sched/x86: Fix overflow in cyc2ns_offset
[linux-flexiantxendom0.git] / arch / x86 / kernel / tsc.c
index 6dab90f..9a987d4 100644 (file)
@@ -5,32 +5,37 @@
 #include <linux/timer.h>
 #include <linux/acpi_pmtmr.h>
 #include <linux/cpufreq.h>
-#include <linux/dmi.h>
 #include <linux/delay.h>
 #include <linux/clocksource.h>
 #include <linux/percpu.h>
+#include <linux/timex.h>
 
 #include <asm/hpet.h>
 #include <asm/timer.h>
 #include <asm/vgtod.h>
 #include <asm/time.h>
 #include <asm/delay.h>
+#include <asm/hypervisor.h>
+#include <asm/nmi.h>
+#include <asm/x86_init.h>
 
-unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
+unsigned int __read_mostly cpu_khz;    /* TSC clocks / usec, not used here */
 EXPORT_SYMBOL(cpu_khz);
-unsigned int tsc_khz;
+
+unsigned int __read_mostly tsc_khz;
 EXPORT_SYMBOL(tsc_khz);
 
 /*
  * TSC can be unstable due to cpufreq or due to unsynced TSCs
  */
-static int tsc_unstable;
+static int __read_mostly tsc_unstable;
 
 /* native_sched_clock() is called before tsc_init(), so
    we must start with the TSC soft disabled to prevent
    erroneous rdtsc usage on !cpu_has_tsc processors */
-static int tsc_disabled = -1;
+static int __read_mostly tsc_disabled = -1;
 
+static int tsc_clocksource_reliable;
 /*
  * Scheduler clock - returns current time in nanosec units.
  */
@@ -44,7 +49,7 @@ u64 native_sched_clock(void)
         *   unstable. We do this because unlike Time Of Day,
         *   the scheduler clock tolerates small errors and it's
         *   very important for it to be as fast as the platform
-        *   can achive it. )
+        *   can achieve it. )
         */
        if (unlikely(tsc_disabled)) {
                /* No locking but a rare wrong value is not a big deal: */
@@ -55,7 +60,7 @@ u64 native_sched_clock(void)
        rdtscll(this_offset);
 
        /* return the value in ns */
-       return cycles_2_ns(this_offset);
+       return __cycles_2_ns(this_offset);
 }
 
 /* We need to define a real function for sched_clock, to override the
@@ -98,6 +103,19 @@ int __init notsc_setup(char *str)
 
 __setup("notsc", notsc_setup);
 
+static int no_sched_irq_time;
+
+static int __init tsc_setup(char *str)
+{
+       if (!strcmp(str, "reliable"))
+               tsc_clocksource_reliable = 1;
+       if (!strncmp(str, "noirqtime", 9))
+               no_sched_irq_time = 1;
+       return 1;
+}
+
+__setup("tsc=", tsc_setup);
+
 #define MAX_RETRIES     5
 #define SMI_TRESHOLD    50000
 
@@ -262,30 +280,49 @@ static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  * use the TSC value at the transitions to calculate a pretty
  * good value for the TSC frequencty.
  */
-static inline int pit_expect_msb(unsigned char val)
+static inline int pit_verify_msb(unsigned char val)
 {
-       int count = 0;
+       /* Ignore LSB */
+       inb(0x42);
+       return inb(0x42) == val;
+}
+
+static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
+{
+       int count;
+       u64 tsc = 0, prev_tsc = 0;
 
        for (count = 0; count < 50000; count++) {
-               /* Ignore LSB */
-               inb(0x42);
-               if (inb(0x42) != val)
+               if (!pit_verify_msb(val))
                        break;
+               prev_tsc = tsc;
+               tsc = get_cycles();
        }
-       return count > 50;
+       *deltap = get_cycles() - prev_tsc;
+       *tscp = tsc;
+
+       /*
+        * We require _some_ success, but the quality control
+        * will be based on the error terms on the TSC values.
+        */
+       return count > 5;
 }
 
 /*
- * How many MSB values do we want to see? We aim for a
- * 15ms calibration, which assuming a 2us counter read
- * error should give us roughly 150 ppm precision for
- * the calibration.
+ * How many MSB values do we want to see? We aim for
+ * a maximum error rate of 500ppm (in practice the
+ * real error is much smaller), but refuse to spend
+ * more than 50ms on it.
  */
-#define QUICK_PIT_MS 15
-#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
+#define MAX_QUICK_PIT_MS 50
+#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 
 static unsigned long quick_pit_calibrate(void)
 {
+       int i;
+       u64 tsc, delta;
+       unsigned long d1, d2;
+
        /* Set the Gate high, disable speaker */
        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 
@@ -304,45 +341,59 @@ static unsigned long quick_pit_calibrate(void)
        outb(0xff, 0x42);
        outb(0xff, 0x42);
 
-       if (pit_expect_msb(0xff)) {
-               int i;
-               u64 t1, t2, delta;
-               unsigned char expect = 0xfe;
-
-               t1 = get_cycles();
-               for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
-                       if (!pit_expect_msb(expect))
-                               goto failed;
+       /*
+        * The PIT starts counting at the next edge, so we
+        * need to delay for a microsecond. The easiest way
+        * to do that is to just read back the 16-bit counter
+        * once from the PIT.
+        */
+       pit_verify_msb(0);
+
+       if (pit_expect_msb(0xff, &tsc, &d1)) {
+               for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
+                       if (!pit_expect_msb(0xff-i, &delta, &d2))
+                               break;
+
+                       /*
+                        * Iterate until the error is less than 500 ppm
+                        */
+                       delta -= tsc;
+                       if (d1+d2 >= delta >> 11)
+                               continue;
+
+                       /*
+                        * Check the PIT one more time to verify that
+                        * all TSC reads were stable wrt the PIT.
+                        *
+                        * This also guarantees serialization of the
+                        * last cycle read ('d2') in pit_expect_msb.
+                        */
+                       if (!pit_verify_msb(0xfe - i))
+                               break;
+                       goto success;
                }
-               t2 = get_cycles();
-
-               /*
-                * Make sure we can rely on the second TSC timestamp:
-                */
-               if (!pit_expect_msb(--expect))
-                       goto failed;
-
-               /*
-                * Ok, if we get here, then we've seen the
-                * MSB of the PIT decrement QUICK_PIT_ITERATIONS
-                * times, and each MSB had many hits, so we never
-                * had any sudden jumps.
-                *
-                * As a result, we can depend on there not being
-                * any odd delays anywhere, and the TSC reads are
-                * reliable.
-                *
-                * kHz = ticks / time-in-seconds / 1000;
-                * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
-                * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
-                */
-               delta = (t2 - t1)*PIT_TICK_RATE;
-               do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
-               printk("Fast TSC calibration using PIT\n");
-               return delta;
        }
-failed:
+       printk("Fast TSC calibration failed\n");
        return 0;
+
+success:
+       /*
+        * Ok, if we get here, then we've seen the
+        * MSB of the PIT decrement 'i' times, and the
+        * error has shrunk to less than 500 ppm.
+        *
+        * As a result, we can depend on there not being
+        * any odd delays anywhere, and the TSC reads are
+        * reliable (within the error).
+        *
+        * kHz = ticks / time-in-seconds / 1000;
+        * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
+        * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
+        */
+       delta *= PIT_TICK_RATE;
+       do_div(delta, i*256*1000);
+       printk("Fast TSC calibration using PIT\n");
+       return delta;
 }
 
 /**
@@ -373,7 +424,7 @@ unsigned long native_calibrate_tsc(void)
         * the delta to the previous read. We keep track of the min
         * and max values of that delta. The delta is mostly defined
         * by the IO time of the PIT access, so we can detect when a
-        * SMI/SMM disturbance happend between the two reads. If the
+        * SMI/SMM disturbance happened between the two reads. If the
         * maximum time is significantly larger than the minimum time,
         * then we discard the result and have another try.
         *
@@ -410,7 +461,7 @@ unsigned long native_calibrate_tsc(void)
                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 
                /* hpet or pmtimer available ? */
-               if (!hpet && !ref1 && !ref2)
+               if (ref1 == ref2)
                        continue;
 
                /* Check, whether the sampling was disturbed by an SMI */
@@ -460,8 +511,7 @@ unsigned long native_calibrate_tsc(void)
         */
        if (tsc_pit_min == ULONG_MAX) {
                /* PIT gave no useful value */
-               printk(KERN_WARNING "TSC: PIT calibration failed due to "
-                      "SMI disturbance.\n");
+               printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
 
                /* We don't have an alternative source, disable TSC */
                if (!hpet && !ref1 && !ref2) {
@@ -507,15 +557,13 @@ unsigned long native_calibrate_tsc(void)
        return tsc_pit_min;
 }
 
-#ifdef CONFIG_X86_32
-/* Only called from the Powernow K7 cpu freq driver */
 int recalibrate_cpu_khz(void)
 {
 #ifndef CONFIG_SMP
        unsigned long cpu_khz_old = cpu_khz;
 
        if (cpu_has_tsc) {
-               tsc_khz = calibrate_tsc();
+               tsc_khz = x86_platform.calibrate_tsc();
                cpu_khz = tsc_khz;
                cpu_data(0).loops_per_jiffy =
                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
@@ -530,7 +578,6 @@ int recalibrate_cpu_khz(void)
 
 EXPORT_SYMBOL(recalibrate_cpu_khz);
 
-#endif /* CONFIG_X86_32 */
 
 /* Accelerators for sched_clock()
  * convert from cycles(64bits) => nanoseconds (64bits)
@@ -555,27 +602,70 @@ EXPORT_SYMBOL(recalibrate_cpu_khz);
  */
 
 DEFINE_PER_CPU(unsigned long, cyc2ns);
+DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 
 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 {
-       unsigned long long tsc_now, ns_now;
+       unsigned long long tsc_now, ns_now, *offset;
        unsigned long flags, *scale;
 
        local_irq_save(flags);
        sched_clock_idle_sleep_event();
 
        scale = &per_cpu(cyc2ns, cpu);
+       offset = &per_cpu(cyc2ns_offset, cpu);
 
        rdtscll(tsc_now);
        ns_now = __cycles_2_ns(tsc_now);
 
-       if (cpu_khz)
+       if (cpu_khz) {
                *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
+               *offset = ns_now - mult_frac(tsc_now, *scale,
+                                            (1UL << CYC2NS_SCALE_FACTOR));
+       }
 
        sched_clock_idle_wakeup_event(0);
        local_irq_restore(flags);
 }
 
+static unsigned long long cyc2ns_suspend;
+
+void save_sched_clock_state(void)
+{
+       if (!sched_clock_stable)
+               return;
+
+       cyc2ns_suspend = sched_clock();
+}
+
+/*
+ * Even on processors with invariant TSC, TSC gets reset in some the
+ * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
+ * arbitrary value (still sync'd across cpu's) during resume from such sleep
+ * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
+ * that sched_clock() continues from the point where it was left off during
+ * suspend.
+ */
+void restore_sched_clock_state(void)
+{
+       unsigned long long offset;
+       unsigned long flags;
+       int cpu;
+
+       if (!sched_clock_stable)
+               return;
+
+       local_irq_save(flags);
+
+       __this_cpu_write(cyc2ns_offset, 0);
+       offset = cyc2ns_suspend - sched_clock();
+
+       for_each_possible_cpu(cpu)
+               per_cpu(cyc2ns_offset, cpu) = offset;
+
+       local_irq_restore(flags);
+}
+
 #ifdef CONFIG_CPU_FREQ
 
 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
@@ -597,17 +687,15 @@ static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
                                void *data)
 {
        struct cpufreq_freqs *freq = data;
-       unsigned long *lpj, dummy;
+       unsigned long *lpj;
 
        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
                return 0;
 
-       lpj = &dummy;
-       if (!(freq->flags & CPUFREQ_CONST_LOOPS))
+       lpj = &boot_cpu_data.loops_per_jiffy;
 #ifdef CONFIG_SMP
+       if (!(freq->flags & CPUFREQ_CONST_LOOPS))
                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
-#else
-       lpj = &boot_cpu_data.loops_per_jiffy;
 #endif
 
        if (!ref_freq) {
@@ -618,7 +706,7 @@ static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
                        (val == CPUFREQ_RESUMECHANGE)) {
-               *lpj =  cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
+               *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 
                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
@@ -665,7 +753,7 @@ static struct clocksource clocksource_tsc;
  * code, which is necessary to support wrapping clocksources like pm
  * timer.
  */
-static cycle_t read_tsc(void)
+static cycle_t read_tsc(struct clocksource *cs)
 {
        cycle_t ret = (cycle_t)get_cycles();
 
@@ -673,26 +761,21 @@ static cycle_t read_tsc(void)
                ret : clocksource_tsc.cycle_last;
 }
 
-#ifdef CONFIG_X86_64
-static cycle_t __vsyscall_fn vread_tsc(void)
+static void resume_tsc(struct clocksource *cs)
 {
-       cycle_t ret = (cycle_t)vget_cycles();
-
-       return ret >= __vsyscall_gtod_data.clock.cycle_last ?
-               ret : __vsyscall_gtod_data.clock.cycle_last;
+       clocksource_tsc.cycle_last = 0;
 }
-#endif
 
 static struct clocksource clocksource_tsc = {
        .name                   = "tsc",
        .rating                 = 300,
        .read                   = read_tsc,
+       .resume                 = resume_tsc,
        .mask                   = CLOCKSOURCE_MASK(64),
-       .shift                  = 22,
        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
                                  CLOCK_SOURCE_MUST_VERIFY,
 #ifdef CONFIG_X86_64
-       .vread                  = vread_tsc,
+       .archdata               = { .vclock_mode = VCLOCK_TSC },
 #endif
 };
 
@@ -700,56 +783,36 @@ void mark_tsc_unstable(char *reason)
 {
        if (!tsc_unstable) {
                tsc_unstable = 1;
-               printk("Marking TSC unstable due to %s\n", reason);
+               sched_clock_stable = 0;
+               disable_sched_clock_irqtime();
+               printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
                /* Change only the rating, when not registered */
                if (clocksource_tsc.mult)
-                       clocksource_change_rating(&clocksource_tsc, 0);
-               else
+                       clocksource_mark_unstable(&clocksource_tsc);
+               else {
+                       clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
                        clocksource_tsc.rating = 0;
+               }
        }
 }
 
 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
 
-static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
+static void __init check_system_tsc_reliable(void)
 {
-       printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
-                       d->ident);
-       tsc_unstable = 1;
-       return 0;
-}
-
-/* List of systems that have known TSC problems */
-static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
-       {
-               .callback = dmi_mark_tsc_unstable,
-               .ident = "IBM Thinkpad 380XD",
-               .matches = {
-                       DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
-                       DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
-               },
-       },
-       {}
-};
-
-/*
- * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
- */
 #ifdef CONFIG_MGEODE_LX
-/* RTSC counts during suspend */
+       /* RTSC counts during suspend */
 #define RTSC_SUSP 0x100
-
-static void __init check_geode_tsc_reliable(void)
-{
        unsigned long res_low, res_high;
 
        rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
+       /* Geode_LX - the OLPC CPU has a very reliable TSC */
        if (res_low & RTSC_SUSP)
-               clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
-}
-#else
-static inline void check_geode_tsc_reliable(void) { }
+               tsc_clocksource_reliable = 1;
 #endif
+       if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
+               tsc_clocksource_reliable = 1;
+}
 
 /*
  * Make an educated guess if the TSC is trustworthy and synchronized
@@ -767,6 +830,9 @@ __cpuinit int unsynchronized_tsc(void)
 
        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
                return 0;
+
+       if (tsc_clocksource_reliable)
+               return 0;
        /*
         * Intel systems are normally all synchronized.
         * Exceptions must mark TSC as unstable:
@@ -774,33 +840,129 @@ __cpuinit int unsynchronized_tsc(void)
        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
                /* assume multi socket systems are not synchronized: */
                if (num_possible_cpus() > 1)
-                       tsc_unstable = 1;
+                       return 1;
        }
 
-       return tsc_unstable;
+       return 0;
 }
 
-static void __init init_tsc_clocksource(void)
+
+static void tsc_refine_calibration_work(struct work_struct *work);
+static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
+/**
+ * tsc_refine_calibration_work - Further refine tsc freq calibration
+ * @work - ignored.
+ *
+ * This functions uses delayed work over a period of a
+ * second to further refine the TSC freq value. Since this is
+ * timer based, instead of loop based, we don't block the boot
+ * process while this longer calibration is done.
+ *
+ * If there are any calibration anomalies (too many SMIs, etc),
+ * or the refined calibration is off by 1% of the fast early
+ * calibration, we throw out the new calibration and use the
+ * early calibration.
+ */
+static void tsc_refine_calibration_work(struct work_struct *work)
 {
-       clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
-                       clocksource_tsc.shift);
+       static u64 tsc_start = -1, ref_start;
+       static int hpet;
+       u64 tsc_stop, ref_stop, delta;
+       unsigned long freq;
+
+       /* Don't bother refining TSC on unstable systems */
+       if (check_tsc_unstable())
+               goto out;
+
+       /*
+        * Since the work is started early in boot, we may be
+        * delayed the first time we expire. So set the workqueue
+        * again once we know timers are working.
+        */
+       if (tsc_start == -1) {
+               /*
+                * Only set hpet once, to avoid mixing hardware
+                * if the hpet becomes enabled later.
+                */
+               hpet = is_hpet_enabled();
+               schedule_delayed_work(&tsc_irqwork, HZ);
+               tsc_start = tsc_read_refs(&ref_start, hpet);
+               return;
+       }
+
+       tsc_stop = tsc_read_refs(&ref_stop, hpet);
+
+       /* hpet or pmtimer available ? */
+       if (ref_start == ref_stop)
+               goto out;
+
+       /* Check, whether the sampling was disturbed by an SMI */
+       if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
+               goto out;
+
+       delta = tsc_stop - tsc_start;
+       delta *= 1000000LL;
+       if (hpet)
+               freq = calc_hpet_ref(delta, ref_start, ref_stop);
+       else
+               freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
+
+       /* Make sure we're within 1% */
+       if (abs(tsc_khz - freq) > tsc_khz/100)
+               goto out;
+
+       tsc_khz = freq;
+       printk(KERN_INFO "Refined TSC clocksource calibration: "
+               "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
+                                       (unsigned long)tsc_khz % 1000);
+
+out:
+       clocksource_register_khz(&clocksource_tsc, tsc_khz);
+}
+
+
+static int __init init_tsc_clocksource(void)
+{
+       if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
+               return 0;
+
+       if (tsc_clocksource_reliable)
+               clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
        /* lower the rating if we already know its unstable: */
        if (check_tsc_unstable()) {
                clocksource_tsc.rating = 0;
                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
        }
-       clocksource_register(&clocksource_tsc);
+
+       /*
+        * Trust the results of the earlier calibration on systems
+        * exporting a reliable TSC.
+        */
+       if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
+               clocksource_register_khz(&clocksource_tsc, tsc_khz);
+               return 0;
+       }
+
+       schedule_delayed_work(&tsc_irqwork, 0);
+       return 0;
 }
+/*
+ * We use device_initcall here, to ensure we run after the hpet
+ * is fully initialized, which may occur at fs_initcall time.
+ */
+device_initcall(init_tsc_clocksource);
 
 void __init tsc_init(void)
 {
        u64 lpj;
        int cpu;
 
+       x86_init.timers.tsc_pre_init();
+
        if (!cpu_has_tsc)
                return;
 
-       tsc_khz = calibrate_tsc();
+       tsc_khz = x86_platform.calibrate_tsc();
        cpu_khz = tsc_khz;
 
        if (!tsc_khz) {
@@ -808,16 +970,6 @@ void __init tsc_init(void)
                return;
        }
 
-#ifdef CONFIG_X86_64
-       if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
-                       (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
-               cpu_khz = calibrate_cpu();
-#endif
-
-       lpj = ((u64)tsc_khz * 1000);
-       do_div(lpj, HZ);
-       lpj_fine = lpj;
-
        printk("Detected %lu.%03lu MHz processor.\n",
                        (unsigned long)cpu_khz / 1000,
                        (unsigned long)cpu_khz % 1000);
@@ -837,14 +989,18 @@ void __init tsc_init(void)
        /* now allow native_sched_clock() to use rdtsc */
        tsc_disabled = 0;
 
+       if (!no_sched_irq_time)
+               enable_sched_clock_irqtime();
+
+       lpj = ((u64)tsc_khz * 1000);
+       do_div(lpj, HZ);
+       lpj_fine = lpj;
+
        use_tsc_delay();
-       /* Check and install the TSC clocksource */
-       dmi_check_system(bad_tsc_dmi_table);
 
        if (unsynchronized_tsc())
                mark_tsc_unstable("TSCs unsynchronized");
 
-       check_geode_tsc_reliable();
-       init_tsc_clocksource();
+       check_system_tsc_reliable();
 }