONTINUE;
3548
3549         while (bytes) {
3550                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3551                                                              PFERR_WRITE_MASK,
3552                                                              exception);
3553                 unsigned offset = addr & (PAGE_SIZE-1);
3554                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3555                 int ret;
3556
3557                 if (gpa == UNMAPPED_GVA)
3558                         return X86EMUL_PROPAGATE_FAULT;
3559                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3560                 if (ret < 0) {
3561                         r = X86EMUL_IO_NEEDED;
3562                         goto out;
3563                 }
3564
3565                 bytes -= towrite;
3566                 data += towrite;
3567                 addr += towrite;
3568         }
3569 out:
3570         return r;
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3573
3574 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3575                                 gpa_t *gpa, struct x86_exception *exception,
3576                                 bool write)
3577 {
3578         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3579
3580         if (vcpu_match_mmio_gva(vcpu, gva) &&
3581                   check_write_user_access(vcpu, write, access,
3582                   vcpu->arch.access)) {
3583                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3584                                         (gva & (PAGE_SIZE - 1));
3585                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3586                 return 1;
3587         }
3588
3589         if (write)
3590                 access |= PFERR_WRITE_MASK;
3591
3592         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3593
3594         if (*gpa == UNMAPPED_GVA)
3595                 return -1;
3596
3597         /* For APIC access vmexit */
3598         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3599                 return 1;
3600
3601         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3602                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3603                 return 1;
3604         }
3605
3606         return 0;
3607 }
3608
3609 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3610                         const void *val, int bytes)
3611 {
3612         int ret;
3613
3614         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3615         if (ret < 0)
3616                 return 0;
3617         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3618         return 1;
3619 }
3620
3621 struct read_write_emulator_ops {
3622         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3623                                   int bytes);
3624         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3625                                   void *val, int bytes);
3626         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3627                                int bytes, void *val);
3628         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3629                                     void *val, int bytes);
3630         bool write;
3631 };
3632
3633 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3634 {
3635         if (vcpu->mmio_read_completed) {
3636                 memcpy(val, vcpu->mmio_data, bytes);
3637                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3638                                vcpu->mmio_phys_addr, *(u64 *)val);
3639                 vcpu->mmio_read_completed = 0;
3640                 return 1;
3641         }
3642
3643         return 0;
3644 }
3645
3646 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3647                         void *val, int bytes)
3648 {
3649         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3650 }
3651
3652 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3653                          void *val, int bytes)
3654 {
3655         return emulator_write_phys(vcpu, gpa, val, bytes);
3656 }
3657
3658 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3659 {
3660         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3661         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3662 }
3663
3664 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3665                           void *val, int bytes)
3666 {
3667         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3668         return X86EMUL_IO_NEEDED;
3669 }
3670
3671 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3672                            void *val, int bytes)
3673 {
3674         memcpy(vcpu->mmio_data, val, bytes);
3675         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3676         return X86EMUL_CONTINUE;
3677 }
3678
3679 static struct read_write_emulator_ops read_emultor = {
3680         .read_write_prepare = read_prepare,
3681         .read_write_emulate = read_emulate,
3682         .read_write_mmio = vcpu_mmio_read,
3683         .read_write_exit_mmio = read_exit_mmio,
3684 };
3685
3686 static struct read_write_emulator_ops write_emultor = {
3687         .read_write_emulate = write_emulate,
3688         .read_write_mmio = write_mmio,
3689         .read_write_exit_mmio = write_exit_mmio,
3690         .write = true,
3691 };
3692
3693 static int emulator_read_write_onepage(unsigned long addr, void *val,
3694                                        unsigned int bytes,
3695                                        struct x86_exception *exception,
3696                                        struct kvm_vcpu *vcpu,
3697                                        struct read_write_emulator_ops *ops)
3698 {
3699         gpa_t gpa;
3700         int handled, ret;
3701         bool write = ops->write;
3702
3703         if (ops->read_write_prepare &&
3704                   ops->read_write_prepare(vcpu, val, bytes))
3705                 return X86EMUL_CONTINUE;
3706
3707         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3708
3709         if (ret < 0)
3710                 return X86EMUL_PROPAGATE_FAULT;
3711
3712         /* For APIC access vmexit */
3713         if (ret)
3714                 goto mmio;
3715
3716         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3717                 return X86EMUL_CONTINUE;
3718
3719 mmio:
3720         /*
3721          * Is this MMIO handled locally?
3722          */
3723         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3724         if (handled == bytes)
3725                 return X86EMUL_CONTINUE;
3726
3727         gpa += handled;
3728         bytes -= handled;
3729         val += handled;
3730
3731         vcpu->mmio_needed = 1;
3732         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3733         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3734         vcpu->mmio_size = bytes;
3735         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3736         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3737         vcpu->mmio_index = 0;
3738
3739         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3740 }
3741
3742 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3743                         void *val, unsigned int bytes,
3744                         struct x86_exception *exception,
3745                         struct read_write_emulator_ops *ops)
3746 {
3747         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3748
3749         /* Crossing a page boundary? */
3750         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3751                 int rc, now;
3752
3753                 now = -addr & ~PAGE_MASK;
3754                 rc = emulator_read_write_onepage(addr, val, now, exception,
3755                                                  vcpu, ops);
3756
3757                 if (rc != X86EMUL_CONTINUE)
3758                         return rc;
3759                 addr += now;
3760                 val += now;
3761                 bytes -= now;
3762         }
3763
3764         return emulator_read_write_onepage(addr, val, bytes, exception,
3765                                            vcpu, ops);
3766 }
3767
3768 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3769                                   unsigned long addr,
3770                                   void *val,
3771                                   unsigned int bytes,
3772                                   struct x86_exception *exception)
3773 {
3774         return emulator_read_write(ctxt, addr, val, bytes,
3775                                    exception, &read_emultor);
3776 }
3777
3778 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3779                             unsigned long addr,
3780                             const void *val,
3781                             unsigned int bytes,
3782                             struct x86_exception *exception)
3783 {
3784         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3785                                    exception, &write_emultor);
3786 }
3787
3788 #define CMPXCHG_TYPE(t, ptr, old, new) \
3789         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3790
3791 #ifdef CONFIG_X86_64
3792 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3793 #else
3794 #  define CMPXCHG64(ptr, old, new) \
3795         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3796 #endif
3797
3798 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3799                                      unsigned long addr,
3800                                      const void *old,
3801                                      const void *new,
3802                                      unsigned int bytes,
3803                                      struct x86_exception *exception)
3804 {
3805         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3806         gpa_t gpa;
3807         struct page *page;
3808         char *kaddr;
3809         bool exchanged;
3810
3811         /* guests cmpxchg8b have to be emulated atomically */
3812         if (bytes > 8 || (bytes & (bytes - 1)))
3813                 goto emul_write;
3814
3815         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3816
3817         if (gpa == UNMAPPED_GVA ||
3818             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3819                 goto emul_write;
3820
3821         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3822                 goto emul_write;
3823
3824         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3825         if (is_error_page(page)) {
3826                 kvm_release_page_clean(page);
3827                 goto emul_write;
3828         }
3829
3830         kaddr = kmap_atomic(page, KM_USER0);
3831         kaddr += offset_in_page(gpa);
3832         switch (bytes) {
3833         case 1:
3834                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3835                 break;
3836         case 2:
3837                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3838                 break;
3839         case 4:
3840                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3841                 break;
3842         case 8:
3843                 exchanged = CMPXCHG64(kaddr, old, new);
3844                 break;
3845         default:
3846                 BUG();
3847         }
3848         kunmap_atomic(kaddr, KM_USER0);
3849         kvm_release_page_dirty(page);
3850
3851         if (!exchanged)
3852                 return X86EMUL_CMPXCHG_FAILED;
3853
3854         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3855
3856         return X86EMUL_CONTINUE;
3857
3858 emul_write:
3859         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3860
3861         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3862 }
3863
3864 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3865 {
3866         /* TODO: String I/O for in kernel device */
3867         int r;
3868
3869         if (vcpu->arch.pio.in)
3870                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3871                                     vcpu->arch.pio.size, pd);
3872         else
3873                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3874                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3875                                      pd);
3876         return r;
3877 }
3878
3879 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3880                                unsigned short port, void *val,
3881                                unsigned int count, bool in)
3882 {
3883         trace_kvm_pio(!in, port, size, count);
3884
3885         vcpu->arch.pio.port = port;
3886         vcpu->arch.pio.in = in;
3887         vcpu->arch.pio.count  = count;
3888         vcpu->arch.pio.size = size;
3889
3890         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3891                 vcpu->arch.pio.count = 0;
3892                 return 1;
3893         }
3894
3895         vcpu->run->exit_reason = KVM_EXIT_IO;
3896         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3897         vcpu->run->io.size = size;
3898         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3899         vcpu->run->io.count = count;
3900         vcpu->run->io.port = port;
3901
3902         return 0;
3903 }
3904
3905 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3906                                     int size, unsigned short port, void *val,
3907                                     unsigned int count)
3908 {
3909         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3910         int ret;
3911
3912         if (vcpu->arch.pio.count)
3913                 goto data_avail;
3914
3915         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3916         if (ret) {
3917 data_avail:
3918                 memcpy(val, vcpu->arch.pio_data, size * count);
3919                 vcpu->arch.pio.count = 0;
3920                 return 1;
3921         }
3922
3923         return 0;
3924 }
3925
3926 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3927                                      int size, unsigned short port,
3928                                      const void *val, unsigned int count)
3929 {
3930         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3931
3932         memcpy(vcpu->arch.pio_data, val, size * count);
3933         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3934 }
3935
3936 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3937 {
3938         return kvm_x86_ops->get_segment_base(vcpu, seg);
3939 }
3940
3941 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3942 {
3943         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3944 }
3945
3946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3947 {
3948         if (!need_emulate_wbinvd(vcpu))
3949                 return X86EMUL_CONTINUE;
3950
3951         if (kvm_x86_ops->has_wbinvd_exit()) {
3952                 int cpu = get_cpu();
3953
3954                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3955                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3956                                 wbinvd_ipi, NULL, 1);
3957                 put_cpu();
3958                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3959         } else
3960                 wbinvd();
3961         return X86EMUL_CONTINUE;
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3964
3965 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3966 {
3967         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3968 }
3969
3970 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3971 {
3972         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3973 }
3974
3975 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3976 {
3977
3978         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
3979 }
3980
3981 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3982 {
3983         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3984 }
3985
3986 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
3987 {
3988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3989         unsigned long value;
3990
3991         switch (cr) {
3992         case 0:
3993                 value = kvm_read_cr0(vcpu);
3994                 break;
3995         case 2:
3996                 value = vcpu->arch.cr2;
3997                 break;
3998         case 3:
3999                 value = kvm_read_cr3(vcpu);
4000                 break;
4001         case 4:
4002                 value = kvm_read_cr4(vcpu);
4003                 break;
4004         case 8:
4005                 value = kvm_get_cr8(vcpu);
4006                 break;
4007         default:
4008                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4009                 return 0;
4010         }
4011
4012         return value;
4013 }
4014
4015 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4016 {
4017         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4018         int res = 0;
4019
4020         switch (cr) {
4021         case 0:
4022                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4023                 break;
4024         case 2:
4025                 vcpu->arch.cr2 = val;
4026                 break;
4027         case 3:
4028                 res = kvm_set_cr3(vcpu, val);
4029                 break;
4030         case 4:
4031                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4032                 break;
4033         case 8:
4034                 res = kvm_set_cr8(vcpu, val);
4035                 break;
4036         default:
4037                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4038                 res = -1;
4039         }
4040
4041         return res;
4042 }
4043
4044 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4045 {
4046         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4047 }
4048
4049 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4050 {
4051         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4052 }
4053
4054 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4055 {
4056         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4057 }
4058
4059 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4060 {
4061         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4062 }
4063
4064 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4065 {
4066         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4067 }
4068
4069 static unsigned long emulator_get_cached_segment_base(
4070         struct x86_emulate_ctxt *ctxt, int seg)
4071 {
4072         return get_segment_base(emul_to_vcpu(ctxt), seg);
4073 }
4074
4075 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4076                                  struct desc_struct *desc, u32 *base3,
4077                                  int seg)
4078 {
4079         struct kvm_segment var;
4080
4081         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4082         *selector = var.selector;
4083
4084         if (var.unusable)
4085                 return false;
4086
4087         if (var.g)
4088                 var.limit >>= 12;
4089         set_desc_limit(desc, var.limit);
4090         set_desc_base(desc, (unsigned long)var.base);
4091 #ifdef CONFIG_X86_64
4092         if (base3)
4093                 *base3 = var.base >> 32;
4094 #endif
4095         desc->type = var.type;
4096         desc->s = var.s;
4097         desc->dpl = var.dpl;
4098         desc->p = var.present;
4099         desc->avl = var.avl;
4100         desc->l = var.l;
4101         desc->d = var.db;
4102         desc->g = var.g;
4103
4104         return true;
4105 }
4106
4107 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4108                                  struct desc_struct *desc, u32 base3,
4109                                  int seg)
4110 {
4111         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4112         struct kvm_segment var;
4113
4114         var.selector = selector;
4115         var.base = get_desc_base(desc);
4116 #ifdef CONFIG_X86_64
4117         var.base |= ((u64)base3) << 32;
4118 #endif
4119         var.limit = get_desc_limit(desc);
4120         if (desc->g)
4121                 var.limit = (var.limit << 12) | 0xfff;
4122         var.type = desc->type;
4123         var.present = desc->p;
4124         var.dpl = desc->dpl;
4125         var.db = desc->d;
4126         var.s = desc->s;
4127         var.l = desc->l;
4128         var.g = desc->g;
4129         var.avl = desc->avl;
4130         var.present = desc->p;
4131         var.unusable = !var.present;
4132         var.padding = 0;
4133
4134         kvm_set_segment(vcpu, &var, seg);
4135         return;
4136 }
4137
4138 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4139                             u32 msr_index, u64 *pdata)
4140 {
4141         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4142 }
4143
4144 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4145                             u32 msr_index, u64 data)
4146 {
4147         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4148 }
4149
4150 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4151 {
4152         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4153 }
4154
4155 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4156 {
4157         preempt_disable();
4158         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4159         /*
4160          * CR0.TS may reference the host fpu state, not the guest fpu state,
4161          * so it may be clear at this point.
4162          */
4163         clts();
4164 }
4165
4166 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4167 {
4168         preempt_enable();
4169 }
4170
4171 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4172                               struct x86_instruction_info *info,
4173                               enum x86_intercept_stage stage)
4174 {
4175         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4176 }
4177
4178 static struct x86_emulate_ops emulate_ops = {
4179         .read_std            = kvm_read_guest_virt_system,
4180         .write_std           = kvm_write_guest_virt_system,
4181         .fetch               = kvm_fetch_guest_virt,
4182         .read_emulated       = emulator_read_emulated,
4183         .write_emulated      = emulator_write_emulated,
4184         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4185         .invlpg              = emulator_invlpg,
4186         .pio_in_emulated     = emulator_pio_in_emulated,
4187         .pio_out_emulated    = emulator_pio_out_emulated,
4188         .get_segment         = emulator_get_segment,
4189         .set_segment         = emulator_set_segment,
4190         .get_cached_segment_base = emulator_get_cached_segment_base,
4191         .get_gdt             = emulator_get_gdt,
4192         .get_idt             = emulator_get_idt,
4193         .set_gdt             = emulator_set_gdt,
4194         .set_idt             = emulator_set_idt,
4195         .get_cr              = emulator_get_cr,
4196         .set_cr              = emulator_set_cr,
4197         .cpl                 = emulator_get_cpl,
4198         .get_dr              = emulator_get_dr,
4199         .set_dr              = emulator_set_dr,
4200         .set_msr             = emulator_set_msr,
4201         .get_msr             = emulator_get_msr,
4202         .halt                = emulator_halt,
4203         .wbinvd              = emulator_wbinvd,
4204         .fix_hypercall       = emulator_fix_hypercall,
4205         .get_fpu             = emulator_get_fpu,
4206         .put_fpu             = emulator_put_fpu,
4207         .intercept           = emulator_intercept,
4208 };
4209
4210 static void cache_all_regs(struct kvm_vcpu *vcpu)
4211 {
4212         kvm_register_read(vcpu, VCPU_REGS_RAX);
4213         kvm_register_read(vcpu, VCPU_REGS_RSP);
4214         kvm_register_read(vcpu, VCPU_REGS_RIP);
4215         vcpu->arch.regs_dirty = ~0;
4216 }
4217
4218 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4219 {
4220         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4221         /*
4222          * an sti; sti; sequence only disable interrupts for the first
4223          * instruction. So, if the last instruction, be it emulated or
4224          * not, left the system with the INT_STI flag enabled, it
4225          * means that the last instruction is an sti. We should not
4226          * leave the flag on in this case. The same goes for mov ss
4227          */
4228         if (!(int_shadow & mask))
4229                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4230 }
4231
4232 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4233 {
4234         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4235         if (ctxt->exception.vector == PF_VECTOR)
4236                 kvm_propagate_fault(vcpu, &ctxt->exception);
4237         else if (ctxt->exception.error_code_valid)
4238                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4239                                       ctxt->exception.error_code);
4240         else
4241                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4242 }
4243
4244 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4245                               const unsigned long *regs)
4246 {
4247         memset(&ctxt->twobyte, 0,
4248                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4249         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4250
4251         ctxt->fetch.start = 0;
4252         ctxt->fetch.end = 0;
4253         ctxt->io_read.pos = 0;
4254         ctxt->io_read.end = 0;
4255         ctxt->mem_read.pos = 0;
4256         ctxt->mem_read.end = 0;
4257 }
4258
4259 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4260 {
4261         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4262         int cs_db, cs_l;
4263
4264         /*
4265          * TODO: fix emulate.c to use guest_read/write_register
4266          * instead of direct ->regs accesses, can save hundred cycles
4267          * on Intel for instructions that don't read/change RSP, for
4268          * for example.
4269          */
4270         cache_all_regs(vcpu);
4271
4272         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4273
4274         ctxt->eflags = kvm_get_rflags(vcpu);
4275         ctxt->eip = kvm_rip_read(vcpu);
4276         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4277                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4278                      cs_l                               ? X86EMUL_MODE_PROT64 :
4279                      cs_db                              ? X86EMUL_MODE_PROT32 :
4280                                                           X86EMUL_MODE_PROT16;
4281         ctxt->guest_mode = is_guest_mode(vcpu);
4282
4283         init_decode_cache(ctxt, vcpu->arch.regs);
4284         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4285 }
4286
4287 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4288 {
4289         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4290         int ret;
4291
4292         init_emulate_ctxt(vcpu);
4293
4294         ctxt->op_bytes = 2;
4295         ctxt->ad_bytes = 2;
4296         ctxt->_eip = ctxt->eip + inc_eip;
4297         ret = emulate_int_real(ctxt, irq);
4298
4299         if (ret != X86EMUL_CONTINUE)
4300                 return EMULATE_FAIL;
4301
4302         ctxt->eip = ctxt->_eip;
4303         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4304         kvm_rip_write(vcpu, ctxt->eip);
4305         kvm_set_rflags(vcpu, ctxt->eflags);
4306
4307         if (irq == NMI_VECTOR)
4308                 vcpu->arch.nmi_pending = 0;
4309         else
4310                 vcpu->arch.interrupt.pending = false;
4311
4312         return EMULATE_DONE;
4313 }
4314 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4315
4316 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4317 {
4318         int r = EMULATE_DONE;
4319
4320         ++vcpu->stat.insn_emulation_fail;
4321         trace_kvm_emulate_insn_failed(vcpu);
4322         if (!is_guest_mode(vcpu)) {
4323                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4324                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4325                 vcpu->run->internal.ndata = 0;
4326                 r = EMULATE_FAIL;
4327         }
4328         kvm_queue_exception(vcpu, UD_VECTOR);
4329
4330         return r;
4331 }
4332
4333 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4334 {
4335         gpa_t gpa;
4336
4337         if (tdp_enabled)
4338                 return false;
4339
4340         /*
4341          * if emulation was due to access to shadowed page table
4342          * and it failed try to unshadow page and re-entetr the
4343          * guest to let CPU execute the instruction.
4344          */
4345         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4346                 return true;
4347
4348         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4349
4350         if (gpa == UNMAPPED_GVA)
4351                 return true; /* let cpu generate fault */
4352
4353         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4354                 return true;
4355
4356         return false;
4357 }
4358
4359 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4360                               unsigned long cr2,  int emulation_type)
4361 {
4362         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4363         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4364
4365         last_retry_eip = vcpu->arch.last_retry_eip;
4366         last_retry_addr = vcpu->arch.last_retry_addr;
4367
4368         /*
4369          * If the emulation is caused by #PF and it is non-page_table
4370          * writing instruction, it means the VM-EXIT is caused by shadow
4371          * page protected, we can zap the shadow page and retry this
4372          * instruction directly.
4373          *
4374          * Note: if the guest uses a non-page-table modifying instruction
4375          * on the PDE that points to the instruction, then we will unmap
4376          * the instruction and go to an infinite loop. So, we cache the
4377          * last retried eip and the last fault address, if we meet the eip
4378          * and the address again, we can break out of the potential infinite
4379          * loop.
4380          */
4381         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4382
4383         if (!(emulation_type & EMULTYPE_RETRY))
4384                 return false;
4385
4386         if (x86_page_table_writing_insn(ctxt))
4387                 return false;
4388
4389         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4390                 return false;
4391
4392         vcpu->arch.last_retry_eip = ctxt->eip;
4393         vcpu->arch.last_retry_addr = cr2;
4394
4395         if (!vcpu->arch.mmu.direct_map)
4396                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4397
4398         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4399
4400         return true;
4401 }
4402
4403 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4404                             unsigned long cr2,
4405                             int emulation_type,
4406                             void *insn,
4407                             int insn_len)
4408 {
4409         int r;
4410         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4411         bool writeback = true;
4412
4413         kvm_clear_exception_queue(vcpu);
4414
4415         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4416                 init_emulate_ctxt(vcpu);
4417                 ctxt->interruptibility = 0;
4418                 ctxt->have_exception = false;
4419                 ctxt->perm_ok = false;
4420
4421                 ctxt->only_vendor_specific_insn
4422                         = emulation_type & EMULTYPE_TRAP_UD;
4423
4424                 r = x86_decode_insn(ctxt, insn, insn_len);
4425
4426                 trace_kvm_emulate_insn_start(vcpu);
4427                 ++vcpu->stat.insn_emulation;
4428                 if (r != EMULATION_OK)  {
4429                         if (emulation_type & EMULTYPE_TRAP_UD)
4430                                 return EMULATE_FAIL;
4431                         if (reexecute_instruction(vcpu, cr2))
4432                                 return EMULATE_DONE;
4433                         if (emulation_type & EMULTYPE_SKIP)
4434                                 return EMULATE_FAIL;
4435                         return handle_emulation_failure(vcpu);
4436                 }
4437         }
4438
4439         if (emulation_type & EMULTYPE_SKIP) {
4440                 kvm_rip_write(vcpu, ctxt->_eip);
4441                 return EMULATE_DONE;
4442         }
4443
4444         if (retry_instruction(ctxt, cr2, emulation_type))
4445                 return EMULATE_DONE;
4446
4447         /* this is needed for vmware backdoor interface to work since it
4448            changes registers values  during IO operation */
4449         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4450                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4451                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4452         }
4453
4454 restart:
4455         r = x86_emulate_insn(ctxt);
4456
4457         if (r == EMULATION_INTERCEPTED)
4458                 return EMULATE_DONE;
4459
4460         if (r == EMULATION_FAILED) {
4461                 if (reexecute_instruction(vcpu, cr2))
4462                         return EMULATE_DONE;
4463
4464                 return handle_emulation_failure(vcpu);
4465         }
4466
4467         if (ctxt->have_exception) {
4468                 inject_emulated_exception(vcpu);
4469                 r = EMULATE_DONE;
4470         } else if (vcpu->arch.pio.count) {
4471                 if (!vcpu->arch.pio.in)
4472                         vcpu->arch.pio.count = 0;
4473                 else
4474                         writeback = false;
4475                 r = EMULATE_DO_MMIO;
4476         } else if (vcpu->mmio_needed) {
4477                 if (!vcpu->mmio_is_write)
4478                         writeback = false;
4479                 r = EMULATE_DO_MMIO;
4480         } else if (r == EMULATION_RESTART)
4481                 goto restart;
4482         else
4483                 r = EMULATE_DONE;
4484
4485         if (writeback) {
4486                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4487                 kvm_set_rflags(vcpu, ctxt->eflags);
4488                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4489                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4490                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4491                 kvm_rip_write(vcpu, ctxt->eip);
4492         } else
4493                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4494
4495         return r;
4496 }
4497 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4498
4499 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4500 {
4501         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4502         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4503                                             size, port, &val, 1);
4504         /* do not return to emulator after return from userspace */
4505         vcpu->arch.pio.count = 0;
4506         return ret;
4507 }
4508 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4509
4510 static void tsc_bad(void *info)
4511 {
4512         __this_cpu_write(cpu_tsc_khz, 0);
4513 }
4514
4515 static void tsc_khz_changed(void *data)
4516 {
4517         struct cpufreq_freqs *freq = data;
4518         unsigned long khz = 0;
4519
4520         if (data)
4521                 khz = freq->new;
4522         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4523                 khz = cpufreq_quick_get(raw_smp_processor_id());
4524         if (!khz)
4525                 khz = tsc_khz;
4526         __this_cpu_write(cpu_tsc_khz, khz);
4527 }
4528
4529 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4530                                      void *data)
4531 {
4532         struct cpufreq_freqs *freq = data;
4533         struct kvm *kvm;
4534         struct kvm_vcpu *vcpu;
4535         int i, send_ipi = 0;
4536
4537         /*
4538          * We allow guests to temporarily run on slowing clocks,
4539          * provided we notify them after, or to run on accelerating
4540          * clocks, provided we notify them before.  Thus time never
4541          * goes backwards.
4542          *
4543          * However, we have a problem.  We can't atomically update
4544          * the frequency of a given CPU from this function; it is
4545          * merely a notifier, which can be called from any CPU.
4546          * Changing the TSC frequency at arbitrary points in time
4547          * requires a recomputation of local variables related to
4548          * the TSC for each VCPU.  We must flag these local variables
4549          * to be updated and be sure the update takes place with the
4550          * new frequency before any guests proceed.
4551          *
4552          * Unfortunately, the combination of hotplug CPU and frequency
4553          * change creates an intractable locking scenario; the order
4554          * of when these callouts happen is undefined with respect to
4555          * CPU hotplug, and they can race with each other.  As such,
4556          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4557          * undefined; you can actually have a CPU frequency change take
4558          * place in between the computation of X and the setting of the
4559          * variable.  To protect against this problem, all updates of
4560          * the per_cpu tsc_khz variable are done in an interrupt
4561          * protected IPI, and all callers wishing to update the value
4562          * must wait for a synchronous IPI to complete (which is trivial
4563          * if the caller is on the CPU already).  This establishes the
4564          * necessary total order on variable updates.
4565          *
4566          * Note that because a guest time update may take place
4567          * anytime after the setting of the VCPU's request bit, the
4568          * correct TSC value must be set before the request.  However,
4569          * to ensure the update actually makes it to any guest which
4570          * starts running in hardware virtualization between the set
4571          * and the acquisition of the spinlock, we must also ping the
4572          * CPU after setting the request bit.
4573          *
4574          */
4575
4576         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4577                 return 0;
4578         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4579                 return 0;
4580
4581         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4582
4583         raw_spin_lock(&kvm_lock);
4584         list_for_each_entry(kvm, &vm_list, vm_list) {
4585                 kvm_for_each_vcpu(i, vcpu, kvm) {
4586                         if (vcpu->cpu != freq->cpu)
4587                                 continue;
4588                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4589                         if (vcpu->cpu != smp_processor_id())
4590                                 send_ipi = 1;
4591                 }
4592         }
4593         raw_spin_unlock(&kvm_lock);
4594
4595         if (freq->old < freq->new && send_ipi) {
4596                 /*
4597                  * We upscale the frequency.  Must make the guest
4598                  * doesn't see old kvmclock values while running with
4599                  * the new frequency, otherwise we risk the guest sees
4600                  * time go backwards.
4601                  *
4602                  * In case we update the frequency for another cpu
4603                  * (which might be in guest context) send an interrupt
4604                  * to kick the cpu out of guest context.  Next time
4605                  * guest context is entered kvmclock will be updated,
4606                  * so the guest will not see stale values.
4607                  */
4608                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4609         }
4610         return 0;
4611 }
4612
4613 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4614         .notifier_call  = kvmclock_cpufreq_notifier
4615 };
4616
4617 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4618                                         unsigned long action, void *hcpu)
4619 {
4620         unsigned int cpu = (unsigned long)hcpu;
4621
4622         switch (action) {
4623                 case CPU_ONLINE:
4624                 case CPU_DOWN_FAILED:
4625                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4626                         break;
4627                 case CPU_DOWN_PREPARE:
4628                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4629                         break;
4630         }
4631         return NOTIFY_OK;
4632 }
4633
4634 static struct notifier_block kvmclock_cpu_notifier_block = {
4635         .notifier_call  = kvmclock_cpu_notifier,
4636         .priority = -INT_MAX
4637 };
4638
4639 static void kvm_timer_init(void)
4640 {
4641         int cpu;
4642
4643         max_tsc_khz = tsc_khz;
4644         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4645         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4646 #ifdef CONFIG_CPU_FREQ
4647                 struct cpufreq_policy policy;
4648                 memset(&policy, 0, sizeof(policy));
4649                 cpu = get_cpu();
4650                 cpufreq_get_policy(&policy, cpu);
4651                 if (policy.cpuinfo.max_freq)
4652                         max_tsc_khz = policy.cpuinfo.max_freq;
4653                 put_cpu();
4654 #endif
4655                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4656                                           CPUFREQ_TRANSITION_NOTIFIER);
4657         }
4658         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4659         for_each_online_cpu(cpu)
4660                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4661 }
4662
4663 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4664
4665 static int kvm_is_in_guest(void)
4666 {
4667         return __this_cpu_read(current_vcpu) != NULL;
4668 }
4669
4670 static int kvm_is_user_mode(void)
4671 {
4672         int user_mode = 3;
4673
4674         if (__this_cpu_read(current_vcpu))
4675                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4676
4677         return user_mode != 0;
4678 }
4679
4680 static unsigned long kvm_get_guest_ip(void)
4681 {
4682         unsigned long ip = 0;
4683
4684         if (__this_cpu_read(current_vcpu))
4685                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4686
4687         return ip;
4688 }
4689
4690 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4691         .is_in_guest            = kvm_is_in_guest,
4692         .is_user_mode           = kvm_is_user_mode,
4693         .get_guest_ip           = kvm_get_guest_ip,
4694 };
4695
4696 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4697 {
4698         __this_cpu_write(current_vcpu, vcpu);
4699 }
4700 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4701
4702 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4703 {
4704         __this_cpu_write(current_vcpu, NULL);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4707
4708 static void kvm_set_mmio_spte_mask(void)
4709 {
4710         u64 mask;
4711         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4712
4713         /*
4714          * Set the reserved bits and the present bit of an paging-structure
4715          * entry to generate page fault with PFER.RSV = 1.
4716          */
4717         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4718         mask |= 1ull;
4719
4720 #ifdef CONFIG_X86_64
4721         /*
4722          * If reserved bit is not supported, clear the present bit to disable
4723          * mmio page fault.
4724          */
4725         if (maxphyaddr == 52)
4726                 mask &= ~1ull;
4727 #endif
4728
4729         kvm_mmu_set_mmio_spte_mask(mask);
4730 }
4731
4732 int kvm_arch_init(void *opaque)
4733 {
4734         int r;
4735         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4736
4737         if (kvm_x86_ops) {
4738                 printk(KERN_ERR "kvm: already loaded the other module\n");
4739                 r = -EEXIST;
4740                 goto out;
4741         }
4742
4743         if (!ops->cpu_has_kvm_support()) {
4744                 printk(KERN_ERR "kvm: no hardware support\n");
4745                 r = -EOPNOTSUPP;
4746                 goto out;
4747         }
4748         if (ops->disabled_by_bios()) {
4749                 printk(KERN_ERR "kvm: disabled by bios\n");
4750                 r = -EOPNOTSUPP;
4751                 goto out;
4752         }
4753
4754         r = kvm_mmu_module_init();
4755         if (r)
4756                 goto out;
4757
4758         kvm_set_mmio_spte_mask();
4759         kvm_init_msr_list();
4760
4761         kvm_x86_ops = ops;
4762         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4763                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4764
4765         kvm_timer_init();
4766
4767         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4768
4769         if (cpu_has_xsave)
4770                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4771
4772         return 0;
4773
4774 out:
4775         return r;
4776 }
4777
4778 void kvm_arch_exit(void)
4779 {
4780         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4781
4782         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4783                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4784                                             CPUFREQ_TRANSITION_NOTIFIER);
4785         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4786         kvm_x86_ops = NULL;
4787         kvm_mmu_module_exit();
4788 }
4789
4790 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4791 {
4792         ++vcpu->stat.halt_exits;
4793         if (irqchip_in_kernel(vcpu->kvm)) {
4794                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4795                 return 1;
4796         } else {
4797                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4798                 return 0;
4799         }
4800 }
4801 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4802
4803 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4804 {
4805         u64 param, ingpa, outgpa, ret;
4806         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4807         bool fast, longmode;
4808         int cs_db, cs_l;
4809
4810         /*
4811          * hypercall generates UD from non zero cpl and real mode
4812          * per HYPER-V spec
4813          */
4814         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4815                 kvm_queue_exception(vcpu, UD_VECTOR);
4816                 return 0;
4817         }
4818
4819         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4820         longmode = is_long_mode(vcpu) && cs_l == 1;
4821
4822         if (!longmode) {
4823                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4824                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4825                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4826                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4827                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4828                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4829         }
4830 #ifdef CONFIG_X86_64
4831         else {
4832                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4833                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4834                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4835         }
4836 #endif
4837
4838         code = param & 0xffff;
4839         fast = (param >> 16) & 0x1;
4840         rep_cnt = (param >> 32) & 0xfff;
4841         rep_idx = (param >> 48) & 0xfff;
4842
4843         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4844
4845         switch (code) {
4846         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4847                 kvm_vcpu_on_spin(vcpu);
4848                 break;
4849         default:
4850                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4851                 break;
4852         }
4853
4854         ret = res | (((u64)rep_done & 0xfff) << 32);
4855         if (longmode) {
4856                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4857         } else {
4858                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4859                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4860         }
4861
4862         return 1;
4863 }
4864
4865 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4866 {
4867         unsigned long nr, a0, a1, a2, a3, ret;
4868         int r = 1;
4869
4870         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4871                 return kvm_hv_hypercall(vcpu);
4872
4873         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4874         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4875         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4876         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4877         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4878
4879         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4880
4881         if (!is_long_mode(vcpu)) {
4882                 nr &= 0xFFFFFFFF;
4883                 a0 &= 0xFFFFFFFF;
4884                 a1 &= 0xFFFFFFFF;
4885                 a2 &= 0xFFFFFFFF;
4886                 a3 &= 0xFFFFFFFF;
4887         }
4888
4889         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4890                 ret = -KVM_EPERM;
4891                 goto out;
4892         }
4893
4894         switch (nr) {
4895         case KVM_HC_VAPIC_POLL_IRQ:
4896                 ret = 0;
4897                 break;
4898         default:
4899                 ret = -KVM_ENOSYS;
4900                 break;
4901         }
4902 out:
4903         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4904         ++vcpu->stat.hypercalls;
4905         return r;
4906 }
4907 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4908
4909 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4910 {
4911         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4912         char instruction[3];
4913         unsigned long rip = kvm_rip_read(vcpu);
4914
4915         /*
4916          * Blow out the MMU to ensure that no other VCPU has an active mapping
4917          * to ensure that the updated hypercall appears atomically across all
4918          * VCPUs.
4919          */
4920         kvm_mmu_zap_all(vcpu->kvm);
4921
4922         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4923
4924         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4925 }
4926
4927 /*
4928  * Check if userspace requested an interrupt window, and that the
4929  * interrupt window is open.
4930  *
4931  * No need to exit to userspace if we already have an interrupt queued.
4932  */
4933 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4934 {
4935         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4936                 vcpu->run->request_interrupt_window &&
4937                 kvm_arch_interrupt_allowed(vcpu));
4938 }
4939
4940 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4941 {
4942         struct kvm_run *kvm_run = vcpu->run;
4943
4944         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4945         kvm_run->cr8 = kvm_get_cr8(vcpu);
4946         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4947         if (irqchip_in_kernel(vcpu->kvm))
4948                 kvm_run->ready_for_interrupt_injection = 1;
4949         else
4950                 kvm_run->ready_for_interrupt_injection =
4951                         kvm_arch_interrupt_allowed(vcpu) &&
4952                         !kvm_cpu_has_interrupt(vcpu) &&
4953                         !kvm_event_needs_reinjection(vcpu);
4954 }
4955
4956 static void vapic_enter(struct kvm_vcpu *vcpu)
4957 {
4958         struct kvm_lapic *apic = vcpu->arch.apic;
4959         struct page *page;
4960
4961         if (!apic || !apic->vapic_addr)
4962                 return;
4963
4964         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4965
4966         vcpu->arch.apic->vapic_page = page;
4967 }
4968
4969 static void vapic_exit(struct kvm_vcpu *vcpu)
4970 {
4971         struct kvm_lapic *apic = vcpu->arch.apic;
4972         int idx;
4973
4974         if (!apic || !apic->vapic_addr)
4975                 return;
4976
4977         idx = srcu_read_lock(&vcpu->kvm->srcu);
4978         kvm_release_page_dirty(apic->vapic_page);
4979         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4980         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4981 }
4982
4983 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4984 {
4985         int max_irr, tpr;
4986
4987         if (!kvm_x86_ops->update_cr8_intercept)
4988                 return;
4989
4990         if (!vcpu->arch.apic)
4991                 return;
4992
4993         if (!vcpu->arch.apic->vapic_addr)
4994                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4995         else
4996                 max_irr = -1;
4997
4998         if (max_irr != -1)
4999                 max_irr >>= 4;
5000
5001         tpr = kvm_lapic_get_cr8(vcpu);
5002
5003         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5004 }
5005
5006 static void inject_pending_event(struct kvm_vcpu *vcpu)
5007 {
5008         /* try to reinject previous events if any */
5009         if (vcpu->arch.exception.pending) {
5010                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5011                                         vcpu->arch.exception.has_error_code,
5012                                         vcpu->arch.exception.error_code);
5013                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5014                                           vcpu->arch.exception.has_error_code,
5015                                           vcpu->arch.exception.error_code,
5016                                           vcpu->arch.exception.reinject);
5017                 return;
5018         }
5019
5020         if (vcpu->arch.nmi_injected) {
5021                 kvm_x86_ops->set_nmi(vcpu);
5022                 return;
5023         }
5024
5025         if (vcpu->arch.interrupt.pending) {
5026                 kvm_x86_ops->set_irq(vcpu);
5027                 return;
5028         }
5029
5030         /* try to inject new event if pending */
5031         if (vcpu->arch.nmi_pending) {
5032                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5033                         --vcpu->arch.nmi_pending;
5034                         vcpu->arch.nmi_injected = true;
5035                         kvm_x86_ops->set_nmi(vcpu);
5036                 }
5037         } else if (kvm_cpu_has_interrupt(vcpu)) {
5038                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5039                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5040                                             false);
5041                         kvm_x86_ops->set_irq(vcpu);
5042                 }
5043         }
5044 }
5045
5046 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5047 {
5048         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5049                         !vcpu->guest_xcr0_loaded) {
5050                 /* kvm_set_xcr() also depends on this */
5051                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5052                 vcpu->guest_xcr0_loaded = 1;
5053         }
5054 }
5055
5056 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5057 {
5058         if (vcpu->guest_xcr0_loaded) {
5059                 if (vcpu->arch.xcr0 != host_xcr0)
5060                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5061                 vcpu->guest_xcr0_loaded = 0;
5062         }
5063 }
5064
5065 static void process_nmi(struct kvm_vcpu *vcpu)
5066 {
5067         unsigned limit = 2;
5068
5069         /*
5070          * x86 is limited to one NMI running, and one NMI pending after it.
5071          * If an NMI is already in progress, limit further NMIs to just one.
5072          * Otherwise, allow two (and we'll inject the first one immediately).
5073          */
5074         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5075                 limit = 1;
5076
5077         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5078         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5079         kvm_make_request(KVM_REQ_EVENT, vcpu);
5080 }
5081
5082 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5083 {
5084         int r;
5085         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5086                 vcpu->run->request_interrupt_window;
5087         bool req_immediate_exit = 0;
5088
5089         if (vcpu->requests) {
5090                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5091                         kvm_mmu_unload(vcpu);
5092                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5093                         __kvm_migrate_timers(vcpu);
5094                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5095                         r = kvm_guest_time_update(vcpu);
5096                         if (unlikely(r))
5097                                 goto out;
5098                 }
5099                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5100                         kvm_mmu_sync_roots(vcpu);
5101                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5102                         kvm_x86_ops->tlb_flush(vcpu);
5103                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5104                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5105                         r = 0;
5106                         goto out;
5107                 }
5108                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5109                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5110                         r = 0;
5111                         goto out;
5112                 }
5113                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5114                         vcpu->fpu_active = 0;
5115                         kvm_x86_ops->fpu_deactivate(vcpu);
5116                 }
5117                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5118                         /* Page is swapped out. Do synthetic halt */
5119                         vcpu->arch.apf.halted = true;
5120                         r = 1;
5121                         goto out;
5122                 }
5123                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5124                         record_steal_time(vcpu);
5125                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5126                         process_nmi(vcpu);
5127                 req_immediate_exit =
5128                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5129         }
5130
5131         r = kvm_mmu_reload(vcpu);
5132         if (unlikely(r))
5133                 goto out;
5134
5135         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5136                 inject_pending_event(vcpu);
5137
5138                 /* enable NMI/IRQ window open exits if needed */
5139                 if (vcpu->arch.nmi_pending)
5140                         kvm_x86_ops->enable_nmi_window(vcpu);
5141                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5142                         kvm_x86_ops->enable_irq_window(vcpu);
5143
5144                 if (kvm_lapic_enabled(vcpu)) {
5145                         update_cr8_intercept(vcpu);
5146                         kvm_lapic_sync_to_vapic(vcpu);
5147                 }
5148         }
5149
5150         preempt_disable();
5151
5152         kvm_x86_ops->prepare_guest_switch(vcpu);
5153         if (vcpu->fpu_active)
5154                 kvm_load_guest_fpu(vcpu);
5155         kvm_load_guest_xcr0(vcpu);
5156
5157         vcpu->mode = IN_GUEST_MODE;
5158
5159         /* We should set ->mode before check ->requests,
5160          * see the comment in make_all_cpus_request.
5161          */
5162         smp_mb();
5163
5164         local_irq_disable();
5165
5166         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5167             || need_resched() || signal_pending(current)) {
5168                 vcpu->mode = OUTSIDE_GUEST_MODE;
5169                 smp_wmb();
5170                 local_irq_enable();
5171                 preempt_enable();
5172                 kvm_x86_ops->cancel_injection(vcpu);
5173                 r = 1;
5174                 goto out;
5175         }
5176
5177         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5178
5179         if (req_immediate_exit)
5180                 smp_send_reschedule(vcpu->cpu);
5181
5182         kvm_guest_enter();
5183
5184         if (unlikely(vcpu->arch.switch_db_regs)) {
5185                 set_debugreg(0, 7);
5186                 set_debugreg(vcpu->arch.eff_db[0], 0);
5187                 set_debugreg(vcpu->arch.eff_db[1], 1);
5188                 set_debugreg(vcpu->arch.eff_db[2], 2);
5189                 set_debugreg(vcpu->arch.eff_db[3], 3);
5190         }
5191
5192         trace_kvm_entry(vcpu->vcpu_id);
5193         kvm_x86_ops->run(vcpu);
5194
5195         /*
5196          * If the guest has used debug registers, at least dr7
5197          * will be disabled while returning to the host.
5198          * If we don't have active breakpoints in the host, we don't
5199          * care about the messed up debug address registers. But if
5200          * we have some of them active, restore the old state.
5201          */
5202         if (hw_breakpoint_active())
5203                 hw_breakpoint_restore();
5204
5205         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5206
5207         vcpu->mode = OUTSIDE_GUEST_MODE;
5208         smp_wmb();
5209         local_irq_enable();
5210
5211         ++vcpu->stat.exits;
5212
5213         /*
5214          * We must have an instruction between local_irq_enable() and
5215          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5216          * the interrupt shadow.  The stat.exits increment will do nicely.
5217          * But we need to prevent reordering, hence this barrier():
5218          */
5219         barrier();
5220
5221         kvm_guest_exit();
5222
5223         preempt_enable();
5224
5225         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5226
5227         /*
5228          * Profile KVM exit RIPs:
5229          */
5230         if (unlikely(prof_on == KVM_PROFILING)) {
5231                 unsigned long rip = kvm_rip_read(vcpu);
5232                 profile_hit(KVM_PROFILING, (void *)rip);
5233         }
5234
5235
5236         kvm_lapic_sync_from_vapic(vcpu);
5237
5238         r = kvm_x86_ops->handle_exit(vcpu);
5239 out:
5240         return r;
5241 }
5242
5243
5244 static int __vcpu_run(struct kvm_vcpu *vcpu)
5245 {
5246         int r;
5247         struct kvm *kvm = vcpu->kvm;
5248
5249         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5250                 pr_debug("vcpu %d received sipi with vector # %x\n",
5251                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5252                 kvm_lapic_reset(vcpu);
5253                 r = kvm_arch_vcpu_reset(vcpu);
5254                 if (r)
5255                         return r;
5256                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5257         }
5258
5259         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5260         vapic_enter(vcpu);
5261
5262         r = 1;
5263         while (r > 0) {
5264                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5265                     !vcpu->arch.apf.halted)
5266                         r = vcpu_enter_guest(vcpu);
5267                 else {
5268                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5269                         kvm_vcpu_block(vcpu);
5270                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5271                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5272                         {
5273                                 switch(vcpu->arch.mp_state) {
5274                                 case KVM_MP_STATE_HALTED:
5275                                         vcpu->arch.mp_state =
5276                                                 KVM_MP_STATE_RUNNABLE;
5277                                 case KVM_MP_STATE_RUNNABLE:
5278                                         vcpu->arch.apf.halted = false;
5279                                         break;
5280                                 case KVM_MP_STATE_SIPI_RECEIVED:
5281                                 default:
5282                                         r = -EINTR;
5283                                         break;
5284                                 }
5285                         }
5286                 }
5287
5288                 if (r <= 0)
5289                         break;
5290
5291                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5292                 if (kvm_cpu_has_pending_timer(vcpu))
5293                         kvm_inject_pending_timer_irqs(vcpu);
5294
5295                 if (dm_request_for_irq_injection(vcpu)) {
5296                         r = -EINTR;
5297                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5298                         ++vcpu->stat.request_irq_exits;
5299                 }
5300
5301                 kvm_check_async_pf_completion(vcpu);
5302
5303                 if (signal_pending(current)) {
5304                         r = -EINTR;
5305                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5306                         ++vcpu->stat.signal_exits;
5307                 }
5308                 if (need_resched()) {
5309                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5310                         kvm_resched(vcpu);
5311                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5312                 }
5313         }
5314
5315         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5316
5317         vapic_exit(vcpu);
5318
5319         return r;
5320 }
5321
5322 static int complete_mmio(struct kvm_vcpu *vcpu)
5323 {
5324         struct kvm_run *run = vcpu->run;
5325         int r;
5326
5327         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5328                 return 1;
5329
5330         if (vcpu->mmio_needed) {
5331                 vcpu->mmio_needed = 0;
5332                 if (!vcpu->mmio_is_write)
5333                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5334                                run->mmio.data, 8);
5335                 vcpu->mmio_index += 8;
5336                 if (vcpu->mmio_index < vcpu->mmio_size) {
5337                         run->exit_reason = KVM_EXIT_MMIO;
5338                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5339                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5340                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5341                         run->mmio.is_write = vcpu->mmio_is_write;
5342                         vcpu->mmio_needed = 1;
5343                         return 0;
5344                 }
5345                 if (vcpu->mmio_is_write)
5346                         return 1;
5347                 vcpu->mmio_read_completed = 1;
5348         }
5349         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5350         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5351         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5352         if (r != EMULATE_DONE)
5353                 return 0;
5354         return 1;
5355 }
5356
5357 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5358 {
5359         int r;
5360         sigset_t sigsaved;
5361
5362         if (!tsk_used_math(current) && init_fpu(current))
5363                 return -ENOMEM;
5364
5365         if (vcpu->sigset_active)
5366                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5367
5368         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5369                 kvm_vcpu_block(vcpu);
5370                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5371                 r = -EAGAIN;
5372                 goto out;
5373         }
5374
5375         /* re-sync apic's tpr */
5376         if (!irqchip_in_kernel(vcpu->kvm)) {
5377                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5378                         r = -EINVAL;
5379                         goto out;
5380                 }
5381         }
5382
5383         r = complete_mmio(vcpu);
5384         if (r <= 0)
5385                 goto out;
5386
5387         r = __vcpu_run(vcpu);
5388
5389 out:
5390         post_kvm_run_save(vcpu);
5391         if (vcpu->sigset_active)
5392                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5393
5394         return r;
5395 }
5396
5397 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5398 {
5399         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5400                 /*
5401                  * We are here if userspace calls get_regs() in the middle of
5402                  * instruction emulation. Registers state needs to be copied
5403                  * back from emulation context to vcpu. Usrapace shouldn't do
5404                  * that usually, but some bad designed PV devices (vmware
5405                  * backdoor interface) need this to work
5406                  */
5407                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5408                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5409                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5410         }
5411         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5412         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5413         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5414         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5415         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5416         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5417         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5418         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5419 #ifdef CONFIG_X86_64
5420         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5421         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5422         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5423         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5424         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5425         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5426         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5427         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5428 #endif
5429
5430         regs->rip = kvm_rip_read(vcpu);
5431         regs->rflags = kvm_get_rflags(vcpu);
5432
5433         return 0;
5434 }
5435
5436 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5437 {
5438         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5439         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5440
5441         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5442         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5443         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5444         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5445         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5446         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5447         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5448         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5449 #ifdef CONFIG_X86_64
5450         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5451         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5452         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5453         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5454         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5455         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5456         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5457         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5458 #endif
5459
5460         kvm_rip_write(vcpu, regs->rip);
5461         kvm_set_rflags(vcpu, regs->rflags);
5462
5463         vcpu->arch.exception.pending = false;
5464
5465         kvm_make_request(KVM_REQ_EVENT, vcpu);
5466
5467         return 0;
5468 }
5469
5470 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5471 {
5472         struct kvm_segment cs;
5473
5474         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5475         *db = cs.db;
5476         *l = cs.l;
5477 }
5478 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5479
5480 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5481                                   struct kvm_sregs *sregs)
5482 {
5483         struct desc_ptr dt;
5484
5485         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5486         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5487         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5488         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5489         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5490         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5491
5492         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5493         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5494
5495         kvm_x86_ops->get_idt(vcpu, &dt);
5496         sregs->idt.limit = dt.size;
5497         sregs->idt.base = dt.address;
5498         kvm_x86_ops->get_gdt(vcpu, &dt);
5499         sregs->gdt.limit = dt.size;
5500         sregs->gdt.base = dt.address;
5501
5502         sregs->cr0 = kvm_read_cr0(vcpu);
5503         sregs->cr2 = vcpu->arch.cr2;
5504         sregs->cr3 = kvm_read_cr3(vcpu);
5505         sregs->cr4 = kvm_read_cr4(vcpu);
5506         sregs->cr8 = kvm_get_cr8(vcpu);
5507         sregs->efer = vcpu->arch.efer;
5508         sregs->apic_base = kvm_get_apic_base(vcpu);
5509
5510         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5511
5512         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5513                 set_bit(vcpu->arch.interrupt.nr,
5514                         (unsigned long *)sregs->interrupt_bitmap);
5515
5516         return 0;
5517 }
5518
5519 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5520                                     struct kvm_mp_state *mp_state)
5521 {
5522         mp_state->mp_state = vcpu->arch.mp_state;
5523         return 0;
5524 }
5525
5526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5527                                     struct kvm_mp_state *mp_state)
5528 {
5529         vcpu->arch.mp_state = mp_state->mp_state;
5530         kvm_make_request(KVM_REQ_EVENT, vcpu);
5531         return 0;
5532 }
5533
5534 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5535                     bool has_error_code, u32 error_code)
5536 {
5537         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5538         int ret;
5539
5540         init_emulate_ctxt(vcpu);
5541
5542         ret = emulator_task_switch(ctxt, tss_selector, reason,
5543                                    has_error_code, error_code);
5544
5545         if (ret)
5546                 return EMULATE_FAIL;
5547
5548         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5549         kvm_rip_write(vcpu, ctxt->eip);
5550         kvm_set_rflags(vcpu, ctxt->eflags);
5551         kvm_make_request(KVM_REQ_EVENT, vcpu);
5552         return EMULATE_DONE;
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_task_switch);
5555
5556 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5557                                   struct kvm_sregs *sregs)
5558 {
5559         int mmu_reset_needed = 0;
5560         int pending_vec, max_bits, idx;
5561         struct desc_ptr dt;
5562
5563         dt.size = sregs->idt.limit;
5564         dt.address = sregs->idt.base;
5565         kvm_x86_ops->set_idt(vcpu, &dt);
5566         dt.size = sregs->gdt.limit;
5567         dt.address = sregs->gdt.base;
5568         kvm_x86_ops->set_gdt(vcpu, &dt);
5569
5570         vcpu->arch.cr2 = sregs->cr2;
5571         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5572         vcpu->arch.cr3 = sregs->cr3;
5573         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5574
5575         kvm_set_cr8(vcpu, sregs->cr8);
5576
5577         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5578         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5579         kvm_set_apic_base(vcpu, sregs->apic_base);
5580
5581         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5582         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5583         vcpu->arch.cr0 = sregs->cr0;
5584
5585         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5586         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5587         if (sregs->cr4 & X86_CR4_OSXSAVE)
5588                 kvm_update_cpuid(vcpu);
5589
5590         idx = srcu_read_lock(&vcpu->kvm->srcu);
5591         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5592                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5593                 mmu_reset_needed = 1;
5594         }
5595         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5596
5597         if (mmu_reset_needed)
5598                 kvm_mmu_reset_context(vcpu);
5599
5600         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5601         pending_vec = find_first_bit(
5602                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5603         if (pending_vec < max_bits) {
5604                 kvm_queue_interrupt(vcpu, pending_vec, false);
5605                 pr_debug("Set back pending irq %d\n", pending_vec);
5606         }
5607
5608         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5609         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5610         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5611         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5612         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5613         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5614
5615         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5616         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5617
5618         update_cr8_intercept(vcpu);
5619
5620         /* Older userspace won't unhalt the vcpu on reset. */
5621         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5622             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5623             !is_protmode(vcpu))
5624                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5625
5626         kvm_make_request(KVM_REQ_EVENT, vcpu);
5627
5628         return 0;
5629 }
5630
5631 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5632                                         struct kvm_guest_debug *dbg)
5633 {
5634         unsigned long rflags;
5635         int i, r;
5636
5637         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5638                 r = -EBUSY;
5639                 if (vcpu->arch.exception.pending)
5640                         goto out;
5641                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5642                         kvm_queue_exception(vcpu, DB_VECTOR);
5643                 else
5644                         kvm_queue_exception(vcpu, BP_VECTOR);
5645         }
5646
5647         /*
5648          * Read rflags as long as potentially injected trace flags are still
5649          * filtered out.
5650          */
5651         rflags = kvm_get_rflags(vcpu);
5652
5653         vcpu->guest_debug = dbg->control;
5654         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5655                 vcpu->guest_debug = 0;
5656
5657         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5658                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5659                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5660                 vcpu->arch.switch_db_regs =
5661                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5662         } else {
5663                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5664                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5665                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5666         }
5667
5668         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5669                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5670                         get_segment_base(vcpu, VCPU_SREG_CS);
5671
5672         /*
5673          * Trigger an rflags update that will inject or remove the trace
5674          * flags.
5675          */
5676         kvm_set_rflags(vcpu, rflags);
5677
5678         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5679
5680         r = 0;
5681
5682 out:
5683
5684         return r;
5685 }
5686
5687 /*
5688  * Translate a guest virtual address to a guest physical address.
5689  */
5690 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5691                                     struct kvm_translation *tr)
5692 {
5693         unsigned long vaddr = tr->linear_address;
5694         gpa_t gpa;
5695         int idx;
5696
5697         idx = srcu_read_lock(&vcpu->kvm->srcu);
5698         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5699         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5700         tr->physical_address = gpa;
5701         tr->valid = gpa != UNMAPPED_GVA;
5702         tr->writeable = 1;
5703         tr->usermode = 0;
5704
5705         return 0;
5706 }
5707
5708 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5709 {
5710         struct i387_fxsave_struct *fxsave =
5711                         &vcpu->arch.guest_fpu.state->fxsave;
5712
5713         memcpy(fpu->fpr, fxsave->st_space, 128);
5714         fpu->fcw = fxsave->cwd;
5715         fpu->fsw = fxsave->swd;
5716         fpu->ftwx = fxsave->twd;
5717         fpu->last_opcode = fxsave->fop;
5718         fpu->last_ip = fxsave->rip;
5719         fpu->last_dp = fxsave->rdp;
5720         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5721
5722         return 0;
5723 }
5724
5725 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5726 {
5727         struct i387_fxsave_struct *fxsave =
5728                         &vcpu->arch.guest_fpu.state->fxsave;
5729
5730         memcpy(fxsave->st_space, fpu->fpr, 128);
5731         fxsave->cwd = fpu->fcw;
5732         fxsave->swd = fpu->fsw;
5733         fxsave->twd = fpu->ftwx;
5734         fxsave->fop = fpu->last_opcode;
5735         fxsave->rip = fpu->last_ip;
5736         fxsave->rdp = fpu->last_dp;
5737         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5738
5739         return 0;
5740 }
5741
5742 int fx_init(struct kvm_vcpu *vcpu)
5743 {
5744         int err;
5745
5746         err = fpu_alloc(&vcpu->arch.guest_fpu);
5747         if (err)
5748                 return err;
5749
5750         fpu_finit(&vcpu->arch.guest_fpu);
5751
5752         /*
5753          * Ensure guest xcr0 is valid for loading
5754          */
5755         vcpu->arch.xcr0 = XSTATE_FP;
5756
5757         vcpu->arch.cr0 |= X86_CR0_ET;
5758
5759         return 0;
5760 }
5761 EXPORT_SYMBOL_GPL(fx_init);
5762
5763 static void fx_free(struct kvm_vcpu *vcpu)
5764 {
5765         fpu_free(&vcpu->arch.guest_fpu);
5766 }
5767
5768 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5769 {
5770         if (vcpu->guest_fpu_loaded)
5771                 return;
5772
5773         /*
5774          * Restore all possible states in the guest,
5775          * and assume host would use all available bits.
5776          * Guest xcr0 would be loaded later.
5777          */
5778         kvm_put_guest_xcr0(vcpu);
5779         vcpu->guest_fpu_loaded = 1;
5780         unlazy_fpu(current);
5781         fpu_restore_checking(&vcpu->arch.guest_fpu);
5782         trace_kvm_fpu(1);
5783 }
5784
5785 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5786 {
5787         kvm_put_guest_xcr0(vcpu);
5788
5789         if (!vcpu->guest_fpu_loaded)
5790                 return;
5791
5792         vcpu->guest_fpu_loaded = 0;
5793         fpu_save_init(&vcpu->arch.guest_fpu);
5794         ++vcpu->stat.fpu_reload;
5795         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5796         trace_kvm_fpu(0);
5797 }
5798
5799 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5800 {
5801         kvmclock_reset(vcpu);
5802
5803         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5804         fx_free(vcpu);
5805         kvm_x86_ops->vcpu_free(vcpu);
5806 }
5807
5808 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5809                                                 unsigned int id)
5810 {
5811         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5812                 printk_once(KERN_WARNING
5813                 "kvm: SMP vm created on host with unstable TSC; "
5814                 "guest TSC will not be reliable\n");
5815         return kvm_x86_ops->vcpu_create(kvm, id);
5816 }
5817
5818 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5819 {
5820         int r;
5821
5822         vcpu->arch.mtrr_state.have_fixed = 1;
5823         vcpu_load(vcpu);
5824         r = kvm_arch_vcpu_reset(vcpu);
5825         if (r == 0)
5826                 r = kvm_mmu_setup(vcpu);
5827         vcpu_put(vcpu);
5828
5829         return r;
5830 }
5831
5832 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5833 {
5834         vcpu->arch.apf.msr_val = 0;
5835
5836         vcpu_load(vcpu);
5837         kvm_mmu_unload(vcpu);
5838         vcpu_put(vcpu);
5839
5840         fx_free(vcpu);
5841         kvm_x86_ops->vcpu_free(vcpu);
5842 }
5843
5844 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5845 {
5846         atomic_set(&vcpu->arch.nmi_queued, 0);
5847         vcpu->arch.nmi_pending = 0;
5848         vcpu->arch.nmi_injected = false;
5849
5850         vcpu->arch.switch_db_regs = 0;
5851         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5852         vcpu->arch.dr6 = DR6_FIXED_1;
5853         vcpu->arch.dr7 = DR7_FIXED_1;
5854
5855         kvm_make_request(KVM_REQ_EVENT, vcpu);
5856         vcpu->arch.apf.msr_val = 0;
5857         vcpu->arch.st.msr_val = 0;
5858
5859         kvmclock_reset(vcpu);
5860
5861         kvm_clear_async_pf_completion_queue(vcpu);
5862         kvm_async_pf_hash_reset(vcpu);
5863         vcpu->arch.apf.halted = false;
5864
5865         return kvm_x86_ops->vcpu_reset(vcpu);
5866 }
5867
5868 int kvm_arch_hardware_enable(void *garbage)
5869 {
5870         struct kvm *kvm;
5871         struct kvm_vcpu *vcpu;
5872         int i;
5873
5874         kvm_shared_msr_cpu_online();
5875         list_for_each_entry(kvm, &vm_list, vm_list)
5876                 kvm_for_each_vcpu(i, vcpu, kvm)
5877                         if (vcpu->cpu == smp_processor_id())
5878                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5879         return kvm_x86_ops->hardware_enable(garbage);
5880 }
5881
5882 void kvm_arch_hardware_disable(void *garbage)
5883 {
5884         kvm_x86_ops->hardware_disable(garbage);
5885         drop_user_return_notifiers(garbage);
5886 }
5887
5888 int kvm_arch_hardware_setup(void)
5889 {
5890         return kvm_x86_ops->hardware_setup();
5891 }
5892
5893 void kvm_arch_hardware_unsetup(void)
5894 {
5895         kvm_x86_ops->hardware_unsetup();
5896 }
5897
5898 void kvm_arch_check_processor_compat(void *rtn)
5899 {
5900         kvm_x86_ops->check_processor_compatibility(rtn);
5901 }
5902
5903 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5904 {
5905         struct page *page;
5906         struct kvm *kvm;
5907         int r;
5908
5909         BUG_ON(vcpu->kvm == NULL);
5910         kvm = vcpu->kvm;
5911
5912         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5913         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5914                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5915         else
5916                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5917
5918         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5919         if (!page) {
5920                 r = -ENOMEM;
5921                 goto fail;
5922         }
5923         vcpu->arch.pio_data = page_address(page);
5924
5925         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5926
5927         r = kvm_mmu_create(vcpu);
5928         if (r < 0)
5929                 goto fail_free_pio_data;
5930
5931         if (irqchip_in_kernel(kvm)) {
5932                 r = kvm_create_lapic(vcpu);
5933                 if (r < 0)
5934                         goto fail_mmu_destroy;
5935         }
5936
5937         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5938                                        GFP_KERNEL);
5939         if (!vcpu->arch.mce_banks) {
5940                 r = -ENOMEM;
5941                 goto fail_free_lapic;
5942         }
5943         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5944
5945         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5946                 goto fail_free_mce_banks;
5947
5948         kvm_async_pf_hash_reset(vcpu);
5949
5950         return 0;
5951 fail_free_mce_banks:
5952         kfree(vcpu->arch.mce_banks);
5953 fail_free_lapic:
5954         kvm_free_lapic(vcpu);
5955 fail_mmu_destroy:
5956         kvm_mmu_destroy(vcpu);
5957 fail_free_pio_data:
5958         free_page((unsigned long)vcpu->arch.pio_data);
5959 fail:
5960         return r;
5961 }
5962
5963 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5964 {
5965         int idx;
5966
5967         kfree(vcpu->arch.mce_banks);
5968         kvm_free_lapic(vcpu);
5969         idx = srcu_read_lock(&vcpu->kvm->srcu);
5970         kvm_mmu_destroy(vcpu);
5971         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5972         free_page((unsigned long)vcpu->arch.pio_data);
5973 }
5974
5975 int kvm_arch_init_vm(struct kvm *kvm)
5976 {
5977         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5978         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5979
5980         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5981         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5982
5983         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
5984
5985         return 0;
5986 }
5987
5988 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5989 {
5990         vcpu_load(vcpu);
5991         kvm_mmu_unload(vcpu);
5992         vcpu_put(vcpu);
5993 }
5994
5995 static void kvm_free_vcpus(struct kvm *kvm)
5996 {
5997         unsigned int i;
5998         struct kvm_vcpu *vcpu;
5999
6000         /*
6001          * Unpin any mmu pages first.
6002          */
6003         kvm_for_each_vcpu(i, vcpu, kvm) {
6004                 kvm_clear_async_pf_completion_queue(vcpu);
6005                 kvm_unload_vcpu_mmu(vcpu);
6006         }
6007         kvm_for_each_vcpu(i, vcpu, kvm)
6008                 kvm_arch_vcpu_free(vcpu);
6009
6010         mutex_lock(&kvm->lock);
6011         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6012                 kvm->vcpus[i] = NULL;
6013
6014         atomic_set(&kvm->online_vcpus, 0);
6015         mutex_unlock(&kvm->lock);
6016 }
6017
6018 void kvm_arch_sync_events(struct kvm *kvm)
6019 {
6020         kvm_free_all_assigned_devices(kvm);
6021         kvm_free_pit(kvm);
6022 }
6023
6024 void kvm_arch_destroy_vm(struct kvm *kvm)
6025 {
6026         kvm_iommu_unmap_guest(kvm);
6027         kfree(kvm->arch.vpic);
6028         kfree(kvm->arch.vioapic);
6029         kvm_free_vcpus(kvm);
6030         if (kvm->arch.apic_access_page)
6031                 put_page(kvm->arch.apic_access_page);
6032         if (kvm->arch.ept_identity_pagetable)
6033                 put_page(kvm->arch.ept_identity_pagetable);
6034 }
6035
6036 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6037                                 struct kvm_memory_slot *memslot,
6038                                 struct kvm_memory_slot old,
6039                                 struct kvm_userspace_memory_region *mem,
6040                                 int user_alloc)
6041 {
6042         int npages = memslot->npages;
6043         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6044
6045         /* Prevent internal slot pages from being moved by fork()/COW. */
6046         if (memslot->id >= KVM_MEMORY_SLOTS)
6047                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6048
6049         /*To keep backward compatibility with older userspace,
6050          *x86 needs to hanlde !user_alloc case.
6051          */
6052         if (!user_alloc) {
6053                 if (npages && !old.rmap) {
6054                         unsigned long userspace_addr;
6055
6056                         down_write(&current->mm->mmap_sem);
6057                         userspace_addr = do_mmap(NULL, 0,
6058                                                  npages * PAGE_SIZE,
6059                                                  PROT_READ | PROT_WRITE,
6060                                                  map_flags,
6061                                                  0);
6062                         up_write(&current->mm->mmap_sem);
6063
6064                         if (IS_ERR((void *)userspace_addr))
6065                                 return PTR_ERR((void *)userspace_addr);
6066
6067                         memslot->userspace_addr = userspace_addr;
6068                 }
6069         }
6070
6071
6072         return 0;
6073 }
6074
6075 void kvm_arch_commit_memory_region(struct kvm *kvm,
6076                                 struct kvm_userspace_memory_region *mem,
6077                                 struct kvm_memory_slot old,
6078                                 int user_alloc)
6079 {
6080
6081         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6082
6083         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6084                 int ret;
6085
6086                 down_write(&current->mm->mmap_sem);
6087                 ret = do_munmap(current->mm, old.userspace_addr,
6088                                 old.npages * PAGE_SIZE);
6089                 up_write(&current->mm->mmap_sem);
6090                 if (ret < 0)
6091                         printk(KERN_WARNING
6092                                "kvm_vm_ioctl_set_memory_region: "
6093                                "failed to munmap memory\n");
6094         }
6095
6096         if (!kvm->arch.n_requested_mmu_pages)
6097                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6098
6099         spin_lock(&kvm->mmu_lock);
6100         if (nr_mmu_pages)
6101                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6102         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6103         spin_unlock(&kvm->mmu_lock);
6104 }
6105
6106 void kvm_arch_flush_shadow(struct kvm *kvm)
6107 {
6108         kvm_mmu_zap_all(kvm);
6109         kvm_reload_remote_mmus(kvm);
6110 }
6111
6112 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6113 {
6114         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6115                 !vcpu->arch.apf.halted)
6116                 || !list_empty_careful(&vcpu->async_pf.done)
6117                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6118                 || atomic_read(&vcpu->arch.nmi_queued) ||
6119                 (kvm_arch_interrupt_allowed(vcpu) &&
6120                  kvm_cpu_has_interrupt(vcpu));
6121 }
6122
6123 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6124 {
6125         int me;
6126         int cpu = vcpu->cpu;
6127
6128         if (waitqueue_active(&vcpu->wq)) {
6129                 wake_up_interruptible(&vcpu->wq);
6130                 ++vcpu->stat.halt_wakeup;
6131         }
6132
6133         me = get_cpu();
6134         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6135                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6136                         smp_send_reschedule(cpu);
6137         put_cpu();
6138 }
6139
6140 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6141 {
6142         return kvm_x86_ops->interrupt_allowed(vcpu);
6143 }
6144
6145 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6146 {
6147         unsigned long current_rip = kvm_rip_read(vcpu) +
6148                 get_segment_base(vcpu, VCPU_SREG_CS);
6149
6150         return current_rip == linear_rip;
6151 }
6152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6153
6154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6155 {
6156         unsigned long rflags;
6157
6158         rflags = kvm_x86_ops->get_rflags(vcpu);
6159         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6160                 rflags &= ~X86_EFLAGS_TF;
6161         return rflags;
6162 }
6163 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6164
6165 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6166 {
6167         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6168             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6169                 rflags |= X86_EFLAGS_TF;
6170         kvm_x86_ops->set_rflags(vcpu, rflags);
6171         kvm_make_request(KVM_REQ_EVENT, vcpu);
6172 }
6173 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6174
6175 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6176 {
6177         int r;
6178
6179         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6180               is_error_page(work->page))
6181                 return;
6182
6183         r = kvm_mmu_reload(vcpu);
6184         if (unlikely(r))
6185                 return;
6186
6187         if (!vcpu->arch.mmu.direct_map &&
6188               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6189                 return;
6190
6191         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6192 }
6193
6194 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6195 {
6196         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6197 }
6198
6199 static inline u32 kvm_async_pf_next_probe(u32 key)
6200 {
6201         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6202 }
6203
6204 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6205 {
6206         u32 key = kvm_async_pf_hash_fn(gfn);
6207
6208         while (vcpu->arch.apf.gfns[key] != ~0)
6209                 key = kvm_async_pf_next_probe(key);
6210
6211         vcpu->arch.apf.gfns[key] = gfn;
6212 }
6213
6214 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6215 {
6216         int i;
6217         u32 key = kvm_async_pf_hash_fn(gfn);
6218
6219         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6220                      (vcpu->arch.apf.gfns[key] != gfn &&
6221                       vcpu->arch.apf.gfns[key] != ~0); i++)
6222                 key = kvm_async_pf_next_probe(key);
6223
6224         return key;
6225 }
6226
6227 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6228 {
6229         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6230 }
6231
6232 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6233 {
6234         u32 i, j, k;
6235
6236         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6237         while (true) {
6238                 vcpu->arch.apf.gfns[i] = ~0;
6239                 do {
6240                         j = kvm_async_pf_next_probe(j);
6241                         if (vcpu->arch.apf.gfns[j] == ~0)
6242                                 return;
6243                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6244                         /*
6245                          * k lies cyclically in ]i,j]
6246                          * |    i.k.j |
6247                          * |....j i.k.| or  |.k..j i...|
6248                          */
6249                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6250                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6251                 i = j;
6252         }
6253 }
6254
6255 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6256 {
6257
6258         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6259                                       sizeof(val));
6260 }
6261
6262 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6263                                      struct kvm_async_pf *work)
6264 {
6265         struct x86_exception fault;
6266
6267         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6268         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6269
6270         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6271             (vcpu->arch.apf.send_user_only &&
6272              kvm_x86_ops->get_cpl(vcpu) == 0))
6273                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6274         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6275                 fault.vector = PF_VECTOR;
6276                 fault.error_code_valid = true;
6277                 fault.error_code = 0;
6278                 fault.nested_page_fault = false;
6279                 fault.address = work->arch.token;
6280                 kvm_inject_page_fault(vcpu, &fault);
6281         }
6282 }
6283
6284 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6285                                  struct kvm_async_pf *work)
6286 {
6287         struct x86_exception fault;
6288
6289         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6290         if (is_error_page(work->page))
6291                 work->arch.token = ~0; /* broadcast wakeup */
6292         else
6293                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6294
6295         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6296             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6297                 fault.vector = PF_VECTOR;
6298                 fault.error_code_valid = true;
6299                 fault.error_code = 0;
6300                 fault.nested_page_fault = false;
6301                 fault.address = work->arch.token;
6302                 kvm_inject_page_fault(vcpu, &fault);
6303         }
6304         vcpu->arch.apf.halted = false;
6305 }
6306
6307 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6308 {
6309         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6310                 return true;
6311         else
6312                 return !kvm_event_needs_reinjection(vcpu) &&
6313                         kvm_x86_ops->interrupt_allowed(vcpu);
6314 }
6315
6316 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6317 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6318 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6319 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6320 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6321 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);