/* * Functions related to io context handling */ #include #include #include #include #include #include /* for max_pfn/max_low_pfn */ #include #include "blk.h" /* * For io context allocations */ static struct kmem_cache *iocontext_cachep; /** * get_io_context - increment reference count to io_context * @ioc: io_context to get * * Increment reference count to @ioc. */ void get_io_context(struct io_context *ioc) { BUG_ON(atomic_long_read(&ioc->refcount) <= 0); atomic_long_inc(&ioc->refcount); } EXPORT_SYMBOL(get_io_context); /* * Releasing ioc may nest into another put_io_context() leading to nested * fast path release. As the ioc's can't be the same, this is okay but * makes lockdep whine. Keep track of nesting and use it as subclass. */ #ifdef CONFIG_LOCKDEP #define ioc_release_depth(q) ((q) ? (q)->ioc_release_depth : 0) #define ioc_release_depth_inc(q) (q)->ioc_release_depth++ #define ioc_release_depth_dec(q) (q)->ioc_release_depth-- #else #define ioc_release_depth(q) 0 #define ioc_release_depth_inc(q) do { } while (0) #define ioc_release_depth_dec(q) do { } while (0) #endif /* * Slow path for ioc release in put_io_context(). Performs double-lock * dancing to unlink all cic's and then frees ioc. */ static void ioc_release_fn(struct work_struct *work) { struct io_context *ioc = container_of(work, struct io_context, release_work); struct request_queue *last_q = NULL; spin_lock_irq(&ioc->lock); while (!hlist_empty(&ioc->cic_list)) { struct cfq_io_context *cic = hlist_entry(ioc->cic_list.first, struct cfq_io_context, cic_list); struct request_queue *this_q = cic->q; if (this_q != last_q) { /* * Need to switch to @this_q. Once we release * @ioc->lock, it can go away along with @cic. * Hold on to it. */ __blk_get_queue(this_q); /* * blk_put_queue() might sleep thanks to kobject * idiocy. Always release both locks, put and * restart. */ if (last_q) { spin_unlock(last_q->queue_lock); spin_unlock_irq(&ioc->lock); blk_put_queue(last_q); } else { spin_unlock_irq(&ioc->lock); } last_q = this_q; spin_lock_irq(this_q->queue_lock); spin_lock(&ioc->lock); continue; } ioc_release_depth_inc(this_q); cic->exit(cic); cic->release(cic); ioc_release_depth_dec(this_q); } if (last_q) { spin_unlock(last_q->queue_lock); spin_unlock_irq(&ioc->lock); blk_put_queue(last_q); } else { spin_unlock_irq(&ioc->lock); } kmem_cache_free(iocontext_cachep, ioc); } /** * put_io_context - put a reference of io_context * @ioc: io_context to put * @locked_q: request_queue the caller is holding queue_lock of (hint) * * Decrement reference count of @ioc and release it if the count reaches * zero. If the caller is holding queue_lock of a queue, it can indicate * that with @locked_q. This is an optimization hint and the caller is * allowed to pass in %NULL even when it's holding a queue_lock. */ void put_io_context(struct io_context *ioc, struct request_queue *locked_q) { struct request_queue *last_q = locked_q; unsigned long flags; if (ioc == NULL) return; BUG_ON(atomic_long_read(&ioc->refcount) <= 0); if (locked_q) lockdep_assert_held(locked_q->queue_lock); if (!atomic_long_dec_and_test(&ioc->refcount)) return; /* * Destroy @ioc. This is a bit messy because cic's are chained * from both ioc and queue, and ioc->lock nests inside queue_lock. * The inner ioc->lock should be held to walk our cic_list and then * for each cic the outer matching queue_lock should be grabbed. * ie. We need to do reverse-order double lock dancing. * * Another twist is that we are often called with one of the * matching queue_locks held as indicated by @locked_q, which * prevents performing double-lock dance for other queues. * * So, we do it in two stages. The fast path uses the queue_lock * the caller is holding and, if other queues need to be accessed, * uses trylock to avoid introducing locking dependency. This can * handle most cases, especially if @ioc was performing IO on only * single device. * * If trylock doesn't cut it, we defer to @ioc->release_work which * can do all the double-locking dancing. */ spin_lock_irqsave_nested(&ioc->lock, flags, ioc_release_depth(locked_q)); while (!hlist_empty(&ioc->cic_list)) { struct cfq_io_context *cic = hlist_entry(ioc->cic_list.first, struct cfq_io_context, cic_list); struct request_queue *this_q = cic->q; if (this_q != last_q) { if (last_q && last_q != locked_q) spin_unlock(last_q->queue_lock); last_q = NULL; if (!spin_trylock(this_q->queue_lock)) break; last_q = this_q; continue; } ioc_release_depth_inc(this_q); cic->exit(cic); cic->release(cic); ioc_release_depth_dec(this_q); } if (last_q && last_q != locked_q) spin_unlock(last_q->queue_lock); spin_unlock_irqrestore(&ioc->lock, flags); /* if no cic's left, we're done; otherwise, kick release_work */ if (hlist_empty(&ioc->cic_list)) kmem_cache_free(iocontext_cachep, ioc); else schedule_work(&ioc->release_work); } EXPORT_SYMBOL(put_io_context); /* Called by the exiting task */ void exit_io_context(struct task_struct *task) { struct io_context *ioc; /* PF_EXITING prevents new io_context from being attached to @task */ WARN_ON_ONCE(!(current->flags & PF_EXITING)); task_lock(task); ioc = task->io_context; task->io_context = NULL; task_unlock(task); atomic_dec(&ioc->nr_tasks); put_io_context(ioc, NULL); } static struct io_context *create_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node, bool take_ref) { struct io_context *ioc; ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO, node); if (unlikely(!ioc)) return NULL; /* initialize */ atomic_long_set(&ioc->refcount, 1); atomic_set(&ioc->nr_tasks, 1); spin_lock_init(&ioc->lock); INIT_RADIX_TREE(&ioc->radix_root, GFP_ATOMIC | __GFP_HIGH); INIT_HLIST_HEAD(&ioc->cic_list); INIT_WORK(&ioc->release_work, ioc_release_fn); /* try to install, somebody might already have beaten us to it */ task_lock(task); if (!task->io_context && !(task->flags & PF_EXITING)) { task->io_context = ioc; } else { kmem_cache_free(iocontext_cachep, ioc); ioc = task->io_context; } if (ioc && take_ref) get_io_context(ioc); task_unlock(task); return ioc; } /** * current_io_context - get io_context of %current * @gfp_flags: allocation flags, used if allocation is necessary * @node: allocation node, used if allocation is necessary * * Return io_context of %current. If it doesn't exist, it is created with * @gfp_flags and @node. The returned io_context does NOT have its * reference count incremented. Because io_context is exited only on task * exit, %current can be sure that the returned io_context is valid and * alive as long as it is executing. */ struct io_context *current_io_context(gfp_t gfp_flags, int node) { might_sleep_if(gfp_flags & __GFP_WAIT); if (current->io_context) return current->io_context; return create_task_io_context(current, gfp_flags, node, false); } EXPORT_SYMBOL(current_io_context); /** * get_task_io_context - get io_context of a task * @task: task of interest * @gfp_flags: allocation flags, used if allocation is necessary * @node: allocation node, used if allocation is necessary * * Return io_context of @task. If it doesn't exist, it is created with * @gfp_flags and @node. The returned io_context has its reference count * incremented. * * This function always goes through task_lock() and it's better to use * current_io_context() + get_io_context() for %current. */ struct io_context *get_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node) { struct io_context *ioc; might_sleep_if(gfp_flags & __GFP_WAIT); task_lock(task); ioc = task->io_context; if (likely(ioc)) { get_io_context(ioc); task_unlock(task); return ioc; } task_unlock(task); return create_task_io_context(task, gfp_flags, node, true); } EXPORT_SYMBOL(get_task_io_context); void ioc_set_changed(struct io_context *ioc, int which) { struct cfq_io_context *cic; struct hlist_node *n; hlist_for_each_entry(cic, n, &ioc->cic_list, cic_list) set_bit(which, &cic->changed); } /** * ioc_ioprio_changed - notify ioprio change * @ioc: io_context of interest * @ioprio: new ioprio * * @ioc's ioprio has changed to @ioprio. Set %CIC_IOPRIO_CHANGED for all * cic's. iosched is responsible for checking the bit and applying it on * request issue path. */ void ioc_ioprio_changed(struct io_context *ioc, int ioprio) { unsigned long flags; spin_lock_irqsave(&ioc->lock, flags); ioc->ioprio = ioprio; ioc_set_changed(ioc, CIC_IOPRIO_CHANGED); spin_unlock_irqrestore(&ioc->lock, flags); } /** * ioc_cgroup_changed - notify cgroup change * @ioc: io_context of interest * * @ioc's cgroup has changed. Set %CIC_CGROUP_CHANGED for all cic's. * iosched is responsible for checking the bit and applying it on request * issue path. */ void ioc_cgroup_changed(struct io_context *ioc) { unsigned long flags; spin_lock_irqsave(&ioc->lock, flags); ioc_set_changed(ioc, CIC_CGROUP_CHANGED); spin_unlock_irqrestore(&ioc->lock, flags); } static int __init blk_ioc_init(void) { iocontext_cachep = kmem_cache_create("blkdev_ioc", sizeof(struct io_context), 0, SLAB_PANIC, NULL); return 0; } subsys_initcall(blk_ioc_init);