04dc0d3f3c955c00449d67a17951b86ac0f08573
[linux-flexiantxendom0-3.2.10.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <rdma/rdma_cm.h>
37
38 #include "rds.h"
39 #include "ib.h"
40
41 static struct kmem_cache *rds_ib_incoming_slab;
42 static struct kmem_cache *rds_ib_frag_slab;
43 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
44
45 static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
46 {
47         rdsdebug("frag %p page %p\n", frag, frag->f_page);
48         __free_page(frag->f_page);
49         frag->f_page = NULL;
50 }
51
52 static void rds_ib_frag_free(struct rds_page_frag *frag)
53 {
54         rdsdebug("frag %p page %p\n", frag, frag->f_page);
55         BUG_ON(frag->f_page != NULL);
56         kmem_cache_free(rds_ib_frag_slab, frag);
57 }
58
59 /*
60  * We map a page at a time.  Its fragments are posted in order.  This
61  * is called in fragment order as the fragments get send completion events.
62  * Only the last frag in the page performs the unmapping.
63  *
64  * It's OK for ring cleanup to call this in whatever order it likes because
65  * DMA is not in flight and so we can unmap while other ring entries still
66  * hold page references in their frags.
67  */
68 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
69                                    struct rds_ib_recv_work *recv)
70 {
71         struct rds_page_frag *frag = recv->r_frag;
72
73         rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
74         if (frag->f_mapped)
75                 ib_dma_unmap_page(ic->i_cm_id->device,
76                                frag->f_mapped,
77                                RDS_FRAG_SIZE, DMA_FROM_DEVICE);
78         frag->f_mapped = 0;
79 }
80
81 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
82 {
83         struct rds_ib_recv_work *recv;
84         u32 i;
85
86         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
87                 struct ib_sge *sge;
88
89                 recv->r_ibinc = NULL;
90                 recv->r_frag = NULL;
91
92                 recv->r_wr.next = NULL;
93                 recv->r_wr.wr_id = i;
94                 recv->r_wr.sg_list = recv->r_sge;
95                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
96
97                 sge = rds_ib_data_sge(ic, recv->r_sge);
98                 sge->addr = 0;
99                 sge->length = RDS_FRAG_SIZE;
100                 sge->lkey = ic->i_mr->lkey;
101
102                 sge = rds_ib_header_sge(ic, recv->r_sge);
103                 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
104                 sge->length = sizeof(struct rds_header);
105                 sge->lkey = ic->i_mr->lkey;
106         }
107 }
108
109 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
110                                   struct rds_ib_recv_work *recv)
111 {
112         if (recv->r_ibinc) {
113                 rds_inc_put(&recv->r_ibinc->ii_inc);
114                 recv->r_ibinc = NULL;
115         }
116         if (recv->r_frag) {
117                 rds_ib_recv_unmap_page(ic, recv);
118                 if (recv->r_frag->f_page)
119                         rds_ib_frag_drop_page(recv->r_frag);
120                 rds_ib_frag_free(recv->r_frag);
121                 recv->r_frag = NULL;
122         }
123 }
124
125 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
126 {
127         u32 i;
128
129         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
130                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
131
132         if (ic->i_frag.f_page)
133                 rds_ib_frag_drop_page(&ic->i_frag);
134 }
135
136 static int rds_ib_recv_refill_one(struct rds_connection *conn,
137                                   struct rds_ib_recv_work *recv,
138                                   gfp_t kptr_gfp, gfp_t page_gfp)
139 {
140         struct rds_ib_connection *ic = conn->c_transport_data;
141         dma_addr_t dma_addr;
142         struct ib_sge *sge;
143         int ret = -ENOMEM;
144
145         if (recv->r_ibinc == NULL) {
146                 if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
147                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
148                         goto out;
149                 }
150                 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
151                                                  kptr_gfp);
152                 if (recv->r_ibinc == NULL) {
153                         atomic_dec(&rds_ib_allocation);
154                         goto out;
155                 }
156                 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
157                 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
158         }
159
160         if (recv->r_frag == NULL) {
161                 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
162                 if (recv->r_frag == NULL)
163                         goto out;
164                 INIT_LIST_HEAD(&recv->r_frag->f_item);
165                 recv->r_frag->f_page = NULL;
166         }
167
168         if (ic->i_frag.f_page == NULL) {
169                 ic->i_frag.f_page = alloc_page(page_gfp);
170                 if (ic->i_frag.f_page == NULL)
171                         goto out;
172                 ic->i_frag.f_offset = 0;
173         }
174
175         dma_addr = ib_dma_map_page(ic->i_cm_id->device,
176                                   ic->i_frag.f_page,
177                                   ic->i_frag.f_offset,
178                                   RDS_FRAG_SIZE,
179                                   DMA_FROM_DEVICE);
180         if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
181                 goto out;
182
183         /*
184          * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
185          * must be called on this recv.  This happens as completions hit
186          * in order or on connection shutdown.
187          */
188         recv->r_frag->f_page = ic->i_frag.f_page;
189         recv->r_frag->f_offset = ic->i_frag.f_offset;
190         recv->r_frag->f_mapped = dma_addr;
191
192         sge = rds_ib_data_sge(ic, recv->r_sge);
193         sge->addr = dma_addr;
194         sge->length = RDS_FRAG_SIZE;
195
196         sge = rds_ib_header_sge(ic, recv->r_sge);
197         sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
198         sge->length = sizeof(struct rds_header);
199
200         get_page(recv->r_frag->f_page);
201
202         if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
203                 ic->i_frag.f_offset += RDS_FRAG_SIZE;
204         } else {
205                 put_page(ic->i_frag.f_page);
206                 ic->i_frag.f_page = NULL;
207                 ic->i_frag.f_offset = 0;
208         }
209
210         ret = 0;
211 out:
212         return ret;
213 }
214
215 /*
216  * This tries to allocate and post unused work requests after making sure that
217  * they have all the allocations they need to queue received fragments into
218  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
219  * pairs don't go unmatched.
220  *
221  * -1 is returned if posting fails due to temporary resource exhaustion.
222  */
223 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
224                        gfp_t page_gfp, int prefill)
225 {
226         struct rds_ib_connection *ic = conn->c_transport_data;
227         struct rds_ib_recv_work *recv;
228         struct ib_recv_wr *failed_wr;
229         unsigned int posted = 0;
230         int ret = 0;
231         u32 pos;
232
233         while ((prefill || rds_conn_up(conn)) &&
234                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
235                 if (pos >= ic->i_recv_ring.w_nr) {
236                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
237                                         pos);
238                         ret = -EINVAL;
239                         break;
240                 }
241
242                 recv = &ic->i_recvs[pos];
243                 ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
244                 if (ret) {
245                         ret = -1;
246                         break;
247                 }
248
249                 /* XXX when can this fail? */
250                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
251                 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
252                          recv->r_ibinc, recv->r_frag->f_page,
253                          (long) recv->r_frag->f_mapped, ret);
254                 if (ret) {
255                         rds_ib_conn_error(conn, "recv post on "
256                                "%pI4 returned %d, disconnecting and "
257                                "reconnecting\n", &conn->c_faddr,
258                                ret);
259                         ret = -1;
260                         break;
261                 }
262
263                 posted++;
264         }
265
266         /* We're doing flow control - update the window. */
267         if (ic->i_flowctl && posted)
268                 rds_ib_advertise_credits(conn, posted);
269
270         if (ret)
271                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
272         return ret;
273 }
274
275 void rds_ib_inc_purge(struct rds_incoming *inc)
276 {
277         struct rds_ib_incoming *ibinc;
278         struct rds_page_frag *frag;
279         struct rds_page_frag *pos;
280
281         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
282         rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
283
284         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
285                 list_del_init(&frag->f_item);
286                 rds_ib_frag_drop_page(frag);
287                 rds_ib_frag_free(frag);
288         }
289 }
290
291 void rds_ib_inc_free(struct rds_incoming *inc)
292 {
293         struct rds_ib_incoming *ibinc;
294
295         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
296
297         rds_ib_inc_purge(inc);
298         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
299         BUG_ON(!list_empty(&ibinc->ii_frags));
300         kmem_cache_free(rds_ib_incoming_slab, ibinc);
301         atomic_dec(&rds_ib_allocation);
302         BUG_ON(atomic_read(&rds_ib_allocation) < 0);
303 }
304
305 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
306                             size_t size)
307 {
308         struct rds_ib_incoming *ibinc;
309         struct rds_page_frag *frag;
310         struct iovec *iov = first_iov;
311         unsigned long to_copy;
312         unsigned long frag_off = 0;
313         unsigned long iov_off = 0;
314         int copied = 0;
315         int ret;
316         u32 len;
317
318         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
319         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
320         len = be32_to_cpu(inc->i_hdr.h_len);
321
322         while (copied < size && copied < len) {
323                 if (frag_off == RDS_FRAG_SIZE) {
324                         frag = list_entry(frag->f_item.next,
325                                           struct rds_page_frag, f_item);
326                         frag_off = 0;
327                 }
328                 while (iov_off == iov->iov_len) {
329                         iov_off = 0;
330                         iov++;
331                 }
332
333                 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
334                 to_copy = min_t(size_t, to_copy, size - copied);
335                 to_copy = min_t(unsigned long, to_copy, len - copied);
336
337                 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
338                          "[%p, %lu] + %lu\n",
339                          to_copy, iov->iov_base, iov->iov_len, iov_off,
340                          frag->f_page, frag->f_offset, frag_off);
341
342                 /* XXX needs + offset for multiple recvs per page */
343                 ret = rds_page_copy_to_user(frag->f_page,
344                                             frag->f_offset + frag_off,
345                                             iov->iov_base + iov_off,
346                                             to_copy);
347                 if (ret) {
348                         copied = ret;
349                         break;
350                 }
351
352                 iov_off += to_copy;
353                 frag_off += to_copy;
354                 copied += to_copy;
355         }
356
357         return copied;
358 }
359
360 /* ic starts out kzalloc()ed */
361 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
362 {
363         struct ib_send_wr *wr = &ic->i_ack_wr;
364         struct ib_sge *sge = &ic->i_ack_sge;
365
366         sge->addr = ic->i_ack_dma;
367         sge->length = sizeof(struct rds_header);
368         sge->lkey = ic->i_mr->lkey;
369
370         wr->sg_list = sge;
371         wr->num_sge = 1;
372         wr->opcode = IB_WR_SEND;
373         wr->wr_id = RDS_IB_ACK_WR_ID;
374         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
375 }
376
377 /*
378  * You'd think that with reliable IB connections you wouldn't need to ack
379  * messages that have been received.  The problem is that IB hardware generates
380  * an ack message before it has DMAed the message into memory.  This creates a
381  * potential message loss if the HCA is disabled for any reason between when it
382  * sends the ack and before the message is DMAed and processed.  This is only a
383  * potential issue if another HCA is available for fail-over.
384  *
385  * When the remote host receives our ack they'll free the sent message from
386  * their send queue.  To decrease the latency of this we always send an ack
387  * immediately after we've received messages.
388  *
389  * For simplicity, we only have one ack in flight at a time.  This puts
390  * pressure on senders to have deep enough send queues to absorb the latency of
391  * a single ack frame being in flight.  This might not be good enough.
392  *
393  * This is implemented by have a long-lived send_wr and sge which point to a
394  * statically allocated ack frame.  This ack wr does not fall under the ring
395  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
396  * room for it beyond the ring size.  Send completion notices its special
397  * wr_id and avoids working with the ring in that case.
398  */
399 #ifndef KERNEL_HAS_ATOMIC64
400 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
401                                 int ack_required)
402 {
403         unsigned long flags;
404
405         spin_lock_irqsave(&ic->i_ack_lock, flags);
406         ic->i_ack_next = seq;
407         if (ack_required)
408                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
409         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
410 }
411
412 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
413 {
414         unsigned long flags;
415         u64 seq;
416
417         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
418
419         spin_lock_irqsave(&ic->i_ack_lock, flags);
420         seq = ic->i_ack_next;
421         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
422
423         return seq;
424 }
425 #else
426 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
427                                 int ack_required)
428 {
429         atomic64_set(&ic->i_ack_next, seq);
430         if (ack_required) {
431                 smp_mb__before_clear_bit();
432                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
433         }
434 }
435
436 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
437 {
438         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
439         smp_mb__after_clear_bit();
440
441         return atomic64_read(&ic->i_ack_next);
442 }
443 #endif
444
445
446 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
447 {
448         struct rds_header *hdr = ic->i_ack;
449         struct ib_send_wr *failed_wr;
450         u64 seq;
451         int ret;
452
453         seq = rds_ib_get_ack(ic);
454
455         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
456         rds_message_populate_header(hdr, 0, 0, 0);
457         hdr->h_ack = cpu_to_be64(seq);
458         hdr->h_credit = adv_credits;
459         rds_message_make_checksum(hdr);
460         ic->i_ack_queued = jiffies;
461
462         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
463         if (unlikely(ret)) {
464                 /* Failed to send. Release the WR, and
465                  * force another ACK.
466                  */
467                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
468                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
469
470                 rds_ib_stats_inc(s_ib_ack_send_failure);
471                 /* Need to finesse this later. */
472                 BUG();
473         } else
474                 rds_ib_stats_inc(s_ib_ack_sent);
475 }
476
477 /*
478  * There are 3 ways of getting acknowledgements to the peer:
479  *  1.  We call rds_ib_attempt_ack from the recv completion handler
480  *      to send an ACK-only frame.
481  *      However, there can be only one such frame in the send queue
482  *      at any time, so we may have to postpone it.
483  *  2.  When another (data) packet is transmitted while there's
484  *      an ACK in the queue, we piggyback the ACK sequence number
485  *      on the data packet.
486  *  3.  If the ACK WR is done sending, we get called from the
487  *      send queue completion handler, and check whether there's
488  *      another ACK pending (postponed because the WR was on the
489  *      queue). If so, we transmit it.
490  *
491  * We maintain 2 variables:
492  *  -   i_ack_flags, which keeps track of whether the ACK WR
493  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
494  *  -   i_ack_next, which is the last sequence number we received
495  *
496  * Potentially, send queue and receive queue handlers can run concurrently.
497  * It would be nice to not have to use a spinlock to synchronize things,
498  * but the one problem that rules this out is that 64bit updates are
499  * not atomic on all platforms. Things would be a lot simpler if
500  * we had atomic64 or maybe cmpxchg64 everywhere.
501  *
502  * Reconnecting complicates this picture just slightly. When we
503  * reconnect, we may be seeing duplicate packets. The peer
504  * is retransmitting them, because it hasn't seen an ACK for
505  * them. It is important that we ACK these.
506  *
507  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
508  * this flag set *MUST* be acknowledged immediately.
509  */
510
511 /*
512  * When we get here, we're called from the recv queue handler.
513  * Check whether we ought to transmit an ACK.
514  */
515 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
516 {
517         unsigned int adv_credits;
518
519         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
520                 return;
521
522         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
523                 rds_ib_stats_inc(s_ib_ack_send_delayed);
524                 return;
525         }
526
527         /* Can we get a send credit? */
528         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
529                 rds_ib_stats_inc(s_ib_tx_throttle);
530                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
531                 return;
532         }
533
534         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
535         rds_ib_send_ack(ic, adv_credits);
536 }
537
538 /*
539  * We get here from the send completion handler, when the
540  * adapter tells us the ACK frame was sent.
541  */
542 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
543 {
544         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
545         rds_ib_attempt_ack(ic);
546 }
547
548 /*
549  * This is called by the regular xmit code when it wants to piggyback
550  * an ACK on an outgoing frame.
551  */
552 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
553 {
554         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
555                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
556         return rds_ib_get_ack(ic);
557 }
558
559 static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
560                                             struct rds_ib_recv_work *recv,
561                                             u32 data_len)
562 {
563         struct rds_ib_connection *ic = conn->c_transport_data;
564         void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
565         void *addr;
566         u32 misplaced_hdr_bytes;
567
568         /*
569          * Support header at the front (RDS 3.1+) as well as header-at-end.
570          *
571          * Cases:
572          * 1) header all in header buff (great!)
573          * 2) header all in data page (copy all to header buff)
574          * 3) header split across hdr buf + data page
575          *    (move bit in hdr buff to end before copying other bit from data page)
576          */
577         if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
578                 return hdr_buff;
579
580         if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
581                 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
582                 memcpy(hdr_buff,
583                        addr + recv->r_frag->f_offset + data_len,
584                        sizeof(struct rds_header));
585                 kunmap_atomic(addr, KM_SOFTIRQ0);
586                 return hdr_buff;
587         }
588
589         misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
590
591         memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
592
593         addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
594         memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
595                sizeof(struct rds_header) - misplaced_hdr_bytes);
596         kunmap_atomic(addr, KM_SOFTIRQ0);
597         return hdr_buff;
598 }
599
600 /*
601  * It's kind of lame that we're copying from the posted receive pages into
602  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
603  * them.  But receiving new congestion bitmaps should be a *rare* event, so
604  * hopefully we won't need to invest that complexity in making it more
605  * efficient.  By copying we can share a simpler core with TCP which has to
606  * copy.
607  */
608 static void rds_ib_cong_recv(struct rds_connection *conn,
609                               struct rds_ib_incoming *ibinc)
610 {
611         struct rds_cong_map *map;
612         unsigned int map_off;
613         unsigned int map_page;
614         struct rds_page_frag *frag;
615         unsigned long frag_off;
616         unsigned long to_copy;
617         unsigned long copied;
618         uint64_t uncongested = 0;
619         void *addr;
620
621         /* catch completely corrupt packets */
622         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
623                 return;
624
625         map = conn->c_fcong;
626         map_page = 0;
627         map_off = 0;
628
629         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
630         frag_off = 0;
631
632         copied = 0;
633
634         while (copied < RDS_CONG_MAP_BYTES) {
635                 uint64_t *src, *dst;
636                 unsigned int k;
637
638                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
639                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
640
641                 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
642
643                 src = addr + frag_off;
644                 dst = (void *)map->m_page_addrs[map_page] + map_off;
645                 for (k = 0; k < to_copy; k += 8) {
646                         /* Record ports that became uncongested, ie
647                          * bits that changed from 0 to 1. */
648                         uncongested |= ~(*src) & *dst;
649                         *dst++ = *src++;
650                 }
651                 kunmap_atomic(addr, KM_SOFTIRQ0);
652
653                 copied += to_copy;
654
655                 map_off += to_copy;
656                 if (map_off == PAGE_SIZE) {
657                         map_off = 0;
658                         map_page++;
659                 }
660
661                 frag_off += to_copy;
662                 if (frag_off == RDS_FRAG_SIZE) {
663                         frag = list_entry(frag->f_item.next,
664                                           struct rds_page_frag, f_item);
665                         frag_off = 0;
666                 }
667         }
668
669         /* the congestion map is in little endian order */
670         uncongested = le64_to_cpu(uncongested);
671
672         rds_cong_map_updated(map, uncongested);
673 }
674
675 /*
676  * Rings are posted with all the allocations they'll need to queue the
677  * incoming message to the receiving socket so this can't fail.
678  * All fragments start with a header, so we can make sure we're not receiving
679  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
680  */
681 struct rds_ib_ack_state {
682         u64             ack_next;
683         u64             ack_recv;
684         unsigned int    ack_required:1;
685         unsigned int    ack_next_valid:1;
686         unsigned int    ack_recv_valid:1;
687 };
688
689 static void rds_ib_process_recv(struct rds_connection *conn,
690                                 struct rds_ib_recv_work *recv, u32 data_len,
691                                 struct rds_ib_ack_state *state)
692 {
693         struct rds_ib_connection *ic = conn->c_transport_data;
694         struct rds_ib_incoming *ibinc = ic->i_ibinc;
695         struct rds_header *ihdr, *hdr;
696
697         /* XXX shut down the connection if port 0,0 are seen? */
698
699         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
700                  data_len);
701
702         if (data_len < sizeof(struct rds_header)) {
703                 rds_ib_conn_error(conn, "incoming message "
704                        "from %pI4 didn't inclue a "
705                        "header, disconnecting and "
706                        "reconnecting\n",
707                        &conn->c_faddr);
708                 return;
709         }
710         data_len -= sizeof(struct rds_header);
711
712         ihdr = rds_ib_get_header(conn, recv, data_len);
713
714         /* Validate the checksum. */
715         if (!rds_message_verify_checksum(ihdr)) {
716                 rds_ib_conn_error(conn, "incoming message "
717                        "from %pI4 has corrupted header - "
718                        "forcing a reconnect\n",
719                        &conn->c_faddr);
720                 rds_stats_inc(s_recv_drop_bad_checksum);
721                 return;
722         }
723
724         /* Process the ACK sequence which comes with every packet */
725         state->ack_recv = be64_to_cpu(ihdr->h_ack);
726         state->ack_recv_valid = 1;
727
728         /* Process the credits update if there was one */
729         if (ihdr->h_credit)
730                 rds_ib_send_add_credits(conn, ihdr->h_credit);
731
732         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
733                 /* This is an ACK-only packet. The fact that it gets
734                  * special treatment here is that historically, ACKs
735                  * were rather special beasts.
736                  */
737                 rds_ib_stats_inc(s_ib_ack_received);
738
739                 /*
740                  * Usually the frags make their way on to incs and are then freed as
741                  * the inc is freed.  We don't go that route, so we have to drop the
742                  * page ref ourselves.  We can't just leave the page on the recv
743                  * because that confuses the dma mapping of pages and each recv's use
744                  * of a partial page.  We can leave the frag, though, it will be
745                  * reused.
746                  *
747                  * FIXME: Fold this into the code path below.
748                  */
749                 rds_ib_frag_drop_page(recv->r_frag);
750                 return;
751         }
752
753         /*
754          * If we don't already have an inc on the connection then this
755          * fragment has a header and starts a message.. copy its header
756          * into the inc and save the inc so we can hang upcoming fragments
757          * off its list.
758          */
759         if (ibinc == NULL) {
760                 ibinc = recv->r_ibinc;
761                 recv->r_ibinc = NULL;
762                 ic->i_ibinc = ibinc;
763
764                 hdr = &ibinc->ii_inc.i_hdr;
765                 memcpy(hdr, ihdr, sizeof(*hdr));
766                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
767
768                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
769                          ic->i_recv_data_rem, hdr->h_flags);
770         } else {
771                 hdr = &ibinc->ii_inc.i_hdr;
772                 /* We can't just use memcmp here; fragments of a
773                  * single message may carry different ACKs */
774                 if (hdr->h_sequence != ihdr->h_sequence ||
775                     hdr->h_len != ihdr->h_len ||
776                     hdr->h_sport != ihdr->h_sport ||
777                     hdr->h_dport != ihdr->h_dport) {
778                         rds_ib_conn_error(conn,
779                                 "fragment header mismatch; forcing reconnect\n");
780                         return;
781                 }
782         }
783
784         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
785         recv->r_frag = NULL;
786
787         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
788                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
789         else {
790                 ic->i_recv_data_rem = 0;
791                 ic->i_ibinc = NULL;
792
793                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
794                         rds_ib_cong_recv(conn, ibinc);
795                 else {
796                         rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
797                                           &ibinc->ii_inc, GFP_ATOMIC,
798                                           KM_SOFTIRQ0);
799                         state->ack_next = be64_to_cpu(hdr->h_sequence);
800                         state->ack_next_valid = 1;
801                 }
802
803                 /* Evaluate the ACK_REQUIRED flag *after* we received
804                  * the complete frame, and after bumping the next_rx
805                  * sequence. */
806                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
807                         rds_stats_inc(s_recv_ack_required);
808                         state->ack_required = 1;
809                 }
810
811                 rds_inc_put(&ibinc->ii_inc);
812         }
813 }
814
815 /*
816  * Plucking the oldest entry from the ring can be done concurrently with
817  * the thread refilling the ring.  Each ring operation is protected by
818  * spinlocks and the transient state of refilling doesn't change the
819  * recording of which entry is oldest.
820  *
821  * This relies on IB only calling one cq comp_handler for each cq so that
822  * there will only be one caller of rds_recv_incoming() per RDS connection.
823  */
824 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
825 {
826         struct rds_connection *conn = context;
827         struct rds_ib_connection *ic = conn->c_transport_data;
828
829         rdsdebug("conn %p cq %p\n", conn, cq);
830
831         rds_ib_stats_inc(s_ib_rx_cq_call);
832
833         tasklet_schedule(&ic->i_recv_tasklet);
834 }
835
836 static inline void rds_poll_cq(struct rds_ib_connection *ic,
837                                struct rds_ib_ack_state *state)
838 {
839         struct rds_connection *conn = ic->conn;
840         struct ib_wc wc;
841         struct rds_ib_recv_work *recv;
842
843         while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
844                 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
845                          (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
846                          be32_to_cpu(wc.ex.imm_data));
847                 rds_ib_stats_inc(s_ib_rx_cq_event);
848
849                 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
850
851                 rds_ib_recv_unmap_page(ic, recv);
852
853                 /*
854                  * Also process recvs in connecting state because it is possible
855                  * to get a recv completion _before_ the rdmacm ESTABLISHED
856                  * event is processed.
857                  */
858                 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
859                         /* We expect errors as the qp is drained during shutdown */
860                         if (wc.status == IB_WC_SUCCESS) {
861                                 rds_ib_process_recv(conn, recv, wc.byte_len, state);
862                         } else {
863                                 rds_ib_conn_error(conn, "recv completion on "
864                                        "%pI4 had status %u, disconnecting and "
865                                        "reconnecting\n", &conn->c_faddr,
866                                        wc.status);
867                         }
868                 }
869
870                 rds_ib_ring_free(&ic->i_recv_ring, 1);
871         }
872 }
873
874 void rds_ib_recv_tasklet_fn(unsigned long data)
875 {
876         struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
877         struct rds_connection *conn = ic->conn;
878         struct rds_ib_ack_state state = { 0, };
879
880         rds_poll_cq(ic, &state);
881         ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
882         rds_poll_cq(ic, &state);
883
884         if (state.ack_next_valid)
885                 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
886         if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
887                 rds_send_drop_acked(conn, state.ack_recv, NULL);
888                 ic->i_ack_recv = state.ack_recv;
889         }
890         if (rds_conn_up(conn))
891                 rds_ib_attempt_ack(ic);
892
893         /* If we ever end up with a really empty receive ring, we're
894          * in deep trouble, as the sender will definitely see RNR
895          * timeouts. */
896         if (rds_ib_ring_empty(&ic->i_recv_ring))
897                 rds_ib_stats_inc(s_ib_rx_ring_empty);
898
899         /*
900          * If the ring is running low, then schedule the thread to refill.
901          */
902         if (rds_ib_ring_low(&ic->i_recv_ring))
903                 queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
904 }
905
906 int rds_ib_recv(struct rds_connection *conn)
907 {
908         struct rds_ib_connection *ic = conn->c_transport_data;
909         int ret = 0;
910
911         rdsdebug("conn %p\n", conn);
912
913         /*
914          * If we get a temporary posting failure in this context then
915          * we're really low and we want the caller to back off for a bit.
916          */
917         mutex_lock(&ic->i_recv_mutex);
918         if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
919                 ret = -ENOMEM;
920         else
921                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
922         mutex_unlock(&ic->i_recv_mutex);
923
924         if (rds_conn_up(conn))
925                 rds_ib_attempt_ack(ic);
926
927         return ret;
928 }
929
930 int __init rds_ib_recv_init(void)
931 {
932         struct sysinfo si;
933         int ret = -ENOMEM;
934
935         /* Default to 30% of all available RAM for recv memory */
936         si_meminfo(&si);
937         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
938
939         rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
940                                         sizeof(struct rds_ib_incoming),
941                                         0, 0, NULL);
942         if (rds_ib_incoming_slab == NULL)
943                 goto out;
944
945         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
946                                         sizeof(struct rds_page_frag),
947                                         0, 0, NULL);
948         if (rds_ib_frag_slab == NULL)
949                 kmem_cache_destroy(rds_ib_incoming_slab);
950         else
951                 ret = 0;
952 out:
953         return ret;
954 }
955
956 void rds_ib_recv_exit(void)
957 {
958         kmem_cache_destroy(rds_ib_incoming_slab);
959         kmem_cache_destroy(rds_ib_frag_slab);
960 }