ARM: 7419/1: vfp: fix VFP flushing regression on sigreturn path
[linux-flexiantxendom0-3.2.10.git] / arch / arm / vfp / vfpmodule.c
index 04ddab2..b0197b2 100644 (file)
@@ -8,13 +8,22 @@
  * it under the terms of the GNU General Public License version 2 as
  * published by the Free Software Foundation.
  */
-#include <linux/module.h>
 #include <linux/types.h>
+#include <linux/cpu.h>
+#include <linux/cpu_pm.h>
+#include <linux/hardirq.h>
 #include <linux/kernel.h>
+#include <linux/notifier.h>
 #include <linux/signal.h>
 #include <linux/sched.h>
+#include <linux/smp.h>
 #include <linux/init.h>
+#include <linux/uaccess.h>
+#include <linux/user.h>
 
+#include <asm/cp15.h>
+#include <asm/cputype.h>
+#include <asm/system_info.h>
 #include <asm/thread_notify.h>
 #include <asm/vfp.h>
 
@@ -29,7 +38,6 @@ void vfp_support_entry(void);
 void vfp_null_entry(void);
 
 void (*vfp_vector)(void) = vfp_null_entry;
-union vfp_state *last_VFP_context[NR_CPUS];
 
 /*
  * Dual-use variable.
@@ -38,32 +46,144 @@ union vfp_state *last_VFP_context[NR_CPUS];
  */
 unsigned int VFP_arch;
 
+/*
+ * The pointer to the vfpstate structure of the thread which currently
+ * owns the context held in the VFP hardware, or NULL if the hardware
+ * context is invalid.
+ *
+ * For UP, this is sufficient to tell which thread owns the VFP context.
+ * However, for SMP, we also need to check the CPU number stored in the
+ * saved state too to catch migrations.
+ */
+union vfp_state *vfp_current_hw_state[NR_CPUS];
+
+/*
+ * Is 'thread's most up to date state stored in this CPUs hardware?
+ * Must be called from non-preemptible context.
+ */
+static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
+{
+#ifdef CONFIG_SMP
+       if (thread->vfpstate.hard.cpu != cpu)
+               return false;
+#endif
+       return vfp_current_hw_state[cpu] == &thread->vfpstate;
+}
+
+/*
+ * Force a reload of the VFP context from the thread structure.  We do
+ * this by ensuring that access to the VFP hardware is disabled, and
+ * clear vfp_current_hw_state.  Must be called from non-preemptible context.
+ */
+static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
+{
+       if (vfp_state_in_hw(cpu, thread)) {
+               fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
+               vfp_current_hw_state[cpu] = NULL;
+       }
+#ifdef CONFIG_SMP
+       thread->vfpstate.hard.cpu = NR_CPUS;
+#endif
+}
+
+/*
+ * Per-thread VFP initialization.
+ */
+static void vfp_thread_flush(struct thread_info *thread)
+{
+       union vfp_state *vfp = &thread->vfpstate;
+       unsigned int cpu;
+
+       /*
+        * Disable VFP to ensure we initialize it first.  We must ensure
+        * that the modification of vfp_current_hw_state[] and hardware
+        * disable are done for the same CPU and without preemption.
+        *
+        * Do this first to ensure that preemption won't overwrite our
+        * state saving should access to the VFP be enabled at this point.
+        */
+       cpu = get_cpu();
+       if (vfp_current_hw_state[cpu] == vfp)
+               vfp_current_hw_state[cpu] = NULL;
+       fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
+       put_cpu();
+
+       memset(vfp, 0, sizeof(union vfp_state));
+
+       vfp->hard.fpexc = FPEXC_EN;
+       vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
+#ifdef CONFIG_SMP
+       vfp->hard.cpu = NR_CPUS;
+#endif
+}
+
+static void vfp_thread_exit(struct thread_info *thread)
+{
+       /* release case: Per-thread VFP cleanup. */
+       union vfp_state *vfp = &thread->vfpstate;
+       unsigned int cpu = get_cpu();
+
+       if (vfp_current_hw_state[cpu] == vfp)
+               vfp_current_hw_state[cpu] = NULL;
+       put_cpu();
+}
+
+static void vfp_thread_copy(struct thread_info *thread)
+{
+       struct thread_info *parent = current_thread_info();
+
+       vfp_sync_hwstate(parent);
+       thread->vfpstate = parent->vfpstate;
+#ifdef CONFIG_SMP
+       thread->vfpstate.hard.cpu = NR_CPUS;
+#endif
+}
+
+/*
+ * When this function is called with the following 'cmd's, the following
+ * is true while this function is being run:
+ *  THREAD_NOFTIFY_SWTICH:
+ *   - the previously running thread will not be scheduled onto another CPU.
+ *   - the next thread to be run (v) will not be running on another CPU.
+ *   - thread->cpu is the local CPU number
+ *   - not preemptible as we're called in the middle of a thread switch
+ *  THREAD_NOTIFY_FLUSH:
+ *   - the thread (v) will be running on the local CPU, so
+ *     v === current_thread_info()
+ *   - thread->cpu is the local CPU number at the time it is accessed,
+ *     but may change at any time.
+ *   - we could be preempted if tree preempt rcu is enabled, so
+ *     it is unsafe to use thread->cpu.
+ *  THREAD_NOTIFY_EXIT
+ *   - the thread (v) will be running on the local CPU, so
+ *     v === current_thread_info()
+ *   - thread->cpu is the local CPU number at the time it is accessed,
+ *     but may change at any time.
+ *   - we could be preempted if tree preempt rcu is enabled, so
+ *     it is unsafe to use thread->cpu.
+ */
 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
 {
        struct thread_info *thread = v;
-       union vfp_state *vfp;
-       __u32 cpu = thread->cpu;
+       u32 fpexc;
+#ifdef CONFIG_SMP
+       unsigned int cpu;
+#endif
 
-       if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
-               u32 fpexc = fmrx(FPEXC);
+       switch (cmd) {
+       case THREAD_NOTIFY_SWITCH:
+               fpexc = fmrx(FPEXC);
 
 #ifdef CONFIG_SMP
+               cpu = thread->cpu;
+
                /*
                 * On SMP, if VFP is enabled, save the old state in
                 * case the thread migrates to a different CPU. The
                 * restoring is done lazily.
                 */
-               if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
-                       vfp_save_state(last_VFP_context[cpu], fpexc);
-                       last_VFP_context[cpu]->hard.cpu = cpu;
-               }
-               /*
-                * Thread migration, just force the reloading of the
-                * state on the new CPU in case the VFP registers
-                * contain stale data.
-                */
-               if (thread->vfpstate.hard.cpu != cpu)
-                       last_VFP_context[cpu] = NULL;
+               if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
+                       vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 #endif
 
                /*
@@ -71,29 +191,21 @@ static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
                 * old state.
                 */
                fmxr(FPEXC, fpexc & ~FPEXC_EN);
-               return NOTIFY_DONE;
-       }
+               break;
 
-       vfp = &thread->vfpstate;
-       if (cmd == THREAD_NOTIFY_FLUSH) {
-               /*
-                * Per-thread VFP initialisation.
-                */
-               memset(vfp, 0, sizeof(union vfp_state));
+       case THREAD_NOTIFY_FLUSH:
+               vfp_thread_flush(thread);
+               break;
 
-               vfp->hard.fpexc = FPEXC_EN;
-               vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
+       case THREAD_NOTIFY_EXIT:
+               vfp_thread_exit(thread);
+               break;
 
-               /*
-                * Disable VFP to ensure we initialise it first.
-                */
-               fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
+       case THREAD_NOTIFY_COPY:
+               vfp_thread_copy(thread);
+               break;
        }
 
-       /* flush and release case: Per-thread VFP cleanup. */
-       if (last_VFP_context[cpu] == vfp)
-               last_VFP_context[cpu] = NULL;
-
        return NOTIFY_DONE;
 }
 
@@ -105,7 +217,7 @@ static struct notifier_block vfp_notifier_block = {
  * Raise a SIGFPE for the current process.
  * sicode describes the signal being raised.
  */
-void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
+static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
 {
        siginfo_t info;
 
@@ -125,13 +237,13 @@ void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
        send_sig_info(SIGFPE, &info, current);
 }
 
-static void vfp_panic(char *reason)
+static void vfp_panic(char *reason, u32 inst)
 {
        int i;
 
        printk(KERN_ERR "VFP: Error: %s\n", reason);
        printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
-               fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
+               fmrx(FPEXC), fmrx(FPSCR), inst);
        for (i = 0; i < 32; i += 2)
                printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
                       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
@@ -147,7 +259,7 @@ static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_
        pr_debug("VFP: raising exceptions %08x\n", exceptions);
 
        if (exceptions == VFP_EXCEPTION_ERROR) {
-               vfp_panic("unhandled bounce");
+               vfp_panic("unhandled bounce", inst);
                vfp_raise_sigfpe(0, regs);
                return;
        }
@@ -220,35 +332,66 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
 /*
  * Package up a bounce condition.
  */
-void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
+void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
 {
-       u32 fpscr, orig_fpscr, exceptions, inst;
+       u32 fpscr, orig_fpscr, fpsid, exceptions;
 
        pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
 
        /*
-        * Enable access to the VFP so we can handle the bounce.
+        * At this point, FPEXC can have the following configuration:
+        *
+        *  EX DEX IXE
+        *  0   1   x   - synchronous exception
+        *  1   x   0   - asynchronous exception
+        *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
+        *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
+        *                implementation), undefined otherwise
+        *
+        * Clear various bits and enable access to the VFP so we can
+        * handle the bounce.
         */
-       fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
+       fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
 
+       fpsid = fmrx(FPSID);
        orig_fpscr = fpscr = fmrx(FPSCR);
 
        /*
-        * If we are running with inexact exceptions enabled, we need to
-        * emulate the trigger instruction.  Note that as we're emulating
-        * the trigger instruction, we need to increment PC.
+        * Check for the special VFP subarch 1 and FPSCR.IXE bit case
         */
-       if (fpscr & FPSCR_IXE) {
-               regs->ARM_pc += 4;
+       if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
+           && (fpscr & FPSCR_IXE)) {
+               /*
+                * Synchronous exception, emulate the trigger instruction
+                */
                goto emulate;
        }
 
-       barrier();
+       if (fpexc & FPEXC_EX) {
+#ifndef CONFIG_CPU_FEROCEON
+               /*
+                * Asynchronous exception. The instruction is read from FPINST
+                * and the interrupted instruction has to be restarted.
+                */
+               trigger = fmrx(FPINST);
+               regs->ARM_pc -= 4;
+#endif
+       } else if (!(fpexc & FPEXC_DEX)) {
+               /*
+                * Illegal combination of bits. It can be caused by an
+                * unallocated VFP instruction but with FPSCR.IXE set and not
+                * on VFP subarch 1.
+                */
+                vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
+               goto exit;
+       }
 
        /*
-        * Modify fpscr to indicate the number of iterations remaining
+        * Modify fpscr to indicate the number of iterations remaining.
+        * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
+        * whether FPEXC.VECITR or FPSCR.LEN is used.
         */
-       if (fpexc & FPEXC_EX) {
+       if (fpexc & (FPEXC_EX | FPEXC_VV)) {
                u32 len;
 
                len = fpexc + (1 << FPEXC_LENGTH_BIT);
@@ -262,16 +405,16 @@ void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
         * FPEXC bounce reason, but this appears to be unreliable.
         * Emulate the bounced instruction instead.
         */
-       inst = fmrx(FPINST);
-       exceptions = vfp_emulate_instruction(inst, fpscr, regs);
+       exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
        if (exceptions)
-               vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
+               vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 
        /*
-        * If there isn't a second FP instruction, exit now.
+        * If there isn't a second FP instruction, exit now. Note that
+        * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
         */
-       if (!(fpexc & FPEXC_FPV2))
-               return;
+       if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
+               goto exit;
 
        /*
         * The barrier() here prevents fpinst2 being read
@@ -279,17 +422,21 @@ void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
         */
        barrier();
        trigger = fmrx(FPINST2);
-       orig_fpscr = fpscr = fmrx(FPSCR);
 
  emulate:
-       exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
+       exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
        if (exceptions)
                vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
+ exit:
+       preempt_enable();
 }
 
 static void vfp_enable(void *unused)
 {
-       u32 access = get_copro_access();
+       u32 access;
+
+       BUG_ON(preemptible());
+       access = get_copro_access();
 
        /*
         * Enable full access to VFP (cp10 and cp11)
@@ -297,49 +444,233 @@ static void vfp_enable(void *unused)
        set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
 }
 
-#include <linux/smp.h>
+#ifdef CONFIG_CPU_PM
+static int vfp_pm_suspend(void)
+{
+       struct thread_info *ti = current_thread_info();
+       u32 fpexc = fmrx(FPEXC);
+
+       /* if vfp is on, then save state for resumption */
+       if (fpexc & FPEXC_EN) {
+               printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
+               vfp_save_state(&ti->vfpstate, fpexc);
+
+               /* disable, just in case */
+               fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
+       }
+
+       /* clear any information we had about last context state */
+       memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
+
+       return 0;
+}
+
+static void vfp_pm_resume(void)
+{
+       /* ensure we have access to the vfp */
+       vfp_enable(NULL);
+
+       /* and disable it to ensure the next usage restores the state */
+       fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
+}
+
+static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
+       void *v)
+{
+       switch (cmd) {
+       case CPU_PM_ENTER:
+               vfp_pm_suspend();
+               break;
+       case CPU_PM_ENTER_FAILED:
+       case CPU_PM_EXIT:
+               vfp_pm_resume();
+               break;
+       }
+       return NOTIFY_OK;
+}
+
+static struct notifier_block vfp_cpu_pm_notifier_block = {
+       .notifier_call = vfp_cpu_pm_notifier,
+};
+
+static void vfp_pm_init(void)
+{
+       cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
+}
+
+#else
+static inline void vfp_pm_init(void) { }
+#endif /* CONFIG_CPU_PM */
 
 /*
- * VFP support code initialisation.
+ * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
+ * with the hardware state.
  */
-static int __init vfp_init(void)
+void vfp_sync_hwstate(struct thread_info *thread)
 {
-       unsigned int vfpsid;
-       unsigned int cpu_arch = cpu_architecture();
-       u32 access = 0;
+       unsigned int cpu = get_cpu();
 
-       if (cpu_arch >= CPU_ARCH_ARMv6) {
-               access = get_copro_access();
+       if (vfp_state_in_hw(cpu, thread)) {
+               u32 fpexc = fmrx(FPEXC);
 
                /*
-                * Enable full access to VFP (cp10 and cp11)
+                * Save the last VFP state on this CPU.
                 */
-               set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
+               fmxr(FPEXC, fpexc | FPEXC_EN);
+               vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
+               fmxr(FPEXC, fpexc);
        }
 
+       put_cpu();
+}
+
+/* Ensure that the thread reloads the hardware VFP state on the next use. */
+void vfp_flush_hwstate(struct thread_info *thread)
+{
+       unsigned int cpu = get_cpu();
+
+       vfp_force_reload(cpu, thread);
+
+       put_cpu();
+}
+
+/*
+ * Save the current VFP state into the provided structures and prepare
+ * for entry into a new function (signal handler).
+ */
+int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
+                                   struct user_vfp_exc __user *ufp_exc)
+{
+       struct thread_info *thread = current_thread_info();
+       struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
+       int err = 0;
+
+       /* Ensure that the saved hwstate is up-to-date. */
+       vfp_sync_hwstate(thread);
+
+       /*
+        * Copy the floating point registers. There can be unused
+        * registers see asm/hwcap.h for details.
+        */
+       err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
+                             sizeof(hwstate->fpregs));
+       /*
+        * Copy the status and control register.
+        */
+       __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
+
+       /*
+        * Copy the exception registers.
+        */
+       __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
+       __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
+       __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
+
+       if (err)
+               return -EFAULT;
+
+       /* Ensure that VFP is disabled. */
+       vfp_flush_hwstate(thread);
+
+       /*
+        * As per the PCS, clear the length and stride bits for function
+        * entry.
+        */
+       hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
+       return 0;
+}
+
+/* Sanitise and restore the current VFP state from the provided structures. */
+int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
+                            struct user_vfp_exc __user *ufp_exc)
+{
+       struct thread_info *thread = current_thread_info();
+       struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
+       unsigned long fpexc;
+       int err = 0;
+
+       /* Disable VFP to avoid corrupting the new thread state. */
+       vfp_flush_hwstate(thread);
+
+       /*
+        * Copy the floating point registers. There can be unused
+        * registers see asm/hwcap.h for details.
+        */
+       err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
+                               sizeof(hwstate->fpregs));
+       /*
+        * Copy the status and control register.
+        */
+       __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
+
+       /*
+        * Sanitise and restore the exception registers.
+        */
+       __get_user_error(fpexc, &ufp_exc->fpexc, err);
+
+       /* Ensure the VFP is enabled. */
+       fpexc |= FPEXC_EN;
+
+       /* Ensure FPINST2 is invalid and the exception flag is cleared. */
+       fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
+       hwstate->fpexc = fpexc;
+
+       __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
+       __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
+
+       return err ? -EFAULT : 0;
+}
+
+/*
+ * VFP hardware can lose all context when a CPU goes offline.
+ * As we will be running in SMP mode with CPU hotplug, we will save the
+ * hardware state at every thread switch.  We clear our held state when
+ * a CPU has been killed, indicating that the VFP hardware doesn't contain
+ * a threads VFP state.  When a CPU starts up, we re-enable access to the
+ * VFP hardware.
+ *
+ * Both CPU_DYING and CPU_STARTING are called on the CPU which
+ * is being offlined/onlined.
+ */
+static int vfp_hotplug(struct notifier_block *b, unsigned long action,
+       void *hcpu)
+{
+       if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
+               vfp_force_reload((long)hcpu, current_thread_info());
+       } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
+               vfp_enable(NULL);
+       return NOTIFY_OK;
+}
+
+/*
+ * VFP support code initialisation.
+ */
+static int __init vfp_init(void)
+{
+       unsigned int vfpsid;
+       unsigned int cpu_arch = cpu_architecture();
+
+       if (cpu_arch >= CPU_ARCH_ARMv6)
+               on_each_cpu(vfp_enable, NULL, 1);
+
        /*
         * First check that there is a VFP that we can use.
         * The handler is already setup to just log calls, so
         * we just need to read the VFPSID register.
         */
        vfp_vector = vfp_testing_entry;
+       barrier();
        vfpsid = fmrx(FPSID);
        barrier();
        vfp_vector = vfp_null_entry;
 
        printk(KERN_INFO "VFP support v0.3: ");
-       if (VFP_arch) {
+       if (VFP_arch)
                printk("not present\n");
-
-               /*
-                * Restore the copro access register.
-                */
-               if (cpu_arch >= CPU_ARCH_ARMv6)
-                       set_copro_access(access);
-       } else if (vfpsid & FPSID_NODOUBLE) {
+       else if (vfpsid & FPSID_NODOUBLE) {
                printk("no double precision support\n");
        } else {
-               smp_call_function(vfp_enable, NULL, 1, 1);
+               hotcpu_notifier(vfp_hotplug, 0);
 
                VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
                printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
@@ -352,12 +683,39 @@ static int __init vfp_init(void)
                vfp_vector = vfp_support_entry;
 
                thread_register_notifier(&vfp_notifier_block);
+               vfp_pm_init();
 
                /*
                 * We detected VFP, and the support code is
                 * in place; report VFP support to userspace.
                 */
                elf_hwcap |= HWCAP_VFP;
+#ifdef CONFIG_VFPv3
+               if (VFP_arch >= 2) {
+                       elf_hwcap |= HWCAP_VFPv3;
+
+                       /*
+                        * Check for VFPv3 D16. CPUs in this configuration
+                        * only have 16 x 64bit registers.
+                        */
+                       if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
+                               elf_hwcap |= HWCAP_VFPv3D16;
+               }
+#endif
+               /*
+                * Check for the presence of the Advanced SIMD
+                * load/store instructions, integer and single
+                * precision floating point operations. Only check
+                * for NEON if the hardware has the MVFR registers.
+                */
+               if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
+#ifdef CONFIG_NEON
+                       if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
+                               elf_hwcap |= HWCAP_NEON;
+#endif
+                       if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
+                               elf_hwcap |= HWCAP_VFPv4;
+               }
        }
        return 0;
 }