06a0ddeb054fb7d82d277034953b13df3fdd4588
[linux-flexiantxendom0-3.2.10.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/suspend.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/notifier.h>
35
36 #include <asm/tlbflush.h>
37 #include <asm/div64.h>
38
39 #include <linux/swapops.h>
40
41 /* possible outcome of pageout() */
42 typedef enum {
43         /* failed to write page out, page is locked */
44         PAGE_KEEP,
45         /* move page to the active list, page is locked */
46         PAGE_ACTIVATE,
47         /* page has been sent to the disk successfully, page is unlocked */
48         PAGE_SUCCESS,
49         /* page is clean and locked */
50         PAGE_CLEAN,
51 } pageout_t;
52
53 struct scan_control {
54         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
55         unsigned long nr_to_scan;
56
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Incremented by the number of pages reclaimed */
61         unsigned long nr_reclaimed;
62
63         unsigned long nr_mapped;        /* From page_state */
64
65         /* How many pages shrink_cache() should reclaim */
66         int nr_to_reclaim;
67
68         /* Ask shrink_caches, or shrink_zone to scan at this priority */
69         unsigned int priority;
70
71         /* This context's GFP mask */
72         unsigned int gfp_mask;
73
74         int may_writepage;
75 };
76
77 /*
78  * The list of shrinker callbacks used by to apply pressure to
79  * ageable caches.
80  */
81 struct shrinker {
82         shrinker_t              shrinker;
83         struct list_head        list;
84         int                     seeks;  /* seeks to recreate an obj */
85         long                    nr;     /* objs pending delete */
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field)                    \
92         do {                                                            \
93                 if ((_page)->lru.prev != _base) {                       \
94                         struct page *prev;                              \
95                                                                         \
96                         prev = lru_to_page(&(_page->lru));              \
97                         prefetch(&prev->_field);                        \
98                 }                                                       \
99         } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetchw(&prev->_field);                       \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119  * From 0 .. 100.  Higher means more swappy.
120  */
121 int vm_swappiness = 60;
122 static long total_memory;
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_MUTEX(shrinker_sem);
126
127 /*
128  * Add a shrinker callback to be called from the vm
129  */
130 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
131 {
132         struct shrinker *shrinker;
133
134         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
135         if (shrinker) {
136                 shrinker->shrinker = theshrinker;
137                 shrinker->seeks = seeks;
138                 shrinker->nr = 0;
139                 down(&shrinker_sem);
140                 list_add(&shrinker->list, &shrinker_list);
141                 up(&shrinker_sem);
142         }
143         return shrinker;
144 }
145 EXPORT_SYMBOL(set_shrinker);
146
147 /*
148  * Remove one
149  */
150 void remove_shrinker(struct shrinker *shrinker)
151 {
152         down(&shrinker_sem);
153         list_del(&shrinker->list);
154         up(&shrinker_sem);
155         kfree(shrinker);
156 }
157 EXPORT_SYMBOL(remove_shrinker);
158  
159 #define SHRINK_BATCH 128
160 /*
161  * Call the shrink functions to age shrinkable caches
162  *
163  * Here we assume it costs one seek to replace a lru page and that it also
164  * takes a seek to recreate a cache object.  With this in mind we age equal
165  * percentages of the lru and ageable caches.  This should balance the seeks
166  * generated by these structures.
167  *
168  * If the vm encounted mapped pages on the LRU it increase the pressure on
169  * slab to avoid swapping.
170  *
171  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
172  *
173  * `lru_pages' represents the number of on-LRU pages in all the zones which
174  * are eligible for the caller's allocation attempt.  It is used for balancing
175  * slab reclaim versus page reclaim.
176  */
177 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
178                         unsigned long lru_pages)
179 {
180         struct shrinker *shrinker;
181
182         if (down_trylock(&shrinker_sem))
183                 return 0;
184
185         list_for_each_entry(shrinker, &shrinker_list, list) {
186                 unsigned long long delta;
187
188                 delta = (4 * scanned) / shrinker->seeks;
189                 delta *= (*shrinker->shrinker)(0, gfp_mask);
190                 do_div(delta, lru_pages + 1);
191                 shrinker->nr += delta;
192                 if (shrinker->nr < 0)
193                         shrinker->nr = LONG_MAX;        /* It wrapped! */
194
195                 if (shrinker->nr <= SHRINK_BATCH)
196                         continue;
197                 while (shrinker->nr) {
198                         long this_scan = shrinker->nr;
199                         int shrink_ret;
200
201                         if (this_scan > 128)
202                                 this_scan = 128;
203                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
204                         mod_page_state(slabs_scanned, this_scan);
205                         shrinker->nr -= this_scan;
206                         if (shrink_ret == -1)
207                                 break;
208                         cond_resched();
209                 }
210         }
211         up(&shrinker_sem);
212         return 0;
213 }
214
215 /* Must be called with page's rmap lock held. */
216 static inline int page_mapping_inuse(struct page *page)
217 {
218         struct address_space *mapping;
219
220         /* Page is in somebody's page tables. */
221         if (page_mapped(page))
222                 return 1;
223
224         /* Be more reluctant to reclaim swapcache than pagecache */
225         if (PageSwapCache(page))
226                 return 1;
227
228         mapping = page_mapping(page);
229         if (!mapping)
230                 return 0;
231
232         /* File is mmap'd by somebody? */
233         return mapping_mapped(mapping);
234 }
235
236 static inline int is_page_cache_freeable(struct page *page)
237 {
238         return page_count(page) - !!PagePrivate(page) == 2;
239 }
240
241 static int may_write_to_queue(struct backing_dev_info *bdi)
242 {
243         if (current_is_kswapd())
244                 return 1;
245         if (current_is_pdflush())       /* This is unlikely, but why not... */
246                 return 1;
247         if (!bdi_write_congested(bdi))
248                 return 1;
249         if (bdi == current->backing_dev_info)
250                 return 1;
251         return 0;
252 }
253
254 /*
255  * We detected a synchronous write error writing a page out.  Probably
256  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
257  * fsync(), msync() or close().
258  *
259  * The tricky part is that after writepage we cannot touch the mapping: nothing
260  * prevents it from being freed up.  But we have a ref on the page and once
261  * that page is locked, the mapping is pinned.
262  *
263  * We're allowed to run sleeping lock_page() here because we know the caller has
264  * __GFP_FS.
265  */
266 static void handle_write_error(struct address_space *mapping,
267                                 struct page *page, int error)
268 {
269         lock_page(page);
270         if (page_mapping(page) == mapping) {
271                 if (error == -ENOSPC)
272                         set_bit(AS_ENOSPC, &mapping->flags);
273                 else
274                         set_bit(AS_EIO, &mapping->flags);
275         }
276         unlock_page(page);
277 }
278
279 /*
280  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
281  */
282 static pageout_t pageout(struct page *page, struct address_space *mapping)
283 {
284         /*
285          * If the page is dirty, only perform writeback if that write
286          * will be non-blocking.  To prevent this allocation from being
287          * stalled by pagecache activity.  But note that there may be
288          * stalls if we need to run get_block().  We could test
289          * PagePrivate for that.
290          *
291          * If this process is currently in generic_file_write() against
292          * this page's queue, we can perform writeback even if that
293          * will block.
294          *
295          * If the page is swapcache, write it back even if that would
296          * block, for some throttling. This happens by accident, because
297          * swap_backing_dev_info is bust: it doesn't reflect the
298          * congestion state of the swapdevs.  Easy to fix, if needed.
299          * See swapfile.c:page_queue_congested().
300          */
301         if (!is_page_cache_freeable(page))
302                 return PAGE_KEEP;
303         if (!mapping)
304                 return PAGE_KEEP;
305         if (mapping->a_ops->writepage == NULL)
306                 return PAGE_ACTIVATE;
307         if (!may_write_to_queue(mapping->backing_dev_info))
308                 return PAGE_KEEP;
309
310         if (clear_page_dirty_for_io(page)) {
311                 int res;
312                 struct writeback_control wbc = {
313                         .sync_mode = WB_SYNC_NONE,
314                         .nr_to_write = SWAP_CLUSTER_MAX,
315                         .nonblocking = 1,
316                         .for_reclaim = 1,
317                 };
318
319                 SetPageReclaim(page);
320                 res = mapping->a_ops->writepage(page, &wbc);
321                 if (res < 0)
322                         handle_write_error(mapping, page, res);
323                 if (res == WRITEPAGE_ACTIVATE) {
324                         ClearPageReclaim(page);
325                         return PAGE_ACTIVATE;
326                 }
327                 if (!PageWriteback(page)) {
328                         /* synchronous write or broken a_ops? */
329                         ClearPageReclaim(page);
330                 }
331
332                 return PAGE_SUCCESS;
333         }
334
335         return PAGE_CLEAN;
336 }
337
338 /*
339  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
340  */
341 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
342 {
343         LIST_HEAD(ret_pages);
344         struct pagevec freed_pvec;
345         int pgactivate = 0;
346         int reclaimed = 0;
347
348         cond_resched();
349
350         pagevec_init(&freed_pvec, 1);
351         while (!list_empty(page_list)) {
352                 struct address_space *mapping;
353                 struct page *page;
354                 int may_enter_fs;
355                 int referenced;
356
357                 page = lru_to_page(page_list);
358                 list_del(&page->lru);
359
360                 if (TestSetPageLocked(page))
361                         goto keep;
362
363                 BUG_ON(PageActive(page));
364
365                 if (PageWriteback(page))
366                         goto keep_locked;
367
368                 sc->nr_scanned++;
369                 /* Double the slab pressure for mapped and swapcache pages */
370                 if (page_mapped(page) || PageSwapCache(page))
371                         sc->nr_scanned++;
372
373                 page_map_lock(page);
374                 referenced = page_referenced(page);
375                 if (referenced && page_mapping_inuse(page)) {
376                         /* In active use or really unfreeable.  Activate it. */
377                         page_map_unlock(page);
378                         goto activate_locked;
379                 }
380
381 #ifdef CONFIG_SWAP
382                 /*
383                  * Anonymous process memory has backing store?
384                  * Try to allocate it some swap space here.
385                  *
386                  * XXX: implement swap clustering ?
387                  */
388                 if (PageAnon(page) && !PageSwapCache(page)) {
389                         page_map_unlock(page);
390                         if (!add_to_swap(page))
391                                 goto activate_locked;
392                         page_map_lock(page);
393                 }
394 #endif /* CONFIG_SWAP */
395
396                 mapping = page_mapping(page);
397                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
398                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
399
400                 /*
401                  * The page is mapped into the page tables of one or more
402                  * processes. Try to unmap it here.
403                  */
404                 if (page_mapped(page) && mapping) {
405                         switch (try_to_unmap(page)) {
406                         case SWAP_FAIL:
407                                 page_map_unlock(page);
408                                 goto activate_locked;
409                         case SWAP_AGAIN:
410                                 page_map_unlock(page);
411                                 goto keep_locked;
412                         case SWAP_SUCCESS:
413                                 ; /* try to free the page below */
414                         }
415                 }
416                 page_map_unlock(page);
417
418                 if (PageDirty(page)) {
419                         if (referenced)
420                                 goto keep_locked;
421                         if (!may_enter_fs)
422                                 goto keep_locked;
423                         if (laptop_mode && !sc->may_writepage)
424                                 goto keep_locked;
425
426                         /* Page is dirty, try to write it out here */
427                         switch(pageout(page, mapping)) {
428                         case PAGE_KEEP:
429                                 goto keep_locked;
430                         case PAGE_ACTIVATE:
431                                 goto activate_locked;
432                         case PAGE_SUCCESS:
433                                 if (PageWriteback(page) || PageDirty(page))
434                                         goto keep;
435                                 /*
436                                  * A synchronous write - probably a ramdisk.  Go
437                                  * ahead and try to reclaim the page.
438                                  */
439                                 if (TestSetPageLocked(page))
440                                         goto keep;
441                                 if (PageDirty(page) || PageWriteback(page))
442                                         goto keep_locked;
443                                 mapping = page_mapping(page);
444                         case PAGE_CLEAN:
445                                 ; /* try to free the page below */
446                         }
447                 }
448
449                 /*
450                  * If the page has buffers, try to free the buffer mappings
451                  * associated with this page. If we succeed we try to free
452                  * the page as well.
453                  *
454                  * We do this even if the page is PageDirty().
455                  * try_to_release_page() does not perform I/O, but it is
456                  * possible for a page to have PageDirty set, but it is actually
457                  * clean (all its buffers are clean).  This happens if the
458                  * buffers were written out directly, with submit_bh(). ext3
459                  * will do this, as well as the blockdev mapping. 
460                  * try_to_release_page() will discover that cleanness and will
461                  * drop the buffers and mark the page clean - it can be freed.
462                  *
463                  * Rarely, pages can have buffers and no ->mapping.  These are
464                  * the pages which were not successfully invalidated in
465                  * truncate_complete_page().  We try to drop those buffers here
466                  * and if that worked, and the page is no longer mapped into
467                  * process address space (page_count == 1) it can be freed.
468                  * Otherwise, leave the page on the LRU so it is swappable.
469                  */
470                 if (PagePrivate(page)) {
471                         if (!try_to_release_page(page, sc->gfp_mask))
472                                 goto activate_locked;
473                         /*
474                          * file system may manually remove page from the page
475                          * cache in ->releasepage(). Check for this.
476                          */
477                         mapping = page_mapping(page);
478                         if (!mapping && page_count(page) == 1)
479                                 goto free_it;
480                 }
481
482                 if (!mapping)
483                         goto keep_locked;       /* truncate got there first */
484
485                 write_lock_irq(&mapping->tree_lock);
486
487                 /*
488                  * The non-racy check for busy page.  It is critical to check
489                  * PageDirty _after_ making sure that the page is freeable and
490                  * not in use by anybody.       (pagecache + us == 2)
491                  */
492                 if (page_count(page) != 2 || PageDirty(page)) {
493                         write_unlock_irq(&mapping->tree_lock);
494                         goto keep_locked;
495                 }
496
497 #ifdef CONFIG_SWAP
498                 if (PageSwapCache(page)) {
499                         swp_entry_t swap = { .val = page->private };
500                         __delete_from_swap_cache(page);
501                         write_unlock_irq(&mapping->tree_lock);
502                         swap_free(swap);
503                         __put_page(page);       /* The pagecache ref */
504                         goto free_it;
505                 }
506 #endif /* CONFIG_SWAP */
507
508                 __remove_from_page_cache(page);
509                 write_unlock_irq(&mapping->tree_lock);
510                 __put_page(page);
511
512 free_it:
513                 unlock_page(page);
514                 reclaimed++;
515                 if (!pagevec_add(&freed_pvec, page))
516                         __pagevec_release_nonlru(&freed_pvec);
517                 continue;
518
519 activate_locked:
520                 SetPageActive(page);
521                 pgactivate++;
522 keep_locked:
523                 unlock_page(page);
524 keep:
525                 list_add(&page->lru, &ret_pages);
526                 BUG_ON(PageLRU(page));
527         }
528         list_splice(&ret_pages, page_list);
529         if (pagevec_count(&freed_pvec))
530                 __pagevec_release_nonlru(&freed_pvec);
531         mod_page_state(pgactivate, pgactivate);
532         sc->nr_reclaimed += reclaimed;
533         return reclaimed;
534 }
535
536 /*
537  * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
538  * a batch of pages and working on them outside the lock.  Any pages which were
539  * not freed will be added back to the LRU.
540  *
541  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
542  *
543  * For pagecache intensive workloads, the first loop here is the hottest spot
544  * in the kernel (apart from the copy_*_user functions).
545  */
546 static void shrink_cache(struct zone *zone, struct scan_control *sc)
547 {
548         LIST_HEAD(page_list);
549         struct pagevec pvec;
550         int max_scan = sc->nr_to_scan;
551
552         pagevec_init(&pvec, 1);
553
554         lru_add_drain();
555         spin_lock_irq(&zone->lru_lock);
556         while (max_scan > 0) {
557                 struct page *page;
558                 int nr_taken = 0;
559                 int nr_scan = 0;
560                 int nr_freed;
561
562                 while (nr_scan++ < SWAP_CLUSTER_MAX &&
563                                 !list_empty(&zone->inactive_list)) {
564                         page = lru_to_page(&zone->inactive_list);
565
566                         prefetchw_prev_lru_page(page,
567                                                 &zone->inactive_list, flags);
568
569                         if (!TestClearPageLRU(page))
570                                 BUG();
571                         list_del(&page->lru);
572                         if (get_page_testone(page)) {
573                                 /*
574                                  * It is being freed elsewhere
575                                  */
576                                 __put_page(page);
577                                 SetPageLRU(page);
578                                 list_add(&page->lru, &zone->inactive_list);
579                                 continue;
580                         }
581                         list_add(&page->lru, &page_list);
582                         nr_taken++;
583                 }
584                 zone->nr_inactive -= nr_taken;
585                 zone->pages_scanned += nr_taken;
586                 spin_unlock_irq(&zone->lru_lock);
587
588                 if (nr_taken == 0)
589                         goto done;
590
591                 max_scan -= nr_scan;
592                 if (current_is_kswapd())
593                         mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
594                 else
595                         mod_page_state_zone(zone, pgscan_direct, nr_scan);
596                 nr_freed = shrink_list(&page_list, sc);
597                 if (current_is_kswapd())
598                         mod_page_state(kswapd_steal, nr_freed);
599                 mod_page_state_zone(zone, pgsteal, nr_freed);
600                 sc->nr_to_reclaim -= nr_freed;
601
602                 spin_lock_irq(&zone->lru_lock);
603                 /*
604                  * Put back any unfreeable pages.
605                  */
606                 while (!list_empty(&page_list)) {
607                         page = lru_to_page(&page_list);
608                         if (TestSetPageLRU(page))
609                                 BUG();
610                         list_del(&page->lru);
611                         if (PageActive(page))
612                                 add_page_to_active_list(zone, page);
613                         else
614                                 add_page_to_inactive_list(zone, page);
615                         if (!pagevec_add(&pvec, page)) {
616                                 spin_unlock_irq(&zone->lru_lock);
617                                 __pagevec_release(&pvec);
618                                 spin_lock_irq(&zone->lru_lock);
619                         }
620                 }
621         }
622         spin_unlock_irq(&zone->lru_lock);
623 done:
624         pagevec_release(&pvec);
625 }
626
627 /*
628  * This moves pages from the active list to the inactive list.
629  *
630  * We move them the other way if the page is referenced by one or more
631  * processes, from rmap.
632  *
633  * If the pages are mostly unmapped, the processing is fast and it is
634  * appropriate to hold zone->lru_lock across the whole operation.  But if
635  * the pages are mapped, the processing is slow (page_referenced()) so we
636  * should drop zone->lru_lock around each page.  It's impossible to balance
637  * this, so instead we remove the pages from the LRU while processing them.
638  * It is safe to rely on PG_active against the non-LRU pages in here because
639  * nobody will play with that bit on a non-LRU page.
640  *
641  * The downside is that we have to touch page->_count against each page.
642  * But we had to alter page->flags anyway.
643  */
644 static void
645 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
646 {
647         int pgmoved;
648         int pgdeactivate = 0;
649         int pgscanned = 0;
650         int nr_pages = sc->nr_to_scan;
651         LIST_HEAD(l_hold);      /* The pages which were snipped off */
652         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
653         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
654         struct page *page;
655         struct pagevec pvec;
656         int reclaim_mapped = 0;
657         long mapped_ratio;
658         long distress;
659         long swap_tendency;
660
661         lru_add_drain();
662         pgmoved = 0;
663         spin_lock_irq(&zone->lru_lock);
664         while (pgscanned < nr_pages && !list_empty(&zone->active_list)) {
665                 page = lru_to_page(&zone->active_list);
666                 prefetchw_prev_lru_page(page, &zone->active_list, flags);
667                 if (!TestClearPageLRU(page))
668                         BUG();
669                 list_del(&page->lru);
670                 if (get_page_testone(page)) {
671                         /*
672                          * It was already free!  release_pages() or put_page()
673                          * are about to remove it from the LRU and free it. So
674                          * put the refcount back and put the page back on the
675                          * LRU
676                          */
677                         __put_page(page);
678                         SetPageLRU(page);
679                         list_add(&page->lru, &zone->active_list);
680                 } else {
681                         list_add(&page->lru, &l_hold);
682                         pgmoved++;
683                 }
684                 pgscanned++;
685         }
686         zone->nr_active -= pgmoved;
687         spin_unlock_irq(&zone->lru_lock);
688
689         /*
690          * `distress' is a measure of how much trouble we're having reclaiming
691          * pages.  0 -> no problems.  100 -> great trouble.
692          */
693         distress = 100 >> zone->prev_priority;
694
695         /*
696          * The point of this algorithm is to decide when to start reclaiming
697          * mapped memory instead of just pagecache.  Work out how much memory
698          * is mapped.
699          */
700         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
701
702         /*
703          * Now decide how much we really want to unmap some pages.  The mapped
704          * ratio is downgraded - just because there's a lot of mapped memory
705          * doesn't necessarily mean that page reclaim isn't succeeding.
706          *
707          * The distress ratio is important - we don't want to start going oom.
708          *
709          * A 100% value of vm_swappiness overrides this algorithm altogether.
710          */
711         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
712
713         /*
714          * Now use this metric to decide whether to start moving mapped memory
715          * onto the inactive list.
716          */
717         if (swap_tendency >= 100)
718                 reclaim_mapped = 1;
719
720         while (!list_empty(&l_hold)) {
721                 page = lru_to_page(&l_hold);
722                 list_del(&page->lru);
723                 if (page_mapped(page)) {
724                         if (!reclaim_mapped) {
725                                 list_add(&page->lru, &l_active);
726                                 continue;
727                         }
728                         page_map_lock(page);
729                         if (page_referenced(page)) {
730                                 page_map_unlock(page);
731                                 list_add(&page->lru, &l_active);
732                                 continue;
733                         }
734                         page_map_unlock(page);
735                 }
736                 /*
737                  * FIXME: need to consider page_count(page) here if/when we
738                  * reap orphaned pages via the LRU (Daniel's locking stuff)
739                  */
740                 if (total_swap_pages == 0 && PageAnon(page)) {
741                         list_add(&page->lru, &l_active);
742                         continue;
743                 }
744                 list_add(&page->lru, &l_inactive);
745         }
746
747         pagevec_init(&pvec, 1);
748         pgmoved = 0;
749         spin_lock_irq(&zone->lru_lock);
750         while (!list_empty(&l_inactive)) {
751                 page = lru_to_page(&l_inactive);
752                 prefetchw_prev_lru_page(page, &l_inactive, flags);
753                 if (TestSetPageLRU(page))
754                         BUG();
755                 if (!TestClearPageActive(page))
756                         BUG();
757                 list_move(&page->lru, &zone->inactive_list);
758                 pgmoved++;
759                 if (!pagevec_add(&pvec, page)) {
760                         zone->nr_inactive += pgmoved;
761                         spin_unlock_irq(&zone->lru_lock);
762                         pgdeactivate += pgmoved;
763                         pgmoved = 0;
764                         if (buffer_heads_over_limit)
765                                 pagevec_strip(&pvec);
766                         __pagevec_release(&pvec);
767                         spin_lock_irq(&zone->lru_lock);
768                 }
769         }
770         zone->nr_inactive += pgmoved;
771         pgdeactivate += pgmoved;
772         if (buffer_heads_over_limit) {
773                 spin_unlock_irq(&zone->lru_lock);
774                 pagevec_strip(&pvec);
775                 spin_lock_irq(&zone->lru_lock);
776         }
777
778         pgmoved = 0;
779         while (!list_empty(&l_active)) {
780                 page = lru_to_page(&l_active);
781                 prefetchw_prev_lru_page(page, &l_active, flags);
782                 if (TestSetPageLRU(page))
783                         BUG();
784                 BUG_ON(!PageActive(page));
785                 list_move(&page->lru, &zone->active_list);
786                 pgmoved++;
787                 if (!pagevec_add(&pvec, page)) {
788                         zone->nr_active += pgmoved;
789                         pgmoved = 0;
790                         spin_unlock_irq(&zone->lru_lock);
791                         __pagevec_release(&pvec);
792                         spin_lock_irq(&zone->lru_lock);
793                 }
794         }
795         zone->nr_active += pgmoved;
796         spin_unlock_irq(&zone->lru_lock);
797         pagevec_release(&pvec);
798
799         mod_page_state_zone(zone, pgrefill, pgscanned);
800         mod_page_state(pgdeactivate, pgdeactivate);
801 }
802
803 /*
804  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
805  */
806 static void
807 shrink_zone(struct zone *zone, struct scan_control *sc)
808 {
809         unsigned long nr_active;
810         unsigned long nr_inactive;
811
812         /*
813          * Add one to `nr_to_scan' just to make sure that the kernel will
814          * slowly sift through the active list.
815          */
816         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
817         nr_active = zone->nr_scan_active;
818         if (nr_active >= SWAP_CLUSTER_MAX)
819                 zone->nr_scan_active = 0;
820         else
821                 nr_active = 0;
822
823         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
824         nr_inactive = zone->nr_scan_inactive;
825         if (nr_inactive >= SWAP_CLUSTER_MAX)
826                 zone->nr_scan_inactive = 0;
827         else
828                 nr_inactive = 0;
829
830         sc->nr_to_reclaim = SWAP_CLUSTER_MAX;
831
832         while (nr_active || nr_inactive) {
833                 if (nr_active) {
834                         sc->nr_to_scan = min(nr_active,
835                                         (unsigned long)SWAP_CLUSTER_MAX);
836                         nr_active -= sc->nr_to_scan;
837                         refill_inactive_zone(zone, sc);
838                 }
839
840                 if (nr_inactive) {
841                         sc->nr_to_scan = min(nr_inactive,
842                                         (unsigned long)SWAP_CLUSTER_MAX);
843                         nr_inactive -= sc->nr_to_scan;
844                         shrink_cache(zone, sc);
845                         if (sc->nr_to_reclaim <= 0)
846                                 break;
847                 }
848         }
849 }
850
851 /*
852  * This is the direct reclaim path, for page-allocating processes.  We only
853  * try to reclaim pages from zones which will satisfy the caller's allocation
854  * request.
855  *
856  * We reclaim from a zone even if that zone is over pages_high.  Because:
857  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
858  *    allocation or
859  * b) The zones may be over pages_high but they must go *over* pages_high to
860  *    satisfy the `incremental min' zone defense algorithm.
861  *
862  * Returns the number of reclaimed pages.
863  *
864  * If a zone is deemed to be full of pinned pages then just give it a light
865  * scan then give up on it.
866  */
867 static void
868 shrink_caches(struct zone **zones, struct scan_control *sc)
869 {
870         int i;
871
872         for (i = 0; zones[i] != NULL; i++) {
873                 struct zone *zone = zones[i];
874
875                 zone->temp_priority = sc->priority;
876                 if (zone->prev_priority > sc->priority)
877                         zone->prev_priority = sc->priority;
878
879                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
880                         continue;       /* Let kswapd poll it */
881
882                 shrink_zone(zone, sc);
883         }
884 }
885  
886 /*
887  * This is the main entry point to direct page reclaim.
888  *
889  * If a full scan of the inactive list fails to free enough memory then we
890  * are "out of memory" and something needs to be killed.
891  *
892  * If the caller is !__GFP_FS then the probability of a failure is reasonably
893  * high - the zone may be full of dirty or under-writeback pages, which this
894  * caller can't do much about.  We kick pdflush and take explicit naps in the
895  * hope that some of these pages can be written.  But if the allocating task
896  * holds filesystem locks which prevent writeout this might not work, and the
897  * allocation attempt will fail.
898  */
899 int try_to_free_pages(struct zone **zones,
900                 unsigned int gfp_mask, unsigned int order)
901 {
902         int priority;
903         int ret = 0;
904         int total_scanned = 0, total_reclaimed = 0;
905         struct reclaim_state *reclaim_state = current->reclaim_state;
906         struct scan_control sc;
907         unsigned long lru_pages = 0;
908         int i;
909
910         sc.gfp_mask = gfp_mask;
911         sc.may_writepage = 0;
912
913         inc_page_state(allocstall);
914
915         for (i = 0; zones[i] != NULL; i++) {
916                 struct zone *zone = zones[i];
917
918                 zone->temp_priority = DEF_PRIORITY;
919                 lru_pages += zone->nr_active + zone->nr_inactive;
920         }
921
922         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
923                 sc.nr_mapped = read_page_state(nr_mapped);
924                 sc.nr_scanned = 0;
925                 sc.nr_reclaimed = 0;
926                 sc.priority = priority;
927                 shrink_caches(zones, &sc);
928                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
929                 if (reclaim_state) {
930                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
931                         reclaim_state->reclaimed_slab = 0;
932                 }
933                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) {
934                         ret = 1;
935                         goto out;
936                 }
937                 total_scanned += sc.nr_scanned;
938                 total_reclaimed += sc.nr_reclaimed;
939
940                 /*
941                  * Try to write back as many pages as we just scanned.  This
942                  * tends to cause slow streaming writers to write data to the
943                  * disk smoothly, at the dirtying rate, which is nice.   But
944                  * that's undesirable in laptop mode, where we *want* lumpy
945                  * writeout.  So in laptop mode, write out the whole world.
946                  */
947                 if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) {
948                         wakeup_bdflush(laptop_mode ? 0 : total_scanned);
949                         sc.may_writepage = 1;
950                 }
951
952                 /* Take a nap, wait for some writeback to complete */
953                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
954                         blk_congestion_wait(WRITE, HZ/10);
955         }
956         if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
957                 out_of_memory(gfp_mask);
958 out:
959         for (i = 0; zones[i] != 0; i++)
960                 zones[i]->prev_priority = zones[i]->temp_priority;
961         return ret;
962 }
963
964 /*
965  * For kswapd, balance_pgdat() will work across all this node's zones until
966  * they are all at pages_high.
967  *
968  * If `nr_pages' is non-zero then it is the number of pages which are to be
969  * reclaimed, regardless of the zone occupancies.  This is a software suspend
970  * special.
971  *
972  * Returns the number of pages which were actually freed.
973  *
974  * There is special handling here for zones which are full of pinned pages.
975  * This can happen if the pages are all mlocked, or if they are all used by
976  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
977  * What we do is to detect the case where all pages in the zone have been
978  * scanned twice and there has been zero successful reclaim.  Mark the zone as
979  * dead and from now on, only perform a short scan.  Basically we're polling
980  * the zone for when the problem goes away.
981  *
982  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
983  * zones which have free_pages > pages_high, but once a zone is found to have
984  * free_pages <= pages_high, we scan that zone and the lower zones regardless
985  * of the number of free pages in the lower zones.  This interoperates with
986  * the page allocator fallback scheme to ensure that aging of pages is balanced
987  * across the zones.
988  */
989 static int balance_pgdat(pg_data_t *pgdat, int nr_pages)
990 {
991         int to_free = nr_pages;
992         int priority;
993         int i;
994         int total_scanned = 0, total_reclaimed = 0;
995         struct reclaim_state *reclaim_state = current->reclaim_state;
996         struct scan_control sc;
997
998         sc.gfp_mask = GFP_KERNEL;
999         sc.may_writepage = 0;
1000         sc.nr_mapped = read_page_state(nr_mapped);
1001
1002         inc_page_state(pageoutrun);
1003
1004         for (i = 0; i < pgdat->nr_zones; i++) {
1005                 struct zone *zone = pgdat->node_zones + i;
1006
1007                 zone->temp_priority = DEF_PRIORITY;
1008         }
1009
1010         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1011                 int all_zones_ok = 1;
1012                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1013                 unsigned long lru_pages = 0;
1014
1015                 if (nr_pages == 0) {
1016                         /*
1017                          * Scan in the highmem->dma direction for the highest
1018                          * zone which needs scanning
1019                          */
1020                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1021                                 struct zone *zone = pgdat->node_zones + i;
1022
1023                                 if (zone->all_unreclaimable &&
1024                                                 priority != DEF_PRIORITY)
1025                                         continue;
1026
1027                                 if (zone->free_pages <= zone->pages_high) {
1028                                         end_zone = i;
1029                                         goto scan;
1030                                 }
1031                         }
1032                         goto out;
1033                 } else {
1034                         end_zone = pgdat->nr_zones - 1;
1035                 }
1036 scan:
1037                 for (i = 0; i <= end_zone; i++) {
1038                         struct zone *zone = pgdat->node_zones + i;
1039
1040                         lru_pages += zone->nr_active + zone->nr_inactive;
1041                 }
1042
1043                 /*
1044                  * Now scan the zone in the dma->highmem direction, stopping
1045                  * at the last zone which needs scanning.
1046                  *
1047                  * We do this because the page allocator works in the opposite
1048                  * direction.  This prevents the page allocator from allocating
1049                  * pages behind kswapd's direction of progress, which would
1050                  * cause too much scanning of the lower zones.
1051                  */
1052                 for (i = 0; i <= end_zone; i++) {
1053                         struct zone *zone = pgdat->node_zones + i;
1054
1055                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1056                                 continue;
1057
1058                         if (nr_pages == 0) {    /* Not software suspend */
1059                                 if (zone->free_pages <= zone->pages_high)
1060                                         all_zones_ok = 0;
1061                         }
1062                         zone->temp_priority = priority;
1063                         if (zone->prev_priority > priority)
1064                                 zone->prev_priority = priority;
1065                         sc.nr_scanned = 0;
1066                         sc.nr_reclaimed = 0;
1067                         sc.priority = priority;
1068                         shrink_zone(zone, &sc);
1069                         reclaim_state->reclaimed_slab = 0;
1070                         shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
1071                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1072                         total_reclaimed += sc.nr_reclaimed;
1073                         if (zone->all_unreclaimable)
1074                                 continue;
1075                         if (zone->pages_scanned > zone->present_pages * 2)
1076                                 zone->all_unreclaimable = 1;
1077                         /*
1078                          * If we've done a decent amount of scanning and
1079                          * the reclaim ratio is low, start doing writepage
1080                          * even in laptop mode
1081                          */
1082                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1083                             total_scanned > total_reclaimed+total_reclaimed/2)
1084                                 sc.may_writepage = 1;
1085                 }
1086                 if (nr_pages && to_free > total_reclaimed)
1087                         continue;       /* swsusp: need to do more work */
1088                 if (all_zones_ok)
1089                         break;          /* kswapd: all done */
1090                 /*
1091                  * OK, kswapd is getting into trouble.  Take a nap, then take
1092                  * another pass across the zones.
1093                  */
1094                 if (total_scanned && priority < DEF_PRIORITY - 2)
1095                         blk_congestion_wait(WRITE, HZ/10);
1096         }
1097 out:
1098         for (i = 0; i < pgdat->nr_zones; i++) {
1099                 struct zone *zone = pgdat->node_zones + i;
1100
1101                 zone->prev_priority = zone->temp_priority;
1102         }
1103         return total_reclaimed;
1104 }
1105
1106 /*
1107  * The background pageout daemon, started as a kernel thread
1108  * from the init process. 
1109  *
1110  * This basically trickles out pages so that we have _some_
1111  * free memory available even if there is no other activity
1112  * that frees anything up. This is needed for things like routing
1113  * etc, where we otherwise might have all activity going on in
1114  * asynchronous contexts that cannot page things out.
1115  *
1116  * If there are applications that are active memory-allocators
1117  * (most normal use), this basically shouldn't matter.
1118  */
1119 int kswapd(void *p)
1120 {
1121         pg_data_t *pgdat = (pg_data_t*)p;
1122         struct task_struct *tsk = current;
1123         DEFINE_WAIT(wait);
1124         struct reclaim_state reclaim_state = {
1125                 .reclaimed_slab = 0,
1126         };
1127         cpumask_t cpumask;
1128
1129         daemonize("kswapd%d", pgdat->node_id);
1130         cpumask = node_to_cpumask(pgdat->node_id);
1131         if (!cpus_empty(cpumask))
1132                 set_cpus_allowed(tsk, cpumask);
1133         current->reclaim_state = &reclaim_state;
1134
1135         /*
1136          * Tell the memory management that we're a "memory allocator",
1137          * and that if we need more memory we should get access to it
1138          * regardless (see "__alloc_pages()"). "kswapd" should
1139          * never get caught in the normal page freeing logic.
1140          *
1141          * (Kswapd normally doesn't need memory anyway, but sometimes
1142          * you need a small amount of memory in order to be able to
1143          * page out something else, and this flag essentially protects
1144          * us from recursively trying to free more memory as we're
1145          * trying to free the first piece of memory in the first place).
1146          */
1147         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1148
1149         for ( ; ; ) {
1150                 if (current->flags & PF_FREEZE)
1151                         refrigerator(PF_FREEZE);
1152                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1153                 schedule();
1154                 finish_wait(&pgdat->kswapd_wait, &wait);
1155
1156                 balance_pgdat(pgdat, 0);
1157         }
1158         return 0;
1159 }
1160
1161 /*
1162  * A zone is low on free memory, so wake its kswapd task to service it.
1163  */
1164 void wakeup_kswapd(struct zone *zone)
1165 {
1166         if (zone->free_pages > zone->pages_low)
1167                 return;
1168         if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1169                 return;
1170         wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1171 }
1172
1173 #ifdef CONFIG_PM
1174 /*
1175  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1176  * pages.
1177  */
1178 int shrink_all_memory(int nr_pages)
1179 {
1180         pg_data_t *pgdat;
1181         int nr_to_free = nr_pages;
1182         int ret = 0;
1183         struct reclaim_state reclaim_state = {
1184                 .reclaimed_slab = 0,
1185         };
1186
1187         current->reclaim_state = &reclaim_state;
1188         for_each_pgdat(pgdat) {
1189                 int freed;
1190                 freed = balance_pgdat(pgdat, nr_to_free);
1191                 ret += freed;
1192                 nr_to_free -= freed;
1193                 if (nr_to_free <= 0)
1194                         break;
1195         }
1196         current->reclaim_state = NULL;
1197         return ret;
1198 }
1199 #endif
1200
1201 #ifdef CONFIG_HOTPLUG_CPU
1202 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1203    not required for correctness.  So if the last cpu in a node goes
1204    away, we get changed to run anywhere: as the first one comes back,
1205    restore their cpu bindings. */
1206 static int __devinit cpu_callback(struct notifier_block *nfb,
1207                                   unsigned long action,
1208                                   void *hcpu)
1209 {
1210         pg_data_t *pgdat;
1211         cpumask_t mask;
1212
1213         if (action == CPU_ONLINE) {
1214                 for_each_pgdat(pgdat) {
1215                         mask = node_to_cpumask(pgdat->node_id);
1216                         if (any_online_cpu(mask) != NR_CPUS)
1217                                 /* One of our CPUs online: restore mask */
1218                                 set_cpus_allowed(pgdat->kswapd, mask);
1219                 }
1220         }
1221         return NOTIFY_OK;
1222 }
1223 #endif /* CONFIG_HOTPLUG_CPU */
1224
1225 static int __init kswapd_init(void)
1226 {
1227         pg_data_t *pgdat;
1228         swap_setup();
1229         for_each_pgdat(pgdat)
1230                 pgdat->kswapd
1231                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1232         total_memory = nr_free_pagecache_pages();
1233         hotcpu_notifier(cpu_callback, 0);
1234         return 0;
1235 }
1236
1237 module_init(kswapd_init)