Update to 3.4-final.
[linux-flexiantxendom0-3.2.10.git] / mm / page-writeback.c
index 31f6988..26adea8 100644 (file)
@@ -12,7 +12,7 @@
  */
 
 #include <linux/kernel.h>
-#include <linux/module.h>
+#include <linux/export.h>
 #include <linux/spinlock.h>
 #include <linux/fs.h>
 #include <linux/mm.h>
 #include <linux/sysctl.h>
 #include <linux/cpu.h>
 #include <linux/syscalls.h>
-#include <linux/buffer_head.h>
+#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
 #include <linux/pagevec.h>
 #include <trace/events/writeback.h>
 
 /*
- * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
- * will look to see if it needs to force writeback or throttling.
+ * Sleep at most 200ms at a time in balance_dirty_pages().
  */
-static long ratelimit_pages = 32;
+#define MAX_PAUSE              max(HZ/5, 1)
 
 /*
- * When balance_dirty_pages decides that the caller needs to perform some
- * non-background writeback, this is how many pages it will attempt to write.
- * It should be somewhat larger than dirtied pages to ensure that reasonably
- * large amounts of I/O are submitted.
+ * Try to keep balance_dirty_pages() call intervals higher than this many pages
+ * by raising pause time to max_pause when falls below it.
  */
-static inline long sync_writeback_pages(unsigned long dirtied)
-{
-       if (dirtied < ratelimit_pages)
-               dirtied = ratelimit_pages;
+#define DIRTY_POLL_THRESH      (128 >> (PAGE_SHIFT - 10))
 
-       return dirtied + dirtied / 2;
-}
+/*
+ * Estimate write bandwidth at 200ms intervals.
+ */
+#define BANDWIDTH_INTERVAL     max(HZ/5, 1)
+
+#define RATELIMIT_CALC_SHIFT   10
+
+/*
+ * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
+ * will look to see if it needs to force writeback or throttling.
+ */
+static long ratelimit_pages = 32;
 
 /* The following parameters are exported via /proc/sys/vm */
 
@@ -91,6 +95,8 @@ unsigned long vm_dirty_bytes;
  */
 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 
+EXPORT_SYMBOL_GPL(dirty_writeback_interval);
+
 /*
  * The longest time for which data is allowed to remain dirty
  */
@@ -111,6 +117,7 @@ EXPORT_SYMBOL(laptop_mode);
 
 /* End of sysctl-exported parameters */
 
+unsigned long global_dirty_limit;
 
 /*
  * Scale the writeback cache size proportional to the relative writeout speeds.
@@ -129,7 +136,191 @@ EXPORT_SYMBOL(laptop_mode);
  *
  */
 static struct prop_descriptor vm_completions;
-static struct prop_descriptor vm_dirties;
+
+/*
+ * Work out the current dirty-memory clamping and background writeout
+ * thresholds.
+ *
+ * The main aim here is to lower them aggressively if there is a lot of mapped
+ * memory around.  To avoid stressing page reclaim with lots of unreclaimable
+ * pages.  It is better to clamp down on writers than to start swapping, and
+ * performing lots of scanning.
+ *
+ * We only allow 1/2 of the currently-unmapped memory to be dirtied.
+ *
+ * We don't permit the clamping level to fall below 5% - that is getting rather
+ * excessive.
+ *
+ * We make sure that the background writeout level is below the adjusted
+ * clamping level.
+ */
+
+/*
+ * In a memory zone, there is a certain amount of pages we consider
+ * available for the page cache, which is essentially the number of
+ * free and reclaimable pages, minus some zone reserves to protect
+ * lowmem and the ability to uphold the zone's watermarks without
+ * requiring writeback.
+ *
+ * This number of dirtyable pages is the base value of which the
+ * user-configurable dirty ratio is the effictive number of pages that
+ * are allowed to be actually dirtied.  Per individual zone, or
+ * globally by using the sum of dirtyable pages over all zones.
+ *
+ * Because the user is allowed to specify the dirty limit globally as
+ * absolute number of bytes, calculating the per-zone dirty limit can
+ * require translating the configured limit into a percentage of
+ * global dirtyable memory first.
+ */
+
+static unsigned long highmem_dirtyable_memory(unsigned long total)
+{
+#ifdef CONFIG_HIGHMEM
+       int node;
+       unsigned long x = 0;
+
+       for_each_node_state(node, N_HIGH_MEMORY) {
+               struct zone *z =
+                       &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
+
+               x += zone_page_state(z, NR_FREE_PAGES) +
+                    zone_reclaimable_pages(z) - z->dirty_balance_reserve;
+       }
+       /*
+        * Make sure that the number of highmem pages is never larger
+        * than the number of the total dirtyable memory. This can only
+        * occur in very strange VM situations but we want to make sure
+        * that this does not occur.
+        */
+       return min(x, total);
+#else
+       return 0;
+#endif
+}
+
+/**
+ * global_dirtyable_memory - number of globally dirtyable pages
+ *
+ * Returns the global number of pages potentially available for dirty
+ * page cache.  This is the base value for the global dirty limits.
+ */
+unsigned long global_dirtyable_memory(void)
+{
+       unsigned long x;
+
+       x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
+           dirty_balance_reserve;
+
+       if (!vm_highmem_is_dirtyable)
+               x -= highmem_dirtyable_memory(x);
+
+       return x + 1;   /* Ensure that we never return 0 */
+}
+
+/*
+ * global_dirty_limits - background-writeback and dirty-throttling thresholds
+ *
+ * Calculate the dirty thresholds based on sysctl parameters
+ * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
+ * - vm.dirty_ratio             or  vm.dirty_bytes
+ * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
+ * real-time tasks.
+ */
+void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
+{
+       unsigned long background;
+       unsigned long dirty;
+       unsigned long uninitialized_var(available_memory);
+       struct task_struct *tsk;
+
+       if (!vm_dirty_bytes || !dirty_background_bytes)
+               available_memory = global_dirtyable_memory();
+
+       if (vm_dirty_bytes)
+               dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
+       else
+               dirty = (vm_dirty_ratio * available_memory) / 100;
+
+       if (dirty_background_bytes)
+               background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
+       else
+               background = (dirty_background_ratio * available_memory) / 100;
+
+       if (background >= dirty)
+               background = dirty / 2;
+       tsk = current;
+       if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
+               background += background / 4;
+               dirty += dirty / 4;
+       }
+       *pbackground = background;
+       *pdirty = dirty;
+       trace_global_dirty_state(background, dirty);
+}
+
+/**
+ * zone_dirtyable_memory - number of dirtyable pages in a zone
+ * @zone: the zone
+ *
+ * Returns the zone's number of pages potentially available for dirty
+ * page cache.  This is the base value for the per-zone dirty limits.
+ */
+static unsigned long zone_dirtyable_memory(struct zone *zone)
+{
+       /*
+        * The effective global number of dirtyable pages may exclude
+        * highmem as a big-picture measure to keep the ratio between
+        * dirty memory and lowmem reasonable.
+        *
+        * But this function is purely about the individual zone and a
+        * highmem zone can hold its share of dirty pages, so we don't
+        * care about vm_highmem_is_dirtyable here.
+        */
+       return zone_page_state(zone, NR_FREE_PAGES) +
+              zone_reclaimable_pages(zone) -
+              zone->dirty_balance_reserve;
+}
+
+/**
+ * zone_dirty_limit - maximum number of dirty pages allowed in a zone
+ * @zone: the zone
+ *
+ * Returns the maximum number of dirty pages allowed in a zone, based
+ * on the zone's dirtyable memory.
+ */
+static unsigned long zone_dirty_limit(struct zone *zone)
+{
+       unsigned long zone_memory = zone_dirtyable_memory(zone);
+       struct task_struct *tsk = current;
+       unsigned long dirty;
+
+       if (vm_dirty_bytes)
+               dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
+                       zone_memory / global_dirtyable_memory();
+       else
+               dirty = vm_dirty_ratio * zone_memory / 100;
+
+       if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
+               dirty += dirty / 4;
+
+       return dirty;
+}
+
+/**
+ * zone_dirty_ok - tells whether a zone is within its dirty limits
+ * @zone: the zone to check
+ *
+ * Returns %true when the dirty pages in @zone are within the zone's
+ * dirty limit, %false if the limit is exceeded.
+ */
+bool zone_dirty_ok(struct zone *zone)
+{
+       unsigned long limit = zone_dirty_limit(zone);
+
+       return zone_page_state(zone, NR_FILE_DIRTY) +
+              zone_page_state(zone, NR_UNSTABLE_NFS) +
+              zone_page_state(zone, NR_WRITEBACK) <= limit;
+}
 
 /*
  * couple the period to the dirty_ratio:
@@ -143,7 +334,7 @@ static int calc_period_shift(void)
        if (vm_dirty_bytes)
                dirty_total = vm_dirty_bytes / PAGE_SIZE;
        else
-               dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
+               dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
                                100;
        return 2 + ilog2(dirty_total - 1);
 }
@@ -155,7 +346,8 @@ static void update_completion_period(void)
 {
        int shift = calc_period_shift();
        prop_change_shift(&vm_completions, shift);
-       prop_change_shift(&vm_dirties, shift);
+
+       writeback_set_ratelimit();
 }
 
 int dirty_background_ratio_handler(struct ctl_table *table, int write,
@@ -197,7 +389,6 @@ int dirty_ratio_handler(struct ctl_table *table, int write,
        return ret;
 }
 
-
 int dirty_bytes_handler(struct ctl_table *table, int write,
                void __user *buffer, size_t *lenp,
                loff_t *ppos)
@@ -219,6 +410,7 @@ int dirty_bytes_handler(struct ctl_table *table, int write,
  */
 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 {
+       __inc_bdi_stat(bdi, BDI_WRITTEN);
        __prop_inc_percpu_max(&vm_completions, &bdi->completions,
                              bdi->max_prop_frac);
 }
@@ -233,65 +425,20 @@ void bdi_writeout_inc(struct backing_dev_info *bdi)
 }
 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 
-void task_dirty_inc(struct task_struct *tsk)
-{
-       prop_inc_single(&vm_dirties, &tsk->dirties);
-}
-
 /*
  * Obtain an accurate fraction of the BDI's portion.
  */
 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
                long *numerator, long *denominator)
 {
-       if (bdi_cap_writeback_dirty(bdi)) {
-               prop_fraction_percpu(&vm_completions, &bdi->completions,
+       prop_fraction_percpu(&vm_completions, &bdi->completions,
                                numerator, denominator);
-       } else {
-               *numerator = 0;
-               *denominator = 1;
-       }
-}
-
-static inline void task_dirties_fraction(struct task_struct *tsk,
-               long *numerator, long *denominator)
-{
-       prop_fraction_single(&vm_dirties, &tsk->dirties,
-                               numerator, denominator);
-}
-
-/*
- * task_dirty_limit - scale down dirty throttling threshold for one task
- *
- * task specific dirty limit:
- *
- *   dirty -= (dirty/8) * p_{t}
- *
- * To protect light/slow dirtying tasks from heavier/fast ones, we start
- * throttling individual tasks before reaching the bdi dirty limit.
- * Relatively low thresholds will be allocated to heavy dirtiers. So when
- * dirty pages grow large, heavy dirtiers will be throttled first, which will
- * effectively curb the growth of dirty pages. Light dirtiers with high enough
- * dirty threshold may never get throttled.
- */
-static unsigned long task_dirty_limit(struct task_struct *tsk,
-                                      unsigned long bdi_dirty)
-{
-       long numerator, denominator;
-       unsigned long dirty = bdi_dirty;
-       u64 inv = dirty >> 3;
-
-       task_dirties_fraction(tsk, &numerator, &denominator);
-       inv *= numerator;
-       do_div(inv, denominator);
-
-       dirty -= inv;
-
-       return max(dirty, bdi_dirty/2);
 }
 
 /*
- *
+ * bdi_min_ratio keeps the sum of the minimum dirty shares of all
+ * registered backing devices, which, for obvious reasons, can not
+ * exceed 100%.
  */
 static unsigned int bdi_min_ratio;
 
@@ -336,169 +483,716 @@ int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 }
 EXPORT_SYMBOL(bdi_set_max_ratio);
 
-/*
- * Work out the current dirty-memory clamping and background writeout
- * thresholds.
+static unsigned long dirty_freerun_ceiling(unsigned long thresh,
+                                          unsigned long bg_thresh)
+{
+       return (thresh + bg_thresh) / 2;
+}
+
+static unsigned long hard_dirty_limit(unsigned long thresh)
+{
+       return max(thresh, global_dirty_limit);
+}
+
+/**
+ * bdi_dirty_limit - @bdi's share of dirty throttling threshold
+ * @bdi: the backing_dev_info to query
+ * @dirty: global dirty limit in pages
  *
- * The main aim here is to lower them aggressively if there is a lot of mapped
- * memory around.  To avoid stressing page reclaim with lots of unreclaimable
- * pages.  It is better to clamp down on writers than to start swapping, and
- * performing lots of scanning.
+ * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
+ * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  *
- * We only allow 1/2 of the currently-unmapped memory to be dirtied.
+ * Note that balance_dirty_pages() will only seriously take it as a hard limit
+ * when sleeping max_pause per page is not enough to keep the dirty pages under
+ * control. For example, when the device is completely stalled due to some error
+ * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
+ * In the other normal situations, it acts more gently by throttling the tasks
+ * more (rather than completely block them) when the bdi dirty pages go high.
  *
- * We don't permit the clamping level to fall below 5% - that is getting rather
- * excessive.
+ * It allocates high/low dirty limits to fast/slow devices, in order to prevent
+ * - starving fast devices
+ * - piling up dirty pages (that will take long time to sync) on slow devices
  *
- * We make sure that the background writeout level is below the adjusted
- * clamping level.
+ * The bdi's share of dirty limit will be adapting to its throughput and
+ * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  */
+unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
+{
+       u64 bdi_dirty;
+       long numerator, denominator;
 
-static unsigned long highmem_dirtyable_memory(unsigned long total)
+       /*
+        * Calculate this BDI's share of the dirty ratio.
+        */
+       bdi_writeout_fraction(bdi, &numerator, &denominator);
+
+       bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
+       bdi_dirty *= numerator;
+       do_div(bdi_dirty, denominator);
+
+       bdi_dirty += (dirty * bdi->min_ratio) / 100;
+       if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
+               bdi_dirty = dirty * bdi->max_ratio / 100;
+
+       return bdi_dirty;
+}
+
+/*
+ * Dirty position control.
+ *
+ * (o) global/bdi setpoints
+ *
+ * We want the dirty pages be balanced around the global/bdi setpoints.
+ * When the number of dirty pages is higher/lower than the setpoint, the
+ * dirty position control ratio (and hence task dirty ratelimit) will be
+ * decreased/increased to bring the dirty pages back to the setpoint.
+ *
+ *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
+ *
+ *     if (dirty < setpoint) scale up   pos_ratio
+ *     if (dirty > setpoint) scale down pos_ratio
+ *
+ *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
+ *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
+ *
+ *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
+ *
+ * (o) global control line
+ *
+ *     ^ pos_ratio
+ *     |
+ *     |            |<===== global dirty control scope ======>|
+ * 2.0 .............*
+ *     |            .*
+ *     |            . *
+ *     |            .   *
+ *     |            .     *
+ *     |            .        *
+ *     |            .            *
+ * 1.0 ................................*
+ *     |            .                  .     *
+ *     |            .                  .          *
+ *     |            .                  .              *
+ *     |            .                  .                 *
+ *     |            .                  .                    *
+ *   0 +------------.------------------.----------------------*------------->
+ *           freerun^          setpoint^                 limit^   dirty pages
+ *
+ * (o) bdi control line
+ *
+ *     ^ pos_ratio
+ *     |
+ *     |            *
+ *     |              *
+ *     |                *
+ *     |                  *
+ *     |                    * |<=========== span ============>|
+ * 1.0 .......................*
+ *     |                      . *
+ *     |                      .   *
+ *     |                      .     *
+ *     |                      .       *
+ *     |                      .         *
+ *     |                      .           *
+ *     |                      .             *
+ *     |                      .               *
+ *     |                      .                 *
+ *     |                      .                   *
+ *     |                      .                     *
+ * 1/4 ...............................................* * * * * * * * * * * *
+ *     |                      .                         .
+ *     |                      .                           .
+ *     |                      .                             .
+ *   0 +----------------------.-------------------------------.------------->
+ *                bdi_setpoint^                    x_intercept^
+ *
+ * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
+ * be smoothly throttled down to normal if it starts high in situations like
+ * - start writing to a slow SD card and a fast disk at the same time. The SD
+ *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
+ * - the bdi dirty thresh drops quickly due to change of JBOD workload
+ */
+static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
+                                       unsigned long thresh,
+                                       unsigned long bg_thresh,
+                                       unsigned long dirty,
+                                       unsigned long bdi_thresh,
+                                       unsigned long bdi_dirty)
 {
-#ifdef CONFIG_HIGHMEM
-       int node;
-       unsigned long x = 0;
+       unsigned long write_bw = bdi->avg_write_bandwidth;
+       unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
+       unsigned long limit = hard_dirty_limit(thresh);
+       unsigned long x_intercept;
+       unsigned long setpoint;         /* dirty pages' target balance point */
+       unsigned long bdi_setpoint;
+       unsigned long span;
+       long long pos_ratio;            /* for scaling up/down the rate limit */
+       long x;
+
+       if (unlikely(dirty >= limit))
+               return 0;
 
-       for_each_node_state(node, N_HIGH_MEMORY) {
-               struct zone *z =
-                       &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
+       /*
+        * global setpoint
+        *
+        *                           setpoint - dirty 3
+        *        f(dirty) := 1.0 + (----------------)
+        *                           limit - setpoint
+        *
+        * it's a 3rd order polynomial that subjects to
+        *
+        * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
+        * (2) f(setpoint) = 1.0 => the balance point
+        * (3) f(limit)    = 0   => the hard limit
+        * (4) df/dx      <= 0   => negative feedback control
+        * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
+        *     => fast response on large errors; small oscillation near setpoint
+        */
+       setpoint = (freerun + limit) / 2;
+       x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
+                   limit - setpoint + 1);
+       pos_ratio = x;
+       pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+       pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+       pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 
-               x += zone_page_state(z, NR_FREE_PAGES) +
-                    zone_reclaimable_pages(z);
+       /*
+        * We have computed basic pos_ratio above based on global situation. If
+        * the bdi is over/under its share of dirty pages, we want to scale
+        * pos_ratio further down/up. That is done by the following mechanism.
+        */
+
+       /*
+        * bdi setpoint
+        *
+        *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
+        *
+        *                        x_intercept - bdi_dirty
+        *                     := --------------------------
+        *                        x_intercept - bdi_setpoint
+        *
+        * The main bdi control line is a linear function that subjects to
+        *
+        * (1) f(bdi_setpoint) = 1.0
+        * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
+        *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
+        *
+        * For single bdi case, the dirty pages are observed to fluctuate
+        * regularly within range
+        *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
+        * for various filesystems, where (2) can yield in a reasonable 12.5%
+        * fluctuation range for pos_ratio.
+        *
+        * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
+        * own size, so move the slope over accordingly and choose a slope that
+        * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
+        */
+       if (unlikely(bdi_thresh > thresh))
+               bdi_thresh = thresh;
+       /*
+        * It's very possible that bdi_thresh is close to 0 not because the
+        * device is slow, but that it has remained inactive for long time.
+        * Honour such devices a reasonable good (hopefully IO efficient)
+        * threshold, so that the occasional writes won't be blocked and active
+        * writes can rampup the threshold quickly.
+        */
+       bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
+       /*
+        * scale global setpoint to bdi's:
+        *      bdi_setpoint = setpoint * bdi_thresh / thresh
+        */
+       x = div_u64((u64)bdi_thresh << 16, thresh + 1);
+       bdi_setpoint = setpoint * (u64)x >> 16;
+       /*
+        * Use span=(8*write_bw) in single bdi case as indicated by
+        * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
+        *
+        *        bdi_thresh                    thresh - bdi_thresh
+        * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
+        *          thresh                            thresh
+        */
+       span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
+       x_intercept = bdi_setpoint + span;
+
+       if (bdi_dirty < x_intercept - span / 4) {
+               pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
+                                   x_intercept - bdi_setpoint + 1);
+       } else
+               pos_ratio /= 4;
+
+       /*
+        * bdi reserve area, safeguard against dirty pool underrun and disk idle
+        * It may push the desired control point of global dirty pages higher
+        * than setpoint.
+        */
+       x_intercept = bdi_thresh / 2;
+       if (bdi_dirty < x_intercept) {
+               if (bdi_dirty > x_intercept / 8)
+                       pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
+               else
+                       pos_ratio *= 8;
        }
+
+       return pos_ratio;
+}
+
+static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
+                                      unsigned long elapsed,
+                                      unsigned long written)
+{
+       const unsigned long period = roundup_pow_of_two(3 * HZ);
+       unsigned long avg = bdi->avg_write_bandwidth;
+       unsigned long old = bdi->write_bandwidth;
+       u64 bw;
+
        /*
-        * Make sure that the number of highmem pages is never larger
-        * than the number of the total dirtyable memory. This can only
-        * occur in very strange VM situations but we want to make sure
-        * that this does not occur.
+        * bw = written * HZ / elapsed
+        *
+        *                   bw * elapsed + write_bandwidth * (period - elapsed)
+        * write_bandwidth = ---------------------------------------------------
+        *                                          period
         */
-       return min(x, total);
-#else
-       return 0;
-#endif
+       bw = written - bdi->written_stamp;
+       bw *= HZ;
+       if (unlikely(elapsed > period)) {
+               do_div(bw, elapsed);
+               avg = bw;
+               goto out;
+       }
+       bw += (u64)bdi->write_bandwidth * (period - elapsed);
+       bw >>= ilog2(period);
+
+       /*
+        * one more level of smoothing, for filtering out sudden spikes
+        */
+       if (avg > old && old >= (unsigned long)bw)
+               avg -= (avg - old) >> 3;
+
+       if (avg < old && old <= (unsigned long)bw)
+               avg += (old - avg) >> 3;
+
+out:
+       bdi->write_bandwidth = bw;
+       bdi->avg_write_bandwidth = avg;
 }
 
-/**
- * determine_dirtyable_memory - amount of memory that may be used
- *
- * Returns the numebr of pages that can currently be freed and used
- * by the kernel for direct mappings.
+/*
+ * The global dirtyable memory and dirty threshold could be suddenly knocked
+ * down by a large amount (eg. on the startup of KVM in a swapless system).
+ * This may throw the system into deep dirty exceeded state and throttle
+ * heavy/light dirtiers alike. To retain good responsiveness, maintain
+ * global_dirty_limit for tracking slowly down to the knocked down dirty
+ * threshold.
  */
-unsigned long determine_dirtyable_memory(void)
+static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 {
-       unsigned long x;
+       unsigned long limit = global_dirty_limit;
+
+       /*
+        * Follow up in one step.
+        */
+       if (limit < thresh) {
+               limit = thresh;
+               goto update;
+       }
 
-       x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
+       /*
+        * Follow down slowly. Use the higher one as the target, because thresh
+        * may drop below dirty. This is exactly the reason to introduce
+        * global_dirty_limit which is guaranteed to lie above the dirty pages.
+        */
+       thresh = max(thresh, dirty);
+       if (limit > thresh) {
+               limit -= (limit - thresh) >> 5;
+               goto update;
+       }
+       return;
+update:
+       global_dirty_limit = limit;
+}
 
-       if (!vm_highmem_is_dirtyable)
-               x -= highmem_dirtyable_memory(x);
+static void global_update_bandwidth(unsigned long thresh,
+                                   unsigned long dirty,
+                                   unsigned long now)
+{
+       static DEFINE_SPINLOCK(dirty_lock);
+       static unsigned long update_time;
 
-       return x + 1;   /* Ensure that we never return 0 */
+       /*
+        * check locklessly first to optimize away locking for the most time
+        */
+       if (time_before(now, update_time + BANDWIDTH_INTERVAL))
+               return;
+
+       spin_lock(&dirty_lock);
+       if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
+               update_dirty_limit(thresh, dirty);
+               update_time = now;
+       }
+       spin_unlock(&dirty_lock);
 }
 
 /*
- * global_dirty_limits - background-writeback and dirty-throttling thresholds
+ * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  *
- * Calculate the dirty thresholds based on sysctl parameters
- * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
- * - vm.dirty_ratio             or  vm.dirty_bytes
- * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
- * real-time tasks.
+ * Normal bdi tasks will be curbed at or below it in long term.
+ * Obviously it should be around (write_bw / N) when there are N dd tasks.
  */
-void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
+static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
+                                      unsigned long thresh,
+                                      unsigned long bg_thresh,
+                                      unsigned long dirty,
+                                      unsigned long bdi_thresh,
+                                      unsigned long bdi_dirty,
+                                      unsigned long dirtied,
+                                      unsigned long elapsed)
 {
-       unsigned long background;
-       unsigned long dirty;
-       unsigned long uninitialized_var(available_memory);
-       struct task_struct *tsk;
+       unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
+       unsigned long limit = hard_dirty_limit(thresh);
+       unsigned long setpoint = (freerun + limit) / 2;
+       unsigned long write_bw = bdi->avg_write_bandwidth;
+       unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
+       unsigned long dirty_rate;
+       unsigned long task_ratelimit;
+       unsigned long balanced_dirty_ratelimit;
+       unsigned long pos_ratio;
+       unsigned long step;
+       unsigned long x;
 
-       if (!vm_dirty_bytes || !dirty_background_bytes)
-               available_memory = determine_dirtyable_memory();
+       /*
+        * The dirty rate will match the writeout rate in long term, except
+        * when dirty pages are truncated by userspace or re-dirtied by FS.
+        */
+       dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 
-       if (vm_dirty_bytes)
-               dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
-       else
-               dirty = (vm_dirty_ratio * available_memory) / 100;
+       pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
+                                      bdi_thresh, bdi_dirty);
+       /*
+        * task_ratelimit reflects each dd's dirty rate for the past 200ms.
+        */
+       task_ratelimit = (u64)dirty_ratelimit *
+                                       pos_ratio >> RATELIMIT_CALC_SHIFT;
+       task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 
-       if (dirty_background_bytes)
-               background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
+       /*
+        * A linear estimation of the "balanced" throttle rate. The theory is,
+        * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
+        * dirty_rate will be measured to be (N * task_ratelimit). So the below
+        * formula will yield the balanced rate limit (write_bw / N).
+        *
+        * Note that the expanded form is not a pure rate feedback:
+        *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
+        * but also takes pos_ratio into account:
+        *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
+        *
+        * (1) is not realistic because pos_ratio also takes part in balancing
+        * the dirty rate.  Consider the state
+        *      pos_ratio = 0.5                                              (3)
+        *      rate = 2 * (write_bw / N)                                    (4)
+        * If (1) is used, it will stuck in that state! Because each dd will
+        * be throttled at
+        *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
+        * yielding
+        *      dirty_rate = N * task_ratelimit = write_bw                   (6)
+        * put (6) into (1) we get
+        *      rate_(i+1) = rate_(i)                                        (7)
+        *
+        * So we end up using (2) to always keep
+        *      rate_(i+1) ~= (write_bw / N)                                 (8)
+        * regardless of the value of pos_ratio. As long as (8) is satisfied,
+        * pos_ratio is able to drive itself to 1.0, which is not only where
+        * the dirty count meet the setpoint, but also where the slope of
+        * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
+        */
+       balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
+                                          dirty_rate | 1);
+       /*
+        * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
+        */
+       if (unlikely(balanced_dirty_ratelimit > write_bw))
+               balanced_dirty_ratelimit = write_bw;
+
+       /*
+        * We could safely do this and return immediately:
+        *
+        *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
+        *
+        * However to get a more stable dirty_ratelimit, the below elaborated
+        * code makes use of task_ratelimit to filter out sigular points and
+        * limit the step size.
+        *
+        * The below code essentially only uses the relative value of
+        *
+        *      task_ratelimit - dirty_ratelimit
+        *      = (pos_ratio - 1) * dirty_ratelimit
+        *
+        * which reflects the direction and size of dirty position error.
+        */
+
+       /*
+        * dirty_ratelimit will follow balanced_dirty_ratelimit iff
+        * task_ratelimit is on the same side of dirty_ratelimit, too.
+        * For example, when
+        * - dirty_ratelimit > balanced_dirty_ratelimit
+        * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
+        * lowering dirty_ratelimit will help meet both the position and rate
+        * control targets. Otherwise, don't update dirty_ratelimit if it will
+        * only help meet the rate target. After all, what the users ultimately
+        * feel and care are stable dirty rate and small position error.
+        *
+        * |task_ratelimit - dirty_ratelimit| is used to limit the step size
+        * and filter out the sigular points of balanced_dirty_ratelimit. Which
+        * keeps jumping around randomly and can even leap far away at times
+        * due to the small 200ms estimation period of dirty_rate (we want to
+        * keep that period small to reduce time lags).
+        */
+       step = 0;
+       if (dirty < setpoint) {
+               x = min(bdi->balanced_dirty_ratelimit,
+                        min(balanced_dirty_ratelimit, task_ratelimit));
+               if (dirty_ratelimit < x)
+                       step = x - dirty_ratelimit;
+       } else {
+               x = max(bdi->balanced_dirty_ratelimit,
+                        max(balanced_dirty_ratelimit, task_ratelimit));
+               if (dirty_ratelimit > x)
+                       step = dirty_ratelimit - x;
+       }
+
+       /*
+        * Don't pursue 100% rate matching. It's impossible since the balanced
+        * rate itself is constantly fluctuating. So decrease the track speed
+        * when it gets close to the target. Helps eliminate pointless tremors.
+        */
+       step >>= dirty_ratelimit / (2 * step + 1);
+       /*
+        * Limit the tracking speed to avoid overshooting.
+        */
+       step = (step + 7) / 8;
+
+       if (dirty_ratelimit < balanced_dirty_ratelimit)
+               dirty_ratelimit += step;
        else
-               background = (dirty_background_ratio * available_memory) / 100;
+               dirty_ratelimit -= step;
 
-       if (background >= dirty)
-               background = dirty / 2;
-       tsk = current;
-       if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
-               background += background / 4;
-               dirty += dirty / 4;
+       bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
+       bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
+
+       trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
+}
+
+void __bdi_update_bandwidth(struct backing_dev_info *bdi,
+                           unsigned long thresh,
+                           unsigned long bg_thresh,
+                           unsigned long dirty,
+                           unsigned long bdi_thresh,
+                           unsigned long bdi_dirty,
+                           unsigned long start_time)
+{
+       unsigned long now = jiffies;
+       unsigned long elapsed = now - bdi->bw_time_stamp;
+       unsigned long dirtied;
+       unsigned long written;
+
+       /*
+        * rate-limit, only update once every 200ms.
+        */
+       if (elapsed < BANDWIDTH_INTERVAL)
+               return;
+
+       dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
+       written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
+
+       /*
+        * Skip quiet periods when disk bandwidth is under-utilized.
+        * (at least 1s idle time between two flusher runs)
+        */
+       if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
+               goto snapshot;
+
+       if (thresh) {
+               global_update_bandwidth(thresh, dirty, now);
+               bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
+                                          bdi_thresh, bdi_dirty,
+                                          dirtied, elapsed);
        }
-       *pbackground = background;
-       *pdirty = dirty;
+       bdi_update_write_bandwidth(bdi, elapsed, written);
+
+snapshot:
+       bdi->dirtied_stamp = dirtied;
+       bdi->written_stamp = written;
+       bdi->bw_time_stamp = now;
+}
+
+static void bdi_update_bandwidth(struct backing_dev_info *bdi,
+                                unsigned long thresh,
+                                unsigned long bg_thresh,
+                                unsigned long dirty,
+                                unsigned long bdi_thresh,
+                                unsigned long bdi_dirty,
+                                unsigned long start_time)
+{
+       if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
+               return;
+       spin_lock(&bdi->wb.list_lock);
+       __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
+                              bdi_thresh, bdi_dirty, start_time);
+       spin_unlock(&bdi->wb.list_lock);
 }
 
 /*
- * bdi_dirty_limit - @bdi's share of dirty throttling threshold
+ * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
+ * will look to see if it needs to start dirty throttling.
  *
- * Allocate high/low dirty limits to fast/slow devices, in order to prevent
- * - starving fast devices
- * - piling up dirty pages (that will take long time to sync) on slow devices
- *
- * The bdi's share of dirty limit will be adapting to its throughput and
- * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
+ * If dirty_poll_interval is too low, big NUMA machines will call the expensive
+ * global_page_state() too often. So scale it near-sqrt to the safety margin
+ * (the number of pages we may dirty without exceeding the dirty limits).
  */
-unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
+static unsigned long dirty_poll_interval(unsigned long dirty,
+                                        unsigned long thresh)
 {
-       u64 bdi_dirty;
-       long numerator, denominator;
+       if (thresh > dirty)
+               return 1UL << (ilog2(thresh - dirty) >> 1);
+
+       return 1;
+}
+
+static long bdi_max_pause(struct backing_dev_info *bdi,
+                         unsigned long bdi_dirty)
+{
+       long bw = bdi->avg_write_bandwidth;
+       long t;
 
        /*
-        * Calculate this BDI's share of the dirty ratio.
+        * Limit pause time for small memory systems. If sleeping for too long
+        * time, a small pool of dirty/writeback pages may go empty and disk go
+        * idle.
+        *
+        * 8 serves as the safety ratio.
         */
-       bdi_writeout_fraction(bdi, &numerator, &denominator);
+       t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
+       t++;
 
-       bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
-       bdi_dirty *= numerator;
-       do_div(bdi_dirty, denominator);
+       return min_t(long, t, MAX_PAUSE);
+}
 
-       bdi_dirty += (dirty * bdi->min_ratio) / 100;
-       if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
-               bdi_dirty = dirty * bdi->max_ratio / 100;
+static long bdi_min_pause(struct backing_dev_info *bdi,
+                         long max_pause,
+                         unsigned long task_ratelimit,
+                         unsigned long dirty_ratelimit,
+                         int *nr_dirtied_pause)
+{
+       long hi = ilog2(bdi->avg_write_bandwidth);
+       long lo = ilog2(bdi->dirty_ratelimit);
+       long t;         /* target pause */
+       long pause;     /* estimated next pause */
+       int pages;      /* target nr_dirtied_pause */
 
-       return bdi_dirty;
+       /* target for 10ms pause on 1-dd case */
+       t = max(1, HZ / 100);
+
+       /*
+        * Scale up pause time for concurrent dirtiers in order to reduce CPU
+        * overheads.
+        *
+        * (N * 10ms) on 2^N concurrent tasks.
+        */
+       if (hi > lo)
+               t += (hi - lo) * (10 * HZ) / 1024;
+
+       /*
+        * This is a bit convoluted. We try to base the next nr_dirtied_pause
+        * on the much more stable dirty_ratelimit. However the next pause time
+        * will be computed based on task_ratelimit and the two rate limits may
+        * depart considerably at some time. Especially if task_ratelimit goes
+        * below dirty_ratelimit/2 and the target pause is max_pause, the next
+        * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
+        * result task_ratelimit won't be executed faithfully, which could
+        * eventually bring down dirty_ratelimit.
+        *
+        * We apply two rules to fix it up:
+        * 1) try to estimate the next pause time and if necessary, use a lower
+        *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
+        *    nr_dirtied_pause will be "dancing" with task_ratelimit.
+        * 2) limit the target pause time to max_pause/2, so that the normal
+        *    small fluctuations of task_ratelimit won't trigger rule (1) and
+        *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
+        */
+       t = min(t, 1 + max_pause / 2);
+       pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
+
+       /*
+        * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
+        * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
+        * When the 16 consecutive reads are often interrupted by some dirty
+        * throttling pause during the async writes, cfq will go into idles
+        * (deadline is fine). So push nr_dirtied_pause as high as possible
+        * until reaches DIRTY_POLL_THRESH=32 pages.
+        */
+       if (pages < DIRTY_POLL_THRESH) {
+               t = max_pause;
+               pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
+               if (pages > DIRTY_POLL_THRESH) {
+                       pages = DIRTY_POLL_THRESH;
+                       t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
+               }
+       }
+
+       pause = HZ * pages / (task_ratelimit + 1);
+       if (pause > max_pause) {
+               t = max_pause;
+               pages = task_ratelimit * t / roundup_pow_of_two(HZ);
+       }
+
+       *nr_dirtied_pause = pages;
+       /*
+        * The minimal pause time will normally be half the target pause time.
+        */
+       return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
 }
 
 /*
  * balance_dirty_pages() must be called by processes which are generating dirty
  * data.  It looks at the number of dirty pages in the machine and will force
- * the caller to perform writeback if the system is over `vm_dirty_ratio'.
+ * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  * If we're over `background_thresh' then the writeback threads are woken to
  * perform some writeout.
  */
 static void balance_dirty_pages(struct address_space *mapping,
-                               unsigned long write_chunk)
+                               unsigned long pages_dirtied)
 {
-       long nr_reclaimable, bdi_nr_reclaimable;
-       long nr_writeback, bdi_nr_writeback;
+       unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
+       unsigned long bdi_reclaimable;
+       unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
+       unsigned long bdi_dirty;
+       unsigned long freerun;
        unsigned long background_thresh;
        unsigned long dirty_thresh;
        unsigned long bdi_thresh;
-       unsigned long pages_written = 0;
-       unsigned long pause = 1;
+       long period;
+       long pause;
+       long max_pause;
+       long min_pause;
+       int nr_dirtied_pause;
        bool dirty_exceeded = false;
+       unsigned long task_ratelimit;
+       unsigned long dirty_ratelimit;
+       unsigned long pos_ratio;
        struct backing_dev_info *bdi = mapping->backing_dev_info;
+       unsigned long start_time = jiffies;
 
        for (;;) {
-               struct writeback_control wbc = {
-                       .sync_mode      = WB_SYNC_NONE,
-                       .older_than_this = NULL,
-                       .nr_to_write    = write_chunk,
-                       .range_cyclic   = 1,
-               };
+               unsigned long now = jiffies;
 
+               /*
+                * Unstable writes are a feature of certain networked
+                * filesystems (i.e. NFS) in which data may have been
+                * written to the server's write cache, but has not yet
+                * been flushed to permanent storage.
+                */
                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
                                        global_page_state(NR_UNSTABLE_NFS);
-               nr_writeback = global_page_state(NR_WRITEBACK);
+               nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 
                global_dirty_limits(&background_thresh, &dirty_thresh);
 
@@ -507,12 +1201,33 @@ static void balance_dirty_pages(struct address_space *mapping,
                 * catch-up. This avoids (excessively) small writeouts
                 * when the bdi limits are ramping up.
                 */
-               if (nr_reclaimable + nr_writeback <=
-                               (background_thresh + dirty_thresh) / 2)
+               freerun = dirty_freerun_ceiling(dirty_thresh,
+                                               background_thresh);
+               if (nr_dirty <= freerun) {
+                       current->dirty_paused_when = now;
+                       current->nr_dirtied = 0;
+                       current->nr_dirtied_pause =
+                               dirty_poll_interval(nr_dirty, dirty_thresh);
                        break;
+               }
+
+               if (unlikely(!writeback_in_progress(bdi)))
+                       bdi_start_background_writeback(bdi);
 
+               /*
+                * bdi_thresh is not treated as some limiting factor as
+                * dirty_thresh, due to reasons
+                * - in JBOD setup, bdi_thresh can fluctuate a lot
+                * - in a system with HDD and USB key, the USB key may somehow
+                *   go into state (bdi_dirty >> bdi_thresh) either because
+                *   bdi_dirty starts high, or because bdi_thresh drops low.
+                *   In this case we don't want to hard throttle the USB key
+                *   dirtiers for 100 seconds until bdi_dirty drops under
+                *   bdi_thresh. Instead the auxiliary bdi control line in
+                *   bdi_position_ratio() will let the dirtier task progress
+                *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
+                */
                bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
-               bdi_thresh = task_dirty_limit(current, bdi_thresh);
 
                /*
                 * In order to avoid the stacked BDI deadlock we need
@@ -524,58 +1239,123 @@ static void balance_dirty_pages(struct address_space *mapping,
                 * actually dirty; with m+n sitting in the percpu
                 * deltas.
                 */
-               if (bdi_thresh < 2*bdi_stat_error(bdi)) {
-                       bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
-                       bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
+               if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
+                       bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
+                       bdi_dirty = bdi_reclaimable +
+                                   bdi_stat_sum(bdi, BDI_WRITEBACK);
                } else {
-                       bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
-                       bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
+                       bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
+                       bdi_dirty = bdi_reclaimable +
+                                   bdi_stat(bdi, BDI_WRITEBACK);
                }
 
+               dirty_exceeded = (bdi_dirty > bdi_thresh) &&
+                                 (nr_dirty > dirty_thresh);
+               if (dirty_exceeded && !bdi->dirty_exceeded)
+                       bdi->dirty_exceeded = 1;
+
+               bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
+                                    nr_dirty, bdi_thresh, bdi_dirty,
+                                    start_time);
+
+               dirty_ratelimit = bdi->dirty_ratelimit;
+               pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
+                                              background_thresh, nr_dirty,
+                                              bdi_thresh, bdi_dirty);
+               task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
+                                                       RATELIMIT_CALC_SHIFT;
+               max_pause = bdi_max_pause(bdi, bdi_dirty);
+               min_pause = bdi_min_pause(bdi, max_pause,
+                                         task_ratelimit, dirty_ratelimit,
+                                         &nr_dirtied_pause);
+
+               if (unlikely(task_ratelimit == 0)) {
+                       period = max_pause;
+                       pause = max_pause;
+                       goto pause;
+               }
+               period = HZ * pages_dirtied / task_ratelimit;
+               pause = period;
+               if (current->dirty_paused_when)
+                       pause -= now - current->dirty_paused_when;
                /*
-                * The bdi thresh is somehow "soft" limit derived from the
-                * global "hard" limit. The former helps to prevent heavy IO
-                * bdi or process from holding back light ones; The latter is
-                * the last resort safeguard.
+                * For less than 1s think time (ext3/4 may block the dirtier
+                * for up to 800ms from time to time on 1-HDD; so does xfs,
+                * however at much less frequency), try to compensate it in
+                * future periods by updating the virtual time; otherwise just
+                * do a reset, as it may be a light dirtier.
                 */
-               dirty_exceeded =
-                       (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
-                       || (nr_reclaimable + nr_writeback > dirty_thresh);
-
-               if (!dirty_exceeded)
+               if (pause < min_pause) {
+                       trace_balance_dirty_pages(bdi,
+                                                 dirty_thresh,
+                                                 background_thresh,
+                                                 nr_dirty,
+                                                 bdi_thresh,
+                                                 bdi_dirty,
+                                                 dirty_ratelimit,
+                                                 task_ratelimit,
+                                                 pages_dirtied,
+                                                 period,
+                                                 min(pause, 0L),
+                                                 start_time);
+                       if (pause < -HZ) {
+                               current->dirty_paused_when = now;
+                               current->nr_dirtied = 0;
+                       } else if (period) {
+                               current->dirty_paused_when += period;
+                               current->nr_dirtied = 0;
+                       } else if (current->nr_dirtied_pause <= pages_dirtied)
+                               current->nr_dirtied_pause += pages_dirtied;
                        break;
+               }
+               if (unlikely(pause > max_pause)) {
+                       /* for occasional dropped task_ratelimit */
+                       now += min(pause - max_pause, max_pause);
+                       pause = max_pause;
+               }
 
-               if (!bdi->dirty_exceeded)
-                       bdi->dirty_exceeded = 1;
+pause:
+               trace_balance_dirty_pages(bdi,
+                                         dirty_thresh,
+                                         background_thresh,
+                                         nr_dirty,
+                                         bdi_thresh,
+                                         bdi_dirty,
+                                         dirty_ratelimit,
+                                         task_ratelimit,
+                                         pages_dirtied,
+                                         period,
+                                         pause,
+                                         start_time);
+               __set_current_state(TASK_KILLABLE);
+               io_schedule_timeout(pause);
 
-               /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
-                * Unstable writes are a feature of certain networked
-                * filesystems (i.e. NFS) in which data may have been
-                * written to the server's write cache, but has not yet
-                * been flushed to permanent storage.
-                * Only move pages to writeback if this bdi is over its
-                * threshold otherwise wait until the disk writes catch
-                * up.
+               current->dirty_paused_when = now + pause;
+               current->nr_dirtied = 0;
+               current->nr_dirtied_pause = nr_dirtied_pause;
+
+               /*
+                * This is typically equal to (nr_dirty < dirty_thresh) and can
+                * also keep "1000+ dd on a slow USB stick" under control.
                 */
-               trace_wbc_balance_dirty_start(&wbc, bdi);
-               if (bdi_nr_reclaimable > bdi_thresh) {
-                       writeback_inodes_wb(&bdi->wb, &wbc);
-                       pages_written += write_chunk - wbc.nr_to_write;
-                       trace_wbc_balance_dirty_written(&wbc, bdi);
-                       if (pages_written >= write_chunk)
-                               break;          /* We've done our duty */
-               }
-               trace_wbc_balance_dirty_wait(&wbc, bdi);
-               __set_current_state(TASK_UNINTERRUPTIBLE);
-               io_schedule_timeout(pause);
+               if (task_ratelimit)
+                       break;
 
                /*
-                * Increase the delay for each loop, up to our previous
-                * default of taking a 100ms nap.
+                * In the case of an unresponding NFS server and the NFS dirty
+                * pages exceeds dirty_thresh, give the other good bdi's a pipe
+                * to go through, so that tasks on them still remain responsive.
+                *
+                * In theory 1 page is enough to keep the comsumer-producer
+                * pipe going: the flusher cleans 1 page => the task dirties 1
+                * more page. However bdi_dirty has accounting errors.  So use
+                * the larger and more IO friendly bdi_stat_error.
                 */
-               pause <<= 1;
-               if (pause > HZ / 10)
-                       pause = HZ / 10;
+               if (bdi_dirty <= bdi_stat_error(bdi))
+                       break;
+
+               if (fatal_signal_pending(current))
+                       break;
        }
 
        if (!dirty_exceeded && bdi->dirty_exceeded)
@@ -592,8 +1372,10 @@ static void balance_dirty_pages(struct address_space *mapping,
         * In normal mode, we start background writeout at the lower
         * background_thresh, to keep the amount of dirty memory low.
         */
-       if ((laptop_mode && pages_written) ||
-           (!laptop_mode && (nr_reclaimable > background_thresh)))
+       if (laptop_mode)
+               return;
+
+       if (nr_reclaimable > background_thresh)
                bdi_start_background_writeback(bdi);
 }
 
@@ -607,7 +1389,23 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite)
        }
 }
 
-static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
+static DEFINE_PER_CPU(int, bdp_ratelimits);
+
+/*
+ * Normal tasks are throttled by
+ *     loop {
+ *             dirty tsk->nr_dirtied_pause pages;
+ *             take a snap in balance_dirty_pages();
+ *     }
+ * However there is a worst case. If every task exit immediately when dirtied
+ * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
+ * called to throttle the page dirties. The solution is to save the not yet
+ * throttled page dirties in dirty_throttle_leaks on task exit and charge them
+ * randomly into the running tasks. This works well for the above worst case,
+ * as the new task will pick up and accumulate the old task's leaked dirty
+ * count and eventually get throttled.
+ */
+DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
 
 /**
  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
@@ -626,28 +1424,46 @@ static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
                                        unsigned long nr_pages_dirtied)
 {
-       unsigned long ratelimit;
-       unsigned long *p;
+       struct backing_dev_info *bdi = mapping->backing_dev_info;
+       int ratelimit;
+       int *p;
+
+       if (!bdi_cap_account_dirty(bdi))
+               return;
 
-       ratelimit = ratelimit_pages;
-       if (mapping->backing_dev_info->dirty_exceeded)
-               ratelimit = 8;
+       ratelimit = current->nr_dirtied_pause;
+       if (bdi->dirty_exceeded)
+               ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
 
+       preempt_disable();
        /*
-        * Check the rate limiting. Also, we do not want to throttle real-time
-        * tasks in balance_dirty_pages(). Period.
+        * This prevents one CPU to accumulate too many dirtied pages without
+        * calling into balance_dirty_pages(), which can happen when there are
+        * 1000+ tasks, all of them start dirtying pages at exactly the same
+        * time, hence all honoured too large initial task->nr_dirtied_pause.
         */
-       preempt_disable();
        p =  &__get_cpu_var(bdp_ratelimits);
-       *p += nr_pages_dirtied;
-       if (unlikely(*p >= ratelimit)) {
-               ratelimit = sync_writeback_pages(*p);
+       if (unlikely(current->nr_dirtied >= ratelimit))
                *p = 0;
-               preempt_enable();
-               balance_dirty_pages(mapping, ratelimit);
-               return;
+       else if (unlikely(*p >= ratelimit_pages)) {
+               *p = 0;
+               ratelimit = 0;
+       }
+       /*
+        * Pick up the dirtied pages by the exited tasks. This avoids lots of
+        * short-lived tasks (eg. gcc invocations in a kernel build) escaping
+        * the dirty throttling and livelock other long-run dirtiers.
+        */
+       p = &__get_cpu_var(dirty_throttle_leaks);
+       if (*p > 0 && current->nr_dirtied < ratelimit) {
+               nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
+               *p -= nr_pages_dirtied;
+               current->nr_dirtied += nr_pages_dirtied;
        }
        preempt_enable();
+
+       if (unlikely(current->nr_dirtied >= ratelimit))
+               balance_dirty_pages(mapping, current->nr_dirtied);
 }
 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 
@@ -658,6 +1474,7 @@ void throttle_vm_writeout(gfp_t gfp_mask)
 
         for ( ; ; ) {
                global_dirty_limits(&background_thresh, &dirty_thresh);
+               dirty_thresh = hard_dirty_limit(dirty_thresh);
 
                 /*
                  * Boost the allowable dirty threshold a bit for page
@@ -703,7 +1520,8 @@ void laptop_mode_timer_fn(unsigned long data)
         * threshold
         */
        if (bdi_has_dirty_io(&q->backing_dev_info))
-               bdi_start_writeback(&q->backing_dev_info, nr_pages);
+               bdi_start_writeback(&q->backing_dev_info, nr_pages,
+                                       WB_REASON_LAPTOP_TIMER);
 }
 
 /*
@@ -742,22 +1560,17 @@ void laptop_sync_completion(void)
  *
  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
- * thresholds before writeback cuts in.
- *
- * But the limit should not be set too high.  Because it also controls the
- * amount of memory which the balance_dirty_pages() caller has to write back.
- * If this is too large then the caller will block on the IO queue all the
- * time.  So limit it to four megabytes - the balance_dirty_pages() caller
- * will write six megabyte chunks, max.
+ * thresholds.
  */
 
 void writeback_set_ratelimit(void)
 {
-       ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
+       unsigned long background_thresh;
+       unsigned long dirty_thresh;
+       global_dirty_limits(&background_thresh, &dirty_thresh);
+       ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
        if (ratelimit_pages < 16)
                ratelimit_pages = 16;
-       if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
-               ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 }
 
 static int __cpuinit
@@ -799,7 +1612,6 @@ void __init page_writeback_init(void)
 
        shift = calc_period_shift();
        prop_descriptor_init(&vm_completions, shift);
-       prop_descriptor_init(&vm_dirties, shift);
 }
 
 /**
@@ -892,12 +1704,12 @@ int write_cache_pages(struct address_space *mapping,
                        range_whole = 1;
                cycled = 1; /* ignore range_cyclic tests */
        }
-       if (wbc->sync_mode == WB_SYNC_ALL)
+       if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
                tag = PAGECACHE_TAG_TOWRITE;
        else
                tag = PAGECACHE_TAG_DIRTY;
 retry:
-       if (wbc->sync_mode == WB_SYNC_ALL)
+       if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
                tag_pages_for_writeback(mapping, index, end);
        done_index = index;
        while (!done && (index <= end)) {
@@ -1127,8 +1939,10 @@ void account_page_dirtied(struct page *page, struct address_space *mapping)
                __inc_zone_page_state(page, NR_FILE_DIRTY);
                __inc_zone_page_state(page, NR_DIRTIED);
                __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
-               task_dirty_inc(current);
+               __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
                task_io_account_write(PAGE_CACHE_SIZE);
+               current->nr_dirtied++;
+               this_cpu_inc(bdp_ratelimits);
        }
 }
 EXPORT_SYMBOL(account_page_dirtied);
@@ -1141,7 +1955,6 @@ EXPORT_SYMBOL(account_page_dirtied);
 void account_page_writeback(struct page *page)
 {
        inc_zone_page_state(page, NR_WRITEBACK);
-       inc_zone_page_state(page, NR_WRITTEN);
 }
 EXPORT_SYMBOL(account_page_writeback);
 
@@ -1190,6 +2003,24 @@ int __set_page_dirty_nobuffers(struct page *page)
 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
 
 /*
+ * Call this whenever redirtying a page, to de-account the dirty counters
+ * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
+ * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
+ * systematic errors in balanced_dirty_ratelimit and the dirty pages position
+ * control.
+ */
+void account_page_redirty(struct page *page)
+{
+       struct address_space *mapping = page->mapping;
+       if (mapping && mapping_cap_account_dirty(mapping)) {
+               current->nr_dirtied--;
+               dec_zone_page_state(page, NR_DIRTIED);
+               dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
+       }
+}
+EXPORT_SYMBOL(account_page_redirty);
+
+/*
  * When a writepage implementation decides that it doesn't want to write this
  * page for some reason, it should redirty the locked page via
  * redirty_page_for_writepage() and it should then unlock the page and return 0
@@ -1197,6 +2028,7 @@ EXPORT_SYMBOL(__set_page_dirty_nobuffers);
 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
 {
        wbc->pages_skipped++;
+       account_page_redirty(page);
        return __set_page_dirty_nobuffers(page);
 }
 EXPORT_SYMBOL(redirty_page_for_writepage);
@@ -1358,8 +2190,10 @@ int test_clear_page_writeback(struct page *page)
        } else {
                ret = TestClearPageWriteback(page);
        }
-       if (ret)
+       if (ret) {
                dec_zone_page_state(page, NR_WRITEBACK);
+               inc_zone_page_state(page, NR_WRITTEN);
+       }
        return ret;
 }
 
@@ -1405,10 +2239,6 @@ EXPORT_SYMBOL(test_set_page_writeback);
  */
 int mapping_tagged(struct address_space *mapping, int tag)
 {
-       int ret;
-       rcu_read_lock();
-       ret = radix_tree_tagged(&mapping->page_tree, tag);
-       rcu_read_unlock();
-       return ret;
+       return radix_tree_tagged(&mapping->page_tree, tag);
 }
 EXPORT_SYMBOL(mapping_tagged);